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cesses.

2000 Mathematics Subject Classification. 60G35, 41A25, 94A15.

1 Introduction and results

1.1 Motivation

The objective of the article is

(I) to provide efficient coding strategies together with error bounds for general Lévy processes
and

(II) to complement the error bounds by appropriate lower bounds that show weak optimality
of our scheme for most cases.
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Let us be more precise. We study the coding problem for real-valued Lévy processes X (the
original or source signal) under Lp[0, 1]-norm distortion for some fixed p ∈ [1,∞). Here, we
think of X being a D[0,∞)-valued process, where D[0,∞) denotes the space of càdlàg functions
endowed with the Skorohod topology. We shall denote by ‖ · ‖ the standard Lp[0, 1]-norm.

Let 0 < s ≤ ∞. The objective is to find a càdlàg, real-valued process X̂ (reconstruction or
approximation) that minimizes the error criterion

∥∥‖X − X̂‖∥∥
Ls(P) =

{
E[‖X − X̂‖s]1/s if s <∞
ess sup ‖X − X̂‖ if s = ∞,

(1)

under a given complexity constraint on the approximating random variable X̂. We work with
the following three classical complexity constraints (see for instance Kolmogorov [14]): for r > 0,

• log | range (X̂)| ≤ r (quantization constraint)

• H(X̂) ≤ r, where H denotes the entropy of X̂ (entropy constraint)

• I(X; X̂) ≤ r, where I denotes the Shannon mutual information of X and X̂ (mutual
information constraint).

We work with the following standard notation for entropy and mutual information:

H(X̂) =

{
−∑

x px log px if X̂ is discrete with probability weights (px)
∞ otherwise

and

I(X; X̂) =

{∫ dPX,X̂

dPX⊗PX̂
dPX,X̂ if PX,X̂ ¿ PX ⊗ PX̂

∞ otherwise.

Here, PZ denotes the distribution function of a random variable Z.
When considering the quantization constraint, we get the following minimal value

D(q)(r, s) := inf
{∥∥‖X − X̂‖∥∥

Ls(P) : log | range (X̂)| ≤ r
}
,

which we call the (minimal) quantization error for the rate r ≥ 0 and the moment s. Analo-
gously, we denote by D(e)(r, s) and D(r, s) the minimal values under the entropy- and mutual
information constraint, respectively. The quantities D(e) and D are called entropy coding error
and distortion rate function, respectively. In general, I(X; X̂) 6 H(X̂) 6 log | range (X̂)| so
that we have D 6 D(e) 6 D(q), cf. e.g. [4], Section 2.4. In the following, D, D(e), and D(q) are
called coding quantities. Strictly speaking, the quantities D(e) and D depend on the probability
space. However, our results are valid independently of the choice of the probability space.

The quantization constraint naturally appears, when coding the signal X under a strict
bit-length constraint for its binary representation. On the other hand, the entropy constraint
corresponds to an average bit-length constraint and optimal codes are obtained via Huffman
coding. Allowing simultaneous coding of several independent copies of the source signal and
measuring the error by the sum of the individual errors results in a further increase in the
efficieny. Due to Shannon’s source coding theorem, the distortion-rate function D measures the
corresponding best-achievable error. A more recent motivation for studying quantization is its
applicability in numerical integration, see e.g. [18], [9].
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In general, one is interested in the asymptotic behavior of the above quantities (which may
serve as benchmarks) and in algorithms that are close to optimal. If the source signal lies in
an infinite dimensional Banach space, we speak of the functional coding problem. Functional
coding, and in particular functional quantization, is intensively studied since the beginning of
this century. For Gaussian measures in Hilbert spaces the problem is well understood, see [15],
[6]. In Banach spaces, the problem is closely related to the theory of small deviations and it is
possible to deduce the weak asymptotics in many cases, see [10]. For fractional Brownian motion
and for one-dimensional diffusion processes, the asymptotic behavior of the coding quantities
is established in [11], [7], and [8]; see also [16] for further, constructive results. In general,
good approximation schemes can often be implemented by using series expansions for the signal
together with appropriately adjusted quantizers for the coefficients, see [5], [17].

Next, we shall introduce the main notation. Then in Section 1.3 it follows the statement of
the main asymptotic results. Section 1.4 introduces the central coding scheme used to achieve
task (I), and Section 1.5 proceeds with a list of applications to important examples of Lévy
processes.

Section 2 is devoted to the proof of the upper bounds needed for task (I), and finally the proof
of the corresponding lower bounds – showing optimality in most cases, i.e. (II) – is provided in
Section 3.

1.2 Main notation

In the article, X = (Xt)t∈[0,∞) denotes a Lévy process in the Skorohod space D[0,∞), that
is a process starting in 0 with independent and stationary increments, cf. [2, 20]. Due to the
Lévy-Khintchine formula, the characteristic function of each marginal Xt (t ∈ [0, 1]) admits a
representation

EeiuXt = etψ(u), (2)

where

ψ(u) = −σ
2

2
u2 + ibu+

∫

R
(eiux − 1− 1l{|x|≤1}iux) ν(dx)

for parameters σ2 ∈ [0,∞), b ∈ R, and a positive measure ν on R that has no point mass at
zero and satisfies ∫

R
1 ∧ x2 ν(dx) <∞, (3)

where we use x∧y := min(x, y) for x, y > 0. On the other hand, for a given triplet (ν, σ2, b) there
exists a Lévy process X such that (2) is valid, moreover the distribution of a Lévy process X is
uniquely characterized by the latter triplet. We call the corresponding process an (ν, σ2, b)-Lévy
process.

If (2) is true for

ψ(u) = −σ
2

2
u2 +

∫

R
(eiux − 1− iux) ν(dx),

then we call X an (ν, σ2)-Lévy martingale. Note that such a representation implies that
∫ |x| ∧

x2 ν(dx) is finite and that the Lévy process X is a martingale in the usual sense.
Throughout, we use the following notation for strong and weak asymptotics. For two

functions f and g, f(x) ∼ g(x), as x → 0, means that f(x)/g(x) → 1, as x → 0. On
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the other hand, we use the notation f(x) . g(x), as x → 0, if limx→0 f(x)/g(x) 6 1. We
also write g(x) & f(x) in this case. Furthermore, we write f(x) ≈ g(x), as x → 0, if
0 < lim infx→0 f(x)/g(x) 6 lim supx→0 f(x)/g(x) <∞.

1.3 Results

The crucial terms determining the behavior of the coding quantities of Lévy processes are

F1(ε) := ε−2

(
σ2 +

∫

R
x2 ∧ ε2 ν(dx)

)
and F2(ε) :=

∫

[−ε,ε]c
log (|x|/ε) ν(dx).

Furthermore, we set F (ε) = F1(ε)+F2(ε). Note that F (ε) is obtained by integrating the function
visualised in Figure 1 with respect to the Lévy measure. Furthermore, observe that (3) does not
ensure the finiteness of F2 and that F2 is either finite or infinite for all ε > 0.

Let us start with our main result for the entropy coding error.

Theorem 1.1. There exist constants c1 = c1(p) > 0 and c2 > 0 such that, for arbitrary Lévy
processes with finite F2, any s > 0, and all ε ∈ (0, 1],

D(e)( c1F (ε) + c1, s) 6 c2 ε.

Similarly to the entropy coding error, we obtain the upper bound for the quantization error.

Theorem 1.2. Assume that there is a q > s such that

(a) E ‖X‖q <∞ and

(b) for some µ > 0,

lim sup
ε→0

∫
|x|>ε(|x|/ε)µ ν(dx)

ν([−ε, ε]c) <∞. (4)

Then there exist a constant c1 = c1(p, ν) > 0 and a universal constant c2 > 0 such that, for all
0 < ε < ε0 = ε0(ν, s, p),

D(q)( c1F (ε), s) 6 c2 ε.

In the proofs of the upper bounds we only need to consider the case where F2 is finite.
Indeed, assumption (a) in Theorem 1.2 implies the finiteness of F2.

