
The co-evolution of organizational and network structure:

The role of multilevel mixing and closure mechanisms

Abstract

We present a dynamic multilevel framework for analyzing the mutual de-

pendence of change in interorganizational networks and internal organiza-

tional structure. Change occurring at the former (interorganizational) level

involves decisions to change the portfolio of network ties to external partners.

Change occurring in the latter (intraorganizational) level involves decisions

to change the portfolio of internal activities. We estimate a recently derived

class of stochastic actor-oriented models (SAOMs) that we adopt and adapt

to specify how decisions to change internal portfolios of activities and external

portfolios of partners are connected by theoretically derived multilevel mecha-

nisms that link organizational and network structures. We show that statisti-

cal models for multilevel networks reproduce with high fidelity the structural

regularities observed in the distribution of: (i) activities within organizations;

(ii) network ties between organizations, and (iii) knowledge available in the

organizational field. We discuss the implications of the study for theory de-

velopment, and for empirical research on interorganizational and other kinds

of multilevel networks.
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1 Introduction

One of the most enduring insights of organization theory is the recognition of formal

organizations as hierarchical multilevel social systems (Simon, 1962). Almost by

definition, therefore, building and testing network theories of organizations involve

the development of models for multilevel networks (Brass et al., 2004; Moliterno and

Mahony, 2011; Zappa and Lomi, 2015). This point is particularly salient for studies

of interorganizational fields (Powell et al., 2005) where “each node in a network at a

given level of analysis is itself a network at a lower level of analysis” (Moliterno and

Mahony, 2011, p.444). In this paper we develop further this fundamental insight and

link it to recently derived models for the analysis of multilevel networks (Snijders

et al., 2013).

Understanding the relation between change in internal organizational structure

and change in interorganizational networks involves specifying the multilevel mech-

anisms linking two sub-systems of organizational decisions. The first concerns deci-

sions about the creation and maintenance of portfolios of internal resources (activ-

ities) that organizations accumulate over time through investments in production

capacity (Cohen and Levinthal, 1994). The second concerns decisions about the

composition of portfolios of partners that organizations construct over time through

investments in networks of relations (Powell et al., 1996). How are these sets of

decisions related, and how do they affect one another over time? Addressing these

questions is central to our understanding of how organizations construct the social

space that they inhabit by reconfiguring, simultaneously, their internal structures

and their networks of external dependence relations (Hollway et al., 2017).
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Building on recently proposed class of stochastic actor-oriented models (SAOMs)

for multiple networks (Snijders et al., 2013), we present statistical models that as-

sist in specifying the dynamic multilevel social mechanisms shaping the co-evolution

of interorganizational networks and internal organizational structures. The mecha-

nisms at the heart of our models are “dynamic” because they generate observable

structural change. They are “multilevel” because they involve change simultane-

ously unfolding at the intra- and interorganizational level. These mechanisms are

“social” because they are defined in terms of relations connecting nodes embedded

in networks of interorganizational relations. Finally, the explanatory processes at

the core of our models are “mechanisms” in the sense of Schelling (1998, pp. 32-33),

because they represent hypotheses about how observed macro-structures may be ex-

plained in terms of patterns of local relations between social agents – organizations

in our case. We focus on the analysis of two main classes of multilevel mechanisms

connecting internal and external processes of organizational and network change.

Building on the original model proposed by Snijders et al. (2013), the first class

of multilevel mechanisms connect changes in the number of internal organizational

activities to changes in the number of network partners. Extending established

single-level network concepts (Newman, 2003), we call this family of mechanisms

multilevel mixing. The second class of multilevel mechanisms connect changes in

the composition of internal organizational activities to changes in the composition

of external networks of partners. Specifying the intuition developed by Easley and

Kleinberg (2010) in their discussion of multi-mode networks, we call this class of

mechanisms multilevel closure. We estimate SAOMs that specify how multilevel
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mixing and closure mechanisms concatenate to shape the joint dynamics of orga-

nizational structures and interorganizational networks. Following best practice in

dynamic network modeling, we adopt computational methods to validate the fitted

model and assess its closeness to the observed multilevel data (Hunter et al., 2008;

Snijders and Steglich, 2015).

To establish the empirical value of our methodological proposal we examine lon-

gitudinal data we have collected on interorganizational networks and internal activi-

ties of health care organizations operating in a small regional community (Stadtfeld

et al., 2016). We selected the field of health care because it illustrates particularly

well how internal organizational design decisions and external partner selection de-

cisions are related (Gittell and Weiss, 2004; Shortell et al., 1993). We reconstruct

interorganizational networks in terms of collaborative patient referral relations con-

necting partner hospitals (Mascia et al., 2017). We define internal organizational

structures in terms of dynamic bipartite (more precisely, 2-mode) networks affil-

iating individual organizations to their internal clinical activities (Conaldi et al.,

2012).

The multilevel network structure that we examine in the empirical part of the

paper is obviously specific to our focus on interorganizational relations where orga-

nizations are seen as network “nodes” with an internal structure that may itself be

represented as a (bipartite) network. It behooves us to clarify at the outset that

our example does not limit in any way the levels of organizational analysis that are

amenable to be examined through the multilevel network model we propose. Teams

and individuals (at a more “micro” level), and markets and organizations (at a
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more “macro” level) are examples of multilevel contexts that would lend themselves

equally well to be examined through the multilevel network lens that we propose in

this paper. In general, once the source of action (the “actor”) has been identified

unambiguously, the model is indifferent to the specific choice of level of analysis.

In the specific context of our study, the source of action is the individual hospital

at the crossroad of two distinct, yet interdependent sets of decisions. The first is

the decision to rely on a partner hospital for help with the resolution to a clinical

problem represented by a patient. The second is the decision to modify its formal

structure by adding or removing formal sub-units responsible for specific clinical

activities. These two sets of decisions are not independent because the capacity of

an hospital to provide efficient and high quality care to patients depends on how

these decisions are coordinated.

Multilevel mixing mechanisms connect the number of external partners (i.e., the

outdegree in the interorganizational network), to the number of internal activities

that hospitals hold in their portfolios (i.e., the outdegree in the affiliation network).

Multilevel closure mechanisms may derive from the preferential tendency of con-

nected hospitals to become more similar by emulating or incorporating the activities

of partners, and/or from the tendency of similar hospitals (i.e., hospitals contain-

ing similar internal activities) to become partners. Following Easley and Kleinberg

(2010), we call the former closure mechanism “multilevel membership closure” and

the the latter “multilevel focal closure.” Membership closure involves processes of

social influence whereby connection triggers emulation and diffusion. Focal closure

involves processes of social selection whereby similar organizations are more likely to
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become partners (Steglich et al., 2010). The model we present in this paper allows

us to discriminate between these two alternative sub-processes that may be under-

lying the tendency of interdependent organizations to be (or become) more similar,

i.e., the tendency toward mimetic isomorphism (DiMaggio and Powell, 1983). 1

We show that a model specified in terms of these various multilevel micro-

mechanisms reproduces with a very high level of fidelity observed macro-regularities

in the: (i) distribution of network ties between organizations; (ii) composition of

activities within organizations, and (iii) diffusion of knowledge within the organiza-

tional community.

