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This paper presents an overall description of the CMS trigger system which is composed by the Level-1 

Trigger and the High-Level Trigger sub-systems. Details on the algorithms and selection criteria at a 

luminosity of 2x1033 cm-2s-1 are provided. High efficiencies for benchmark physics channels are attainable 

with an inclusive selection that avoids detailed topological requirements on the event. 
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1. Introduction 

The CMS detector will operate in the LHC machine where the bunch-crossing frequency 

will be 40 MHz and the maximum luminosity will be 1034 cm-2s-1 originating about 20 inelastic 

interactions per bunch crossing. The CMS trigger system has the enormous task of reducing the 

input data rate by a factor of the order of 106 to a rate of 0(102) Hz adequate for permanent 

storage, preserving high efficiency for the interesting and rare physics events. In order to be 

open to new physics, the selection criteria are mostly based on inclusive production of high 

energy leptons or jets avoiding the use of topological or other event conditions specific of 

known physics. In these conditions the emphasis has to be placed on the reconstruction of 

trigger objects (e.g. electrons, muons) with high quality. To achieve the required high 

background rejection factors and to measure the trigger objects with  enough precision 

sophisticated pattern recognition algorithms have to be implemented in dedicated hardware 

processors in the Level-1 Trigger and complete reconstruction algorithms with “off-line quality” 

need to run on the High-Level Trigger processors.  

The performance of this system at both low luminosity, 2x1033 cm-2s-1, and at high 

luminosity, 1034 cm-2s-1, was investigated using a full detector GEANT simulation [1]. 

Simulated digitization, including both in-time and out-of-time pileup, was performed at both 

luminosities. 

 

 

 

Fig. 1: Data flow architecture of the CMS trigger and data acquisition system. 
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2. Overview of the CMS trigger and data acquisition system 

The CMS trigger and data acquisition system design is shown in Fig. 1. The Level-1 

trigger processor uses coarse grained detector data to decide whether to keep the event while the 

fine grained data is stores in pipeline memories in the detector front-ends. In case of a Level-1 

accept (L1A), the readout builder network assembles complete events collecting event 

fragments in the front-ends and transferring them to a processing unit in the filter farm. 

The CMS data acquisition system (DAQ) is designed to accept an input L1A rate of 100 

kHz. A custom Level-1 processor is used to select this 100 kHz of events from the input 40 

MHz bunch-crossing rate. The High-Level trigger is made in a farm of standard processors, 

after data readout through the event-builder switch. No dedicated Level-2 processor before the 

switch network is used. 

A commercial processor farm for all selection beyond Level-1 allows to benefit from the 

evolution of computing technology, having the maximum flexibility for future upgrades of 

trigger algorithms. A further notable feature of the CMS DAQ system is its modularity: it is 

built up of eight 12.5 kHz units, not all of which need be installed at start-up. 

 

 3. The Level-1 trigger  

The CMS Level-1 trigger uses coarse local data from the calorimeter and muon systems to 

make electron/photon triggers, jet and energy sum triggers, and muon triggers. The Level-1 

trigger is a synchronous pipelined system working at the LHC clock frequency (40 MHz). The 

trigger latency, defined as the time needed for a decision and its propagation to the front-end 

detector electronics, is specified to be smaller than 3.2 µs. The latency requirement is 

established to keep the size of the O(107) pipeline analog memories necessary in the CMS 

silicon tracker front-end electronics at a manageable level.  

In order to cope with the large jet background to the lepton triggers expected at LHC, the 

CMS Level-1 system uses rather sophisticated pattern recognition trigger algorithms that allow 

high selectivity and steep efficiency thresholds curves. To achieve this goal a highly complex 

electronics systems was designed and built and it is now in the final installation and 

commissioning phases. 

The system is organized in distinct and separate calorimeter and muon systems (see Fig.2). 

