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Abstract

Despite the growing number of studies, still little is known about how network structures and
proximity relations between linked actors evolve over time. Arguments are put forward for
the existence of co-evolution dynamics between different types of proximity configurations
within networks. An empirical investigation tests these arguments using information on the
development of 280 networks.
Amongst others, it is shown that institutional and cognitive proximity configurations co-
evolve in the short as well as in the long-run. While institutional and social proximity
configurations are only related in the long run. Moreover, temporal auto-correlation dynamics
characterizes the development of cognitive proximity configurations.

Keywords: proximities, co-evolution, R&D subsidies, knowledge networks, network
evolution
JEL-classification: R10, R11, D85

1. Introduction

The evolution of knowledge networks has received considerable attention in the field of
Economic Geography (Glückler, 2007; ter Wal and Boschma, 2009). Besides trying
to understand the fundamental dynamics of network development, economic geographers
are particularly interested in whether geographic proximity remains a significant factor for
knowledge link formation when taking other types of proximity into account. These other
proximity types include social, cognitive, institutional, and organizational proximity that are
argued to be substitutes for geographic proximity in this respect (Boschma, 2005). Empiri-
cal evidence confirms the relevance of all proximity types being significant drivers of network
evolution (cf. Balland, 2012).
While temporal changes in the relative importance of proximities for knowledge network for-
mation have been studied in detail (Ter Wal, 2011; Balland et al., 2012b) little is still

✩I would like to thank Pierre-Alexandre Balland for his valuable comments and suggestions on earlier
drafts of this paper. Of course, all remaining errors are mine.
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known about how exactly these networks develop over time. This particularly regards the
evolution of proximity configurations within these networks, which are shown to be essential
for firms’ innovative performance (cf. Fornahl et al., 2011; Broekel and Boschma, 2012).
The present paper aims at contributing to this research field. It builds upon the proximity
conception of Boschma (2005) and focuses on five different types of proximity: cognitive,
social, organizational, institutional, and geographic proximity. These proximities are known
to be interrelated and correlated (Boschma and Frenken, 2010). In the paper it is ar-
gued that proximity configurations within networks do not only systematically change in the
course of network evolution but that the change in one proximity configuration can be related
to the change in another. This may give rise to co-evolution dynamics between (some) prox-
imity configurations. Three different types of such co-evolution dynamics are put forward:
simultaneous (short-term) and long-term co-evolution as well as temporal autocorrelation.
In the second part of the paper these arguments are empirically tested by identifying factors
explaining the temporal change of proximity configurations in networks. Particular atten-
tion is hereby paid to the identification of co-evolution dynamics. The investigation utilizes
relational data on R&D cooperation that have been subsidized by the German federal gov-
ernment. On this basis 280 networks are constructed, which are observed for 2 to 13 years.
A reduced-form vector autoregression (VAR) model is employed to identify the three types
of co-evolution dynamics.
The empirical results confirm the existence of all three types of co-evolution dynamics. For
instance, a close link exists between the short-term change in the geographic and cognitive
configuration of networks. Networks expanding in the cognitive dimension tend to shrink
geographically. Not surprisingly, the opposite holds for geographic and social proximity: net-
works with increasing social proximity are likely to consolidate geographically as well. In the
long run in particular institutional and cognitive proximity configurations tend to co-evolve.
The latter configuration is moreover characterized by temporal autocorrelation dynamics.
The paper is structured as follows. The literature on proximities is briefly reviewed and the
five types of proximity are introduced. In addition, theoretical arguments for the existence
of co-evolution dynamics between proximity configurations within networks are put forward.
Section 3 gives an overview on the employed data of cooperative R&D subsidies used to
approximate knowledge networks. The empirical approach is presented in Section 4. Section
5 summaries the findings and Section 6 provides a concluding discussion on some of the
empirical study’s shortcomings.

2. Theory

2.1. The proximity approach

Researchers increasingly try to understand the mechanisms behind networks’ emergence,
development, and their structural change (cf. Cantner and Graf, 2006; Glückler, 2007;
Balland, 2012). In the field of Economic Geography the proximity concept has become a
popular and powerful theoretical basis for approaching these issues. Based on the French
school of proximity dynamics (Torre and Rallet, 2005) and popularized by the article of
Boschma (2005), it has stimulated an increasing number of studies that evaluate the role of
geographic proximity in comparison to other proximity types. While geographic proximity
has been seen (often implicitly) as the key force for the establishment of knowledge exchange
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relations in this literature for a long time (cf. Feldman and Florida, 1994), it has become
just one among others in recent years.
According to Boschma (2005) there are at least four other types of proximity that are highly
relevant for knowledge link formation and for links’ impact on organizations’ innovative suc-
cess.
The first is cognitive proximity that refers to the degree of overlap in two actors’ knowledge
bases. Actors need to have a complementary absorptive capacity to identify, interpret, and
exploit knowledge of other actors (Cohen and Levinthal, 1990). In other words, overlap
in actors’ knowledge bases is essential for efficient communication. However, if the overlap is
too strong, the likelihood that the interaction will result in an innovative knowledge recom-
bination is lower than when they have dissimilar knowledge bases (Nooteboom, 2000).
Actors may also be close in organizational terms (organizational proximity). Boschma

(2005) defines organizational proximity “... as the extent to which relations are shared in an

organizational arrangement, either within or between organizations” (p. 65). It can be seen
as a continuous scale going from autonomy to control. It is very low for independent actors
and very high for actors that are part of the same hierarchical system. Accordingly, organi-
zational proximity helps to manage knowledge exchange and reduces transactions costs.
In contrast, institutional proximity can be seen as the degree to which organizations are sub-
ject to the same institutional framework at the macro level. This refers to reward schemes,
norms, and values of conduct. Frequently, researchers make a distinction between profit and
non-profit organizations in this respect (Broekel and Boschma, 2012).
Social proximity describes the social embeddedness of actors in terms of friendship, kinship,
and experience at the micro-level (Boschma, 2005). Of particular interest is the role of
trust, which is likely to be positively influenced by social proximity and is frequently argued
to foster knowledge exchange (Nooteboom, 2002).
The role of geographic proximity, defined as the physical distance between organizations, is
mainly seen as facilitator of other types of proximity in this framework. However, there are
also arguments for an independent role of this proximity type. For instance, Broekel and
Binder (2007) argue for a direct impact of geographic proximity on knowledge exchange.
They put forward that geography influences individuals’ motivation and search heuristics
and can thereby bias them towards spatially close knowledge sources.

