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This review presents an overview of a challenging problem in auditory
perception, the cocktail party phenomenon, the delineation of which goes
back to a classic paper by Cherry in 1953. In this review, we address the
following issues: (1) human auditory scene analysis, which is a general
process carried out by the auditory system of a human listener; (2) in-
sight into auditory perception, which is derived from Marr’s vision the-
ory; (3) computational auditory scene analysis, which focuses on specific
approaches aimed at solving the machine cocktail party problem; (4) ac-
tive audition, the proposal for which is motivated by analogy with active
vision, and (5) discussion of brain theory and independent component
analysis, on the one hand, and correlative neural firing, on the other.

One of our most important faculties is our ability to listen to, and follow,
one speaker in the presence of others. This is such a common experience
that we may take it for granted; we may call it “the cocktail party prob-
lem.” No machine has been constructed to do just this, to filter out one
conversation from a number jumbled together.

—Colin Cherry, 1957.

1 Introduction

The cocktail party problem (CPP), first proposed by Colin Cherry, is a psychoa-
coustic phenomenon that refers to the remarkable human ability to selec-
tively attend to and recognize one source of auditory input in a noisy envi-
ronment, where the hearing interference is produced by competing speech
sounds or a variety of noises that are often assumed to be independent
of each other (Cherry, 1953). Following the early pioneering work (Cherry,
1953, 1957, 1961; Cherry & Taylor, 1954; Cherry & Sayers, 1956, 1959; Sayers
& Cherry, 1957), numerous efforts have been dedicated to the CPP in diverse
fields: physiology, neurobiology, psychophysiology, cognitive psychology,
biophysics, computer science, and engineering. Due to its multidisciplinary
nature, it is almost impossible to completely cover this problem in a single
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article.1 Some early partial treatment and reviews of this problem are found
in different disciplinary publications (Bregman, 1990; Arons, 1992; Wood
& Cowan, 1995; Yost, 1997; Feng & Ratnam, 2000; Bronkhorst, 2000). Half
a century after Cherry’s seminal work, however, it seems fair to say that a
complete understanding of the cocktail party phenomenon is still missing,
and the story is far from being complete; the enigma about the marvelous au-
ditory perception capability of human beings remains a mystery. To unveil
the mystery and imitate the human performance with a machine, compu-
tational neuroscientists, computer scientists, and engineers have attempted
to view and simplify this complex perceptual task as a learning problem, for
which a tractable computational solution is sought. Despite their obvious
simplicity and distinction from reality, the efforts seeking the computational
solutions to imitate a human’s unbeatable audition capability have revealed
that we require a deep understanding of the human auditory system and
the underlying neural mechanisms. Bearing such a goal in mind, it does
not mean that we must duplicate every aspect of the human auditory sys-
tem in solving the machine cocktail party problem. Rather, it is our belief
that seeking the ultimate answer to the CPP requires deep understanding
of many fundamental issues that are deemed to be of theoretical and tech-
nical importance. In addition to its obvious theoretical values in different
disciplines, the tackling of the CPP will certainly be beneficial to ongoing
research on human-machine interfaces.

There are three fundamental questions pertaining to CPP:

1. What is the cocktail party problem?

2. How does the brain solve it?

3. Is it possible to build a machine capable of solving it in a satisfactory
manner?

The first two questions are human oriented and mainly involve the disci-
plines of neuroscience, cognitive psychology, and psychoacoustics; the last
question is rooted in machine learning, which involves computer science
and engineering disciplines.

In addressing the cocktail party problem, we are interested in three un-
derlying neural processes:2

� Analysis: The analysis process mainly involves segmentation or segre-
gation, which refers to the segmentation of an incoming auditory signal
to individual channels or streams.3 Among the heuristics used by a

1A recently edited volume by Divenyi (2004) discusses several aspects of the cocktail
party problem that are complementary to the material covered in this review.

2 Categorization of these three neural processes, done essentially for research-related
studies, is somewhat artificial; the boundary between them is fuzzy in that the brain does
not necessarily distinguish between them as defined here.

3 For an early discussion of the segmentation process, see Moray (1959).
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listener to do the segmentation, spatial location is perhaps the most
important. Specifically, sounds coming from the same location are
grouped together, while sounds originating from other different di-
rections are segregated.

� Recognition: The recognition process involves analyzing the statisti-
cal structure of the patterns contained in a sound stream that are help-
ful in recognizing the patterns. The goal of recognition is to uncover
the neurobiological mechanisms through which humans are able to
identify a segregated sound from multiple streams with relative ease.

� Synthesis: The synthesis process involves the reconstruction of indi-
vidual sound waveforms from the separated sound streams. While
synthesis is an important process carried out in the brain (Warren,
1970; Warren, Obusek, & Ackroff, 1972; Bregman, 1990), the synthesis
problem is primarily of interest to the machine CPP.

Note also that recognition does not require the analysis process to be per-
fect; and by the same token, an accurate synthesis does not necessarily mean
having solved the analysis and recognition problems, although extra infor-
mation might provide more hints for the synthesis process.

From an engineering viewpoint, in a loose sense, synthesis may be re-
garded as the inverse of the combination of analysis and recognition in that
it attempts to uncover the relevant attributes of the speech production mech-
anism. The aim of synthesis is to build a machine that offers the capabilities
of operating on a convolved mixture of multiple sources of sounds and to
focus attention on the extraction from the convolved mixture a stream of
sounds that is of particular interest to an observer; the convolution men-
tioned here refers to reverberation in a confined environment, which is a
hallmark of real-life cocktail party phenomena.

The main theme of this review4 is philosophical and didactic; hence,
no detailed mathematical analysis is presented. The rest of the review is
organized as follows. Section 2 discusses human auditory scene analysis.
Section 3 discusses the impact of Marr’s work in vision (Marr, 1982) on
auditory scene analysis (Bregman, 1990). Section 4 presents an overview
of computational approaches for solving the cocktail party problem, with
an emphasis on independent component analysis, temporal binding and
oscillatory correlation, and cortronic network. Section 5 discusses active
audition. Discussion of some basic issues pertaining to the cocktail party
problem in section 6 concludes the review.