Each of these sub-systems has a similar vertical architecture that starts with the computation of 

trigger primitives (e.g. energy deposits in the calorimeter trigger towers or track segments 

identified in the muon stations). The trigger primitives are processed by regional triggers that 

implement the spatial pattern recognition algorithms (e.g. electromagnetic cluster identification 

or muon track reconstruction). The Level-1 muon trigger has a global muon trigger that 

combines the trigger information from the muon detectors trigger systems (Drift Tubes in the 

barrel, Cathode Strip Chambers in the endcaps and Resistive Plate Chambers). The resulting 

trigger objects (e.g. electron/photon candidate) are identified by the kinematical variables 

(transverse momentum, η-ϕ location), topological information (e.g. isolation criteria), and 
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dedicated quality bits.  This information is used to sort the candidate trigger objects according to 

a rank classification that takes into account all the object variables.  The four highest ranking 

objects of the various categories (electrons/photons, isolated electrons/photons, muons, tau-jets, 

barrel and forward jets) are combined in any one of 128 possible algorithms of the global trigger 

system.  

The trigger primitives are implemented in about 5000 electronics boards of 7 different 

types installed on-detector and the regional and global trigger system is implemented in 45 9U-

crates housing about 630 boards of 32 different types. The system has large flexibility provided 

by a large number of electronics programmable parameters and most importantly most 

algorithms are implemented in re-programmable FPGAs. In particular the logical combinations 

implemented in the global trigger algorithms can be re-defined. 

The Level-1 trigger rejection is sufficiently large to reduce the Level-1 accept rate to a 

maximum of 100 kHz so that the data flow matches the event builder switch network 

bandwidth.  

Fig. 2: Architecture and data flow in the synchronous pipelined Level-1 Trigger system. 

 

3.1 The calorimeter trigger  

The calorimeter trigger is based on trigger towers of size 0.087x0.087 in η-ϕ space in the 

central region, and somewhat larger for |η|> 2. This size corresponds to a single readout tower 

in the hadron calorimeter (HCAL), and 5x5 crystals in the electromagnetic calorimeter (ECAL) 

barrel. In the ECAL endcap crystals are mechanically arranged in a regular x-y array but are 

combined in trigger towers of about the same dimension in η-ϕ space. 

The trigger tower energy sums are formed by the ECAL and HCAL Trigger Primitive 

Generator (TPG) circuits from the individual calorimeter cell energies. For the ECAL, these 

energies are accompanied by a bit indicating the transverse extent of the electromagnetic energy 

HFHF HCALHCAL ECALECAL RPCRPC CSCCSC DTDT

PatternPattern

ComparatorComparator

TriggerTriggerRegionalRegional
CalorimeterCalorimeter

TriggerTrigger
4 4 µµ4 4 µµ4+4 4+4 µµ

4 4 µ µ (with MIP/ISO bits)(with MIP/ISO bits)

MIP+MIP+

ISO bitsISO bits

e/e/γγ,, jet,jet, ττ
EETT, H, HTT, E, ETT

missmiss

Calorimeter TriggerCalorimeter Trigger Muon TriggerMuon Trigger

max. 100 kHz      L1 Accept 

Global TriggerGlobal Trigger

Global Muon TriggerGlobal Muon Trigger
GlobalGlobal

CalorimeterCalorimeter

TriggerTrigger

Local  Local  

DT TriggerDT Trigger
Local Local 

CSC TriggerCSC Trigger

DT TrackDT Track

FinderFinder
CSC TrackCSC Track

FinderFinder

4
0
 M

H
z
 p

ip
e

lin
e

, 
 l
a
te

n
c
y
 <

 3
.2

 µ
s
 

CalorimeterCalorimeter

Trigger PrimitivesTrigger Primitives

HFHF HCALHCAL ECALECAL RPCRPC CSCCSC DTDT

PatternPattern

ComparatorComparator

TriggerTriggerRegionalRegional
CalorimeterCalorimeter

TriggerTrigger
4 4 µµ4 4 µµ4+4 4+4 µµ

4 4 µ µ (with MIP/ISO bits)(with MIP/ISO bits)