2.2. Proximities, proximity configurations, and their relations

Substantial empirical evidence exists for these proximity types impacting knowledge link
formation. Prominently, Jaffe et al. (1993) analyze patent citations and find that they tend
to come overproportionnally more frequent from the same geographical area as the inventors
of the cited patent.1 Breschi and Lissoni (2003) repeat and extent the analysis and show
that geographical proximity looses its predictive power for patent citations when controlling
for social proximity. The importance of cognitive proximity is confirmed by Mowery et al.

(1998), Cantner and Graf (2006), and Cantner and Meder (2007). In contrast to the
above, Balland (2012) and Broekel and Boschma (2012) take into account wider sets of
proximity types. Still, both studies confirm the simultaneous relevance of all types of prox-
imities for network formation. Based on the cooperation network of the world wide video

1See also Thompson and Fox-Kean (2005) on this.
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game industry between 1987-2007, Balland et al. (2012b) further establish that the impact
of proximities on network development is not constant over time. They find that geographic
and cognitive proximity become more relevant as the industry matures.
Accordingly, all five proximity types matter for the formation of knowledge links. Simply put,
this means that proximate actors have higher chances to link for knowledge exchange. How-
ever, it is also frequently argued that proximities are interrelated. Boschma and Frenken

(2010) put forward that despite being “analytically orthogonal”, in practice and empirics
proximity types often “turn out to be correlated” (p. 131). For example, when an actor
connects to a cognitively proximate actor the latter might also be geographically close. As
a result, the realized link will be characterized by cognitive and geographic proximity. This
has significant implications. If for instance, cognitive proximity is a main determinant for
network formation and this correlation is relatively strong, the network will become more
and more proximate in the cognitive as well as in the geographic dimension. One could also
say that as a result of proximities being correlated at the relational actor level, the network’s
configurations with respect to geographic and cognitive proximity co-evolve.
The network formation process can additionally cause proximity configurations to co-evolve.
Boschma (2005) argues that proximities are related in a substitutive way meaning that being
proximate in one dimension can help to overcome missing proximity in another dimension.
For instance, Singh (2005) shows that links become more relevant among cognitively distant
researchers if they are located in geographic vicinity. Similarly, Ponds et al. (2007) find
that geographical proximity helps to overcome institutional distance. Given a substitutive
relation between proximities, links will be primarily realized that connect actors proximate
in one dimension but distant in another. On the network level one can therefore expect a
negative correlation between the changes of the according proximity configurations.
However, Broekel and Boschma (2011) also present evidence that (at least in case of
small firms) the relation between geographic and cognitive proximity is complementary in
character. This is, links characterized by geographic and cognitive proximity are more likely
being realized than links that are solely characterized by geographic proximity. In accordance
to the above, a complementary relation between proximities will yield a positive correlation
between the developments of different proximity configurations at the network level.
It may also be the case that it is sufficient to be proximate in just one dimension to link, be-
ing proximate in another dimension may not yield further effects (Boschma and Frenken,
2010). In this case, the network formation process will only convey the distribution of prox-
imities at the relational actor level into the network.
Understanding these relations and how they influence the development of proximity con-
figurations within networks is crucial for a number of reasons. For instance, it is not just
embeddedness into knowledge networks that matters for actors’ innovation and economic
performance. Boschma and Frenken (2010) point out that it is essential with whom
actors interact and especially in what type and degree of proximity actors’ cooperation part-
ners are. This is confirmed in recent empirical studies highlighting that actors need to offer
complementary knowledge in order to be valuable cooperation partners (cf. Fornahl et al.,
2011; Broekel and Boschma, 2012). In other words, to be beneficial, it is essential that
knowledge networks have a particular type of proximity configuration.
In addition, the development of networks cannot be fully understood if changes in proximity
configurations are ignored. Balland et al. (2012a) argue that current configurations can
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have an impact on actors’ future cooperation behavior. A simple example in this respect
is that actors, which frequently interact, are likely to become more similar in the cognitive
dimension. This in turn increases the likelihood that they will continue to interact in the
future as their bilateral communication capability improves.
Few studies address the changing of proximity configurations in networks. A notable excep-
tion in this respect is the study by Ter Wal (2011), who investigates the time-changing
relevance of proximity types for network formation based on the German biotechnology patent
co-invention network between 1970 and 1995. In addition, he plots the average geographic
distance of links as well as the network’s tendency of triadic closure2, which can be seen as a
measure of social proximity, over time (Figures 5 and 6 on page 37). While he just wants to
describe the configuration of the network with respect to geographic and social proximity, it
is interesting to note that, with the latter measure’s growth being quite erratic, both mea-
sures tend to increase as the network matures and growths. Accordingly, it appears to be
the case that the two proximity configurations follow a similar development path, i.e. that
they co-evolve.
The present paper takes this up and asks if this observed “co-evolution” of the two proxim-
ity configurations is mere accident or an indication of a systematic co-evolutionary relation
induced by the network formation process? And, in case of the latter, do such co-evolution
dynamics exist for other proximity types as well? Balland et al. (2012a) highlight that
changes of proximity configurations and actor characteristics take place over varying time
periods. So, it is interesting to analyze if, and if so, which proximity configurations co-evolve
in the short run and which rather show long-term co-evolution patterns. Giving answers
to these questions is the primary objective of the present paper. To accomplish this I will
first lay out some arguments speaking for the existence of such systematic relations in the
(co-)evolution of proximity configurations in networks. In a second step, these are tested in
an empirical investigation.