Remark 1.3. Let us comment on the conditions in Theorem 1.2: Condition (a) is natural,
though one could soften it by the use of Orlicz norms. Moreover, condition (b) is needed to
guarantee that typical realizations of the Lévy process dominate the quantization complexity of
the process. Essentially, (b) does not hold if the Lévy measure is finite or if ν([−ε, ε]c) does not
grow to infinity fast enough, when ε tends to zero. We note here that some condition of this
kind is necessary (though probably (b) can be softened), since for finite Lévy measure the rate is
different to the one that could be expected from Theorem 1.2, cf. remarks in Example 1.11 and
[1]. With given Lévy measure, it is usually easy to verify conditions (a) and (b), cf. Remarks 2.2
and 2.3 below.
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1 + log(x/ε)

(x/ε)2

dν(x)

Figure 1: Visualization of the function F

Remark 1.4. Alternatively, the complexity of a signal can also be measured in terms of the
best finite-dimensional approximation (Kolmogorov widths). This approach was investigated for
symmetric α-stable Lévy processes in [5] and used for generating quantization schemes. These
schemes are optimal if and only if p < α.

A similar approach for the quantization of Lévy processes is taken in [17]. There, linear
quantizers are constructed from a series representation. Then the path regularity of the process
allows to derive error bounds for the approximation. The results generalize those from [5] to
further stable-like Lévy processes and for p smaller than the so-called Blumenthal-Getoor index.

In this article, we work with non-linear quantizers, which lead to weakly optimal results in
most cases. We compare the results to those from [5] and [17] when looking at the examples in
Section 1.5. Our lower bounds also show the optimality of the results from [5] and [17] for small
p.

The corresponding lower bound reads as follows.

Theorem 1.5 (Lower bound). There exist universal constants c1, c2, c3 > 0 such that the fol-
lowing holds. For every Lévy process X with finite F2, any ε > 0 with F1(ε) > c3 one has

D(c1F (ε), 1) > c2 ε.

Moreover, if ν(R) = ∞ or σ 6= 0, one has for any s > 0,

D(c1F1(ε), s) & c2 ε

as ε ↓ 0. In the case where F2 ≡ ∞, one has D(r, 1) = ∞ for any r ≥ 0.

Remark 1.6. So far one cannot replace F1 by F in the second statement of Theorem 1.5. Since
mostly F1 and F are weakly equivalent when ε tends to zero, the second estimate typically leads
to sharp results. Nevertheless, it would be interesting to find out, whether one can close this
remaining gap.

Remark 1.7. Heuristically, one can explain the appearance of F1 and F2 in the theorems as
follows. For jumps that are significantly larger than ε one needs to provide sufficiently accurate
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information about location and height of the jump in order to recover the process up to an error
of order ε. This induces the cost term F1(ε). On the other hand, the small jumps are compared
with their mean behavior, and significant deviations appear in intervals of length 1/F2(ε). This
results in the cost term F2(ε).

Note that we have not specified the basis of the logarithm. However, all results stated above
are valid for any basis. The choice of the basis has only an influence on the constants in the
theorems. We work with the basis 2 when proving the upper bounds, since this seems more
appropriate in the context of binary representations. When proving the lower bounds we switch
to the natural logarithm.

1.4 An explicit coding strategy

We now introduce the central coding scheme. In the first step, we define the approximation X̂
to X, and in the second step we describe how to get an appropriate binary representation for X̂.
The coding scheme depends on a parameter ε ∈ (0, 1] that is fixed in the following discussion
and that indicates the accuracy we are aiming at.

Approximating terms

First denote by (X ′
t)t > 0 the process given by X ′

t = Xt − bεt, where

bε := b−
∫

[−1,1]\[−ε,ε]
x ν(dx).

We use projections on the εZ grid to approximate X ′. For this purpose, let us define g to be
the (right-continuous) nearest neighbor projection of R onto εZ, and define inductively stopping
times (Si)i∈N0 as follows: set S0 = 0 and, for i ∈ N, let us define the exit times Si by

Si := inf
{
t > Si−1 : |X ′

t − g(X ′
Si−1+)| > 2ε

}
.

Moreover, let M := max{i : Si < 1}.
As an intermediate approximation toX ′, we use X̃ ′ defined by X̃ ′

t = g(X ′
Si+

) for t ∈ [Si, Si+1)
and i ∈ N0. Here we infer a loss: ‖X ′ − X̃ ′‖ 6 2ε. Our coding scheme is based on encoding the
jump times (Si) and the jump heights (Hi) := (∆X̃ ′

Si
), where we denote as usual for any time

t > 0 the jump of a process X at time t by ∆Xt = Xt−Xt−. Whereas all jump heights occuring
in [0, 1) can be encoded exactly, we need to work with approximations (Ŝi) for the relevant jump
times (Si). Here we demand that

Si 6 Ŝi < Si+1 and Ŝi − Si 6 εp/(|Hi|pM). (5)

Based on (Ŝi) and (Hi) we approximate X ′ and X by

X̂ ′
t =

M∑

i=1

Hi1l[Ŝi,∞)(t) and X̂t = X̂ ′
t + bεt,

respectively. Once we have established appropriate coding schemes for (Si) and (Hi) ensuring
(5), we thus can recover the original X by X̂ with an error smaller or equal to 3ε. Indeed,

‖X − X̂‖ = ‖X ′ − X̂ ′‖ 6 ‖X ′ − X̃ ′‖+ ‖X̃ ′ − X̂ ′‖ 6 2ε+
[ M∑

i=1

|Hi|p(Ŝi − Si)
]1/p

6 3ε. (6)
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Ŝj+1 Ŝj+2

ε

2ε

Sj+1
Sj+2

Figure 2: The coding procedure

Coding procedure

We use binary prefix-free representations Υ1 and Υ2 for Z and D := [0, 1) ∩ ⋃
n∈N 2−nZ, re-

spectively. For our purposes, it is sufficient that these prefix-free representations satisfy for all
m ∈ Z

lengthΥ1(m) 6 const (1 + log+ |m|)
and for all n ∈ N and x ∈ [0, 1] ∩ 2−nZ

lengthΥ2(x) 6 const n.

Though this might be well known, we provide an explicit construction in Lemmas 2.5 and 2.6,
respectively.

Each jump height Hi is translated into the code

πHi := Υ1(Hi/ε).

The coding of (Si) is more intricate: we divide the interval [0, 1) into boxes (i.e. intervals)
Ij = [jF1(ε)−1, (j + 1)F1(ε)−1 ∧ 1) (j = 0, . . . , dF1(ε)e − 1). Then a jump time Si in box Ij
corresponds to a value

Si − jF1(ε)−1

F1(ε)−1
∈ [0, 1).

Note that D contains only numbers with finite binary representation. We approximate Si by Ŝi
such that (5) is valid and such that

Ŝi − jF1(ε)−1

F1(ε)−1
∈ D (7)

has shortest binary representation. This leads to the code

πSi := Υ2

( Ŝi − jF1(ε)−1

F1(ε)−1

)
.
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Note that given the box of Si and πSi , one can recover Ŝi perfectly. Now we encode the pair
(Hi, Ŝi) by

πi := ‘0’ ∗ πHi ∗ πSi ,
and we encode each block Ij by

Πj :=
∏

i∈N
Si∈Ij

πi.

Here, ∗ and
∏

denote the concatenation of binary strings of finite lengths. If the index set is
empty in the definition of Πj , then Πj is asssumed to be the empty word. Finally, we describe
the approximation X̂ by

Π :=
dF1(ε)e−1∏

j=0

(
Πj ∗ ‘1’

)
.

Let us now show how to recover the relevant (Hi) and (Ŝi) from a binary string Π̃ with prefix
Π. First we set Π̃ = Π and j = 0. Then, as long as j < d1/F1(ε)e, we remove the first digit of
Π̃ and carry out one of the following operations depending on its value:

‘0’: recover the height value of a jump by applying a decoder of Υ1, remove the corresponding
digits from Π̃, and then recover the corresponding time approximation by applying a
decoder of Υ2 and by considering that the time lies in the box Ij , again remove the
corresponding digits from Π̃;

‘1’: increase j by 1.

1.5 Examples

In this subsection, we apply the above results to some common Lévy processes.