MIP+MIP+

ISO bitsISO bits

e/e/γγ,, jet,jet, ττ
EETT, H, HTT, E, ETT

missmiss

Calorimeter TriggerCalorimeter Trigger Muon TriggerMuon Trigger

max. 100 kHz      L1 Accept 

Global TriggerGlobal Trigger

Global Muon TriggerGlobal Muon Trigger
GlobalGlobal

CalorimeterCalorimeter

TriggerTrigger

Local  Local  

DT TriggerDT Trigger
Local Local 

CSC TriggerCSC Trigger

DT TrackDT Track

FinderFinder
CSC TrackCSC Track

FinderFinder

4
0
 M

H
z
 p

ip
e

lin
e

, 
 l
a
te

n
c
y
 <

 3
.2

 µ
s
 

CalorimeterCalorimeter

Trigger PrimitivesTrigger Primitives

392/4

P
o
S
(
H
E
P
2
0
0
5
)
3
9
2



 

 

     5 

 
 

CMS Trigger System J. Varela

deposit. For the HCAL, the energies are accompanied by a bit indicating the presence of 

minimum ionizing energy. FIR filters associated to peak finders are used in the TPG circuits to 

assign the trigger data to the correct bunch crossing. The filter coefficients are optimized as a 

function of the pulse shape and noise to achieve efficiencies larger than 99% for trigger tower 

energies above 1 GeV. 

The TPG information is transmitted over high speed copper links to the Regional 

Calorimeter Trigger (RCT), which finds candidate electrons/photons, taus, and jets. The RCT 

separately finds both isolated and non-isolated electron/photon candidates. The RCT transmits 

the candidates along with sums of transverse energy to the Global Calorimeter Trigger (GCT). 

The GCT sorts the candidate electron/photons, taus, and jets and forwards the top 4 of each type 

to the global trigger. The GCT also calculates the total transverse energy and total missing 

energy vector. It transmits this information to the global trigger as well. The RCT also transmits 

an (η,φ) grid of quiet regions to the global muon trigger for muon isolation cuts. 

 

Fig. 3: Illustration of the Level-1 electron/photon sliding window algorithm used to identify 

electron/photon trigger objects. The transverse energy is given by the sum of the central tower with the 

highest of the four neighbors. Electron/photon candidates pass a cut on the H/E ratio in the central tower. 

Isolated electron/photon candidates have quiet E and H neighbor towers and have more that 90% of the 

energy localized in two adjacent crystal strips of the central tower. Strips are defined along φ to allow for 

the energy spread due to the magnetic field. 

 
The electromagnetic trigger works with fully overlapping windows of 3x3 trigger towers, 

with the electron/photon candidate energy given by the sum of two adjacent ECAL towers. Cuts 

may be put on the hadronic/electromagnetic fraction, on electromagnetic or hadronic isolation, 

and on the fine-grain lateral shape in the ECAL. The four highest rank electron/photon objects 

and the four highest rank isolated electron/photon objects are transmitted to the global trigger. 

The requirements on the objects of a multi electron/photon trigger, namely the energy threshold, 

the cluster shape and isolation cuts and the (η,φ) region, are set individually. Requirements on 

the (η,φ) separation between objects can also be defined. The electron/photon algorithm is 

illustrated in Fig. 3. 
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Figure 4 (left) shows efficiency turn-on curves, for different threshold cuts, for isolated 

electron trigger as a function of electron pT. Also shown (right) is the background rate as a 

function of the threshold on the isolated single electron trigger at low luminosity.  

 

 

Fig. 4: (Left) Efficiency turn-on curves different threshold cuts, for isolated electron trigger as a function 

of electron pT and (right) background rate as a function of the threshold on the isolated single electron 

trigger at 2x1033 cm-2s-1.  

 
The jet trigger is also based on 3x3 windows, but for jets the elements of these windows 

are 4x4 arrays of trigger towers, called a calorimeter trigger region, except in the Hadronic 

Forward (HF) region where it is the trigger tower itself. 