2.3. Dynamic relations between proximity configurations

On the basis of the above, I put forward three different ways in which proximity configura-
tions can co-evolve as networks change over time. The first one is simultaneous co-evolution.
It describes the correlation between the changes of two proximity configurations in a network
in one period. Given the short-term dimension, actor and population characteristics remain
stable. In contrast, over longer time periods, actor and population characteristics may change
which, amongst others, may give rise to long-term co-evolution dynamics. Lastly, temporal

autocorrelation dynamics imply that when the configuration of one proximity type changes
in one period, the same configuration will also change in the subsequent period. It may exist
as short-term as well as long-term process. In case of the first, actor and population char-
acteristics remain unchanged, while they may vary in the latter. I will provide arguments
for why each of these dynamics might exist. It is however beyond the scope of the paper to
discuss the potential relevance of the three dynamics for each of the five proximity types.

Simultaneous co-evolution dynamics between proximity configurations are likely to exist in

2The measure “is expressed as the ratio of the observed number of closed triads over the number of random

expected closed triads” Ter Wal (2011).
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several instances. The most obvious cases that come to mind are the relations between so-
cial and geographic proximity, as well as between institutional and organizational proximity.
Social contacts are naturally more frequent among individuals living at closer geographic
distances. “Geographical proximity is most likely to stimulate social proximity, because short

geographical distances favour social interaction and trust building” (Boschma, 2005, p. 67).
Accordingly, if links span smaller geographic distances the probability is high that they will
also connect socially close actors and the other way around.
Sorenson (2003) puts forward another relation: Actors are more likely to establish social
links with other actors if they share the same cognitive background, or as he in the style of
Lazarsfeld and Merton (1954) colloquially puts it: “birds of a feather, flock together”.
Put differently, social and cognitive proximity of links are quite likely to be correlated.
If such patters occur frequently and the network formation process is not dominated by sub-
stitutive relations among proximities, a change in the configuration of links with respect to
one proximity type will be most likely mean a simultaneous change in the respective other
proximity configuration(s), i.e. both proximity configurations co-evolve simultaneously as
the network develops.

Long-term co-evolution will automatically come into existence when (short-term) simulta-
neous co-evolution dynamics remain significant over longer time periods. In contrast to the
letter they involve changes in the actor characteristics or the actor population. Balland

et al. (2012a) point out that: “in the short run, proximity creates knowledge networks, in

the long run, knowledge networks create proximity” (p. 9). Hence, through participating
in knowledge networks actors’ characteristics change over time. For instance, technological
relatedness is a main criterion in merger and acquisition decisions (Hussinger, 2010). Ac-
cordingly, firms that interacted frequently and thereby became more similar in terms of their
knowledge bases are likely to become subsidiaries of the same mother organization. Growing
cognitive proximity is relating to increasing organizational proximity in this case.
In the “regional lock-in” scenario it is argued that economic relations in a region, which
include knowledge networks, become so rigid and focused on a particular economic activity
that new developments and ideas from outside the region are ignored. This goes hand in
hand with actors becoming unaware of, or incapable to respond to, technological and struc-
tural change in the long run (Grabher, 1993). In other words, a regional lock-in is likely to
involve a long-term co-evolution of geographic and cognitive proximity configurations.

Temporal autocorrelation may show as a short-term and long-term process. Actors are per-
manently confronted with new developments and technological progress implying that they
need to constantly update their knowledge basis. They therefore adopt their position within
knowledge networks such that they gain access to knowledge pieces helping to successfully
deal with new technological problems. The problems actors face, i.e. the development tra-
jectory of the technologies they are active in, therefore influence their ego-networks’ config-
uration in terms of cognitive proximity. If a significant number of network actors faces such
challenges, negative temporal autocorrelation dynamics can occur for the network’s cognitive
proximity configuration in a relatively short-time period.
In contrast, over longer time-periods actor characteristics change, which may also cause tem-
poral autocorrelation. A simple example has already been presented above: actors that
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frequently interact become more similar in the cognitive dimension, which in turn increases
their chances to interact again in the next period. Such processes will show as positive
temporal autocorrelation for the cognitive proximity configuration. However, they may be
observable only over longer time periods as actors’ characteristics are unlikely to change in
the short-run.
Long-term autocorrelation dynamics may also exist for social proximity. Frequent inter-
action in cooperation stimulates social proximity by facilitating the development of trust
and shared values (Ben-Porath, 1980). As social proximity enhances link creation a self-
energizing effect is possible for the configuration of social proximity, which will show as
positive autocorrelation.

3. Data

3.1. Data on subsidized R&D subsidies

I employ data on research and development (R&D) projects that have been subsidized
by the German federal government. The majority of these subsidies programs is initiated
by the Federal Ministry of Education and Research (BMBF). A number of other ministries
contribute as well but to smaller extents. Amongst others, policy aims at stimulating inter-
organizational cooperation activities through subsidization. It thereby hopes to initiate tech-
nology transfer from the public to the private sector or to foster collective learning processes.
The effectiveness of this approach is confirmed in many empirical studies (Scherngell and
Barber, 2009, 2011; Fornahl et al., 2011). For this reason, information on subsidized
R&D cooperation, i.e. the subsidization of joint projects, can be used to model knowledge
networks (Broekel and Graf, 2012).
Data on subsidized R&D projects has a number of features that make it very suitable for
the present investigation. First of all, it allows for constructing a large number of distinct
knowledge networks over multiple time periods. In this respect, the data is comparable to
co-patent and co-publication data and shares their most important advantages. The data
has one additional advantage, though: The actual length of a cooperation is known as the
starting and ending date of joint projects are defined by the length of the subsidization.
These advantages come at some costs. Most importantly, networks based on R&D subsidies
and their structures are subject to specific policy objectives. For instance, policy might aim
at subsidizing particular types of cooperation in certain technological fields. This has to be
taken into account in the empirical assessment.