4 The early version of this review appeared as a presentation made by the first au-
thor (Haykin, 2003) and a more lengthy technical report by the second author (Chen,
2003). In this latter report, we presented a comprehensive overview of the cocktail party
problem, including a historical account, auditory perceptual processes, relations to visual
perception, and detailed descriptions of various related computational approaches.
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2 Human Auditory Scene Analysis

Human auditory scene analysis (ASA) is a general process carried out by
the auditory system of a human listener for the purpose of extracting in-
formation pertaining to a sound source of interest, which is embedded in a
background of noise interference.

The auditory system is made up of two ears (constituting the organs of
hearing) and auditory pathways. In more specific terms, it is a sophisti-
cated information processing system that enables us to detect not only the
frequency composition of an incoming sound but also to locate the sound
sources (Kandel, Schwartz, & Jessell, 2000). This is all the more remarkable,
given the fact that the energy in the incoming sound waves is exceedingly
small and the frequency composition of most sounds is rather complicated.

In this review, our primary concern is with the cocktail party problem. In
this context, a complete understanding of the hearing process must include
a delineation of where the sounds are located, what sounds are perceived,
as well as an explanation of how their perception is accomplished.

2.1 “Where” and “What.” The mechanisms in auditory perception es-
sentially involve two processes: sound localization (“where”) and sound
recognition (“what”). It is well known that (e.g., Blauert, 1983; Yost & Goure-
vitch, 1987; Yost, 2000) for localizing sound sources in the azimuthal plane,
interaural time difference is the main acoustic cue for sound location at low
frequencies, and for complex stimuli with low-frequency repetition, interau-
ral level is the main cue for sound localization at high frequencies. Spectral
differences provided by the head-related transfer function (HRTF) are the
main cues used for vertical localization. Loudness (intensity) and early re-
flections are the probable cues for localization as a function of distance. In
hearing, the precedence effect refers to the phenomenon that occurs during
auditory fusion when two sounds of the same order of magnitude are pre-
sented dichotically and produce localization of the secondary sound waves
toward the outer ear receiving the first sound stimulus (Yost, 2000); the
precedence effect stresses the importance of the first wave in determining
the sound location.

The “what” question mainly addresses the processes of sound segrega-
tion (streaming) and sound determination (identification). Although it has
a critical role in sound localization, spatial separation is not considered a
strong acoustic cue for streaming or segregation (Bregman, 1990). Accord-
ing to Bregman’s studies, sound segregation consists of a two-stage process:
feature selection and feature grouping. Feature selection invokes processing
the auditory stimuli into a collection of favorable (e.g., frequency sensitive,
pitch-related, temporal-spectral-like) features. Feature grouping is responsi-
ble for combining similar elements of incoming sounds according to certain
principles into one or more coherent streams, with each stream correspond-
ing to one informative sound source. Sound determination is more specific
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than segregation in that it not only involves segmentation of the incoming
sound into different streams, but also identifies the content of the sound
source in question. We will revisit Bregman’s viewpoint of human auditory
scene analysis in section 3.

2.2 Spatial Hearing. From a communication perspective, our two outer
ears act as receive-antennae for acoustic signals from a speaker or audio
source. In the presence of one (or fewer) competing or masking sound
source, the human ability to detect and understand the source of interest (i.e.,
target) is degraded. However, the influence of the masking source generally
decreases when the target and masker are spatially separated, compared to
when the target and masker are in the same location; this effect is credited
to spatial hearing (filtering).

In his classic paper, Cherry (1953) suggested that spatial hearing plays
a major role in the auditory system’s ability to separate sound sources in a
multiple-source acoustic environment. Many subsequent experiments have
verified Cherry’s conjecture. On the other hand, spatial hearing is viewed
as one of the important cues that are exploited in solving the CPP (Yost &
Gourevitch, 1987) and enhancing speech intelligibility (Hawley, Litovsky,
& Colburn, 1999). Spatial separation of the sound sources is also believed
to be more beneficial to localization than segregation (Bregman, 1990). But
in some cases, spatial hearing is crucial to the sound determination task
(Yost, 1991, 1997). Specifically, spatial unmasking produces three effects:
(1) pure acoustic effects due to the way sound impinges on the listener’s
head and body, (2) binaural processing that improves the target signal-to-
masker ratio, and (3) central attention whereby the listener can selectively
focus attention on a source at a particular direction and block out the com-
peting sources in the unattended directions. The classic book by Blauert
(1983) presents a comprehensive treatment of the psychophysical aspect of
human sound localization. Given multiple sound sources in an enclosed
space (such as a conference room), spatial hearing helps the brain to take
full advantage of the slight difference (timing, intensity) between the sig-
nals that reach the two outer ears to perform monaural (autocorrelation)
and binaural (cross-correlation) processing for specific tasks (such as co-
incidence detection, precedence detection, localization, and fusion), based
on which auditory events are identified and followed by higher-level audi-
tory processing (e.g., attention, streaming, cognition). Figure 1 illustrates a
functional diagram of the binaural spatial hearing process.

2.3 Binaural Processing. One of the key observations derived from
Cherry’s classic experiment (Cherry, 1953) was that it is easier to separate
the sources heard binaurally than when they are heard monaurally. Quot-
ing from Cherry and Taylor (1954): “One of the most striking facts about
our ears is that we have two of them—and yet we hear one acoustic world;
only one voice per speaker.” We believe that nature gives us two ears for a
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Figure 1: Functional diagram of binaural hearing, which consists of physical,
psychophysical, and psychological aspects of auditory perception. (Adapted
from Blauert, 1983, with permission.)

reason just like it gives us two eyes. It is the binocular vision (stereovision)
and binaural hearing (stereausis) that enable us to perceive the dynamic
outer world and provide the main sensory information sources. Binocu-
lar/binaural processing is considered to be crucial in certain perceptual
activities (e.g., binocular/binaural fusion, depth perception, localization).5

Given one sound source, the two ears receive slightly different sound pat-
terns due to a finite delay produced by their physically separated locations.
The brain is known to be extremely efficient in using varieties of acoustic
cues, such as interaural time difference (ITD), interaural intensity difference

5 We can view sound localization as binaural depth perception, representing the coun-
terpart to binocular depth perception in vision.