Thus the jet algorithm sums transverse energy in a 12x12 array of trigger towers, 

approximately corresponding to a unit square in η-φ space. The central region ET is required to 

be higher than the eight neighbor region ET values. In addition, the central region ET is required 

to be greater than a fixed value. Separate lists are made of central jets and forward jets. Figure 5 

shows the Level-1 jet trigger rates as a function of the threshold. 

The tau-jet trigger is intended to capture single and three-prong decays of τ leptons 

forming narrow clusters of energy deposits in the calorimeter. It requires a narrow 'tau-like' 

energy deposit shape in the central region and stringent isolation in the eight surrounding 

regions. A tau-like pattern is obtained if the active ECAL and HCAL towers (towers above a 

threshold) are confined within 2×2 contiguous trigger towers of the central calorimeter region. 

Three separate classes of jet - central, tau-jet, and forward - provide flexibility for the 

definition of combined triggers. Jets and tau-jets occurring in a calorimeter region where an 

electron is identified are not considered. The top four candidates of each class of calorimeter 

trigger are sent to the global trigger.  

In addition counters of the number of jets above programmable thresholds in various η 

regions are provided to give the possibility of triggering on events with a large number of low 

energy jets. Jets in the forward and backward HF calorimeters are sorted and counted separately.  
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 Missing ET is computed from the sums of calorimeter region values of Ex and Ey, and the 

sum extends to the end of the forward calorimeter, i.e. |η| = 5. The total ET is given by the scalar 

sum of the calorimeter regions ET. The sum extends up to the end of forward calorimeter as 

well. The HT trigger is defined as the scalar sum of the ET of jets above a programmable 

threshold. This trigger is not as susceptible as the total ET trigger to noise and pileup effects. 

The HT trigger can capture high jet multiplicity events such as those from fully hadronic top 

decay, and hadronic decays of squarks and gluinos.  

 

 

Fig. 5: Level-1 jet trigger rates for low and high luminosity. 

 

 
3.2      The muon trigger  

As the rate of real muons at LHC is huge the main issue for the muon trigger system is to 

provide an accurate measurement of the muon pT allowing for the definition of sharp efficiency 

thresholds. The Level-1 muon trigger uses information from fast dedicated muon trigger 

detectors, resistive plate chambers (RPCs), complemented by the precise position measurements 

of the muon chambers drift tubes in the barrel and cathode strip chambers in the end-cap. This 

association provides a robust and redundant system that combines excellent efficiency for bunch 

crossing identification given by the RPC trigger with the precise pT measurements given by the 

other muon trigger sub-systems. The bending in the successive layers of the iron yoke (which 

completes the magnetic circuit of the CMS field) is measured by first assembling local vectors 

in the measurement stations and then assembling tracks by linking these vectors across the iron. 

Each of the Level-1 muon trigger systems has its own trigger logic. The Cathode Strip 

Chambers form Local Charged Tracks (LCT) from the cathode strips, which are combined with 

the anode wire information for bunch crossing identification. The LCT pattern logic assigns a pT 

and quality bits to the local track segment which are used to sort the tracks. The top three LCTs 

in a CSC sector are transmitted to the CSC Track Finder, which combines the LCTs into full 
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muon tracks and assigns pT values to them. The CSC and Drift Tube Track-Finders exchange 

track segment information in the region where the chambers overlap. 

The Barrel Muon Drift Tubes are equipped with Bunch and Track Identifier (BTI) 

electronics that finds track segments from coincidences of aligned hits in 4 layers of one drift 

tube superlayer. The track segments positions and angles are sent to the Track Correlator, which 

attempts to combine the segments from the two Super Layers is a DT station measuring the φ 

coordinate. The best combinations from all TRACOs of a single chamber together with the 

Super Layers η segments are collected and the best two segments (if found) are sent to the Track 

Finder. The Track Finder combines the segments from different stations into full muon tracks. 

The RPC strips are connected to a Pattern Comparator Trigger (PACT), which is 

projective in η and ϕ, and that combines up to 6 layers of RPC detectors to identify allowed 

muon patterns. Each pattern is associated to a given pT. 