3.2. Data of the “Förderkatalog”

Comprehensive information on subsidized projects are published in the so-called “Förderkatalog”
(subsidies catalog). It lists detailed information on more than 130,000 individual funds
granted between 1960 and 2009. I refrain from presenting the data in detail (see on this
Broekel and Graf, 2012).
For the empirical assessment I focus on the years 1999-2011 in which 37,702 projects, split
into 68,746 individual funds, were granted to 23,399 German organizations. However, for the
construction of one variable, I additionally consider the years 1990 to 1998. The structure of
the data is identical for both data sets.
All funds are classified by an internal hierarchical classification scheme developed by the
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German Federal Ministry of Education and Research called “Leistungsplansystematik”. Its
16 main areas, which include biotechnology, energy research, etc. These are spitted into
varying numbers of sub-classes. These are considerably fine-grained. For instance, it can
be differentiated between plant genomics (areas: K04210) and micro-organic genomics (area:
K024220). The data also covers non-technological activities. For instance, ecological con-
ceptions for urban regions (area: FC1013) and the improvement of education and training
conditions for women (area: RB2550) also receive “R&D” subsidies. At the highest level of
disaggregation (6-digits) almost 1,300 unique research areas can be differentiated. However,
many of these research areas include only few projects and therefore do not contain sufficient
network structures. I therefore aggregate the six-digit level to the four-digit level yielding
410 research areas for which meaningful networks can be constructed.3

The cooperative nature of projects is indicated by funds being granted to joint projects
realized by consortia of organizations (“Verbundprojekte”).4 Participants in joint projects
agree to a number of regulations that guarantee significant knowledge exchange between the
partners (cf. Broekel and Graf, 2012). Accordingly, two organizations are defined to co-
operate if they participate in the same joint project. This implies that the original two-mode
network data is transformed into a one-mode projection. On this basis, networks are con-
structed for each year and 4-digit research area based on the projects that are running for
at least one day in the respective year. Isolates are added if organizations receive subsidies
for non-cooperative projects.5 To study these networks’ evolution they need to be observed
for at least two consecutive years. This is the case for 280 networks that are observed for
two to thirteen years, see bottom right plot in Figure 1. They serve as unit of analysis in
the following. Note that the population of organizations in one research area (nodes in the
network) varies between years as I only consider those organizations that received subsidies
in the respective year.
The size of the networks varies considerably.6 The smallest network consists of three nodes
in one period. The largest has 887 nodes. In average the networks have about 75 nodes. The
top left plot in Figure 1 depicts the distribution of network sizes pooled over all years. In
the middle right plot in Figure 1 it is further visible that most networks have density values
less than 0.1.7 Another important characteristic of networks is their degree centralization.8

For the 280 networks it ranges from almost zero to 0.78. The distribution of this measure is
depicted in the plot on the middle left of Figure 1.
Broekel and Graf (2012) highlight that R&D subsidies networks also differ with respect
to the participation of the public sector in general and public research organizations in par-
ticular. Networks in research areas that are closer to the education system or that concern
basic research are naturally more dominated by the presence the latter. The top left plot in

3The four-digit level appears to be the (subjectively) best choice given the trade-off between network size
and “technological” disaggregation.

4Large joint projects with sub-projects in which multiple organizations participate are disaggregated at
the sub-project level.

5Isolates: Nodes in a network that are not linked to any other node.
6The size of a network is commonly represented by the number of nodes, i.e. number of active organiza-

tions.
7Network density: The number of observed links divided by the number of potential links.
8Degree centralization: The extent to which a network has a star-like structure (Freeman, 1979).
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Figure 1: Some network descriptives
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Figure 1 highlights that the share of universities lies about 5 to 30 percent for most networks.
However, in a large number of networks universities account for more than 60 percent of the
nodes. The same is true for research organizations (bottom left plot). The varying impor-
tance of universities and research organizations in networks has considerable implications for
the structure of networks (Broekel and Graf, 2012).
The plots for the four mentioned network characteristics (size, density, degree centraliza-
tion, structure of participating organizations) indicate significant heterogeneity among the
networks, which demands consideration in the empirical assessment.

4. Empirical approach

4.1. Empirical variables

Before the empirical variables are presented, some conceptual clarification is necessary
concerning proximities and the notion of ‘proximity configurations’. When investigating the
role proximities play for network formation, proximity usually refers to the relation between
two actors irrespectively of these being actually linked. For instance, researchers will look at
the likelihood that two actors that are geographically proximate are having a higher chance of
being (or getting) linked than those that are geographically distant. However, the focus of the
paper is on co-evolution processes between proximities during the development of networks.
For this reason, I follow Ter Wal (2011) and concentrate on the relation of linked actors, i.e.
the focus is on the proximity structure of actually realized links. The aggregated proximity
over all realized relations in a network can be seen as the structure of the network (or its
configuration) with respect to one proximity type.
In his study Ter Wal (2011) focuses on the average geographic distance of links in a
network to describe the configuration of the network with respect to geographic proximity.
Straightforwardly, I extent this idea to the other four proximity types implying that in
addition to the average geographic distance, I calculate the average cognitive, organizational,
social, and institutional distance of links in the 280 networks.9