The Cocktail Party Problem 1881

(IID), and interaural phase difference (IPD), to perform specific audition
tasks. The slight differences in these cues are sufficient to identify the loca-
tion and direction of the incoming sound waves.

An influential binaural phenomenon is the so-called binaural masking
(e.g., Durlach & Colburn, 1978; Moore, 1997; Yost, 2000). The threshold of
detecting a signal masked in noise can sometimes be lower when listening
with two ears compared to listening with only one, which is demonstrated
by a phenomenon called binaural masking level difference (BMLD). It is
known (Yost, 2000) that the masked threshold of a signal is the same when
the stimuli are presented in a monotic or diotic condition; when the masker
and the signal are presented in a dichotic situation, the signal has a lower
threshold than in either monotic or diotic conditions. Similarly, many exper-
iments have also verified that binaural hearing increases speech intelligi-
bility when the speech signal and noise are presented dichotically. Another
important binaural phenomenon is binaural fusion. Fusion is the essence of
directional hearing; the fusion mechanism is often modeled as performing
some kind of correlation analysis (Cherry & Sayers, 1956; Cherry, 1961), in
which a binaural fusion model based on the autocorrelogram and cross-
correlogram was proposed (see Figure 1).

2.4 Attention. Another function basic to human auditory analysis is
that of attention, which is a dynamic cognitive process. According to James
(1890), the effects of attention include five types of cognitive behavior:
(1) perceive, (2) conceive, (3) distinguish, (4) remember, and (5) shorten
the reaction time of perceiving and conceiving.

In the context of the cocktail party problem, attention pertains to the
ability of a listener to focus attention on one channel while ignoring other
irrelevant channels. In particular, two kinds of attention processes are often
involved in the cocktail party phenomenon (Jones & Yee, 1993; Yost, 1997):

� Selective attention, in which the listener attends to one particular
sound source and ignores other sources

� Divided attention, in which the listener attends to more than one sound
source

Once the attention mechanism (either selective or divided) is initiated, a
human subject is capable of maintaining attention for a short period of
time, hence the term maintained attention.

Another intrinsic mechanism relating to attention is switched attention,
which involves the ability of the human brain to switch attention from one
channel to another; switched attention is probably mediated in a top-down
manner by “gating” the incoming auditory signal (Wood & Cowan, 1995).
In this context, a matter of particular interest is the fact that unlike the
visual system, whose cortical top-down feedback goes only as far down as
the thalamus, the cortical feedback in the auditory system exerts its effect
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Figure 2: Schematic diagram of an auditory attention circuit.

all the way down to the outer hair cells in the cochlea via the midbrain
structure (Wood & Cowan, 1995). Accordingly, the potential for the early
selection process of a speech signal of interest in audition is large. Figure 2
is a schematic diagram of the auditory attention circuit. As depicted in the
figure, the thalamus acts mainly as a relay station between the sensory hair
cells and the auditory cortex.6

The bottom-up signals received from the hair cells are sent to medial
geniculate nuclei (MGN) in the thalamus and farther up to the auditory cor-
tex through the thalamocortical pathways. The top-down signals from the
cortex are sent back to the hair cells through the corticothalamic pathways,
to reinforce the signal stream of interest and maximize expectation through
feedback.

In addition to auditory scene inputs, visual scene inputs are believed to
influence the attention mechanism (Jones & Yee, 1993). For instance, lip-
reading is known to be beneficial to speech perception. The beneficial effect
is made possible by virtue of the fact that the attention circuit also encom-
passes cortico-cortical loops between the auditory and visual cortices.

2.5 Feature Binding. One other important cognitive process involved
in the cocktail party phenomenon is that of feature binding, which refers to
the problem of representing conjunctions of features. According to von der

6 This is also consistent with the postulate of visual attention mechanism (Crick, 1984;
Mumford, 1991, 1995).
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Malsburg (1999), binding is a very general problem that applies to all types
of knowledge representations, from the most basic perceptual representa-
tion to the most complex cognitive representation. Feature binding may be
either static or dynamic. Static feature binding involves a representational
unit that stands for a specific conjunction of properties, whereas dynamic
feature binding involves conjunctions of properties as the binding of units
in the representation of an auditory scene, an idea traced back to Treisman
and Gelade (1980). The most popular dynamic binding mechanism is based
on temporal synchrony, hence the reference to it as “temporal binding.”
König, Engel, and Singer (1996) suggested that synchronous firing of neu-
rons plays an important role in information processing within the cortex.
Rather than being a temporal integrator, the cortical neurons might serve
as a coincidence detector evidenced by numerous physiological findings.7

Dynamic binding is closely related to the attention mechanism, which
is used to control the synchronized activities of different assemblies of
units and how the finite binding resource is allocated among the assemblies
(Singer, 1993, 1995). Experimental evidence (especially in vision) has shown
that synchronized firing tends to provide the attended stimulus with an en-
hanced representation. Temporal binding hypothesis is attractive, though
not fully convincing, in interpreting the perceptual (Gestalt) grouping and
sensory segmentation, which has also been evidenced by numerous neuro-
physiological data (Engel et al., 1991; von der Malsburg, 1999; see also the
bibliographies in both works in the special issue on the binding problem).

2.6 Psychophysical and Psychoacoustic Perspectives.

2.6.1 Psychophysical Attributes and Cues. The psychophysical attributes of
sound mainly involve three forms of information: spatial location, temporal
structure, and spectral characterization. The perception of a sound signal in a
cocktail party environment is uniquely determined by this kind of collective
information; any difference in any of the three forms of information is be-
lieved to be sufficient to discriminate two different sound sources. In sound
perception, many acoustic features (cues) are used to perform specific tasks.
Table 1 summarizes the main acoustic features (i.e., the temporal or spectral
patterns) used for a single-stream sound perception. Combination of a few
or more of those acoustic cues is the key to conducting auditory scene analy-
sis. Psychophysical evidence also suggests that significant cues may be pro-
vided by spectral-temporal correlations (Feng & Ratnam, 2000). It should be
noted that the perception ability with respect to different sound objects (e.g.,
speech or music) may be different. The fundamental frequencies or tones
of sounds are also crucial to perception sensitivity. Experimental results

7 For detailed discussions of the coincidence detector, see the review papers (Singer,
1993; König & Engel, 1995; König, Engel, & Singer, 1996).
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Table 1: The Features (Cues) Used in Sound Perception.