The Global Muon Trigger sorts the RPC, DT and CSC muon tracks, and then attempts to 

correlate the CSC and DT tracks with RPC tracks. It contains logic to cancel ghost tracks that 

arise when a single muon is found by more than one muon system and is not otherwise matched. 

The GMT also correlates the found muon tracks with a η-φ grid of quiet calorimeter towers to 

determine if the muons are isolated. The final ensemble of muons are sorted based on their 

initial quality, correlation and pT and then the 4 top muons are sent to the Global Trigger. 

 

 

Fig. 6: Block diagram of the Level-1 muon trigger. 

 

392/8

P
o
S
(
H
E
P
2
0
0
5
)
3
9
2



 

 

     9 

 
 

CMS Trigger System J. Varela

 

Fig. 7: Efficiency of Level-1 muon trigger as a function of η, for muons from W→µν. 

 

 

Fig. 8: Level-1 muon trigger rate as a function of pT threshold for low (a) and high (b) luminosity. 

 
The overall muon trigger scheme is illustrated in Fig. 6. Figure 7 shows the resulting muon 

trigger efficiency, as a function of η, for muons coming from W-boson decay. Figure 8 

illustrates the expected muon trigger rates obtained from a full detector simulation. 

 

3.3 The Global Level-1 Trigger 

The Level-1 Trigger system sorts ranked trigger objects, rather than histogramming 

objects over a fixed threshold. This allows all trigger criteria to be applied and varied at the 

Global Trigger level rather than earlier in the trigger processing. All trigger objects are 

accompanied by their coordinates in η-φ space. This allows the Global Trigger to vary 

thresholds based on the location of the trigger objects. It also allows the Global Trigger to 

require trigger objects to be close or opposite from each other. In addition, the presence of the 

trigger object coordinate data in the trigger data, which is read out first by the DAQ after a L1A, 
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permits a quick determination of the regions of interest where the more detailed HLT analyses 

should focus.  

The Global Level-1 Trigger transmits a decision to either accept (L1A) or reject each 

bunch crossing. This decision is transmitted by the Trigger Control System (TCS) to sub-

detector frontends using a fiber optic distribution system. Fast commands for trigger 

synchronization and calibration triggers distributed in the LHC gaps are also available. The 

Trigger Throttling System (TTS) allows the rate reduction by prescaling or shutting off of L1A 

signals in case the detector readout or DAQ buffers are at risk of overflow.  

 
3.3      Level-1 trigger table  

In order to construct a complete table of the Level-1 selection it is necessary to allocate the 

available DAQ bandwidth between the various triggers. The full design bandwidth can 

accommodate 100 kHz of 1 MB events, however the CMS plan is to use the flexibility of the 

modular DAQ system and at startup install only a 50 kHz capacity.  

In the allocation optimization a safety factor of three is taken to account for simulation 

uncertainties and unexpected backgrounds. Thus 16 kHz is allocated for low luminosity running 

and 33 kHz for high luminosity. The optimization will only be completed when real data is 

taken. Presently an equal sharing of rate to four classes of trigger: electron/photon triggers, 

muon triggers, tau-jet triggers, and jets and missing energy triggers, is allocated. The priority in 

this allocation has been to guarantee discovery physics while at the same time maintaining a 

sufficiently wide and general suite of channels so as to remain inclusive and be open to 

unexpected physics. The Level-1 trigger table for low luminosity is shown in Table 1.  

Table 1: Level-1 Trigger table for 2x1033cm-2s-1. Thresholds correspond to values with 

95% efficiency. The combined rate for the three different jet triggers is given on a single 

line, but the three thresholds are shown (the two jet trigger is found to be redundant).  
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4       The High-Level Trigger  

The CMS High-Level trigger runs on a farm of mass-market processors using code that is 

as close as possible to offline code. The final output rate of the HLT must remain manageable, 

and the target rate is taken as 0(102) Hz.  