However, the average distance (proximity) of links in a network is dependent on the
distances among actors in the underlying population. In addition, data on subsidized R&D
cooperation is inherently subject to changes in policy programs and directives. Hence, when
comparing such measures between networks this has to be taken into account. For this reason
I compare the observed proximity configuration of networks with the according configuration
in the underlying actor population. The proximity configuration is ‘normalized’ by setting
it into a relation with the same measure estimated over all potential (i.e. all realized and
not realized) links among actors at the same moment in time. The resulting ratio shows
if linked actors (i.e. the network) are more proximate in one dimension than what can be
expected given the characteristics of the underlying population of actors in that year. For the
present paper it is important that it represents the result of the network formation process
in previous periods controlled for changes in the underlying actor population. By studying
the temporal dynamics of the proximity configuration measure inference can be made about

9The notion of proximity is unfortunate in this respect as it can be used as a synonym for ‘short distance’
as well as a reference the proximity concept, e.g. ‘cognitive proximity’. To avoid confusion, I will use the
notion of ‘distance’ in the empirical analysis.
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the unobserved network formation process and its driving factors. For the estimation of the
different distances I rely on established ways to approximate the five proximity types (cf.
Balland, 2012; Broekel and Boschma, 2012).

Organizational distance. Information are provided for all funds which organization received
the funds and, if relevant, which sub-unit is actually executing the project. This differ-
entiation applies primarily to large firms with several sub-units and universities as well as
research organizations with multiple institutes. In these cases the mother organization is
listed as funded organization and its sub-units / institutes as executing units (see on this
Broekel andGraf, 2012). The measure ORGA is defined being zero when two cooperating
organizations (executing (sub-)organizations) share the same funded (mother) organization
and one otherwise.10 Using this measure implies that all networks are constructed on the
basis of cooperation between executing ‘organizations’.

Institutional distance. All executing organizations are classified into one of the four cate-
gories: university, extramural research organization, private firm, and miscellaneous. I define
two organizations to be subject to the same institutional framework if they belong to the
same category. As for organizational distance, the variable INST is defined being zero if the
cooperating organizations share the same institutional background and one otherwise.

Cognitive distance. The subsidies database also includes information on the industry orga-
nizations belong to by means of two-digit NACE codes. For the construction of the variable
COG, I follow Breschi et al. (2003) and Broekel and Boschma (2012) and estimate the
co-occurrence of these two-digit NACE codes in the more than 1,300 six-digit research areas.
In other words, the cognitive distance between two NACE codes is defined on the basis of
the frequency with which their organizations receive subsidies in the same research area. In
order to take into account indirect relations between NACE codes and to account for size of
the NACE industries the Cosine index is employed:

COG CO =

∑n

k=1
wzk, wgk

√

∑n

k=1
w2

zk

∑n

k=1
w2

gk

(1)

with n being the number of two-digit NACE codes (84) and g,k,z indicating the respective
focal NACE codes. In the equation, wzk is the number with which NACE code z and k

coincide in 6-digit research areas. The estimated values vary between zero and one with
values close to one indicating high similarity. The variable COG is defined by the negative11

Cosine value of the cooperating organizations’ NACE codes.

Social distance. The social distance measure is based on past relations between organizations.
More precise, the variable SOC is calculated as the number of links between two cooperating
organizations in the previous ten years (moving window). All projects that are still ongoing
in the considered year are excluded. To ensure comparability of the variable’s value over
the entire time period (1999-2011), cooperation networks based on subsidized projects are

10This denotation guarantees that large values indicate large organizational distances.
11This ensures that large values indicate large cognitive distances.
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constructed for the years 1990 to 1998 as well. The variable is again multiplied by minus one
for easier interpretation.12

Geographic distance. Geographic distance GEO is calculated as the physical distance between
two cooperating organizations. It is estimated on the basis of the geographic coordinates of
the center point of organizations’ municipalities.

Control variables. To account for networks’ heterogeneity, I consider the previously intro-
duced network size (SIZE), network density (DENSITY), degree centralization (CENTRAL),
share of universities (UNIVERSITY), and the share of research organizations (RESEARCH).
In addition, I take into account the number of industries as approximated by the number
of unique two-digit NACE codes (INDUSTRIES) and that are involved in the according
research areas as this number might related to the measures of cognitive and institutional
distance.

4.2. Method

The variables presented above are estimated for each network and year. As their dynamic
relations are in the focus they are transformed into their relative annual growth rates:

GROWTHit =
DISTANCEt −DISTANCEt−1

DISTANCEt−1

(2)

By using growth rates all time invariant effects, i.e. network fixed effects, and potential
unobserved heterogeneity among networks are removed. In addition, the growth rates are
normalized with the annual median growth, which controls for any economy wide shocks, or
annual effects that impact all networks.13

To study the dynamic relations between these variables I apply a popular approach from the
firm growth literature. Amongst others, researchers in that field are interested in whether
profit growth leads to employment growth or vice versa (cf. Coad, 2009). They thereby
face a similar problem as the investigation in the present paper: the variables of interest
are dynamically related in a complex and endogenous way making uni-directional analyses
(standard regression) inappropriate.
One solution for this problem is the ‘reduced-form’ vector autoregression (VAR) model (see
for a discussion Stock and Watson, 2001; Coad, 2009). It does not resolve the causality
issue in the processes of network evolution. “Instead, the results [of a reduced-form vector
autoregression] should be interpreted merely in terms of describing the regularities that may

be observed during the [growth] processes” (Buerger et al., 2012, p. 571).
To study the dynamics of a series of variables the following regression model is specified:

xi,t = a+ βxi,t−1 + ǫi,t (3)

12I also estimated a second measure that takes into account previous direct and indirect links between orga-
nizations as expressed by the geodesic distance between two organizations in the previous years’ cooperation
networks. However, this variable proofed to be highly correlated with SOC and therefore dropped.