Example 1.8 (Stable Lévy process). Let us consider the case of an α-stable Lévy process with
0 < α < 2. Here we have ν(dx) = (C1 1l{x<0} + C2 1l{x>0})|x|−α−1 dx, and one can easily verify
that F1(ε) = C̃1ε

−α and F2(ε) = C̃2ε
−α. All assumptions of the main theorems are satisfied and

we conclude that for all moments s1 > 0, s2 ∈ (0, α) and all p > 1,

D(r, s1) ≈ D(e)(r, s1) ≈ D(q)(r, s2) ≈ r−1/α.

This improves the findings from [5] and [17], where the result for the quantization error was
obtained for p < α. We remark that the lower bound actually already follows from [10].

Note that the coding complexity of an α-stable Lévy process (0 < α < 2) is smaller than the
one of a 2-stable Lévy process, i.e. Brownian motion. In fact, this is true for all Lévy process.

Example 1.9 (Lévy process with non-vanishing Gaussian component). It is easy to calculate
that Fi(ε) 6 cε−2 for i = 1, 2. Therefore, if σ 6= 0 then F (ε) ≈ F1(ε) ≈ ε−2.

This has two implications. Firstly, in presence of a Gaussian component, the coding com-
plexity of the Lévy process is the same as for Brownian motion, as long as our results apply. In
case σ = 0, the coding complexity is weakly bounded from above by that of Brownian motion.

More precisely,
D(e)(r, s) 6 Cr−1/2, for any Lévy process,
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and
D(e)(r, s) ≈ r−1/2, if σ 6= 0.

On the other hand, under the assumptions (a) and (b),

D(q)(r, s) 6 Cr−1/2, for any Lévy process,

and,
D(q)(r, s) ≈ r−1/2, if σ 6= 0.

In fact, by a modification of (12) one can show that (b) is not necessary if σ 6= 0.

Example 1.10 (Gamma process). Let us consider a standard Gamma process. In this case,
ν(dx) = 1l{x>0}x−1e−xdx and one gets F1(ε) ≈ log 1/ε and F2(ε) ≈ (log 1/ε)2. Consequently,
for fixed p, s ∈ [1,∞), there exist constants c1, c2, c′1, c

′
2 ∈ R+ such that for all ε > 0

D(e)(c1(log 1/ε)2, s) 6 c2ε

and
D(c′1(log 1/ε)2, s) > c′2ε.

Therefore,

D(r, s) = exp
(−eO(1)√r) and D(e)(r, s) = exp

(−eO(1)√r). (8)

Note that Theorem 1.2 does not apply since condition (4) fails to hold. For the quantization
error much less is known: Note that the lower bound provided by D(e) 6 D(q) in (8) and the
upper bounds in [17], where it is shown that

D(q)(r, s) 6 r−1/p+o(1), for all p > 0 and 0 < s 6 p,

strongly differ.

Example 1.11 (Compound Poisson process). Let (N(t))t > 0 be a standard Poisson process. Let
furthermore Y, Y1, Y2, . . . be i.i.d. random variables that are not a.s. equal to 0 and independent
of the Poisson process. Then

X(t) :=
N(t)∑

i=1

Yi

is a compound Poisson process, i.e. a Lévy process with Lévy measure ν = PY and drift b =
E[Y 1l{|Y | 6 1}].

It is immediately clear that F1(ε) 6 1 and F2(ε) ≈ E
[
log

( |Y |
ε

)
1l{|Y | > ε}

]
. Except for the

trivial case ν = 0 this behaves as log(1/ε) so that F2 dominates F , when ε is small. Thus the
main complexity is induced by the “large jumps”. For fixed p, s ∈ [1,∞), the main theorems
imply the existence of constants c1, c2, c′1, c

′
2 ∈ R+ such that

D(e)

(
c1E

[
log

( |Y |
ε

)
1l{|Y | > ε}

]
, s

)
6 c2ε

and

D

(
c′1E

[
log

( |Y |
ε

)
1l{|Y | > ε}

]
, s

)
> c′2ε
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Hence,
D(r, s) = exp

(−eO(1) r
)

and D(e)(r, s) = exp
(−eO(1) r

)
.

Note that in the case of a compound Poisson processes we cannot use Theorem 1.2 on the
quantization error, since condition (b) is not satisfied.

The quantization error for these cases was investigated in [17], [21], and [1]. In particular, it
can be shown that the rates of quantization and entropy coding error differ, which is a behavior
that we cannot analyze with the methods in this article.

2 Upper bounds

2.1 Preliminary considerations concerning the coding scheme

We already obeserved in (6) that for given ε ∈ (0, 1], the approximation X̂ defined in Section
1.4 satisfies ‖X − X̂‖ 6 3ε.

In this section we provide upper bounds for the number of bits needed to encode X̂ by our
coding scheme.

Proposition 2.1. There exist independent uniformly distributed random variables (Ui) (on a
sufficiently large probability space) such that for some constant K = K(p) depending on p only,

lengthΠ 6 K

N∑

i=1

(
1 + log

1
Ui

)
+K

∑

t∈[0,1)

log+

|∆Xt|
ε

+ F1(ε) + 1, (9)

where N := min{n ∈ N0 :
∑n

i=1 Ui > F1(ε)}.
We remark that the (Ui) occuring in the proposition are coupled with the exit times (Si).
Proof. In a first step we analyze the waiting time between two consecutive jump times

of (Si). For this purpose, let X(1) be the process consisting of the (finitely many) jumps of
X ′ that are greater than ε and set X(2) := X ′ − X(1). Note that X(2) is a (ν|[−ε,ε] , σ2)-Lévy
martingale. Denote by Γ1 the stopping time induced by the first jump of X(1). Note that
|X ′

Si
− g(X ′

Si+
)| 6 ε/2 so that due to the strong Markov property one has for all t > 0,

P (Si+1 − Si 6 t | FSi) 6 P
(

sup
0<s 6 t

|X(2)
s | > 3

2
ε

)
+ P (Γ1 6 t)

6 (3ε/2)−2E
[

sup
0<s 6 t

|X(2)
s |2

]
+ ν([−ε, ε]c)t

6 ε−2E
[
|X(2)

t |2
]

+ ν([−ε, ε]c)t,

where the last step is justified by Doob’s martingale inequality. By the compensation formula
([2], p. 7) the last term equals F1(ε)t.

Let (Ui)i > 1 be independent random variables that are uniformly distributed on [0, 1]. Then
we have shown that for all jumps

P (Si+1 − Si 6 t | FSi) 6 min(tF1(ε), 1) = P (Ui 6 F1(ε)t) ,
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for all t > 0 and i ∈ N. Consequently, we can couple the random times (Si+1 − Si)i > 1 with the
sequence (Ui)i > 1 such that

F1(ε)(Si+1 − Si) > Ui. (10)

In particular, we have N > M , for N as defined in the proposition.
Let us count the number of bits needed in the approximation:

• Each change in a block is indicated by a ‘1’ which gives in total dF1(ε)e bits.

• Each pair (Hi, Ŝi) is initialized by a ‘0’ which gives in total M bits.

• Coding the numbers H1/ε, . . . ,HM/ε by using an appropriate representation Υ1 needs less
than

M∑

i=1

2
(
2 + log

|Hi|
ε

)

bits by Lemma 2.5.

• Coding the numbers Ŝ1, . . . , ŜM needs less than

M∑

i=1

2
[
2 + log+

F1(ε)−1

εp/(M |Hi|p) ∧ (Si+1 − Si)

]

bits by Lemma 2.7.

Therefore, the total bit-length is bounded from above by

2
M∑

i=1

[
log

|Hi|
ε

+ log+

F1(ε)−1

εp/(M |Hi|p) ∧ (Si+1 − Si)

]
+ 9M + dF1(ε)e.

This equals (using x ∨ y := max(x, y) for x, y > 0)

2
M∑

i=1

[
log

|Hi|
ε

+ log+

(
M |Hi|p
F1(ε)εp

∨ 1
F1(ε)(Si+1 − Si)

)]
+ 9M + dF1(ε)e.