Various strategies guide the development of the HLT code. Regional reconstruction and 

reconstruction on demand strategies are used: rather than reconstruct all possible objects in an 

event, whenever possible only those objects and regions of the detector that are needed are 

reconstructed. Events are to be discarded as soon as possible, this leads to the idea of partial 

reconstruction, and also to the development of virtual 'trigger levels': at Level 2 calorimeter and 

muon trigger information is used, Level 2.5 is the term used to describe the additional use of 

tracker pixel information, and Level 3 refers to the use of the full event information including 

the complete tracker.  

 
4.1      Electron and photon trigger 

The first step of the HLT selection process for electrons is the reconstruction of clusters in 

the ECAL matched to the Level-1 electron/photon triggers using its full granularity.  The key 

issue here is the recovery of the energy radiated as bremsstrahlung in the tracker and spread in ϕ 

due to the bending of the electrons in the 4 T magnetic field. The energy is collected in clusters 

of clusters, termed super-clusters. An ET threshold is applied to the reconstructed super-clusters.  

The Level-1 electron and photon trigger rate is entirely dominated by the decay of neutral 

hadrons in jets (mainly π0’s) to photons. The most important step in the electron selection comes 

at Level 2.5 where super-clusters are propagated back in the magnetic field from the ECAL to 

the pixel detector layers and matching hits are sought. Searching for two matching hits, out of 

three possible, within a small region, provides a large rejection factor with only a small 

efficiency loss. The unmatched clusters become photon candidates, the rate of which is reduced 

by much higher threshold cuts than are used in the electron channels.  

The electron and photon rates output by the HLT at low luminosity, broken down by 

contribution, are listed in Table 2. A loose calorimetric isolation has been applied to the photon 

streams, but no isolation (beyond that of the Level-1 Trigger) has been applied to the electron 

streams. To control the two-photon rate the thresholds have been raised to ET
1 > 40 GeV, ET

2 > 

25 GeV (equal to the final offline cuts envisaged for H→γγ). These cuts reduce the rate from 11 

Hz to 5Hz, and has a negligible effect on the efficiency.  
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Table 2: Electron and photon stream output from HLT selection at a 

luminosity of 2x1033 cm-2s-1 

 

 
4.2     Muon trigger 

The muon selections works by successive refinement of the muon pT measurement. At 

Level 2 the muons are reconstructed in the muon system alone, with the additional requirement 

that the track segments have a valid extrapolation to the interaction region. The pT resolution 

obtained for muons from W decays is 10% in the region |η| < 0.8, and between 15% and 16% 

for the remaining fiducial region (0.8< |η| <2.1).  

At Level 3 full track reconstruction, including the inner tracker, is used. Starting from the 

regional seeds, a track reconstruction algorithm based on the Kalman filter technique is used to 

reconstruct tracks within the selected regions of interest. The gain in momentum resolution is 

substantial: for muons from W decays the pT resolution is 1.0% in the region |η|<0.8, 1.4% for 

(0.8<|η|<l.3) and 1.7% for(1.3<|η|<2.1). The algorithmic efficiency for the Level-3 muon 

tracking is typically 99%, except in the pseudorapidity interval 0.8 < |η| <1.2 where the drift 

tube and cathode strip chamber systems overlap and the efficiency is about 97%.  Isolation cuts 

can be used to suppress muons from b, c, K and π decays.  

 
4.3      Tau trigger 

The High Level Trigger algorithms for tau identification are designed to be used in the 

selection of isolated τ's such as those expected in the MSSM Higgs decays A/H→τ+τ- and 

H±→τν. The final-state signatures involve events with a lepton plus a taujet, two tau jets or only 

one tau jet. For taujets with ET>50 GeV about 90% of the energy is contained in a very small 

region in η-φ space of radius 0.15 to 0.20, and about 98% in a radius of 0.4.  