13While the mean is usually used for normalization the presence of some extreme values makes the median
yielding more robust results.
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Distribution of normalized growth rates
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Figure 2: Examples of growth rate distributions

whereby xi,t is a vector of variables describing a network i at time t. In the present study
these are the five variables approximating the change in proximity configurations. ǫ is the
vector of errors. To control for networks’ heterogeneity in terms of levels and growth, I add
control variables in normalized (centered to the annual median) growth rates as well as in
levels. Accordingly, the above regression equation is extended by the matrix C representing
the control variables in levels and gC containing the corresponding growth rates.

xi,t = a+ βxi,t−1 + Ci,t + gCi,t + ǫi,t (4)

Following Stock and Watson (2001) Equation 4 can be estimated with a series of m

individual ordinary least-squares (OLS) regressions. However, the normalized growth rates
turn out to be non-normally distributed, see Figure 2. Quantile regressions (also known as
least-absolute deviation regression) are therefore used as they are less impacted by outliers
and more appropriate when the dependent variables is not Gaussian (see for a discussion
Koenker and Hallock, 2001; Coad and Rao, 2006). In addition, I rely on bootstrapped
standard errors for robust and reliable statistical inference (cf. Elfron, 1979). To test the
presence of temporal autocorrelation the model is estimated as given in Equation 4. However,
to study the other types of dynamics the model is adapted. For the case of simultaneous

co-evolution Equation 4 is rewritten as:

xt,z = a+ βxi,i 6=z,t + Ci,t + gCi,t + ǫi,t (5)

with z ǫ i representing the focal proximity configuration, which in contrast to Equation 4 is
not considered in the set of explanatory variables.
Equation 4 and 5 are estimated using the 280 research area specific networks that are observed
for at least two consecutive time periods (1,286 observations). Some descriptives and the
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correlation structure between the employed variables are presented in Table 3 and Table 4 in
the Appendix.
The third type of dynamics, long-term co-evolution, is investigated by estimating the average
of variables’ growth rates for all networks that are observed for at least 8 years.14 Equation
5 is therefore slightly adapted.

xz = a+ βxi,i 6=z + Ci + gCi + ǫi (6)

Model 6 is estimated on the basis of the 95 networks for which at least 7 consecutive growth
rates can be estimated.

5. Empirical results

The results for the first two dynamics, simultaneous co-evolution and auto-correlation,
are shown in Table 1. The coefficients of the control variables already reveal some inter-
esting processes. For instance, the negative coefficient of gIND in Model 2 (dep.: COG)15,
signals cognitive distance to decrease in networks in which the number of involved industries
increases. This means that the variety of industries in the population grows faster than
the knowledge variety in the network. Model 3 (dep.: SOC) is characterized by the largest
number of significant coefficients. Increasing shares of research organizations (gRESEARCH)
tend to go along with growing social distances . These institutes are therefore less likely to be
involved in repeated interaction. Increasing density also goes hand in hand with low stability
of relations (gDENSITY).
In contrast to the control variables being estimated as growth rates, fewer significant coeffi-
cients are observed for the variables expressed in levels. A notable exception being the size
of networks that positively relates to the growth of organizational distance (SIZE in Model
4 (dep.: ORG)). A potential explanation might be the larger heterogeneity of organizations
in big networks, which implies that new links are more likely being established between or-
ganizations that are rather distant in terms of their organizational background. While the
findings for the control variables are interesting they are not in the foreground of the paper.

Simultaneous co-evolution. The first simultaneous co-evolution is observed between networks’
configuration with respect to organizational and geographic proximity. In Model 1 (dep.:
GEO) cognitive distance (COG) obtains a significant negative coefficient suggesting that de-
creasing cognitive distance tends to correlate with increasing geographic distance. In other
words, if organizations connect to cognitively distant organizations these are likely to be ge-
ographically proximate as well. On the network level it means that networks, which expand
in space, are probable to consolidate in cognitive variety. This fits to the fact that geographic
proximity substitutes for missing cognitive proximity in the establishment of knowledge links
(Boschma, 2005).
In Section 2.3 I argued that simultaneous co-evolution dynamics can be expected to exist
between social proximity and other proximity configurations (e.g. cognitive, geographic). At
least with respect to geographic proximity this is confirmed in Model 1 (dep.: GEO) as the

14The threshold of seven years was chosen as a balance of ‘long-termness’ and number of observations.
15“dep.: COG” indicates the dependent variable being COG.
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coefficient of SOC becomes positive significant. Accordingly, growing social distances in the
network tend to involve increasing geographic distances. This is in line with the observation
that social contacts are frequently located in geographical proximity (Breschi and Lissoni,
2001).

Model 1 Model 2 Model 3 Model 4 Model 5

Dep. Var. GEO COG SOC ORG INST
(Intercept) 0.002 0.001 -0.053 0.001 0.009
GEO - -0.003 0.079 0.001 -0.035
COG -0.441** - -0.151 0.000 0.766***
SOC 0.021** -0.001 - 0.001 0.003
ORG -0.001 0.001 0.018 - 0.001
INST -0.049 0.065*** -0.026 0.000 -
Lag(GEO) 0.005 - - - -
Lag(COG) - -0.026** - - -
Lag(SOC) - - 0.016 - -
Lag(ORG - - - -0.002 -
Lag(INST) - - - - -0.01
SIZE 0.000 0.000 0.000 0.000** 0.000
DENSITY 0.000 -0.004 0.068 0.005 0.005
DEG CENT -0.006 -0.003 -0.012 0.005 -0.006
RESERACH -0.001 0.008 -0.021 -0.001 -0.021
UNIVERSITY -0.001 -0.002 0.044 -0.006 -0.006
INDUSTRIES 0.000 0.000 0.000 -0.001* 0.000
gSIZE 0.02 0.003 -0.379*** -0.002 0.018
gDENSITY 0.015 0.004 0.357*** 0.001 -0.022
gDEG CENT 0.024** 0.000 -0.005 0.001 0.005
gRESEARCH -0.01 0.003 0.068*** 0.000 -0.046
gUNI 0.016 -0.001 -0.011 -0.001 -0.030
gINDUSTRIES -0.021 -0.009* 0.046 0.001 -0.033
* refers to a significance level of 0.1, ** to a significance level of 0.05,
and *** to 0.01.