By (10) and the inequality log+(x ∨ y) 6 log+ x+ log+ y, the latter is less than

2
M∑

i=1

[
(1 + p) log+

|Hi|
ε

+ log+

1
Ui

]
+ 2M log+

M

F1(ε)
+ 9M + dF1(ε)e. (11)

Next, recall from (10) that F1(ε)(Si − Si−1) > Ui so that

F1(ε) >
M∑

i=1

F1(ε)(Si − Si−1) >
M∑

i=1

Ui.

Using the convexity of log+(1/·) one gets with Jensen’s Inequality

M∑

i=1

log
1
Ui

= M
M∑

i=1

1
M

log
1
Ui

> M log+

1∑M
i=1

Ui
M

> M log+

M

F1(ε)
.
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Thus we conclude with (11) that

lengthΠ 6 2
M∑

i=1

[
(1 + p) log+

|Hi|
ε

+ 2 log
1
Ui

]
+ 9M + dF1(ε)e.

Note that we can estimate |Hi| 6 |∆XSi |+ 5
2ε, so that basic analysis gives

log+

|Hi|
ε

6 5 + log+

|∆XSi |
ε

.

Consequently, the bit-length is bounded as follows:

lengthΠ 6 4
M∑

i=1

log
1
Ui

+ 2(1 + p)
∑

t∈[0,1)

log+

|∆Xt|
ε

+ (19 + 10p)M + dF1(ε)e,

which implies the assertion. ¤

2.2 Proof of Theorem 1.1

Proof. By (6) the error is less than 3ε a.s. (and thus is the mean error, for all moments s > 0).
We use the coupling introduced in Proposition 2.1 and estimate

E


 ∑

t∈[0,1)

log+

|∆Xt|
ε


 = F2(ε),

by the compensation formula ([19], p. 29). Furthermore, by Lemma 2.4, we have for some
universal constant c,

E

[
N∑

i=1

(1 + logU−1
i )

]
6 c(F1(ε) + 1).

Therefore, as asserted,

H(X̂) 6 E
[
lengthΠ

]
6 K E

[ N∑

i=1

(
1 + log

1
Ui

)
+

∑

t∈[0,1)

log+

|∆Xt|
ε

]
+ F1(ε) + 1 6 c1F (ε) + c1.

¤

2.3 Proof of Theorem 1.2

Proof. We use the coding scheme introduced in Section 1.4. We shall use Π as representation,
whenever length Π 6 c1 F (ε), where c1 is an appropriate constant chosen below. This is what
we define to be the event T , which we also call the ‘typical case’. Otherwise, we encode X by
the zero function. Then trivially log | range (X̂)| 6 c1 F (ε).
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Note that, by the exponential compensation formula ([2], p. 8),

P


 ∑

t∈[0,1)

log+

|∆Xt|
ε

> C2F (ε)


 6 exp (−C2µF (ε))E


exp


µ

∑

t∈[0,1)

log+

|∆Xt|
ε







6 exp

(
−C2µF (ε)−

∫

|x| > ε
1− (|x|/ε)µ ν(dx)

)
6 exp (−C2µF (ε) + C3F (ε)) 6 e−

C2
2
µF (ε),

(12)

where C3 is some constant depending on the finite constant in (4) only. The last step holds for
C2 large enough. On the other hand, by the Chebyshev Inequality,

P



bC1F (ε)c∑

i=1

(1 + logU−1
i ) > C2F (ε)


 6 e−

C2
2
F (ε),

for C2 large enough. Finally, one proves, e.g. using the same discretization as in (14), that for
C1 large enough,

P (N > C1F (ε)) 6 e−
C1
2
F (ε).

For c1 chosen appropriately (depending on C1 and C2), we conclude from (9) that for some
positive constant C (depending on C1 and C2), we have

P (T c) = P (lengthΠ > c1F (ε)) 6 e−
C2
2
F (ε) + e−

C1
2
F (ε) + e−

C1
2
F (ε) 6 e−CF (ε).

Let r > 0 be chosen such that 1/q + 1/r = 1/s. Let 0 < κ < 1 be chosen small enough such
that Cν([−κ, κ]c)/2 > r. This is possible, since ν([−κ, κ]c) tends to infinity when κ → 0, by
condition (b). Then, for ε < κ2,

F (ε) > F2(ε) =
∫

[−ε,ε]c
log

|x|
ε
ν(dx) > ν([−κ, κ]c) log

κ

ε
> − 1

C
log εr.

Thus,
P (T c) 6 e−C F (ε) 6 εr. (13)

We have for the mean error, using the Hölder Inequality and s > 1,
(
E

[∥∥∥X − X̂
∥∥∥
s])1/s

6
(
E

[
1lT

∥∥∥X − X̂
∥∥∥
s])1/s

+
(
E

[
1lT c

∥∥∥X − X̂
∥∥∥
s])1/s

6 c2ε+ (E [1lrT c ])1/r (E [‖X‖q])1/q

6 c2ε
[
1 + ε−1c−1

2 P (T c)1/r (E [‖X‖q])1/q
]
,

where the term in brackets is bounded, by assumption (a) and (13). Note that the argument
works analogously for 0 < s < 1. ¤

Remark 2.2. It is easy to see that condition (a) is equivalent to the condition
∫

|x|>1
|x|q ν(dx) <∞.
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Remark 2.3. A sufficient condition for (b) to hold is that (a) holds and that ν([−2ε, 2ε]c) 6 c ·
ν([−ε, ε]c) for some 0 < c < 1 and all 0 < ε 6 ε0. This can be seen as follows. Firstly, note that
the assumption implies that ε 7→ ν([−ε, ε]c) increases at least polynomially when ε → 0, i.e.
ν([−ε, ε]c) > K(ε0, c)ε−h with h = (− log c)/ log 2 and some constant K(ε0, c) > 0 depending on
ε0 and c. Secondly,

∫

ε<|x| 6 ε0

( |x|
ε

)µ

ν(dx) 6
dlog(ε0/ε)e∑

k=0

∫

2kε<|x| 6 2k+1ε

( |x|
ε

)µ

ν(dx)

6
dlog(ε0/ε)e∑

k=0

ν([−2kε, 2kε]c)2(k+1)µ 6
∞∑

k=0

ck2(k+1)µν([−ε, ε]c).

Choosing 0 < µ < ((− log c)/ log 2) ∧ q yields
∫

|x|>ε

( |x|
ε

)µ

ν(dx) 6 K(µ, c) ν([−ε, ε]c) + ε−µ
∫

ε0<|x| 6 1
|x|µ ν(dx) + ε−µ

∫

|x|>1
|x|q ν(dx),

with a constant K(µ, c) > 0 only depending on µ and c. This implies (b) since µ < h =
(− log c)/ log 2.

Note that, in particular, the assumption is satisfied if ε 7→ ν([−ε, ε]c) is regularly varying at
zero with negative exponent.

2.4 Technical tools

In this section, we prove some technical tools that are needed in the proofs of the main results.

Lemma 2.4. Let λ > 0 and let (Ui)i > 1 be an i.i.d. sequence of random variables uniformly
distributed in [0, 1]. For N := min{n ∈ N0 :

∑n
i=1 Ui > λ} one has

E

[
N∑

i=1

(1 + logU−1
i )

]
6 12dλe.

Proof. Let s ∈ R, define N(s) := min{n ∈ N0 :
∑n

i=1 Ui > s}, and consider the function

Ψ(s) := E



N(s)∑

i=1

(1 + logU−1
i )


 .

We are interested in Ψ(λ). Clearly, Ψ(s) = 0 for s 6 0 and Ψ is increasing. Moreover, one has
for s > 0 and a random variable U uniformly distributed in [0, 1],

Ψ(s) =
∫ s∧1

0


1 + log x−1 + E



N(s−x)∑

i=1

(1 + logU−1
i )


 dPU (x)




6 1 +
∫ 1

0
− log x dx+

∫ s∧1

0
E



N(s−x)∑

i=1

(1 + logU−1
i ) dPU (x)




= 1 + log e+
∫ s∧1

0
Ψ(s− x) dPU (x) 6 3 +

∫ s∧1

0
Ψ(s− x) dPU (x).