Feature or Cue Domain Task

Visual Spatial Where
Interaural time difference (ITD) Spatial Where
Interaural intensity difference (IID) Spatial Where
Intensity (volume), loudness Temporal Where + what
Periodicity, rhythm Temporal What
Onsets/offsets Temporal What
Amplitude modulation (AM) Temporal What
Frequency modulation (FM) Temporal-spectral What
Pitch Spectral What
Timbre, tone Spectral What
Hamonicity, formant Spectral What

have confirmed that difficulties occur more often in the presence of compet-
ing speech signals than in the presence of a single speech and other acoustic
sources.

2.6.2 Room Acoustics. For auditory scene analysis, studying the effect of
room acoustics on the cocktail party environment is important (Sabine, 1953;
MacLean, 1959; Blauert, 1983). A conversation occurring in a closed room
often suffers from the multipath effect—mainly echoes and reverberation,
which are almost ubiquitous but are rarely consciously noticed. According
to the acoustics of the room, a reflection from one surface (e.g., wall, ground)
produces reverberation. In the time domain, the reflection manifests itself
as smaller, delayed replicas (echoes) that are added to the original sound;
in the frequency domain, the reflection introduces a comb-filter effect into
the frequency response. When the room is large, echoes can sometimes be
consciously heard. However, the human auditory system is so powerful that
it can take advantage of binaural and spatial hearing to efficiently suppress
the echo, thereby improving the hearing performance.

The acoustic cues listed in Table 1 that are spatially dependent, such as
ITD and IID, are naturally affected by reverberation. The acoustic cues that
are space invariant, such as common onset across frequencies and pitch,
are less sensitive to reverberation. On this basis, it is conjectured that the
auditory system has the ability to weight the different acoustic cues (prior
to their fusion) so as to deal with a reverberant environment in an effective
manner.

3 Insight from Marr’s Vision Theory

Audition and vision, the most influential perception processes in the human
brain, enable us to absorb the cyclopean information of the outer world in
our daily lives. It is well known to neuroscientists that audition (hearing) and
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vision (seeing) share substantial common features in the sensory processing
principles as well as anatomical and functional organizations in higher-level
centers in the cortex.

In his landmark book, David Marr first presented three levels of analysis
of information processing systems (Marr, 1982, p. 25):

� Computation: What is the goal of the computation, why is it appro-
priate, and what is the logic of the strategy by which it can be carried
out?

� Representation: How can this computational theory be implemented?
In particular, what is the representation for the input and output, and
what is the algorithm for the transformation?

� Implementation: How can the representation and algorithm be real-
ized physically?

In many perspectives, Marr’s observations highlight the fundamental ques-
tions that need to be addressed in computational neuroscience, not only in
vision but also audition. As a matter of fact, Marr’s theory has provided
many insights into auditory research (Bregman, 1990; Rosenthal & Okuno,
1998).

In a similar vein to visual scene analysis (e.g., Julesz & Hirsh, 1972),
auditory scene analysis (Bregman, 1990) attempts to identify the content
(“what”) and the location (“where”) of the sounds and speech in the envi-
ronment. In specific terms, auditory scene analysis consists of two stages.
In the first stage, the segmentation process decomposes a complex acous-
tic scene into a collection of distinct sensory elements; in the second stage,
the grouping process combines these elements into a stream according to
some principles; the streams can be interpreted by a higher-level process
for recognition and scene understanding. Motivated by Gestalt psychology,
Bregman (1990) has proposed five grouping principles for auditory scene
analysis:

1. Proximity, which characterizes the distances between the auditory
features with respect to their onsets, pitch, and intensity (loudness)

2. Similarity, which usually depends on the properties of a sound signal,
such as timbre

3. Continuity, which features the smoothly varying spectra of a time-
varying sound source

4. Closure, which completes fragmentary features that have a good
Gestalt; the completion can be understood as an auditory compen-
sation for masking

5. Common fate, which groups together activities (onset, glides, or vi-
brato) that are synchronous.
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Moreover, Bregman (1990) has distinguished at least two levels of audi-
tory organization: primitive streaming and schema-based segregation, with
schemas provided by the collected phonetic, prosodic, syntactic, and seman-
tic information. While being applicable to general sound (speech and music)
scene analysis, Bregman’s work focused mainly on primitive stream segre-
gation. As discussed earlier, auditory scene analysis attempts to solve the
analysis and recognition aspects of the CPP.

4 Computational Auditory Scene Analysis

Computational auditory scene analysis (CASA) relies on the development
of a computational model of the auditory scene with one of two goals in
mind, depending on the application of interest:

1. The design of a machine, which by itself is able to automatically extract
and track a sound signal of interest in a cocktail party environment

2. The design of an adaptive hearing system, which automatically com-
putes the perceptual grouping process missing from the auditory
system of a hearing-impaired individual, thereby enabling that in-
dividual to attend to a sound signal of interest in a cocktail party
environment.

Naturally, CASA is motivated by or builds on the understanding we have
of human auditory scene analysis.

Following Bregman’s seminal work, a number of researchers (Cooke,
1993; Brown, 1992; Ellis, 1996; Cooke & Brown, 1993; Brown & Cooke, 1994;
Cooke & Ellis, 2001) have exploited the CASA.8 In the literature, there are
two representative kinds of CASA systems: data-driven system (Cooke,
1993) and prediction-driven system (Ellis, 1996). The common feature in
these two systems is to integrate low-level (bottom-up, primitive) acoustic
cues for potential grouping. The main differences between them are (Cooke,
2002) that data-driven CASA aims to decompose the auditory scene into
time-frequency elements (so-called strands), and then runs the grouping
procedure, while prediction-driven CASA regards prediction as the pri-
mary goal. It requires only a world model that is consistent with the stim-
ulus; it contains integration of top-down and bottom-up cues and can deal
with incomplete or masked data (i.e., speech signal with missing informa-
tion). However, as emphasized by Bregman (1998), it is important for CASA
modelers to take into account psychological data as well as the way humans
carry out auditory scene analysis (ASA). For instance, to model the stability
of human ASA, the computational system must allow different cues to col-
laborate and compete and must account for the propagation of constraints
across the frequency-by-time field. It is noteworthy that the performances

8 For review, see Rosenthal and Okuno (1998) and Cooke and Ellis, (2001).
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of the CASA approaches are quite dependent on the conditions of noise or
interference (such as the spatial location and overlapping time-frequency
map), which may therefore be a practical limitation for solving a machine
cocktail party problem.