2 Motivation and Background

2.1 Connected portfolios

According to Padgett et al. (2003, p.843) “Firms and the core competencies that de-

fine firms are developed and maintained through learning by doing and other learning

processes that are triggered by the exchange among firms.” In this perspective, or-

ganizations are defined by contingent combinations of proprietary internal resources

that are controlled directly, and extramural resources accessible indirectly through

relations with network partners. Internal resources provide the basis of experien-

tial learning (Cohen and Levinthal, 1994). External resources involve a process of

partner selection – i.e, a process of sampling, and learning from, the experience of

others (Beckman and Haunschild, 2002; Denrell, 2003; Greve, 2005). Portfolios of

1In a different context, Lomi and Stadtfeld (2014) call membership closure “association-based
closure” and focal closure “affiliation-based closure.”
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internal and external resources are connected and mutually dependent. Change in

the composition of one may induce change in the composition of the other. This

happens because change in internal resources provides the basis for new external

dependencies (Pfeffer and Salancik, 2003). At the same time, change in networks of

external partners provides new opportunities for learning, emulation and differenti-

ation that may be achieved through change in internal activities (Stadtfeld et al.,

2016). In more general terms, a distinctive feature of multilevel network systems is

their ability to transmit change across connected levels – regardless of the specific

level at which change action is initiated.

Observed configurations of internal organizational activities are the cumulative

outcome of decisions to invest in productive capacity. Observed interorganizational

configurations are the cumulative outcome of decisions to invest in relations with

external partners. How are these two systems of decisions connected? Addressing

this question requires explicit identification of multilevel dependence mechanisms

linking change in internal organizational structure to change in external networks

with partners.

Existing lines of research on organizational change (Barnett and Carroll, 1995)

and network evolution (Ahuja et al., 2012) have remained surprisingly – but under-

standably – disjoint. We say surprisingly disjoint because the theoretical connection

between internal and external knowledge and organizational resource accumulation

processes is generally acknowledged (Cohen and Levinthal, 1994; Gibbons and Hen-

derson, 2012; Gulati, 1999; Lorenzoni and Lipparini, 1999). We say understandably

disjoint because of the lack of a general analytical framework to represent the multi-
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level mechanisms linking organizational and network change (DiMaggio, 1986; Hitt

et al., 2007). Influential statements of multilevel perspectives on organizations and

social networks clearly recognize this problem (Borgatti and Foster, 2003; Brass

et al., 2004; Contractor et al., 2006), but offer little guidance about the specific

mechanisms that connect these multiple levels. In this paper, we begin to fill this

gap by proposing one such framework, and testing its empirical value on a realisti-

cally complex empirical case study (Stadtfeld et al., 2016).

As necessary background to our methodological proposal, it may be useful to

recall the fundamental distinction between multilevel network analysis and analy-

sis of multilevel networks recently delineated by Snijders (2016). This distinction

is at the center of the current debate on the analysis of social and other kinds of

networks (Lomi et al., 2016; Wang et al., 2016). Multilevel network analysis in-

volves the combined analysis of social relations within multiple independent groups

(Snijders, 2016) based on models with random coefficients. A recent example of

applied multilevel network analysis is the study by Boda (2018) on social influence

and ethnic identity in multiple classes of high school students. The analysis of mul-

tilevel networks involves the analysis of networks containing different kinds of nodes

linked by different kinds of relations (Lomi et al., 2016; Wang et al., 2013; Snijders,

2016). A recent example of analysis of multilevel networks is the study by Lomi

et al. (2017) on relations among managers and, simultaneously, between managers

and words they use to describe their company.

In the analysis we present in this paper, we adopt a recently developed class of

stochastic actor-oriented models for the analysis of multilevel networks. Interorga-
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nizational relations offer a particularly appropriate setting for illustrating the value

of dynamic multilevel network concepts and models. This is the case because or-

ganizations are network nodes with an internal structure that is differentiated and

changeable (DiMaggio, 1986). When organizational structure changes, the most

fundamental attachment mechanisms such as, for example, homophily and reci-

procity become problematic as the working of these mechanisms depends delicately

on assumptions about the stability of organizational identities (Padgett and Powell,

2012). Under conditions of organizational transformation there is no reason to ex-

pect that attachment mechanisms typically operating in equilibrium will continue

to operate among partners. Change in networks of partners that is likely to ensue,

disrupts patterns of resource dependence that organizations typically manage by

rearranging their internal structure – thus creating the basis for new exchange and

dependence relations (Pfeffer and Salancik, 2003). In studies of interorganizational

networks, this situation provides an almost ideal illustration of this kind of multi-

level change discussed by Kozlowski and Klein (2000). The model that we propose

and illustrate incorporates these coupled multilevel mechanisms of change in the

more general context of stochastic actor-oriented models for dynamic networks.

2.2 Multilevel network mechanisms

Following recent research in the statistical analysis of social networks (Robins et al.,

2009; Snijders, 2016), we focus on multilevel mechanisms that regulate connectivity

and clustering – the major structural features of interorganizational networks (Baum

et al., 2003). The former class of mechanisms control dependencies linking the num-
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ber of internal activities and the number of external partners – or, in other words,

the tendency of organizations with different niche widths to establish various types

of community relations (Barnett and Carroll, 1987). We call these mechanisms mul-

tilevel mixing because they involve degree correlations across levels of observation

(Newman, 2003). The latter class of mechanisms assist with modeling extra-dyadic

dependencies regulating multilevel closure – or the tendency of interdependent or-

ganizations to be similar (DiMaggio and Powell, 1983). We call these multilevel

closure mechanisms because their effect is to close open configurations of internal

activities and external network ties (multilevel 2-paths, in network parlance). We

now discuss these various mechanisms more precisely.

2.3 Multilevel mixing

A distinctive feature of social networks is the general tendency of nodes with similar

degrees to associate, typically referred to as ”‘assortative mixing”’ (Newman, 2003).

In the context of interorganizational networks, the number of partners depends, at

least in part, on the composition of the portfolio of internal activities managed by

the organizations involved. This is the case because partner selection depends on

a comparative assessment of compatibilities and complementarities in the internal

portfolios of resources that partners control (Mitsuhashi and Greve, 2009). As the

composition of internal activities changes, it is likely that the composition and num-

ber of partner will also change. This may happen, for example, because change

in the composition of internal activities implies change in patterns of niche overlap

within organizational communities and fields (Podolny et al., 1996). In turn, change
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in patterns of niche overlap will determine new conditions for the emergence of com-

petitive and collaborative relations among organizations within the field (Lomi and

Pallotti, 2012).

In what direction causality flows (from change in composition of internal activ-

ities to change in composition of external partners, or vice versa) is an important

issue that we address in the empirical part of the study. Similarly important is es-

tablishing the valence of the degree correlation that multilevel mixing mechanisms

tend to induce. If a larger number of internal activities leads to a larger number

of partners, the multilevel network associating internal and network structure is

assortative. If the contrary holds, the multilevel network is disassortative. Identify-

ing the specific shape assumed by multilevel mixing effects allows us to clarify the

interdependence between internal portfolios of activities end external portfolios of

partners. Figure 1 summarizes this argument.