Table 1: Results for co-evolution dynamics

Another simultaneous co-evolution exists between institutional and cognitive proximity con-
figurations. INST is characterized by a positive significant coefficient in Model 2 (dep.:
COG). The same is true for COG in Model 5 (dep.: INST). Accordingly, the dynamic rela-
tion is bi-directionally confirmed, which can be seen as a sign of robustness. Organizations
that share the same institutional framework are probable to be cognitively proximate as well
implying that changes in organizational distance correlate with changes in cognitive distance.
This has two quite obvious implications. Firstly, variables approximating the two proximity
types tend to be correlated in empirical studies, which makes isolating their effects diffi-
cult. Secondly, the correlation between the two variables matters for the design of R&D
subsidies programs. If policy preferably stimulates cooperation between organizations with
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divers institutional backgrounds (e.g. cooperation between public research organizations and
private firms) it directly influences the cognitive configuration within knowledge networks
and thereby impacts the innovation success of embedded organizations (cf. Fornahl et al.,
2011).

Temporal auto-correlation dynamics. Temporal auto-correlation dynamics are identified for
just one proximity configurations, namely cognitive proximity. The lagged variant of cognitive
distance (Lag(COG)) gains negative significance in Model 2 (dep.: COG). An increase in
cognitive distance in one year is therefore frequently followed by a decreasing distance in
the subsequent year, or the other way around. A potential explanation was put forward
in Section 2.3: Firms face changing technological problems, which require the permanent
adoption of the cognitive/technological structure in their ego-networks (direct cooperation
partners). However, permanently changing partners would show as a negative autocorrelation
for the social proximity configuration, which remains insignificant, though. It suggests that
the relation is more complex and deserves more research in the future.

Long-term co-evolution. When comparing Table 1 and 2 some overlap in the results obtained
for the control variables in the long-term and short-term investigation can be observed. In
contrast to the latter, in which the growth in density correlates with increasing social dis-
tance, such is the case for the level of density (DENSITY) in the long-term analysis, Model
8 (dep.: SOC). In addition, social distance tends to increase as the network grows in size
(gSIZE) in both specifications.
Some results are specific for the long-term investigation, though. For instance, when net-
works grow in geographic reach, the share of research institutes (gRESEARCH) increases as
well, see Model 6 (dep.: GEO). The positive coefficient of UNIVERSITY in Model 8 (dep.:
SOC) signals that social distance tends to increase with more universities participating in
the network. Again, I refrain from discussing these relations in more depth as the focus is
on proximities.
There is only one short-term relation that translates to the long-term perspective, which may
be due to the smaller number of observations (95 vs. 1,286) making significant relations less
likely in the long-term investigation.
The positive correlation between cognitive and institutional distance in the long-run inves-
tigation is the (short-term) simultaneous co-evolution dynamic persisting in the long run. It
becomes visible in Model 7 (dep.: COG) in which INST gains a positive significant coeffi-
cient. Hence, the finding confirms the impression of this being a very robust dynamic. It
can be concluded that organizations sharing the same institutional framework are also likely
to be cognitively proximate, which causes a strong co-evolution between the two proximity
configurations.
A dynamic that is only visible in the long-run is the co-evolution of the social and insti-
tutional proximity configuration. In contrast to all other relations in this analysis, it is
characterized by a bilateral significance of the according variables: growth in institutional
distance (INST) is found to be positively related to growth in social distance, see Model
8 (dep.: SOC). The same holds the other way around, see Model 10 (dep.: INST). The
meaning of the finding is straightforward: If social distance is once more interpreted as the
opposite of the persistence of links (low social distance implies high persistence), the results
suggests that higher persistence tends to go along with increased institutional distance. In
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Model 6 Model 7 Model 8 Model 9 Model 10

Dep. Var. GEO COG SOC ORG INST
(Intercept) -0.019 0.006 -0.126 0.045 0.012
GEO - -0.049 -0.568 0.429 0.052
COG -0.251 - 0.164 -0.046 0.662
SOC 0.016 0.01 - 0.074 0.133*
ORG 0.017 -0.005 0.042 - 0.031
INST -0.067 0.083** 0.993*** -0.028 -
SIZE 0.000 0.000 0.000 0.000 0.000
DENSITY 0.05 -0.007 1.021** 0.164 -0.165
DEG CENT -0.054 -0.003 -0.418 0.015 0.088
RESERACH 0.136* 0.005 -0.591 0.087 0.098
UNIVERSITY 0.005 -0.003 0.391** -0.053 -0.071
INDUSTRIES 0.001 0.000 0.004 -0.001 0.000
gSIZE 0.039 0.013 -0.651** 0.056 0.089
gDENSITY 0.005 0.009 0.07 0.018 -0.039
gDEG CENT 0.024 -0.007 0.358 -0.218 0.001
gRESEARCH 0.039 0.003 -0.01 0.076 -0.01
gUNI -0.007 0.000 0.084 0.006 -0.018
gINDUSTRIES -0.023 -0.018 -0.222 -0.172 0.077
* refers to a significance level of 0.1, ** to a significance level of 0.05,
and *** to 0.01.