In what follows, we restrict our attention on three major categorized
computational approaches aimed at solving the cocktail party problem:9

(1) blind source separation (BSS) and independent component analysis
(ICA), (2) temporal binding and oscillatory correlation, and (3) cortronic
network. The first approach has gained a great deal of popularity in the
literature, and there is no doubt it will continue to play an important role
in neuroscience and signal-processing research; however, the basic ICA ap-
proach is limited by its assumptions, and it is arguably biologically implau-
sible in the context of CPP. The second approach is biologically inspired
and potentially powerful. The third approach is biologically motivated and
knowledge based, and it is configured to solve a realistic machine CPP in a
real-life environment.

4.1 Independent Component Analysis and Blind Source Separation.
The essence of independent component analysis (ICA) can be stated as
follows: given an instantaneous linear mixture of signals produced by a
set of sources, devise an algorithm that exploits a statistical discriminant to
differentiate these sources so as to provide for the separation of the source
signals in a blind (i.e., unsupervised) manner. From this statement, it is ap-
parent that ICA theory and the task of blind source separation (BSS) are
intrinsically related.

The earliest reference to this signal processing problem is the article by
Jutten and Hérault (1991), which was motivated by Hebb’s postulate of
learning (1949). This was followed by Comon’s article (1994) and that of Bell
and Sejnowski (1995). Comon used some signal processing and information-
theoretic ideas to formulate a mathematical framework for instantaneous
linear mixing of independent source signals, in the course of which the no-
tion of nongaussian ICA was clearly defined. Bell and Sejnowski developed
a simple algorithm (Infomax) for BSS, which is inspired by Hebb’s postulate
of learning and the maximum entropy principle.

It is well known that if we are to achieve the blind separation of an instan-
taneous linear mixture of independent source signals, then there must be a

9 It is noteworthy that our overview is by no means exclusive. In addition to the
three approaches being reviewed here, several other approaches, some of them quite
promising, have been discussed in the literature: Bayesian approaches (e.g., Knuth, 1999;
Mohammad-Djafari, 1999; Rowe, 2002; Attias, 1999; Chan, Lee, & Sejnowski, 2003), time-
frequency analysis approaches (e.g., Belouchrani & Amin, 1998; Rickard, Balan, & Rosca,
2001; Rickard & Yilmaz, 2002; Yilmaz & Rickard, 2004), and neural network approaches
(e.g., Amari & Cichocki, 1998; Grossberg, Govindarajan, Wyse, & Cohen, 2004). Due to
space limitation, we have not included these approaches in this article; the interested
reader is referred to Chen (2003) for a more detailed overview.
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characteristic departure from the simplest possible source model: an inde-
pendently and identically distributed (i.i.d.) gaussian model. The departure
can arise in three different ways, depending on which of the characteristic
assumptions embodied in this simple source model is broken, as summa-
rized here (Cardoso, 2001):

� Nongaussian i.i.d. model. In this route to BSS, the i.i.d. assumption
for the source signals is retained but the gaussian assumption is aban-
doned for all the sources, except possibly for one of them. The In-
fomax algorithm due to Bell and Sejnowski (1995), the natural gra-
dient algorithm due to Amari, Cichocki, and Yang (1996), Cardoso’s
JADE algorithm (Cardoso & Souloumiac, 1993; Cardoso, 1998), and the
FastICA algorithm due to Hyvärinen and Oja (1997) are all based on the
nongaussian i.i.d. model. These algorithms differ from each other in
the way in which source information residing in higher-order statistics
is exploited.

� Gaussian nonstationary model. In this second route to BSS, the gaus-
sian assumption is retained for all the sources, which means that
second-order statistics (i.e., mean and variance) are sufficient for char-
acterizing each source signal. Blind source separation is achieved by
exploiting the property of nonstationarity, provided that the source
signals differ from each other in the ways in which their statistics
vary with time. This approach to BSS was first described by Parra and
Spence (2000) and Pham and Cardoso (2001). Whereas the algorithms
focusing on the nongaussian i.i.d. model operate in the time domain,
the algorithms that belong to the gaussian nonstationary model oper-
ate in the frequency domain, a feature that also makes it possible for
these latter ICA algorithms to work with convolutive mixtures.

� Gaussian, stationary correlated-in-time model. In this third and final
route to BSS, the blind separation of gaussian stationary source signals
is achieved on the proviso that their power spectra are not proportional
to each other. Recognizing that the power spectrum of a wide-sense
stationary random process is related to the autocorrelation function
via the Wiener-Khintchine theorem, spectral differences among the
source signals translate to corresponding differences in correlated-in-
time behavior of the source signals. It is this latter property that is
available for exploitation. ICA algorithms that belong to this third class
include those due to Tong, Soon, Huang, and Liu (1990), Belouchrani,
Abed-Meraim, Cardoso, and Moulines (1997), Amari (2000), and Pham
(2002).

In Cardoso (2001, 2003), Amari’s information geometry is used to explore
a unified framework for the objective functions that pertain to these three
routes to BSS.