– Figure 1 about here –

In panel (a) of Figure 1, a narrowly focused organization (i.e., a specialist orga-

nization holding only one activity in its internal portfolio) entertains exchange rela-

tions with many partners. This situation illustrates disassortative multilevel mixing,

or (multilevel) disassortativity – a negative association between degrees of connected

nodes across multiple network levels. In panel (b), a broadly focused organization

(i.e., a generalist organization holding a broad portfolio of internal activities) relies

on many external partners. This situation illustrates assortative multilevel mixing,

or (multilevel) assortativity – a positive association between degrees of connected

nodes across multiple network levels. In Figure 1 the direction of interorganizational
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relations is ignored in the interest of simplicity and clarity. However, the analogous

configurations for directed relations can be derived by representing interorganiza-

tional relations as incoming or outgoing ties. As we will see in the empirical part

of the paper, the mechanism-oriented approach we propose affords identification of

the direction of causality underlying observationally equivalent configurations of ties

produced by different multilevel mixing mechanisms.

2.4 Multilevel closure

The second distinctive structural feature of social networks is clustering – induced

by the preferential tendency of pairs of nodes to be connected if they are both

connected to one or more common third parties (Watts and Strogatz, 1998). An

extensive organizational literature is available that demonstrates the tendency of in-

terorganizational networks to cluster (Baum et al., 2003; Kogut and Walker, 2001)

as a consequence of various path-shortening (or“closure”) strategies (Lomi and Pat-

tison, 2006; Lomi and Pallotti, 2013). Studies of how tendencies toward closure

in interorganizational networks are affected by processes of internal organizational

change, however, are far less common and have started to appear only very recently

(Stadtfeld et al., 2016). This is striking in the light of the fact that one of the main

theoretical propositions inspiring studies of interorganizational networks posits a

multilevel relation linking external dependence relations and internal organizational

structure. As DiMaggio and Powell (1983, p. 154) predicted: “The greater the

dependence of an organization on another organization, the more similar it will

become to that organization in structure, climate and behavioral orientation” (em-
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phasis added). This prediction can only be tested by linking external dependence

relations to internal organizational structure, i.e., by developing a multilevel frame-

work.

The empirical propensity of similar organizations to be connected that this pre-

diction implies, may be generated by two very different multilevel closure mecha-

nisms that tend to produce observationally equivalent outcomes. Adopting the ter-

minology established by Easley and Kleinberg (2010) we may call the first mechanism

focal closure – the preferential tendency of similar organizations (organizations shar-

ing the same foci of activity) to establish interorganizational ties to manage their

interdependence. The second multilevel mechanism is membership closure – the

tendency of connected organizations (organizations members in the same dyad) to

become more similar by incorporating the same internal activities held by partners

(Easley and Kleinberg, 2010, pp. 95 – 97). Focal and membership closure impli-

cate very different multi-level mechanisms: The former involves social selection, the

latter social influence (Steglich et al., 2010). Yet, they produce the same (cross

sectional) outcome: similar organizations connected by network ties. Disentangling

focal and membership closure amounts to establishing the relative weight of gen-

eralized processes of influence and selection on the co-evolutionary dynamics of in-

terorganizational networks and organizational structures. Identifying which closure

mechanism is effectively operating is essential to the correct causal understanding of

the institutional process responsible for mimetic isomorphism in interorganizational

fields.

– Figure 2 about here –
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Figure 2 illustrates this point. In panel 1, connected organizations (time T1) be-

come more likely to share an activity (time T2), i.e., become more similar (multilevel

membership closure). In panel 2, organizations sharing an activity (i.e., similar or-

ganizations, time T1) are more likely to become connected (multilevel focal closure,

time T2). As in Figure 1, the direction of interorganizational relations is ignored for

simplicity, but without loss of generality.

3 Stochastic actor-oriented models for multilevel

networks

3.1 Models for multilevel networks

Models for multilevel networks involve explicit connections across levels, and hence

across different classes of actors, or network nodes. According to Lomi et al. (2016,

p. 266), models for multilevel networks include: “Distinct types of nodes defined

at different multiple levels (e.g., individuals and groups) with ties possible between

all nodes, both within and across levels (e.g., distinct types of dyadic ties at the

individual – and the group-level, as well as individual-group affiliations).” Models

for multilevel networks that have proven useful in empirical organizational research

include multilevel exponential random graph models (Zappa and Lomi, 2015; Wang

et al., 2013) and recent extensions of multiple membership multiple classification

models (Tranmer et al., 2016, 2014). These models are typically defined for cross-

sectional data, and hence leave change mechanisms unspecified (Block et al., 2018).

Also, in available models for multilevel networks individual agency plays only an
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implicit role as preferences of individual actors are left implicit.

Like other available models for multilevel networks, stochastic actor-oriented

models (SAOMs) include a bipartite component (a meso-level network) that con-

nects different units across different levels. Unlike available models SAOMs for mul-

tilevel networks are models for change – where change is explicitly represented as

a consequence of individual preferences defined over local configurations of network

ties. We discuss this next.

3.2 Notation and model formulation

Stochastic actor-oriented models are continuous-time models for network panel data

(Snijders et al., 2010). A recent extension allows joint analysis of one-mode and two-

mode networks so that dependence mechanisms within and across networks can be

specified rigorously (Snijders et al., 2013). In the case we examine in the empirical

part of the paper, the one-mode network defines the system of collaborative relations

among organizations. The two-mode network defines the internal organizational

structure in terms of composition of portfolios of activities.

The model may be summarized as follows. Let N = {1, · · · , n} be the set

of nodes, and A = {1, · · · , a} be the set of activities. The one-mode network is

represented by an n× n adjacency matrix X with cell Xij, i, j ∈ N , taking value 1

if there is a tie from i to j and 0 otherwise. The two-mode network is represented

as an n × a adjacency matrix Y with cell Yij, i ∈ N , j ∈ A, being 1 if hospital i

maintains clinical activity j ∈ A and 0 otherwise. In a panel design, the one-mode

and the two-mode networks are observed at M time points t1, · · · , tM . We denote
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by x(t) and y(t) the observations at time t of the one-mode and two-mode networks,

respectively.

The model assumes that the observed networks are the outcome of a sequence

of unobserved opportunities for tie changes taking place between two consecutive

observations of the networks. Those opportunities are usually referred to as micro-

steps (Steglich et al., 2010). At each micro-step, an actor gets the opportunity to

revise one of its outgoing ties, either in the one-mode or in the two-mode network,

and decides whether to make a change (delete a tie if present and create a tie if

absent) or do nothing. Formally, the model assumes that the observed networks

are the outcome of a continuous-time Markov process, where at randomly occurring

time points one node i faces an opportunity to change either one tie in X or one tie

in Y . The waiting times for an opportunity of a tie change in the one-mode network

X or in the two-mode network Y are described by exponential distributions with

rate parameters λX(x, y) and λY (x, y), respectively. The transition matrix of the

process describes the probability of each possible change, conditional on the node

that has the opportunity to make the change. These probabilities are defined by a

multinomial logit model. Given an opportunity for change in the one-mode network,

the probability that node i changes the tie xij into 1− xij is:

P [i changes xij|Y (t) = y,X(t) = x] =
exp(fi(x

ij, y))
∑

h∈N

exp(fi(xih, y))
(1)

where xij denotes the network where the change is made in tie xij.

Given an opportunity for change in the two-mode network, the probability that

node i changes the tie yij into 1− yij is:
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P [i changes yij|Y (t) = y,X(t) = x] =
exp(gi(x, y

ij))
∑

h∈A

exp(gi(x, yih))
(2)

where yij denotes the network where the change takes place in tie yij.