14



Let us define

U ′ :=

{
0 U 6 1/2
1/2 U > 1/2.

(14)

Then U ′ 6 U ; and since Ψ is increasing, we have

Ψ(s) 6 3 +
∫ s∧1

0
Ψ(s− x)PU ′(x) = 3 +

1
2

Ψ(s) +
1
2

Ψ
(
s− 1

2

)
.

Therefore, Ψ(s) 6 6 + Ψ
(
s− 1

2

)
and we get that

Ψ(λ) 6 6 + Ψ
(
λ− 1

2

)
6 6 + 6 + Ψ (λ− 1) 6 . . . 6 12 · dλe.

¤
Let us finally gather two facts concerning the coding of integers and real numbers from a

given interval, respectively.

Lemma 2.5. There is a universal coding scheme that returns a prefix-free code Υ1(x) ∈ {0, 1}∗
for a given integer x ∈ Z, such that lengthΥ1(x) 6 2(2 + log+ x).

Proof. The sign is encoded by a first bit. Thus, assume x > 0, because x = 0 can be encoded
by ‘00’. Let n := min{l ∈ N | x < 2l}. Then 2n−1 6 x < 2n. Consider the representation of x
in the binary system. Because of the definition of n, this representation must have n bits, the
first one of which is a ‘1’.

A prefix-free code for x is given by n times ‘1’, followed by a ‘0’ and the n − 1 bit long
representation of x in the binary system having taken away the redundant leading ‘1’.

The length of the code is 2n+ 1, which is less than 2(1 + log+ x). ¤
Let us remark that Lemma 2.5 can be improved up to the order log+ x+C log+ log+ x+D,

as shown in [12].
Let as above D := [0, 1) ∩⋃

n∈N 2−nZ be the set of those numbers in [0, 1) that have finite
binary representation.

Lemma 2.6. There exists a universal coding strategy Υ2 : D → {0, 1}∗ that returns a prefix-free
code such that, for any n ∈ N0 and x ∈ 2−nZ, we have lengthΥ2(x) 6 2(2 + n).

Proof. Any number x ∈ D has a unique finite representation x = k2−n, with k uneven,
1 6 k 6 2n − 1, n ∈ N. As a prefix-free code Υ2(x) we chose the prefix-free code for the integer
2n−1 + (k + 1)/2. If x ∈ [0, 1) ∩ 2−nZ, by Lemma 2.5, the length of Υ1(2n−1 + (k + 1)/2) is
bounded by 2(1 + n). ¤

The last lemma, in particular, implies the following for our coding scheme.

Lemma 2.7. There exists a universal coding strategy that encodes the numbers Si by Ŝi satisfying
(5) and (7) such that the binary representation used to encode Ŝi has a length of at most

2
(

1 + log+

F1(ε)−1

εp/(|Hi|pM) ∧ (Si+1 − Si)

)
.
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Proof. Let n be the smallest integer such that

2−(n+1) 6 min
(
Si+1 − Si
F1(ε)−1

,
εp/(|Hi|pM)
F1(ε)−1

)
< 2−n.

Then Ŝi can be chosen such that the number in (7) is in 2−nZ and that (5) is satisfied. According
to Lemma 2.6 the length of the binary representation is bounded by 2(1 +n), which is bounded
by the asserted quantity, by the definition of n. ¤

3 Lower bound

The aim of this section is to provide lower bounds for the distortion rate function of the Lévy
process. The analysis is divided into three subsections. First we introduce some concepts of
information theory and prove some preliminary results. Next, we provide a lower bound based
on F2 (Theorem 3.3). In the last subsection we give a lower bound in terms of F1 (Theorem 3.5).
Both lower bounds then immediately imply Theorem 1.5.

So far, p was fixed in [1,∞). Since the distortion rate function is increasing in the parameter
p, we can and will fix p = 1 in the following discussion.

As mentioned before, we can freely choose the basis of the logarithm in the proof of the main
theorems. For the rest of this article, we fix as basis e.

3.1 Preliminaries

First we introduce some concepts of information theory. We need the concept of conditional
mutual information. Let A,B and C denote random vectors attaining values in some standard
Borel spaces. Then one defines the mutual information between A and B given C as

I(A;B|C) =
∫
I(A;B|C = c) dPC(c),

where

I(A;B|C = c) =

{∫
log dPA,B|C=c

dPA|C=c⊗PB|C=c
dPA,B|C=c if PA,B|C=c ¿ PA|C=c ⊗ PB|C=c

∞ otherwise.

A summary of computation rules for the mutual information can be found in [13] or [4].

Lemma 3.1. For n ∈ N, let Y0, . . . , Yn−1 and Ŷ0, . . . , Ŷn−1 and H denote random variables in
possibly different standard Borel spaces. We write shortly Y = (Y0, . . . , Yn−1), Y i = (Y0, . . . , Yi)
for 0 6 i 6 n− 1 and Ŷ = (Ŷ0, . . . , Ŷn−1). Then one has

I(Y,H; Ŷ ) > I(Y0; Ŷ0|H) + I(Y1; Ŷ1|H,Y 0) + · · ·+ I(Yn−1; Ŷn−1|H,Y n−2).

Moreover, we need to evaluate the distortion rate function for other originals than the Lévy
process X and for other distortions than Lp[0, 1]-norm. For a measure µ on a standard Borel
space E and a measurable function ρ : E × E → [0,∞] (distortion measure) we write

D(r|µ, ρ) = inf
{
E[ρ(X, X̂)] : X, X̂ E-valued r.v. with I(X; X̂) 6 r and X has distr. µ

}
.
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Moreover, let E be endowed with a group structure. We associate to a map ρ : E → [0,∞]
the difference distortion measure ρ : E × E → [0,∞] (denoted by the same identifier) given as
ρ(x, x̂) = ρ(x− x̂). Sometimes we also consider a general moment s > 0 and write

D(r|µ, ρ, s) = inf
{
E[ρ(X, X̂)s]1/s : X, X̂ E-valued r.v. with I(X; X̂) 6 r and X has distr. µ

}
.

Moreover, we omit ρ if it is the norm based distortion induced by the L1[0, 1]-norm.
The following proposition allows us to separately consider the influence of the large jumps

and the diffusive part with small jumps on the coding complexity of the Lévy process:

Proposition 3.2. Let E be a standard Borel-space and assume that (E,+) is an Abelian group
such that the sum is Borel-measurable. Denote by A and B independent E-valued random
elements and suppose that there exists a measurable map ϕ : E → E2 with

ϕ(A+B) = (A,B) a.s. (15)

Then, under any difference distortion measure ρ on E, one has for every r > 0:

D(r|PA+B, ρ) > D(r|PA, ρ).

Proof. Fix r > 0. Next, we use that the distortion rate function D(·|PA, ρ) is convex. We
denote by f a tangent of D(·|PA, ρ) at the point r. Then, for any random element Z on E, using
the above mentioned convexity

E[ρ(A+B,Z)] =
∫
E[ρ(A,Z − b)|B = b] dPB(b)

>
∫
f(I(A;Z|B = b)) dPB(b) = f

(∫
I(A;Z|B = b) dPB(b)

)

= f(I(A;Z|B)).

Therefore,
inf

{Z:I(A;Z|B) 6 r}
E[ρ(A+B,Z)] > f(r) = D(r|PA, ρ).

On the other hand, by assumption (15), I(A+B;Z) = I((A,B);Z) for any random element Z
on E. Hence,

I(A+B;Z) = I((A,B);Z) = I(B;Z) + I(A;Z|B) > I(A;Z|B).

Therefore,

D(r|PA+B, ρ) = inf
{Z:I(A+B;Z) 6 r}

E[ρ(A+B,Z)]

> inf
{Z r.v. on E:
I(A;Z|B) 6 r}

E[ρ(A+B,Z)] > D(r|PA, ρ).