The Cocktail Party Problem 1889

It is right and proper to say that in their own individual ways, Comon’s
1994 article and the 1995 article by Bell and Sejnowski, have been the
catalysts for the literature in ICA theory, algorithms, and novel applica-
tions.10 Indeed, the literature is so extensive and diverse that in the course
of ten years, ICA has established itself as an indispensable part of the ever-
expanding discipline of statistical signal processing, and has had a great
impact on neuroscience (Brown, Yamada, & Sejnowski, 2001). However, in-
sofar as auditory phenomena are concerned, ICA algorithms do not exploit
the merit of spatial hearing; this limitation may be alleviated by adding a
spatial filter in the form of an adaptive beamformer (using an array of mi-
crophones) as the front-end processor to an ICA algorithm (e.g., Parra &
Alvino, 2002). Most important, in the context of the cocktail party problem
that is of specific interest to this review, we may pose the following ques-
tion: Given the ability of the ICA algorithm to solve the BSS problem, can it
also solve the cocktail party problem? Our short answer to this fundamental
question is no; the rationale is discussed in section 6.

4.2 Temporal Binding and Oscillatory Correlation. Temporal binding
theory was most elegantly illustrated by von der Malsburg (1981) in his
seminal technical report, Correlation Theory of Brain Function, in which
he suggested that the binding mechanism is accomplished by the correla-
tion correspondence between presynaptic and postsynaptic activities, and
the strengths of synapses follow the Hebbian postulate of learning. When
the synchrony between the presynaptic and postsynaptic neurons is strong
(weak), the strength would correspondingly increase (decrease) temporally.
Such a synapse was referred to as the “Malsburg synapse” by Crick (1984).
The synchronized mechanism allows the neurons to be linked in multiple
active groups simultaneously and form a topological network. Moreover,
von der Malsburg (1981) suggested a dynamic link architecture to solve
the temporal binding problem by letting neural signals fluctuate in time
and by synchronizing those sets of neurons that are to be bound together
into a higher-level symbol/concept. Using the same idea, von der Malsburg
and Schneider (1986) proposed a solution to the cocktail party problem. In
particular, they developed a neural cocktail party processor that uses syn-
chronization and desynchronization to segment the sensory inputs. Corre-
lations are generated by an autonomous pattern formation process via neu-
ron coupling and a new synaptic modulation rule. Though based on simple
experiments (where von der Malsburg and Schneider used amplitude mod-
ulation and stimulus onset synchrony as the main features of the sound, in

10 Several special issues have been devoted to ICA: Journal of Machine Learning Re-
search (Dec. 2003), Neurocomputing (Nov. 1998, Dec. 2002), Signal Processing (Feb. 1999,
Jan. 2004), Proceedings of the IEEE (Oct. 1998), and IEEE Transactions on Neural Networks
(March 2004). For textbook treatments of ICA theory, see Hyvärinen, Karhunen, and Oja
(2001), and Cichocki and Amari (2002).
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Figure 3: Neural correlated oscillator model from Wang and Brown (1999;
adapted with permission).

line with Helmholtz’s suggestion), the underlying idea is illuminating. Just
as important, the model is consistent with anatomical and physiological
observations. Mathematical details of the coupled neural oscillator model
were later explored in von der Malsburg and Buhmann (1992). Note that
correlation theory is also applicable to the feature binding problem in vi-
sual or sensor-motor systems (König & Engel, 1995; Treisman, 1996; von der
Malsburg, 1995, 1999).

The idea of oscillatory correlation, as a possible basis for CASA, was mo-
tivated by the early work of von der Malsburg (von der Malsburg, 1981;
von der Malsburg & Schneider, 1986), and it was extended to different sen-
sory domains whereby phases of neural oscillators are used to encode the
binding of sensory components (Wang, Bhumann, & von der Malsburg,
1990; Wang, 1996). Subsequently, Brown and Wang (1997) and Wang and
Brown (1999) developed a two-layer oscillator network (see Figure 3) that
performs stream segregation based on oscillatory correlation. In the oscil-
latory correlation-based model, a stream is represented by a population of
synchronized relaxation oscillators, each of which corresponds to an au-
ditory feature, and different streams are represented by desynchronized
oscillator populations. Lateral connections between oscillators encode the
harmonicity and proximity in time and frequency. The aim of the model is to
achieve “searchlight attention” by examining the temporal cross-correlation
between the activities of pairs (or populations) of neurons:

C =
∑

x(t)y(t)
√∑

x2(t)
∑

y2(t)
,

where x(t) and y(t) are assumed to be two zero-mean observable time series.
The neural oscillator model depicted in Figure 3 comprises two layers:

a segmentation layer and a grouping layer. The first layer acts as a locally
excitatory, globally inhibitory oscillator, and the second layer essentially
performs auditory scene analysis. Preceding the oscillator network, there is
an auditory periphery model (cochlear and hair cells) as well as a middle-
level auditory representation stage (correlogram). As reported by Wang and
Brown (1999), the model is capable of segregating a mixture of voiced speech
and different interfering sounds, thereby improving the signal-to-noise
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ratio (SNR) of the attended speech signal. The correlated neural oscilla-
tor is arguably biologically plausible (Wang & Brown, 1999). In specific
terms, the neural oscillator acts as a source extraction functional block by
treating the attended signal as a “foreground” stream and putting the re-
maining segments into a “background” stream. However, the performance
of the neural oscillator appears to deteriorate significantly in the presence of
multiple competitive sources. Recently, van der Kouwe, Wang, and Brown
(2001) compared their neural oscillator model with representative BSS tech-
niques for speech segregation in different scenarios; they reported that the
performance of the oscillator model varied from one test to another, de-
pending on the time-frequency characteristics of the sources. Under most
of the noise conditions, the BSS technique more or less outperformed the
oscillator model; however, the BSS techniques worked quite poorly when
applied to sources in motion or gaussian sources due to the violation of
basic ICA assumptions.

4.3 Cortronic Network. The idea of a so-called cortronic network was
motivated by the fact that the human brain employs an efficient sparse
coding scheme to extract the features of sensory inputs and accesses them
through associative memory. Using a cortronic neural network architecture
proposed by Hecht-Nielsen (1998), a biologically motivated connectionist
model has been recently developed to solve the machine CPP (Sagi et al.,
2001). In particular, Sagi et al. view the CPP as an aspect of the human speech
recognition problem in a cocktail party environment, and thereby regard the
solution as an attended source identification problem. Only one microphone
is used to record the auditory scene; however, the listener is assumed to be
familiar with the language of conversation of interest and ignoring other
ongoing conversations. All the subjects were chosen to speak the same lan-
guage and have the same voice qualities. The goal of the cortronic network
is to identify one attended speech of interest.