The functions fi(x
ij, y) =

∑
k βksk(x

ij, y) and gi(x, y
ij) =

∑
k γksk(x, y

ij) are

referred to as “evaluation” functions. They are defined as linear combinations of

statistics sk(x
ij, y) and sk(x, y

ij), and parameters βk and γk. The statistics sk(x
ij, y)

and sk(x, y
ij) are counts of network configurations that embody specific hypothesis

on the micro-mechanisms driving the network changes. The statistics sk represent

mechanisms of general theoretical relevance, or contextual empirical importance.

Examples of statistics in the one-mode network are the number of ties and the

number of reciprocal dyads (i.e., pairs of nodes (i, j) with both the ties from i to

j and from j to i present) in which a node i is embedded. Those statistics refer

to the baseline tendency of nodes to establish ties and to the tendency of nodes

to reciprocate existing ties. Examples of statistics in the two-mode network are

the number of ties and the number of four-cycles (i.e., combinations of four ties

connecting nodes i and j with both affiliations a1 and a2) in which a node i is

embedded. Those statistics describe the baseline tendency of nodes to connect to

affiliations and the preferential tendency of nodes sharing an affiliation to get more

affiliations in common. Examples of statistics involving one-mode and two-mode

network ties are discussed in detail in the next section. An overview of the most

common statistics is provided in Table 1 and discussed in Section 4.3.
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3.3 Model interpretation

The parameters βk and γk describe whether the corresponding micro-mechanisms

are relevant to explain the evolution of the networks over time. A positive (negative)

value of a parameter indicates that ties leading to an increase of the correspond-

ing statistic are more (less) likely and therefore provide evidence for (against) the

corresponding micro-mechanism. For instance, a positive value associated to the

reciprocity statistic suggests a preferential tendency to reciprocate existing ties.

One intuitive interpretation of the probabilities in (1) and (2) derives from ran-

dom utility theory (Train, 2009), according to which – given a set of feasible alter-

natives – individuals choose the course of action yielding the highest level of utility.

When nodes get an opportunity for change, they choose the tie in the one-mode (i.e.,

they change the composition of the their portfolios of external partners) or in the

two-mode network (i.e, they change the composition of their portfolios of internal

activities) in a way that is expected to produce the highest level of expected util-

ity. Because network nodes can only change ties under their direct control and are

only interested in the immediate return deriving from the change, actors in SAOMs

are, at best, myopic (or “local”) optimizers (Snijders, 2005). The utility function in

SAOMs is defined as the sum of the evaluation function and a random term which

is assumed to be distributed as a Type I Extreme distribution (Luce and Suppes,

1965; McFadden, 1973) leading to the multinomial probabilities in (1) and (2).

A detailed formulation of the model and the parameter estimation can be found

in Snijders (2001) and Snijders et al. (2013).
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3.4 Model evaluation

Evaluating the fit of an estimated SAOM – and mechanisms-oriented network mod-

els more generally (Snijders and Steglich, 2015) – involves assessing how well the

model is able to reproduce salient characteristics of the observed networks that are

not explicitly modeled (Amati et al., 2018). Statistics associated to these character-

istics are referred to as auxiliary statistics. The most widely used auxiliary statistics

involve characteristics of the indegree and the outdegree distributions. Outdegree

and indegree distributions describe the connectivity of nodes and therefore are con-

stitutive structural features of the network.

Following the approach developed for exponential random graph models by

Hunter et al. (2008), the goodness of fit can be evaluated using continuous-time

simulation of the network co-evolution trajectories from the estimated model. More

specifically, the distribution of the auxiliary statistics is computed given a large

number of simulations based on the estimates. For the model to fit the data well,

the observed value of the statistics should not be extreme in this distribution.

A statistical test for the goodness of fit of SAOMs was recently developed by

Lospinoso (2012), who proposed to use a Monte Carlo test based on Mahalanobis-

distance. The test involves simulating a very large number of co-evolutionary trajec-

tories of the one-mode and two-mode networks, and comparing the average values

of the simulated auxiliary statistics to the corresponding values that are actually

observed. The model fits the data well when the null hypothesis that simulated

and actual values are the same cannot be rejected, i.e., when actual and simulated

values are sufficiently close. Closeness of the observed values and the average of the
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simulated values is measured using the Mahalanobis distance. Formally, let S
∗
be

the vector of auxiliary statistics, s∗ the values observed in the data and ΣS∗ the

covariance matrix of the auxiliary statistics. Then, the test statistic is defined as

D = (S
∗
− s∗)TΣ−1

S∗ (S
∗
− s∗) (3)

The empirical cumulative distribution function of D computed using the simulations

is then used as a basis for inference.

4 Empirical illustration

4.1 Setting

We use relational and attributional data collected on all the hospitals operating

within the regional health care system of Abruzzo, a small geographical region in

Central Italy with a resident population of approximately 1.3 million people. The

Italian national health system is a publicly funded health care system providing

universal coverage to all citizens. Through the ministry of health, the national

government controls the distribution of tax revenue for publicly financed health

care, and defines a national minimum statutory benefits package to be offered to all

citizens – the so called essential care. The Italian national health system follows a

federal model with the regions in the country responsible for managing, organizing

and delivering health care services at the local level.

Regional health care systems are internally partitioned into non-overlapping local

health units (LHU) whose mandate is to make health care services generally available
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and accessible across the regional territory. Homogenous coverage is particularly

important for regions like Abruzzo where communities living in mountain areas may

be difficult to reach. The six LHUs in which the region is partitioned, represent

the natural reference markets for hospitals and are of similar size in terms of the

resident population they serve.

Data were made available by the regional health agency. Interorganizational net-

works are reconstructed on the basis of interhospital patient referral flows observed

during the period 2003-2011. Referral relations involve the transfer of patients on

the basis of the decision taken by a hospital (“sender”) to involve a partner hos-

pital (“receiver”) in the collaborative solution of a clinical case. We focus on the

transfer of elective patients (i.e., patients that are not critically ill and hence are not

classified as emergency patients). For this category of patients the sender hospital

may typically choose among multiple potential partners on the basis of a variety

of operational (e.g., available capacity), locational (e.g., proximity), and medical

(e.g., clinical competencies) consideration. In the case of elective patients, relations

between hospitals follow clinical decisions and are activated in the interest of the

patient, rather than following bilateral contractual arrangements. As explained in

Kitts et al. (2017), patient referral decisions are hospital-level decisions with both

clinical as well as economic implications.

For each hospital, the composition of internal portfolio of clinical specialties was

coded as a 2-mode network affiliating hospitals to their internal activities, defined in

terms of organizational units representing specialized pools of clinical and medical

knowledge. Detailed yearly information on organizational attributes was also made
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available.

Thirty-five public and private accredited hospitals were in operation in Abruzzo

during the observation period. This number remained relatively stable over time

with no new hospitals appearing, and five existing small hospitals ceasing opera-

tions since 2009. Clinical specialties represent activities for hospitals – pools of

specialized medical knowledge organized within distinct organizational units. Ex-

amples include cardiology, immunology and neurology. While the distribution of

clinical specialties across hospitals changed (with hospitals adding or dropping spe-

cialties), the aggregate number of clinical specialties available at the regional level

remained stable over time. The set of clinical activities collectively maintained by

hospitals may be understood as the stock of medical knowledge available to the

regional population.

4.2 Data

Figure 3 depicts the one-mode network at the beginning of the observation period

(2003). Red circles represent the hospitals and the ties depict the collaborative

referral relations among them. In Figure 3, the network diagram is superimposed

to the geographical map of the geographical region where the hospitals are located.