¤
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3.2 Lower bound based on F2

Theorem 3.3. There exists some universal constant c such that for all ε > 0,

D
(κ(ε)

e
F2(ε)

∣∣∣PX , L1[0, 1], 1
)

> c κ(ε) ε,

where κ(ε) = κ(ε, ν) = bν([−ε, ε]c)c/ν([−ε, ε]c).
The proof of the theorem is based on the following idea: in order to find an approximation

of accuracy ε, one needs to allocate about log+ |Xt −Xt−|/ε bits for each big jump.
The problem is related to a minimization problem that we want to introduce now. Let Π

be a finite non-negative measure on a measurable space (E, E) and let h : E → [0,∞) denote a
Borel-measurable function with

∫
log+ h(x) dΠ(x) <∞.

The aim is now to minimize for given r > 0 the target function
∫
h(x) exp(−ξ(x))Π(dx)

over all measurable functions ξ : E → [0,∞) satisfying the constraint
∫
ξ(x) dΠ(x) 6 r. (16)

Lemma 3.4. Assuming that {h > 0} has not Π-measure zero, the minimization problem pos-
sesses a Π-a.e. unique solution of the form

ξ(x) = log+

h(x)
λ

, (17)

where λ = λ(r) > 0 is an appropriate parameter depending on r > 0. When the optimal
function ξ is as in (17), then the minimal value of the target function is

∫
λ ∧ h(x)Π(dx).

Proof. The proof is based on a Lagrangian analysis. Let ζ(y) = exp(−y) (y ∈ [0,∞)) and
consider its convex conjugate

ζ̄(z) = inf
y > 0

[ζ(y) + yz] (z > 0).

Let λ > 0 and denote by Π̃ the σ-finite measure with dΠ̃
dΠ(x) = h(x). Now observe that for a

non-negative function ξ satisfying the constraint (16) one has
∫
h(x) exp(−ξ(x))dΠ(x) >

∫ [
ζ(ξ(x)) + λ

ξ(x)
h(x)

]
dΠ̃(x)− λr (18)

>
∫
ζ̄

(
λ

h(x)

)
dΠ̃(x)− λr. (19)
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The last expression in this estimate does not depend on the choice of ξ. If we can establish
equality in the above estimates for certain ξ and λ, then this ξ minimizes the problem.

Next, we note that one has equality in (18) iff
{∫

ξ(x) dΠ(x) = r and
ξ(x) = 0 for Π-a.e. x with h(x) = 0.

(20)

We need to look for a non-negative function ξ and a parameter λ > 0 such that (20) is valid and
such that

ζ̄

(
λ

h(x)

)
= ζ(ξ(x)) +

λ

h(x)
ξ(x) for Π̃-a.e. x. (21)

It is straightforward to verify that for positive z the function

[0,∞) 3 y 7→ ζ(y) + zy ∈ (0,∞)

attains its unique minimum in y = log+
1
z . Therefore, condition (21) is equivalent to

ξ(x) = ξλ(x) := log+

h(x)
λ

for Π̃-a.e. x.

Together with (20) a sufficient criterion for ξ being a minimum is the existence of a λ > 0 such
that {∫

ξ(x) dΠ(x) = r and
ξ(x) = ξλ(x) for Π-a.e. x.

Such a λ exists since the function

g : (0,∞) 3 λ 7→
∫
ξλ(x) dx ∈ [0,∞)

is continuous (due to the dominated convergence theorem) and satisfies

lim
λ↓0

g(λ) = ∞ and lim
λ→∞

g(λ) = 0.

Note that if ξ does not coincide with ξλ Π-a.e. (where λ is such that g(λ) = r), then one of the
inequalities (18) or (19) is a strict inequality so that ξ does not minimize the target function. ¤

Proof of Theorem 3.3. Fix ε > 0. The standard addition on D[0,∞) is measurable
with respect to the Borel σ-field; moreover, the ordered times of the jumps bigger than ε are
measurable so that we can decompose X into a pure jump process consisting of all jumps bigger
than ε and a further process in a measurable way. Due to Proposition 3.2 we can thus assume
without loss of generality that X is a pure jump process with jumps bigger than ε. Next, let
l = 1/ν([−ε, ε]c), n = b1/lc and

r =
nl

e

∫

[−ε,ε]c
log

|x|
ε
ν(dx) =

κ(ε)
e

F2(ε).

We prove that for an arbitrarily fixed reconstruction X̂ with I(X; X̂) 6 r one has

E[‖X − X̂‖L1[0,1]] > cnl ε,
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where c > 0 is a universal constant.
We let

π : L1[0, 1] → `n1 , (xt) 7→
(∣∣∣

∫ (i+1)l

il
(21l{t > (2i+1)l/2} − 1)xt

dt

l

∣∣∣
)
i=0,...,n−1

and consider
Y = (Yi)i=0,...,n−1 = π(X) and Ŷ = π(X̂).

The map π is l−1-Lipschitz continuous so that

E[‖Y − Ŷ ‖`n1 ] 6 l−1E[‖X − X̂‖]. (22)

Moreover, π is invariant under uniform shifts on each time interval [i/n, (i + 1)/n) so that in
particular,

π(X) = π
(
X −

n−1∑

i=0

X 2i+1
2
l1l[il,(i+1)l)

)
.

Due to the strong Markov property of the Lévy process, the random variables Y0, . . . , Yn−1 are
i.i.d. We shall derive a lower bound for E[‖Y − Ŷ ‖`n1 ].

For i = 0, . . . , n− 1 consider the events

Ai = {X contains in [il, (i+ 1)l) exactly one jump}.

and the random vector H = (Hi)i=0,...,n−1 given by

Hi =

{
size of the jump in [il, (i+ 1)l) if Ai occurs,
0 otherwise.

Next, denote Y i = (Y0, . . . , Yi) for i = 0, . . . , n−1 and Y −1 = 0. Our objective is to find a lower
bound for

E[‖Y − Ŷ ‖`n1 ] > E
[n−1∑

i=0

E
[|1lAiYi − 1lAi Ŷi|

∣∣H,Y i−1
]]
. (23)

For each i ∈ {0, . . . , n − 1} we analyze the inner expectation. Let fi(h, yi−1) = I(Yi, Ŷi|H =
h, Y i−1 = yi−1) and consider the random variable

Ri = fi(H,Y i−1).

Given H and Y i−1, the r.v. Yi is uniformly distributed on [1l{Hi<0}Hi/2, 1l{Hi>0}Hi/2], cf. e.g.
Propoposition 13.15 in [3]. Therefore,

E
[|1lAiYi − 1lAi Ŷi |

∣∣H,Y i−1
]

> D(Ri|U [0, |Hi|/2], | · |), (24)

where U [0, u] denotes the uniform distribution on [0, u]. Now there exists a universal constant
c > 0 such that for any r̄ > 0 and any u > 0

D(r̄|U [0, u/2], | · |) > c u e−r̄.
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Together with (23) and (24) we arrive at

E[‖Y − Ŷ ‖`n1 ] > cE
n−1∑

i=0

|Hi| e−Ri .

With Π defined as the product measure P⊗∑n−1
j=0 δj we get

E[‖Y − Ŷ ‖`n1 ] > c

∫
|Hi| e−Ri dΠ(ω, i). (25)

On the other hand, one has E[Ri] = I(Yi, Ŷi|H,Y i−1) by definition so that by Lemma 3.1

∫
Ri dΠ(ω, i) =

n−1∑

i=0

E[Ri] 6 I(Y,H; Ŷ ) 6 I(X; X̂) 6 r.

Now consider the minimization problem for the target function
∫
|Hi| e−Ri dΠ(ω, i),

where the minimum is taken over all random variables Ri (i = 0, . . . , n − 1) satisfying∫
Ri dΠ(ω, i) 6 r. The law of Hi is (1− e−1)δ0 + 1

e ν([−ε,ε]c)ν|[−ε,ε]c so that

∫
log+

|Hi|
ε

dΠ(ω, i) =
n

e

∫

[−ε,ε]c
log

|x|
ε

ν(dx)
ν([−ε, ε]c) = r.

Hence, Lemma 3.4 implies that the optimal value in the minimization problem is
∫
ε 1l{hj 6=0} dΠ(ω, j) =

1
e
n ε.