At Level 2 rejection of background to hadronic tau decays is obtained by looking for very 

narrow jets in the calorimeters (∆R=0.13) surrounded by an isolation region (∆R=0.4). Both 

pixel isolation and full track isolation can be used to tighten the selection.  
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4.4      Jets and missing ET trigger 

Global jet finding is done using a simple iterative cone algorithm. In this algorithm, a list 

of towers is made, and a "protojet" is formed using the direction of the tower from the list with 

the highest ET (the "seed tower") as the protojet direction. The direction of the protojet is 

calculated from the transverse-energy-weighted angles of the towers in a cone around the 

protojet direction in η-ϕ space, and the transverse energy of the protojet is calculated using the 

direction of the protojet and the sum the energies of the towers in the cone. The direction of the 

protojet is used to seed a new protojet. The procedure is repeated until the energy of the protojet 

changes by less than 1% between iterations and the direction of the protojet changes in η-ϕ 

space by less than 0.1, or until 100 iterations is reached.  

To identify neutrinos in the HLT, the calorimeter information is used to look for missing 

transverse energy (ET
miss). The current algorithm calculates ET

miss as a simple vector sum of the 

towers over a threshold of 500 MeV.  

 
4.5      HLT trigger table and performance summary  

The cuts and thresholds described in the preceding sections must be chosen to provide a 

final physics selection. The known discovery channels provide guidance, but the selection 

should remain sufficiently inclusive. Table 3 shows the current set of thresholds and the 

corresponding rates to storage and provide an indication of the kind of event mixture that an 

output rate of 0(102) Hz at a luminosity of 2x1033cm-2s-1 would yield. Table 4 shows the 

efficiency of the selection for some representative channels. The values shown include the effect 

of both the Level-1 trigger and the HLT. The numbers give the efficiency for selecting fiducial 

objects.  

A key issue for the High-Level Trigger selection is the CPU power required for the 

execution of the algorithms. The time taken by the selection algorithms has been measured on a 

Pentium-III 1GHz processor, and the results vary from a very fast 50 ms for jet reconstruction to 

the longer 700ms for muon reconstruction. On average we obtain a mean of 271 ms per event 

passing the Level-1 triggers specified in Table 1.  

Taking the start-up scenario of a DAQ system capable of reading a maximum of 50 kHz of 

events accepted by the Level-1 trigger, the average of 271 ms per event translates to 15,000 

Pentium-III 1GHz CPUs. Assuming a factor of eight increase in computing power yields 40 ms 

per event, and a need for 2,000 CPUs. This figure comfortably matches our target estimate of 

1,000 dual-CPU PCs for the HLT farm.  
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Table 3: Set of thresholds and the corresponding rates to storage at a 

luminosity of 2x1033cm-2s-1.  

 

 

Table 4: Efficiency for typical physics channels to pass the complete 

Level-1 and HLT selection (geometric acceptance factors are not 

included here: the selected physics objects are within the detector 

fiducial regions).  

 

 

5       Conclusions 

The CMS experiment developed an innovative trigger system based on two trigger levels 

to perform the difficult task of triggering on new interesting events produced in high-energy 

proto-proton collisions at LHC.  
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We have shown that selection criteria mostly based on the inclusive production of high 

energy leptons or jets avoiding the use of topological or other event conditions specific of 

known physics provide high efficiencies for benchmark physic channels and reduce the 

collision rate by six orders of magnitude as required by the available storage capacity.  

The Level-1 trigger algorithms are implemented in one of the most complex electronics 

systems ever built for a high-energy physics experiment. Dedicated FPGA based processors 

implementing a synchronous and pipelined architecture still provide large flexibility for new 

upgrades in the future if required by unexpected operation conditions or different physics 

requirements.  

The High-Level triggers are implemented in software running in a farm of standard 

processors. This solution provides the maximum flexibility for adjusting to unforeseen 

circumstances resulting from bad beam conditions, high background levels or new physics 

channels not previously studied.  

A possible trigger table for the Level-1 and the High-Level Trigger selection at a  

luminosity of 2x10
33

cm
-2

s
-1

 assuming a total DAQ bandwidth of 50 kHz was developed and 

validated by full detector simulation. The overall CPU requirement is approximately 300 ms per 

event on an Intel 1 GHz Pentium-III CPU.  
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