Position of the nodes corresponds to the location of the hospitals.

– Figure 3 about here –

Over the period of observation, 385 new collaborative referral relations were

established across all hospitals and 364 existing collaborative referral relations dis-

solved. Stability between consecutive observations for the patient transfer network
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is measured by Jaccard coefficients (Snijders et al., 2010), ranging from 0, if all ties

change, to 1, if all ties remain the same in successive time periods. The stability of

collaborative networks is relatively high as revealed by Jaccard coefficients ranging

between 0.46 and 0.58. The first block of Table A1 summarizes the changes in the

observed one-mode network in more detail.

The two-mode network data specify the internal portfolios of organizational ac-

tivities, i.e., how individual hospitals are associated with the 46 clinical specialties

(or activities) present in the region. The composition of the portfolio of clinical

activities defines the niche of hospital – i.e., the sub-space that it occupies in the

overall space of medical knowledge. Hospitals with wider niches like, for example,

general hospitals, contain many clinical specialties. Because hospital management is

responsible for economic performance, hospitals have at least some discretion over

the composition of their internal portfolio of clinical activities and their internal

organization.

One of example of such hospital is the Ospedali Riuniti SS Annunziata, located

in Chieti, whose internal portfolio included 32 of the 46 clinical specialties present in

the region at the end the last year of observation. Specialist hospitals manage more

restricted portfolios of clinical activities, and occupy, therefore, narrower niches. For

example, the Casa di Cura San Francesco in the city of Vasto specializes exclusively

in physical rehabilitation activities, and provides no other care services. In more

general terms, the internal composition of portfolios of clinical activities determines

how medical knowledge is distributed within the organizational community, and

where it is actually located within the region.
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Figure 4 illustrates the distribution of activities across hospitals at the begin-

ning of the observation period (2003). The blue rectangles represent the clinical

specialties. The width of each rectangle is proportional to the number of hospitals

having that specialty (the “indegrees” of the 2-mode network). Specialties number

15 (general medicine) and 4 (general surgery) are the most popular, i.e., they are

present in almost every hospital in the region. The red rectangles represent the hos-

pitals. The width of each rectangle is proportional to the size of the portfolio of each

hospital (the “outdegrees” in the 2-mode network). The largest hospital in terms of

scope of internal activities is the Ospedale Civile dello Spirito Santo of Pescara (id

code 130018). The stability of the two-mode network is very high as revealed by the

number of newly created (182) and severed ties (160), and by Jaccard coefficients

ranging between 0.81 and 0.96 (Table A1).

Table A1 and Table A2 in Appendix A provide detailed information concerning

network changes and some basic network statistics for both the one-mode and the

two-mode networks.

– Figure 4 about here –

4.3 Empirical model specification

We now provide a brief description of the effects included in the models that we

estimate in the empirical part of the study. We start by considering the effects

associated with change in the one-mode network. The simplest effects are outdegree

and reciprocity. The former describes the propensity of organizations to establish

ties, whereas the latter to reciprocate existing incoming ties. More complex effects
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involve more than two nodes.

Generalized transitivity represents a closure mechanism whereby ties are formed

to close multiple two-paths. In generalized transitivity, organizations tend to create

ties to partners of their partners.

The interaction between reciprocity and generalized transitivity effect captures

the tendency of organizations to form reciprocated ties embedded in transitive con-

figurations of ties – an effect that is typically predicted to be negative (Block, 2015).

The outdegree and indegree centralization effects and the out-in degree assorta-

tivity effect model the outdegree and indegree distributions and their correlation.

Therefore, they model types of preferential attachment mechanisms. More specifi-

cally, they describe the tendency for (i) more active organizations to establish more

ties (outdegree centralization); (ii) organizations to choose more popular organiza-

tions as partners (indegree centralization), and (iii) more active organizations to

choose more popular organizations (out-in degree assortativity).

We introduce now the effects modeling the evolution of the two-mode network.

Baseline effects are the outdegree, modeling the tendency of organizations to own

activities, and the 4-cycle, describing the preferential tendency of organizations to

share multiple activities. Other effects used to capture the outdegree and the in-

degree distributions are: (i) the outdegree truncated at two effect, controlling for

the tendency of organizations to maintain only 1 activity and thus to be specialist

hospitals; (ii) the organizational scope effect, modeling the tendency of generalist

organizations (i.e., organizations holding a large portfolio of activities) to increase

further – or maintain at a high level – the number of specialties they control; (iii)
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the activity diffusion effect modeling the tendency of organizations to have activi-

ties in their portfolio that are also in the portfolio of many other organizations; (iv)

the out-in degree assortativity effect controlling for the tendency of larger generalist

organizations to maintain in their internal portfolios activities that are relatively

common in the community, i.e., activities present in many other hospitals. This

effect also describes a systematic differentiation in the frequency distribution of ac-

tivities in the sense that some activities will be held by many organizations, while

other activities will be held by few; (v) the anti-in-isolates, and the (vi)anti-in-near

isolates effects modeling the tendency of organizations to maintain activities that

are not in the portfolio of any other organization, or are in the portfolio of only one

other organization, respectively. Together, these latter effects are included to con-

trol for features of the data generated by known tendencies of organizations within

a field to become progressively more differentiated over time.

Multilevel mixing and closure are the effects of central interest in the analysis.

The corresponding multilevel mechanisms are represented by statistics in the eval-

uation function of one network that are dependent on the ties in the other network.

The first set of multilevel effects (mixing) describe how the internal structure of the

organizations (ties in the two-mode network) affects interorganizational relations

(ties in the one-mode network). Focal closure is the tendency of hospitals to form

ties with partners having the same clinical activities. The scope on outdegree effect

describes the tendency of generalist organizations to increase the number of refer-

ral partners. In our specific context, the tendency of hospitals with many clinical

specialties to rely on many partner hospitals. The second set of multilevel effects
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(closure) describe how (one-mode) ties in the interorganizational network affect the

internal structure of the organizations (ties in the two-mode network). Membership

closure reprsents the tendency of connected organizations to become more similar

in terms of their internal activities. The outdegree on scope effect describes how

organizations with many interorganizational relations tend to increase the number

of specialties (and hence to become more generalist).

Table 1 summarizes our discussion of the network effects included in the model

by reporting, for each effect, an intuitive graphical representation and a brief verbal

description of the underlying mechanism. We refer readers interested in the math-

ematical definitions of the effects to Table B1 in Appendix B and to Snijders et al.

(2010) and Snijders et al. (2013).

– Table 1 about here –

Obviously, endogenous network mechanisms may not be the only factors affecting

change in interorganizational networks and in the internal structure of organizational

nodes. For this reason, the empirical model specification includes a number of dyadic

and monadic (organization-specific) covariates that prior studies have found to affect

the propensity of organizations to collaborate (Kitts et al., 2017; Stadtfeld et al.,

2016).

Geographical distance is a dyadic covariate measured as the (logarithm of the)

driving time between any two hospitals in the data, and is included to control for

the known tendency of hospitals to refer patients to more proximate partners (other

conditions being equal). Driving time is preferred to physical distance because the

mountain ranges that cover the majority of the regional area make physical distance
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less useful than driving time as a measure of effective distance between organizations.