Together with (22) and (25) we get that

E[‖X − X̂‖] > c

e
lnε,

which yields the assertion.
¤

3.3 Lower bound related to the F1-term

Theorem 3.5. There exist positive universal constants c1 and c2 such that the following state-
ments are true. For any ε > 0 with F1(ε) > 18, one has

D
(
c1 F1(ε), 1

)
> c2 ε.

If ν(R) = ∞ or σ 6= 0, then for any s > 0, one has

D
(
c1 F1(ε), s

)
& c2 ε

as ε ↓ 0.
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Let us give some heuristics on the proof of the theorem. As we have mentioned before the
drift adjusted process X ′ needs approximately the time 1/F1(ε) to leave an interval of width 2ε.
Assuming that the process is symmetric the process leaves the strip to either of the sides with
equal probability (here one also needs to assume that one starts in the center of the interval).
Thus in order to have a coding of accuracy ε one needs to describe at least in which direction
the process left the strip for most of the exits. This requires about F1(ε) bits.

As the following remark explains, it suffices to prove the theorem for symmetric Lévy pro-
cesses.

Remark 3.6. Let X̄ denote an independent copy of X and observe that for s ∈ (0, 1]

D(2r | PX−X̄ , s) 6 21/sD(r | PX , s).

The process X − X̄ is a symmetric Lévy process and the functions describing its complexity are

F̄1(ε) = 2F1(ε) and F̄2(ε) = 2F2(ε).

We assume from now on that the Lévy process X has no drift and a symmetric Lévy mea-
sure ν.

Lemma 3.7. Let ε > 0 and denote

T = inf{t > 0 : |Xt| > ε}.

Then
P(T > t) 6 9

4F1(2ε) t
.

Proof. We consider a Lévy process X∗ with Lévy measure ν∗ = ν ◦ π−1 with π : R →
[−2ε, 2ε] being the projection onto the interval [−2ε, 2ε]. Then the exit times T and

T ∗ = inf{t > 0 : |X∗
t | > ε}

are equal in law. Moreover, the process X∗
T ∗∧· is a martingale that is uniformly bounded by 3ε.

The quadratic variation process [X∗] of X∗ is a subordinator with Doob-Meyer Decomposition

[X∗]t =
(
[X∗]t − 4ε2F1(2ε) t

)
+ 4ε2F1(2ε) t.

Therefore,

9ε2 > E(X2
T ∗) = lim

t→∞E(X2
t∧T ∗)

= lim
t→∞E[X]t∧T ∗ = 4ε2F1(2ε) lim

t→∞E(t ∧ T ∗) = 4ε2F1(2ε)E(T ∗).

Consequently,

ET ∗ 6 9
4F1(2ε)

and the assertion follows immediately. ¤
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Lemma 3.8. Let Y be a Bernoulli r.v. Then for d ∈ [0, 1/2]

D(d log 2d+ (1− d) log 2(1− d) | PY , ρHam) > d,

where ρHam denotes the Hamming distance.

Proof. Interpret Y as a random variable attaining values in the group Z2 consisting of two
elements. Then ρ can be interpreted as a difference distortion measure on Z2, that means for
x, x̂ ∈ Z2

ρ(x, x̂) = ρ(x− x̂) := 1l{x−x̂=0}.

Next, note that for d ∈ [0, 1/2]:

φ(d) := sup{H(Z) : Z Z2-valued,E[ρ(Z)] 6 d} = −d log d− (1− d) log(1− d).

We use the concept of the Shannon lower bound to finish the proof: Let Ŷ denote a Z2-valued
reconstruction with E[ρ(Y, Ŷ )] = d 6 1/2; then

I(Y ; Ŷ ) = H(Y )−H(Ŷ |Y ) = H(Y )−H(Ŷ − Y |Y ) > H(Y )−H(Ŷ − Y )
> log 2− φ(d) = d log 2d+ (1− d) log 2(1− d).

¤
The proof of the lower bound in Theorem 3.5 is based on a comparison with a simpler

distortion rate function. For q ∈ [0, 1/2] let µq denote the measure that assigns probabilities q
to ±1 and 1 − 2q to 0. Moreover denote by µ⊗nq its product measure, consider the distortion
measure

ρ(x, x̂) = 1l{x·x̂=−1} (x ∈ {±1, 0}, x̂ ∈ {±1})
and denote

ρn(x, x̂) =
n−1∑

i=0

ρ(xi, x̂i).

As reconstruction we allow any {±1}n-valued random vector.

Proposition 3.9. For any r > 0, n ∈ N and any Lévy process with symmetric Lévy measure,
one has

D(r|PX , s) > ε

4n
D(r|µ⊗nq , ρn, s).

where
q =

1
8

(
1− 9

F1(2ε) l

)
∨ 0.

Proof. First fix n ∈ N, r > 0 and a reconstruction X̂ with I(X; X̂) 6 r. We denote l = 1/n
and consider again

π : L1[0, 1] → `n1 , (xt) 7→
(∣∣∣

∫ (i+1)l

il
(21l{t > (2i+1)l/2} − 1)xt

dt

l

∣∣∣
)
i=0,...,n−1

.

The map π is l−1-Lipschitz continuous and the random vector

Y := (Yi)i=0,...,n−1 = π(X)
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consists of i.i.d. entries. Additionally, we set Ŷ = (Ŷi)i=0,...,n−1 = π(X̂). Next, consider random
vectors Z = (Zi)i=0,...,n−1 and Ẑ = (Ẑi)i=0,...,n−1 defined as

Zi =

{
sgn(Yi) if |Yi| > ε/4
0 otherwise

and Ẑi =

{
1 if Ŷi > 0
−1 otherwise.

Recalling the Lipschitz continuity of π we get that

‖X − X̂‖ > l‖Y − Ŷ ‖`n1 > l
ε

4

n−1∑

i=0

ρ(Zi, Ẑi).

Therefore,
E[‖X − X̂‖s]1/s > ε

4n
E[ρn(Z, Ẑ)s]1/s.

Certainly, Z is distributed according to µ⊗nq , where q = P(Y1 > ε/4). Since I(X; X̂) > I(Z; Ẑ)
we obtain that in general

D(r|PX , s) > ε

4n
D(r|µ⊗nq , ρn, s).

Next, we show that D(r|µ⊗nq , ρn, s) is increasing in q. Indeed, let 0 6 q < q′ 6 1/2, let Z
denote an µ⊗nq′ distributed r.v., and let Ẑ denote a reconstruction for Z with I(Z; Ẑ) 6 r. More-
over, let A = (A0, . . . , An−1) be a random vector consisting of i.i.d. Bernoulli random variables
with success probability q/q′ that are independent of Z and Ẑ (for finding such a sequence one
might need to enlarge the probability space), and set Z̃ := (Z̃i)i=0,...,n−1 := (AiZi)i=0,...,n−1.
Then Z̃ is µ⊗nq -distributed and one has

E[ρn(Z̃, Ẑ)] 6 E[ρn(Z, Ẑ)] and I(Z̃; Ẑ) 6 I(A,Z; Ẑ) = I(Z; Ẑ).

It remains to prove that P(Yi > ε/4) > 1
8

(
1− 9

F1(2ε) l

)
. We fix i ∈ {0, . . . , n− 1} and let

(X̃t)t∈[−l/2,l/2) = (Xt+ 2i+1
2
l −X 2i+1

2
l)t∈[−l/2,l/2).

The processes (X̃t)t∈[0,l/2) and (−X̃−t)t∈[0,l/2] are independent Lévy martingales with Lévy mea-
sure ν. Denote T+ = inf{t > 0 : X̃t > ε or t > l/2} and observe that

P
(
Yi > ε

4
)

> P
(
−

∫ l/2

0
X̃−t dt > 0, T 6 l/4,

∫ l/2

T
[X̃t − X̃T ] dt > 0

)

= P
(∫ l/2

0
X̃−t dt 6 0

)
P(T 6 l/4)P

(∫ l/2

T
[X̃t − X̃T ] dt > 0|T 6 l/4

)

=
1
4
P(T+ 6 l/4).