The learning machine described in Sagi et al. (2001) is essentially an
associative memory neural network model. It consists of three distinct layers
(regions): sound-input representation region, sound processing region, and
word processing region. For its operation, the cortronic network rests on
two assumptions:

� The network has knowledge of the speech signals (e.g., language con-
text) used.

� The methodology used to design the network resides within the frame-
work of associative memory and pattern identification.

In attacking the machine CPP, the cortronic network undertakes three
levels of association (Sagi et al., 2001): (1) sound and subsequent sound,
(2) sequence of sounds and the token (i.e., information unit) that is sparsely
coded, and (3) a certain word and the word that follows it in the language.
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In terms of performance described in Sagi et al., it appears that the cortronic
network is quite robust with respect to the variations of speech, speaker,
and noise, even under a −8 dB SNR. From one microphone, it can extract
one attended speech source in the presence of four additive speech inter-
ferences (R. Hecht-Nielsen, personal communication, Sept. 2003). Different
from the other computational approaches proposed to solve the CPP, the
cortronic network exploits the knowledge context of speech and language;
it is claimed to address a theory of how the brain thinks rather than how
the brain listens.

5 Active Audition

The three approaches to computational auditory scene analysis described
in section 4 share a common feature: the observer merely listens to the
environment but does not interact with it (i.e., the observer is passive).
In this section, we briefly discuss the idea of active audition in which the
observer (human or machine) interacts with the environment. This idea
is motivated by the fact that human perception is not passive but active.
Moreover, there are many analogies between the mechanisms that go on
in auditory perception and their counterparts in visual perception.11 In a
similar vein, we may look to active vision (on which much research has been
done for over a decade) for novel ideas in active audition as the framework
for an intelligent machine to solve the cocktail party problem.

According to Varela, Thompson, and Rosch (1991) and Sporns (2003),
embodied cognitive models rely on cognitive processes that emerge from
interactions between neural, bodily, and environment factors. A distinctive
feature of these models is that they use the world as their own model. For
example, in active vision (also referred to as animated vision), proposed by
Bajcsy (1988) and Ballard (1991), among others, it is argued that vision is
best understood in the context of visual behaviors. The key point here is that
the task of vision is not to build the model of a surrounding real world as
originally postulated in Marr’s theory, but rather to use visual information
in the service of the real world in real time, and do so efficiently and in-
expensively (Clark & Eliasmith, 2003). In effect, the active vision paradigm
gives “action” a starring role (Sporns, 2003).

With this brief background on active vision, we may now propose a
framework for active audition, which may embody four specific functions:

1. Localization, the purpose of which is to infer the directions of incom-
ing sound signals. This function may be implemented by using an

11 The analogy between auditory and visual perceptions is further substantiated in
Shamma (2001), where it is argued that they share certain processing principles: lateral
inhibition for edge and peak enhancement, multiscale analysis, and detection mechanisms
for temporal coincidence and spatial coincidence.
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adaptive array of microphones, whose design is based on direction
of arrival (DOA) estimation algorithms developed in the signal-
processing literature (e.g., Van Veen & Buckley, 1997; Doclo & Moonen,
2002).

2. Segregation and focal attention, where the attended sound stream of
interest (i.e., target sound) is segregated and the sources of interference
are ignored, thereby focusing attention on the target sound source.
This function may be implemented by using several acoustic cues
(e.g., ITD, IID, onset, and pitch) and then combining them in a fusion
algorithm.12

3. Tracking, the theoretical development of which builds on a state-space
model of the auditory environment. This model consists of a process
equation that describes the evolution of the state with time and a
measurement equation that describes the dependence of the observ-
ables on the state. More specifically, the state is a vector defined by
the acoustic cues (features) characterizing the target sound stream
and its direction.13 By virtue of its very design, the tracker provides
a one-step prediction of the underlying features of the target sound.
We may therefore view tracking as a mechanism for dynamic feature
binding.

4. Learning, the necessity of which in active audition is the key function
that differentiates an intelligent machine from a human brain. Au-
dition is a sophisticated, dynamic information processing task per-
formed in the brain, which inevitably invokes other tasks simultane-
ously (such as vision and action). It is this unique feature that enables
the human to survive in a dynamic environment. For the same rea-
son, it is our belief that an intelligent machine that aims at solving a
cocktail party problem must embody a learning capability to adapt
itself to an ever-changing dynamic environment. The learning ability
must also be of a kind that empowers the machine to take “action”
whenever changes in the environment call for it.

Viewed together, these four functions provide the basis for building an em-
bodied cognitive machine that is capable of human-like hearing in an active
fashion. The central tenet of active audition embodying such a machine is
that an observer may be able to understand an auditory environment more

12 This approach to segregation and focal attention is currently being pursued by the
first author, working with his research colleague Rong Dong at McMaster University.

13 In the context of tracking, Nix, Kleinschmidt, and Hohmann (2003) used a particle
filter as a statistical method for integrating temporal and frequency-specific features of a
target speech signal.
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effectively and efficiently if the observer interacts with the environment
rather than is a passive observer.14

6 Discussion

We conclude the article by doing two things. First, we present a philosoph-
ical discussion that in the context of the cocktail party phenomenon, ICA
algorithm addresses an entirely different signal processing problem. Sec-
ond, in an attempt to explain how the brain solves the CPP, we postulate
a biologically motivated correlated firing framework for single-stream ex-
traction based on our own recent work.

6.1 Brain Theory and ICA. In the course of over ten years, the idea of
ICA has blossomed into a new field that has enriched the discipline of signal
processing and neural computation. However, when the issue of interest is
a viable solution to the cocktail party problem, the ICA/BSS framework has
certain weaknesses:

� Most ICA/BSS algorithms require that the number of sources not be
fewer than the number of independent signal sources.15 In contrast,
the human auditory system requires merely two outer ears to solve
the cocktail party problem, and it can do so with relative ease.