The remaining organization-specific covariates enter the empirical model speci-

fication as sender, receiver and homophily effects to capture additional factors that

may affect interorganizational collaboration.

Urban location is a dichotomous variable taking the value 1 for hospitals located

in major urban areas and 0 otherwise. Urban location is included to control for

the tendency of hospitals located in rural and in small urban communities to refer

patients to hospitals located in metropolitan areas.

LHU membership is a categorical variable that captures joint membership of hos-

pitals in the different local health units (LHUs) in which the region is partitioned

for administrative purposes. Hospitals in the same LHU are more likely to collabo-

rate because they belong to the same superordinate administrative and managerial

structure.

Institutional form is a categorical variable that records the different institutional

profiles of hospitals in the region. The institutional form of a hospital affects its

governance structure and stated objectives, but it also constrains the activities and

services that may be provided. We identified three alternative institutional forms.

The first involves public hospitals owned directly by the LHU (labeled LHU hospital)

providing secondary care services. The second form contains university polyclinics –

or hospitals that are qualified to render highly specialized (or ”‘tertiary”’) services,

and research activities. The third form includes private accredited hospitals – hospi-

tals controlled by private owners that are eligible to provide secondary care services

under the single payer system. We control for institutional form to account for
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the tendency of hospitals to refer patients to partners with compatible institutional

profiles.

The hospitals’ occupancy rate is included to account for capacity utilization and

for the possibility that interhospital patient flows be affected by differences in avail-

able capacity between partner hospitals. The closer the hospital occupancy rate

is to 1, the closer the hospital is to its full capacity. While certain hospitals can

operate, occasionally, above their full capacity, they cannot do so indefinitely.

It is common for hospitals in public health care systems with a single payer to

receive standard cost-based reimbursements according to DRG (diagnosis-related

grouping) tariffs decided at the national level. Average patient value captures the

average monetary value of resources deployed by hospital to treat their patients,

i.e., the average cost of treatment per discharged patient. The variable is included

to control for the possibility that interhospital patient relations simply reflect dif-

ferences in costs of treatment. A summary and basic descriptive statistics of the

monadic and dyadic covariates is reported in Table A3 in Appendix A.

4.4 Results

The model parameters discussed in this section are estimated by the method of

moments, computed using the stochastic approximation algorithm (Snijders, 2001)

implemented in the R library RSiena (Ripley et al., 2018). To simplify exposition,

in Table 2 we reported only the results of more direct interest to our discussion.

The complete model that includes an additional set of rate parameters, and

the exogenous covariate effects is reported in Table C1 in Appendix C where the
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estimates are briefly discussed.

The template of the R-script that we have adapted to produce the estimates

reported in this section is available at https://www.stats.ox.ac.uk/~snijders/

siena/RscriptSienaBipartite.R.

Table 2 reports the estimates of the parameters in the evaluation functions con-

trolling change in the one-mode and two-mode networks. The table is organized

in blocks of parameters pertaining to conceptually different aspects of the model.

Parameters in block 1M are associated with endogenous mechanisms that shape the

structure of the interorganizational (1-mode) network. Parameters in block 2M of

Table 2 are associated with endogenous mechanisms that regulate processes of inter-

nal organizational change – i.e., change in the two-mode network of organizations-

by-activities. Finally, block ML contains the effects of multilevel mechanisms that

are of central interest.

For simplicity, model parameters are interpreted individually. In network mod-

els this interpretation is partially misleading because (i) many of the effects operate

simultaneously; (ii) the effects are the outcome of social mechanisms that are con-

catenated, and (ii) the parameter estimates depend, in part, on the initial state of

the system that is itself not modeled (Koskinen et al., 2015).

Both in the one-, as well as the two-mode networks the outdegree parameters play

the role of intercepts. Their negative sign reflects the sparsity (low density) of the

corresponding networks. Jointly considered, estimates of endogenous network effect

(reported in block 1M ) provide evidence of preferential tendencies toward reciprocity

(reciprocity) and clustering based on transitive closure (generalized transitivity).
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The negative value of the parameter related to the interaction between reciprocity

and generalized transitivity indicates that the tendency to reciprocate is smaller

between hospitals embedded in transitive triplets. We note that the coefficient for

this interaction effect is smaller in absolute value than both main effects.

Evidence of centralization tendencies based on in- and outdegree is also found

(in- and outdegree centralization). We note a tendency towards disassortativity in

the referral network: hospitals with many partners preferentially select as partners

hospitals with fewer partners (out-in degree assortativity).

The estimates of the network effects on the portfolio of internal organizational

activities are reported in block 2M. The 4-cycle effect suggests a tendency of orga-

nizations sharing a common specialty, to share additional specialties or to maintain

the specialties they both have. In either case, the 4-cycle effect reveals a general

tendency of collaborating hospitals to be, or become, more similar – relational pro-

cesses consistent with processes of institutional isomorphism (DiMaggio and Powell,

1983).

The outdegree truncated at two effect is negative suggesting a positive tendency

toward the maintenance (or creation) of single-specialty hospitals, or – in other

words – a tendency of specialist hospitals to remain specialists.

The positive effect of organizational scope indicates the tendency of larger orga-

nizations to increase their scope and size further or to maintain their larger scope

and size. In other words, generalist hospitals tend to exploit size-based advantages

by maintaining or further expanding their internal portfolio of activities.

The significantly positive activity diffusion effect reveals a tendency of organi-

31



zations in the community to conform to the choices of internal activities made by

other organizations. The aggregate effect of these micro-processes is that organiza-

tions in the community tend to become progressively more similar – a conclusion

consistent with institutionalist perspectives on interorganizational communities and

fields (DiMaggio and Powell, 1983).

The negative estimate of the anti in-isolates effect parameter suggests a ten-

dency toward the progressive disappearance from internal organizational portfolios

of activities that are held only by one hospital, i.e., of activities for which demand

in the community is weak.

The negative value of the parameter of the anti in-near-isolates effect reveals

a tendency of organizations in the sample to abandon activities that will then be

held by only one other organization - i.e., to progressively drop from their internal

portfolios clinical activities that are uncommon.

Finally, the tendency against out-in assortativity in the 2-mode network suggests

that hospitals with larger portfolios of activities tend to maintain clinical specialties

that are relatively uncommon in the community.

Estimates associated with the multilevel mechanisms of interest are reported

in block ML at the bottom of the table. Concerning the closure mechanisms, we

note that only focal closure is significant. The corresponding positive coefficient

indicates that hospitals holding similar portfolios of internal activities display a

preferential tendency to develop collaborative relations. Membership closure has no

significant effect: hospitals connected by collaborative patient referral relations do

not necessarily develop similar portfolios of internal activities. Jointly considered,

32



the multilevel closure effects suggest a clear dominance of social selection over social

influence processes as closure-generating mechanism in our data.

The multilevel mixing effects are both significant, but in opposite directions.

The positive coefficient of the scope on outdegree effect suggests that hospitals man-

aging larger portfolios of activities tend to increase the size of their network of

partners. In other words, the estimates reveal a tendency toward multilevel as-

sortativity. The negative coefficient of the outdegree on scope effect indicates that

hospitals with fewer partners tend to increase the size of their portfolios of internal

organizational activities. The former multilevel mixing effect suggests that organi-

zations with diversified portfolios of internal activities are more capable of managing

larger networks of partners – an interpretation consistent with “absorptive capac-

ity” arguments (Cohen and Levinthal, 2000). The latter mixing effect suggests that

acquisition of internal resources may be a response to difficulties in finding valuable

exchange partners.