Table 2: Results for long term co-evolution

other words, organizations with the same institutional background are more likely to coop-
erate if they have already been cooperating before. Given institutional differences it seems
reasonable that private-public links, e.g. university - firm links, are especially characterized
by low persistence. However, it could also be the case that links within the same institutional
sphere are more persistence as institutional barriers are lower and individuals with the same
background might find it easier to re-establish links.

6. Discussion and conclusion

The paper contributes to the literature on proximities as well as to the literature on knowl-
edge network evolution. It builds on the proximity approach of Boschma (2005) and argues
that proximity structures among connected actors (proximity configurations) are subject to
systematic change as knowledge networks evolve. Specifically, arguments are put forward for
the existence of distinct co-evolution dynamics between proximity configurations that differ
in their temporal dimensions as well as in the involved proximity types.
The arguments are empirically tested using a unique data set of subsidized R&D cooperation
disaggregated into 280 networks that are observed for 2 to 13 years. The econometric model
is estimated using a reduced-form vector autoregression (VAR).
The results indicate the existence of a significant simultaneous co-evolution of cognitive and
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geographic proximity configurations. Similar relations are found to exist between cognitive
and institutional as well as between social and geographical proximity configurations. The
simultaneous co-evolution dynamic between institutional and cognitive proximity configura-
tions is found to persist in the long-run.
While the empirical findings by and large confirm the theoretical predictions, the empiri-
cal analysis suffers from a number of shortcomings that need to be discussed. First of all,
in order to empirically model proximity configurations, I estimated the average geographic,
organizational, social, institutional and cognitive distance of links in networks of subsidized
R&D cooperation. In other words, I focused on just one specific measure to approximate
the structure of proximities in networks: the average proximity/distance of links. One may
argue that this is just one, and maybe not even the most important, measure to describe
these structures. For example, the chosen approach does not allow differentiating between
networks with many spatially proximate and many spatially far-reaching links on the one
side, and networks that are primarily characterized by links spanning medium geographic
distances on the other. Future research therefore needs to broaden the approach and take
into account different measures, e.g. the minimum, maximum or variance.
Moreover, many potentially existing long-term co-evolution dynamics cannot be identified
in the present study because they involve changing actor characteristics. These are inade-
quately covered in the data or even eliminated in a necessary normalization of the proximity
configuration measure. For example, this means that actors are modeled to have the same
cognitive profile in all periods. In fact, social embeddedness is the only attribute which
change is explicitly captured by the empirical approach. This might explain why the largest
number of empirically identified long-term co-evolution dynamics involves this type of prox-
imity configuration.
The employed data is responsible for another shortcoming. The networks in the study are
based on subsidized R&D cooperation. While this yields a number of advantages it also
implies that all observed networks did not “freely” develop over time and space. To the
contrary, their development might have been significantly impacted by policy. Since the
empirical investigation includes a large number of networks formed by many diverse pol-
icy programs and accounts for a wide range of network characteristics, this is unlikely to
cause systematic biases in the empirical results. Nevertheless, a comparison with findings
obtained on the basis of network constructed from other data (co-publication, co-patenting,
etc.) might provide additional confirmation or reveal interesting differences.
For modeling the long-term dynamics of networks, I rely on 95 networks observed for at least
8 and a maximum of 13 years. It is surely debatable if this qualifies as long-term development.
Future research might be able to follow networks’ development for much longer periods (cf.
Balland et al., 2012b). Such will improve the adequacy of the empirical approach and the
underlying theories, which become more relevant in time periods exceeding 8 years.
Despite these shortcomings the present study provides new insights into the mechanisms of
network evolution. The empirical analysis shows that (a number of) different proximity con-
figurations in networks are not independent of each other but co-evolve as networks develop
over time. This clearly supports a dynamic approach to proximities (Balland et al., 2012a).
The study also raises many new questions. For instance, what are the precise reasons and
mechanisms for proximity configurations to co-evolve? How and why do knowledge networks
and proximity structures between linked actors change over time and what processes are at
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work in the short and long run? Hence, despite the flourishing research in this field, we are
still far from being proximate to fully understand the mechanisms, causes, and consequences
of knowledge network evolution.
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Appendix

N MEAN SD MEDIAN MIN MAX SKEW
GEO * 1550 0.025 0.309 0.000 -1.000 6.735 9.725
COG * 1553 -0.006 0.121 0.000 -3.179 0.756 -14.535
SOC * 1523 -0.251 1.002 0.000 -9.335 1.051 -4.111
ORG * 1200 -0.055 0.786 0.000 -9.616 1.000 -6.774
INST * 1549 -0.054 0.593 0.000 -9.117 1.001 -10.937
SIZE 1844 75.458 100.311 43.000 3 887.000 3.231
DENSITY 1844 0.147 0.212 0.066 0.000 1.000 2.59
DEG CENT 1844 0.157 0.120 0.127 0.000 0.781 1.457
RESEARCH 1844 0.231 0.128 0.208 0.000 0.857 0.891
UNI 1844 0.362 0.225 0.327 0.000 1.000 0.638
INDUSTRIES 3064 8.166 8.206 6.000 1.000 53.000 2.086
gSIZE* 1553 0.236 1.054 0.000 -0.915 14.475 6.344
gDENSITY* 1553 0.150 1.107 0.000 -0.973 20.124 9.414
gDEG CENT* 1553 0.108 0.663 0.000 -1.038 9.250 4.467
gRESEARCH* 1553 0.22 1.973 0.000 -1.006 40.000 12.656
gUNI * 1553 0.200 1.901 0.000 -1.002 40.650 13.353
gINDUSTRIES* 2640 0.166 0.765 0.000 -0.900 12.000 6.144
* Variables are median-centered

Table 3: Descriptives of variables
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