� The matter of independent signal sources is assumed to remain con-
stant in the ICA/BSS framework. This is an unrealistic assumption
in a neurobiological context. For instance, it is possible for an audi-
tory environment to experience a varying number of speakers (i.e.,
sound sources) or a pulse-like form of noise (e.g., someone laughing or
coughing), yet the human capability to solve the cocktail party prob-
lem remains essentially unaffected by the variations in the auditory
scene.

� Last but by no means least, the ICA/BSS framework usually requires
the separation of all source signals. With both outer ears of the human
auditory systems focused on a signal speaker of interest in a complex
auditory scene, the cocktail party problem is solved by extracting that
speaker’s speech signal and practically suppressing all other forms of
noise or interference.

14 In this concluding statement on active audition, we have paraphrased the essence
of active vision (Blake & Yuille, 1992), or more generally, that of active perception (Bajcsy,
1988).

15 In the literature, there are also some one-microphone BSS approaches that attempt
to exploit either the acoustic features and masking technique (Roweis, 2000), the splitting
of time-domain disjoint/orthogonal subspaces (Hopgood & Rayner, 1999), or the prior
knowledge of the source statistics (Jang & Lee, 2003).
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Simply put, viewed in the context of the cocktail party problem, ICA/BSS
algorithms seem not to be biologically plausible. Rather, we say that for a
computational auditory scene analysis framework to be neurobiologically
feasible, it would have to accommodate the following ingredients:

� Ability to operate in a nonstationary convolutive environment, where
the speech signal of interest is corrupted by an unknown number of
competing speech signals or sources of noise.

� Ability to switch the focus of attention from one speech signal of in-
terest to another and do so with relative ease.

� Working with a pair of sensors so as to exploit the benefit of binaural
hearing. However, according to Sagi et al. (2001), it is claimed that a sin-
gle sensor (reliance on monaural hearing) is sufficient to solve the cock-
tail party problem. There is no contradiction here between these two
statements, as demonstrated by Cherry and coworkers over 50 years
ago: simply put, binaural hearing is more effective than monaural hear-
ing by working with a significantly smaller SNR.

� Parallelism, which makes it possible for the incoming signal to be
worked on by a number of different paths, followed by a fusion of
their individual outputs.

6.2 Correlative Neural Firing for Blind Single-Source Extraction. Cor-
relation theory has played an influential role on memory recall, coincidence
detection, novelty detection, perception, and learning, which cover most of
the intelligent tasks of a human brain (Cook, 1991). Eggermont (1990), in his
insightful book, has presented a comprehensive investigation of correlative
activities in the brain; in that book, Eggermont argued that correlation, in one
form or another, is performed in 90 percent of the human brain. Eggermont
(1993) also investigated the neural correlation mechanisms (such as coinci-
dence detection and tuned-delay mechanisms) in the auditory system and
showed that synchrony is crucial in sound localization, pitch extraction
of music, and speech coding (such as intensity-invariant representation of
sounds, suppressing less salient features of speech sound, and enhancing
the representation of speech formant).

Recently, we (Chen, 2005; Chen & Haykin, 2004) proposed a stochastic-
correlative firing mechanism and an associated learning rule for solving a
simplified form of CPP. The idea of correlative firing mechanism is simi-
lar to that of synchrony and correlation theory (von der Malsburg, 1981;
Eggermont, 1990) and, interestingly enough, it is motivated by some early
work on vision (Harth, Unnikrishnan, & Pandya, 1987; Mumford, 1995). In
our proposed correlative firing framework, the auditory cortex implements
a certain number of parallel circuits, each responsible for extracting the at-
tended sound source of interest. By analogy with figure-ground segregation,
the circuit extracts the “figure” from a complex auditory scene. To model
the selective attention in the thalamus, a gating network is proposed for
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deciding or switching the attention of the segregated sources, as depicted
in the schematic diagram of Figure 2. Specifically, the proposed stochastic
correlative learning rule (Chen, 2005; Chen & Haykin, 2004) can be viewed
as a variant of the ALOPEX (ALgorithm Of Pattern EXtraction), an opti-
mization procedure that was originally developed in vision research (Harth
& Tzanakou, 1974; Tzanakou, Michalak, & Harth, 1979). The stochastic cor-
relative learning rule is temporally asymmetric and Hebbian-like. The most
attractive aspect of this learning rule lies in the fact that it is both gradient
free and model independent, which make it potentially applicable to any
neural architecture that has hierarchical or feedback structures (Haykin,
Chen, & Becker, 2004); it also allows us to develop biologically plausible
synaptic rules based on the firing rate of the spiking neurons (Harth et al.,
1987). Another appealing attribute of this learning rule is its parallelism in
that synaptic plasticity allows a form of synchronous firing, which lends
itself to ease of hardware implementation. The proposed correlative firing
framework for the CPP assumes a time-invariant instantaneous linear mix-
ing of the sources as in the ICA theory. However, unlike ICA, our method
is aimed at extracting the “figure” (i.e., one single stream), given two sen-
sors (corresponding to two ears), from the “background” (auditory scene)
containing more than two nongaussian sound sources; additionally, our
interpretation of mixing coefficients in the mixing matrix as neurons’ fir-
ing rates (instead of acoustic mixing effect) is motivated from the notion
of the firing-rate stimulus correlation function in neuroscience (Dayan &
Abbott, 2001), and the learning rule aimed at extracting a single source that
bears the highest synchrony in terms of neurons’ firing rate. In simulated
experiments reported in Chen and Haykin, (2004), we have demonstrated
a remarkable result: the algorithm is capable of extracting one single source
stream given only two sensors and more than four sources (including one
gaussian source). This is indeed an intractable task for ICA algorithms. Our
results emphasize that the main goal of the solution to the CPP is not to
separate out the competing sources but rather to extract the source signal of
interest (or “figure”) in a complex auditory scene that includes competing
speech signals and noise.

To conclude, our proposed stochastic correlative neural firing mecha-
nism, embodying its own learning rule, is indeed aimed at blind signal
source extraction. Most important, it provides a primitive yet arguably con-
vincing basis for how the human auditory system solves the cocktail party
problem; that is, it addresses question 2 of the introductory section. How-
ever, in its present form, the learning rule is not equipped to deal with
question 3 pertaining to computational auditory scene analysis.
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