– Table 2 about here –

4.5 Model evaluation

To what extent is the fitted model consistent with the organization and network

structures that were actually observed? To address this question, we simulated a

large number (3000) of one-mode/two-mode co-evolution trajectories, and computed

the value of the auxiliary statistics for each simulated trajectory. We then compare

the statistics computed on the simulated networks with the statistics computed

on the observed network data. The outcome of this comparison is reported in
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Figure 5 which shows the violin plots of the outdegree and indegree distributions of

the one-mode and two-mode networks (Hintze and Nelson, 1998). Each violin plot

depicts the distribution (line around the box-plot), the observed count (red dots),

the average of the simulated value (black dots) and the outliers (black crosses) for

each degree value. The model fits the data well when the distance between red and

black dots is small.

Panels 5a and 5b report the distribution of the outdegree and indegree of the

(one-mode) interhospital network, respectively. In both cases the model reproduces

well the propensity of hospitals to collaborate (panel 5a) and the tendency of hos-

pitals to be selected as partners (panel 5b). The model also reproduces with high

fidelity the distribution of internal clinical activities, i.e. the organizational design

of the hospitals in the community (Panel 5c). Finally, panel 5d shows that the dis-

tribution of medical knowledge in the region is also well captured by the multilevel

model. The p-values associated with the Mahalanobis distance test reported at the

bottom of each panel, demonstrate that the null hypothesis that the simulated net-

works given the estimated model and the observed networks have similar structural

characteristics cannot be rejected.

The post-hoc simulation analysis produced solid evidence that the estimates of

the multilevel model reproduce with considerable accuracy: (i) the internal struc-

ture of the organizational nodes; (ii) the observed structure of the interorganiza-

tional network, and (iii) the distribution of available medical knowledge within the

organizational field. The results of the analysis show that the model is capable

of explaining data observed at very different structural levels. This conclusion is
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strengthened further by the goodness of fit test based on the triad census and the

shortest path length (geodesic distance) auxiliary statistics. As both visual inspec-

tion and the Mahalanobis distance test indicate, the model fits well each one of

the sixteen triadic configurations of network ties observed in the directed hospital

referral network, and almost perfectly the distribution of the shortest path observed

among the organizations in the sample (Figure D1 in Appendix D).

– Figure 5 about here –

5 Discussion and Conclusions

The view of organizations as hierarchical multilevel social systems articulated by

H.A. Simon (1962) continues to inspire contemporary organizational research (Levinthal

and Workiewicz, 2018). A new generation of statistical models for multilevel net-

works is opening new possibilities for exploring and expanding the scope of this

classic view. According to Moliterno and Mahony (2011, p.443): “Given that or-

ganizations are multilevel systems, a network theory of the organization should, by

definition, be multilevel in its scope, considering how networks at one level of the

organizational system influence networks at higher and/or lower levels.” In this

paper we responded to this call to forward multilevel organizational research in the

context of interorganizational networks.

We identified the problem of change as central to our understanding of multilevel

organizational systems. Representing how networks of relations change among so-

cial actors that are themselves changing, remains a prime theoretical and empirical

challenge in our understanding of emergent organizational phenomena (Kozlowski
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et al., 2013; Padgett and Powell, 2012; Powell et al., 2005). Taking on this challenge

requires the development of a new approach to the analysis of multilevel networks

that recognizes change in the internal structure of organizational nodes as both an

antecedent and a consequence of change in the structure of interorganizational net-

works in which organizations are embedded (Moliterno and Mahony, 2011). We

know of no available analytical framework that can be readily adopted to repre-

sent change happening simultaneously within and between organizations. More

specifically, we know of no analytical framework capable of discriminating among

alternative theoretical mechanisms of network change that operate across multiple

levels to shape the co-evolution of organizational and network structure.

In this study, we have proposed and tested a principled analytical framework that

specifies multiple mechanisms coupling change within and between organizations.

According to the model, two sets of multilevel mechanisms couple decisions taking

place at different structural levels. Consistent with assumptions of stochastic actor-

oriented models for network dynamics (Snijders et al., 2010), the first set involves

decisions to change the composition of portfolios of internal organizational activities.

The second set involves decisions to change the composition of portfolios of external

partners.

We presented a realistically complex case study of interorganizational relations in

the field of health care – a field in which internal organizational design decisions are

intimately related to the external resources that organizations can access through

networks of external partners (Gittell and Weiss, 2004; Lomi and Pallotti, 2012).

Our empirical analysis of a regional community of hospital organizations connected
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by collaborative patient referral relations reveals that focal closure dominates mem-

bership closure: organizations with similar portfolios of internal activities are more

likely to collaborate. Collaborating organizations are not more likely than chance

to change their internal structure in the direction of becoming more similar. This

result sheds new light on a major ambiguity latent in studies of interorganizational

fields inspired by institutional theories (DiMaggio, 1986). Our results clearly in-

dicate that the tendency of interdependent organizations in our sample to be (or

become) similar – or mimetic isomorphism – is generated by social selection rather

than social influence, contrary to what the majority of studies about diffusion of

strategies and practices within interorganizational fields typically assume. To the

extent that mimetic isomorphism may be interpreted as a consequence of how or-

ganizations respond to uncertainty (DiMaggio and Powell, 1983), the results of our

study suggest that organizations in our sample manage uncertainty by establish-

ing network ties with structurally similar partners, rather than imitating current

partners that are partially dissimilar.

The results of the study are obviously specific to the sample of organizations

that we have selected for study. The setting of the study also has a number of

institutional idiosyncrasies. But the model we have presented has broad potential

application both in the study of interpersonal, as well as interorganizational net-

works. Examples of future work that the model might inspire include – but are not

limited to: studies of the co-evolution of social relations and cultural tastes (Lewis

and Kaufman, 2018), friendship choice and employment preference (Kilduff, 1990),

advice networks among managers and words they use to describe their company
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(Lomi et al., 2017). At a more macro level, future studies may find it useful to

examine alternative multilevel closure mechanisms in the context of alliance forma-

tion between companies with complementary or compatible internal resources (Mit-

suhashi and Greve, 2009). Our analysis of multilevel mixing mechanisms reveals new

connections between organizational niche width and positions in interorganizational

networks. This result may open new perspectives for future research on resource

partitioning (Carroll et al., 2002), organizational niches (Podolny et al., 1996), and

for processes of resource transfer from generalist to specialist organizations (Carroll

and Swaminathan, 2000).

More generally, the model for multilevel networks that we have discussed affords

considerable flexibility in the choice of levels of analysis. For example, Lomi and

Stadtfeld (2014) apply it to study the co-evolution of advice ties among MBA stu-

dents and their employment preferences. Fujimoto et al. (2018) adopt it to study

the co-evolution of friendship network and participation in sport activities among

adolescents. Milewicz et al. (2018) adopt the model to examine non-trade agendas

and trade agreements among countries. These works demonstrate the considerable

flexibility of the model that may be applied meaningfully across very different levels

of analysis within - and now also between organizations.

Two main limitations of the study deserve particular mention as they suggest

ways in which future research may improve our understanding of multilevel processes

of change within and between organizations. The first limitation is related to the

fact that the two component decision processes that define the model are observed

during the same time frame. Given a fixed observation window, “slower” decision
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processes will produce fewer observations on change than “faster” decision processes.