Set T = inf{t > 0 : |X̃t| > ε or t > l/2}. Then the symmetry of ν together with Lemma 3.7
implies that

P(T+ 6 l/4) > 1
2
P(T 6 l/4) > 1

2

(
1− 9

F1(2ε) l

)

so that
P
(
Yi > ε

4
)

> 1
8

(
1− 9

F1(2ε) l

)
.

¤
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Lemma 3.10. Let µBer and ρHam denote the Bernoulli distribution and the Hamming distance,
respectively. Then

D(r|µq, ρ) > 2q D
( r

2q

∣∣∣µBer, ρHam

)
.

Proof. Let X denote a µq distributed r.v. and let X̂ denote a {±1}-valued reconstruction
with I(X; X̂) 6 r. Denote f(x̄) = I(X; X̂

∣∣|X| = x̄) for x̄ ∈ {0, 1} and let

r̄ = f(1) and R = f(|X|).
Then one has ER = I(X; X̂||X|) 6 I(X; X̂) 6 r so that due to the non-negativity of R

r̄ 6 r

P(|X| = 1)
=

r

2q
.

Next, we write
Eρ(X, X̂) = E

[
1l{X 6=0}E[1l{X 6=X̂}

∣∣|X|]
]

and note that conditional on |X| = 1, X is a Rademacher random variable so that

Eρ(X, X̂) > P(|X| = 1)D(r̄|µBer, ρHam).

Together with the above estimate for r̄ this completes the proof. ¤
Proof of Theorem 3.5, 1st statement. Let ε > 0 with F1(2ε) > 18 and choose n ∈ N

maximal with n 6 F1(2ε)/18. Then

q :=
1
8

(
1− 9n

F1(2ε)

)
∨ 0 > 1

16
.

Additionally, there exists a universal constant C3 > 0 such that n > C3F1(2ε). Next, we shall
apply Proposition 3.9. We fix r0 < log 2 arbitrarily and set r = 1

8nr0. Then r > C1 F1(2ε) for
some constant C1 only depending on the choice of r0. Thus with Proposition 3.9 one gets

D(C1F1(2ε), s) > D(r, s) > ε

4n
D

(1
8
nr0

∣∣∣µ⊗nq , ρn, s
)
. (26)

Recall that statement 1 of the theorem considers the case where s = 1. But D
(

1
8nr0|µ⊗nq , ρn

)

is a distortion rate function for a single letter distortion measure and an i.i.d. original, and,
therefore,

D
(1

8
nr0

∣∣∣µ⊗nq , ρn

)
= nD

(1
8
r0

∣∣∣µq, ρ
)

The latter distortion rate function has been related to that of a Bernoulli variable in Lemma 3.10:

D
(1

8
nr0

∣∣∣µ⊗nq , ρn

)
> n 2q D

( 1
16q

r0

∣∣∣µBer, ρHam

)
.

Since q > 1/16 the rate in the last distortion rate function is bounded by r0 < log 2 so that the
distorion rate function yields a value C4 > 0 strictly bigger 0. Altogether,

D(C1F1(2ε), 1) > ε

2
qC4 > C2 2ε,

where C2 = C4/64. Switching from 2ε to ε finishes the proof of the first assertion. ¤
The proof of the second statement relies on the following concentration property:
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Lemma 3.11. Let ρ : R × R → [0,∞] be a measurable function, let (Ui)i∈N be a sequence
of independent bounded random variables, and denote by U (n) the random vector (Ui)i=1,...,n.
Supposing that there exists u∗ ∈ R such that

E[ρ(U1, u
∗)2] <∞, (27)

one has for any s > 0 and r > 0:

lim inf
n→∞

1
n
D(nr|U (n), ρn, s) ≥ d,

where d = D(r|U1, ρ, 1) and ρn is the single letter distortion measure belonging to ρ.

As one can see in the proof the moment condition (27) can be easily relaxed. Similar ideas
are used in [8] to prove concentration of the approximation error.

Proof. Without loss of generality we assume that D(r|U1, ρ) > 0. Our moment condition
implies that D(·|U1, ρ) is finite, convex and continuous on [0,∞). Following the standard proof
of Shannon’s source coding theorem, there is a family of codebooks (C(n))n∈N such that

• {(u∗, . . . , u∗)} ⊂ C(n) ⊂ Rn,
• log |C(n)| . nr,

• limn→∞ P(T (n)) = 1 for T (n) = {minû(n)∈C(n) ρn(U
(n), û(n)) < (1+ ε(n))d} and an appro-

priate zero-sequence (ε(n))n∈N.

For any n ∈ N, let Û (n,1) denote an arbitrary reconstruction for U (n) such that we have
I(U (n), Û (n,1)) 6 nr, and let Û (n,2) = arg minû(n)∈C(n) ρn(U

(n), û(n)). We fix η ∈ (0, 1) arbitrarily
and choose

J =





1 if log
dP

U(n),Û(n,1)

dP
U(n)⊗PÛ(n,1)

6 nr and ρn(U (n), Û (n,1)) 6 (1− η)d,

2 else,

and Û (n) = Û (n,J).
Next, we use that

I(U (n); Û (n)) 6 I(U (n); Û (n), J) = inf
Q
H(PU(n),Û(n),J‖PU(n) ⊗Q),

where the infimum is taken over all probability measures Q on R × {1, 2} and H denotes the
relative entropy. We choose

Q =
1
2
[
PÛ(n,1) ⊗ δ1 +Q∗ ⊗ δ2

]
with Q∗ =

1
|C(n)|

∑

û(n)∈C(n)

δû(n)

in order to get an appropriate bound for I(U (n); Û (n)):

I(U (n), Û (n)) 6 H(PU(n),Û(n),J‖PU(n) ⊗Q)

=
∫

log
dPU(n),Û(n),J

dPU(n) ⊗Q
dPU(n),Û(n),J

6
∫

{J=1}
log

dPU(n),Û(n),J

dPU(n) ⊗ PÛ(n,1) ⊗ δ1
dPU(n),Û(n),J

+
∫

{J=2}
log

dPU(n),Û(n),J

dPU(n) ⊗Q∗ ⊗ δ2
dPU(n),Û(n),J + log 2
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Note that the measures PU(n),Û(n),J and PU(n),Û(n,1),J agree on the set {J = 1} so that by

the construction of J one has log
dP

U(n),Û(n),J

dP
U(n)⊗PÛ(n,1)⊗δ1 6 nr on {J = 1}. Moreover, one has

log
dP

U(n),Û(n),J

dP
U(n)⊗Q∗⊗δ2 6 log |C(n)| on {J = 2}. Consequently, we can continue with

I(U (n), Û (n)) 6 P (J = 1)nr + P (J = 2) log |C(n)|+ log 2 . nr.

On the other hand, basic transformations and the Cauchy-Schwarz Inequality yield

E[ρn(U (n), Û (n))]

= E[1l{J=1}ρn(U (n), Û (n,1))] + E[1l{J=2}ρn(U (n), Û (n,2))]

6 (1− η)dP(J = 1) + P(J = 2)(1 + ε(n))d+ P(T c)1/2E[ρn(U (n), (u∗, . . . , u∗))2]1/2

∼ [(1− η)P(J = 1) + P(J = 2)]d.

Therefore, limn→∞ P(J = 1) = 0. Consequently, we arrive at

E[ρn(U (n), Û (n,1))s]1/s > P(J 6= 1)1/s(1− η)d→ (1− η)d

and recalling that η ∈ (0, 1) was arbitrary finishes the proof. ¤
Proof of Theorem 3.5, 2nd statement. We define r0, q and n as in the proof of the

first statement. By assumption ν(R) = ∞ or σ 6= 0. Consequently, one has limε↓0 F1(ε) = ∞
and n converges to ∞ as ε tends to 0.

We recall estimate (26):

D(C1F1(2ε), s) > D(r, s) > ε

4n
D

(1
8
nr0

∣∣∣µ⊗nq , ρn, s
)
.

Now we conclude with Lemma 3.11 that

D
(1

8
nr0

∣∣∣µ⊗nq , ρn, s
)

& nD
(1

8
r0

∣∣∣µq, ρ
)
.

The assertion follows along the lines of the proof of the first statement. ¤
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