How severe this problem might be depends on the “internal time clocks” that reg-

ulate processes of organizational and network change (Amburgey et al., 1993). In

our specific case, for example, the“change rates” estimated from data suggest that

change in the composition in the internal portfolios of activities unfolds at a much

slower rate than change in the composition of portfolios of external partners (see

table C1 in Appendix C). General considerations of organizational inertia make this

result unsurprising (Hannan and Freeman, 1984). But these differences in rates of

change imply that fewer observations are available on organizational change than

on network change – giving rise to difficulties due to differences in statistical power

between sub-processes. While we are not aware of obvious solutions to this “multi-

ple clocks” problem in models based on network panel data, we suspect that future

research may produce considerable insight by modeling the change rates directly.

Doing so might lead to a more detailed understanding of the factors that slow or,

as the case may be, accelerate organizational and network change.

The second limitation inheres in the way we have represented organizational

change as a sequence of episodic, discrete changes in the composition of internal

portfolios of activities. But organizational change also involves equally important

higher-frequency micro-level changes in processes, practices and routines that do not

necessarily reflect themselves in observable modifications in the formal composition

of internal organizational activities (March, 1981; Rerup and Feldman, 2011). The

data we have collected do not allow us to say much about these important sources

of organizational change. For similar reasons, the data we have analyzed in this
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paper are probably not appropriate to study process of organizational learning –

another major determinant of organizational change (Levitt and March, 1988). We

suspect that an analysis of continuous processes of internal organizational learning

and change may be better supported by research design that produce continuous

time, event-oriented observations (Amati et al., 2019).

Despite these limitations, the study remains one of the few available that have

specified the co-evolutionary mechanisms coupling change in internal organizational

activities and external network structure, identified the different effects of such mech-

anisms across multiple levels of organizational analysis, and adjudicated their rel-

ative empirical significance. The ability of the model to reproduce the aggregate

field-level structures that are actually observed starting from assumptions about

micro-mechanisms of local dependence operating across levels of analysis, is the

central achievement of the new multilevel network approach that we have proposed.
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Tables

Statistic Representation Description: Preferential tendency

(1M) One-mode effects

Outdegree i j
to establish referral relations

Reciprocity i j to reciprocate referral relations

Generalized
transitivity
(gwesp)

i

j

... k
to establish relations with partners connected to the
same third parties

Generalized
transitivity
× reciprocity

i

j

... k
to establish reciprocated relations with partners con-
nected to the same third parties

Outdegree
centralization

i

j

of organizations with high out-degrees to increase their
out-degrees further

Indegree
centralization

i j to choose partners with high in-degrees, i.e., popular
partners

Out-in degree
assortativity

i j
of organizations with many partners (i.e., active or-
ganizations) to establish relations with organizations
already chosen as partners by many others (i.e., pop-
ular organizations)

(2M) Two-mode effects
Outdegree i a maintain clinical activities

4-cycle
i a1

ja2 of organization already having one clinical activity in
common to increase the number of clinical activities
in common

Outdegree
truncated at 2

i
to maintain a single internal activity
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Organizational
scope

a i of generalist organizations to increase their scope (i.e.,
to include additional clinical activities)

Activity
diffusion

i a
of clinical activities maintained by many organizations
to be included also in the portfolio of activity of other
organizations

Out-in degree
assortativity

i a
of organizations having more referral partners to main-
tain clinical activities owned by many other organiza-
tions (i.e., popular activities)

Anti-in-isolates i a to have clinical activities that no other organizations
in the community have

Anti-in-near-
isolates

i a
to have a clinical activity held only by another orga-
nization in the community

(ML) Multilevel effects

Multilevel closure:
focal closure

i

j

a

of organizations with the same internal activities (i.e.,
similar organizations) to develop collaborative rela-
tions

Multilevel mixing:
scope on outdegree

i

j of organizations with broader scope (i.e., with larger
internal portfolios of activities) to establish collabora-
tive relations with many partners

Multilevel closure:
membership closure

i

a
of connected organizations to develop the same inter-
nal activities (i.e., to become more similar)

Multilevel mixing:
outdegree on scope

i
a of active organization (i.e., organizations with many

partners) to increase their internal scope by adding
activities

Table 1: Statistics modeling the co-evolution of a one-mode and a two-mode network. Red
circles are health care organizations. Blue squares are clinical activities. Black edges depict
referral relations and grey edges denote two-mode relations. Solid edges represent relations
existing at time T1. Dotted edges represent relations that are observed at T2 but not at T1.
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Est. s.e.
(1M) One-mode effects

outdegree −5.826 0.436∗∗∗

reciprocity 1.650 0.294∗∗∗

general transitivity 1.531 0.194∗∗∗

reciprocity × general transitivity −0.701 0.237∗∗

indegree - centralization 0.983 0.130∗∗∗

outdegree - centralization 0.729 0.170∗∗∗

out-in degree assortativity −0.318 0.077∗∗∗

(2M) Two-mode effects
outdegree −7.173 0.901∗∗∗

4-cycle 0.036 0.007∗∗∗

outdegree truncated at 2 −4.013 0.852∗∗∗

organizational scope 2.299 0.398∗∗∗

activity diffusion 1.908 0.316∗∗∗

out-in degree assortativity −0.814 0.162∗∗∗

anti in-isolates −0.927 0.433∗

anti in-near-isolates −1.483 0.412∗∗∗

(ML) Multilevel effects
focal closure 0.042 0.012∗∗∗

scope on outdegree 0.247 0.063∗∗∗

membership closure 0.175 0.127
outdegree on scope −0.568 0.238∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 2: Estimated coefficients and corresponding standard errors for the evaluation
functions of the one-mode two-mode co-evolution model. The asterisks represent two-sided
p-values.
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Figures

(a) (b)

Figure 1: Multilevel mixing mechanisms. (Red) Circles are organizations. (Blue) Squares
are internal activities. Black edges are interorganizational relations. Grey edges are con-
tainment relations linking organizations to their internal activities. In Panel (a), a spe-
cialist organization (with one internal activity) tends to establish network ties with many
exchange partners (multilevel disassortativity). In Panel (b), a generalist organization
(holding a large portfolio of internal activities) tends to establish network ties with many
exchange partners (multilevel assortativity).

Panel 1

i j

A

T1

i j

A

T2

Panel 2

i j

A

T1

i j

A

T2

Figure 2: Multilevel closure mechanisms. (Red) Circles are organizations. (Blue) Squares
are internal activities. Black edges are interorganizational relations. Grey edges are con-
tainment relations linking organizations to their internal activities. In panel 1, organiza-
tions i and j are connected at time T1 and tend to become more similar by sharing activity
A at time T2 (Multilevel membership closure). In panel 2, organizations i and j hold the
same activity A in their internal portfolio at time T1 and tend to become connected at
time T2 (Multilevel focal closure).
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Figure 3: One-mode network for the year 2003. Red circles represent the hospitals and
the ties depict the collaborative referral relations among them. The network diagram is
superimposed to the geographical map of the region where the hospitals are located. Position
of the nodes corresponds to the location of the hospitals.
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Figure 4: Two-mode network for the year 2003. Red and blue rectangles represent the
hospitals and the activities, respectively. Ties indicate which activity belongs to a portfolio
of a hospital. The width of a rectangle is proportional to the number of ties incident to
that rectangle.
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