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THE COEFFICIENT OF RESOURCE UTILIZATION' 

BY GERARD DEBREU 

A numerical evaluation of the "dead loss" associated with a non- 
optimal situation (in the Pareto sense) of an economic system is sought. 
Use is made of the intrinsic price systems associated with optimal situa- 
ations of whose existence a noncalculus proof is given. A coefficient 
of resource utilization yielding measures of the efficiency of the economy is 
introduced. The treatment is based on vector-set properties in the com- 
modity space. 

1. INTRODUCTION 

THE ACTIVITY of the economic system we study can be viewed as the 
transformation by n production units and the consumption by m con- 
sumption units of 1 commodities (the quantities of which may or may 
not be perfectly divisible). Each consumption unit, say the ith one, 
is assumed to have a preference ordering of its possible consumptions, 
and therefore an index of its satisfaction, , i. Each production unit has 
a set of possibilities (depending, for example, on technological knowledge) 
defined independently of the limitation of physical resources and of 
conditions in the consumption sector. Finally, the total net consumption 
of all consumption units and all production units for each commodity 
must be at most equal to the available quantity of this commodity. 

If we impose on the economic system the constraints defined by (1) 
the set of possibilities of each production unit and (2) the limitation of 
physical resources, we cannot indefinitely increase the m satisfactions. 
In trying to do so we would find situations where it is impossible to 
increase any satisfaction without making at least one other one decrease. 
In any one of these situations all the resources are fully exploited, and 
it can be considered optimal. When a situation is nonoptimal is it 
possible to find some measure of the loss involved, indicating how far it 
is from being optimal? The basic difficulty comes from the fact that no 
meaningful metrics exists in the satisfaction space. 

1 Based on a Cowles Commission Discussion Paper, Economics No. 284 (hecto- 
graphed), June, 1950, and a paper presented at the Harvard Meeting of the Econo- 
metric Society, August, 1950. The research on which this paper reports was under- 
taken at the Cowles Commission for Research in Economics as part of the project 
on the theory of allocation of resources conducted by the Commission under 
contract with The RAND Corporation. This article will be reprinted as Cowles 
Commission Paper, New Series, No. 45. 

Acknowledgment is due to R. Solow of the Massachusetts Institute of Tech- 
nology, and to staff members and guests of the Cowles Commission. To nobody is 
my debt more specific than to T. C. Koopmans and M. Slater, and perhaps to 
nobody greater than to M. Allais, whose interest in this kind of question has been 
the origin of mine. 
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274 GERARD DEBREU 

For this reason we take up the following dual problem. We impose on 
the economic system the constraints defined by (1) the set of possi- 
bilities of each production unit and (2) the condition that for each 
consumption unit the satisfaction Bi is at least equal to a given value 
!8 . We cannot decrease indefinitely the 1 quantities of available physical 
resources. In trying to do so we would find situations where it is im- 
possible to decrease one of them without making at least one other one 
increase. In any one of these situations the prescribed levels of satisfac- 
tion have been attained with as small an amount of physical resources as 
possible, and it can be considered optimal. The loss associated with a 
nonoptimal situation is now a measure of the distance from the actually 
available complex of resources to the set of optimal complexes; this 
concept is far simpler than the former one because we are dealing now 
with quantities of commodities. The two definitions of optimality are 
equivalent if the saturation cases are excluded. 

Using the second definition of optimality we proceed to a noncalculus 
proof of the intrinsic existence of price systems associated with the 
optimal complexes of physical resources-the basic theorem of the new 
welfare economics. This proof is more general than the usual ones since 
it does not require the existence of derivatives which, indeed, do not 
exist in simple and realistic cases; more complete, since it deals with 
global instead of local properties of maxima or minima; more concise, 
as the synthetic nature of the problem requires it to be; it gives a deeper 
explanation of the intrinsic existence of prices by its geometric inter- 
pretation in the commodity space. These reasons seem to justify the 
higher level of abstraction on which it is placed. 

This proof is based on convexity properties which imply continuity of 
quantities of commodities; if this assumption of continuity is dropped, 
the same technique shows that to achieve an optimal situation the use 
of a (real or virtual) price system is still sufficient but no longer neces- 
sary. 

We are now prepared to measure the distance from the actually given 
complex of physical resources to the set of optimal complexes, i.e., the 
minimum of the distance from the given complex to a varying optimal 
complex. To evaluate such a distance we multiply, for each commodity, 
the difference between the available quantity and the optimal quantity 
by the price derived from the intrinsic price system whose existence has 
been previously proved. We take the sum of all such expressions for all 
commodities, and we divide by a price index in order to eliminate the 
arbitrary multiplicative factor affecting all the prices. It is then proved 
that the distance function so defined reaches its minimum for an optimal 
complex resulting from a reduction of all quantities of the nonoptimal 
complex by a ratio p, the coefficient of resource utilization of the economic 
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COEFFICIENT OF RESOURCE UTILIZATION 275 

system. This number, equal to 1 if the situation is optimal, smaller than 
1 if it is nonoptimal, measures the efficiency of the economy and sum- 
marizes (1) the underemployment of physical resources, (2) the technical 
inefficiency of production units, and (3) the inefficiency of economic 
organization (due, for example, to monopolies or a system of indirect 
taxes or tariffs). 

The money value of the "dead loss" associated with a nonoptimal 
situation can be derived from p, and the inefficiency of the economy is 
now described by a certain number of dollars representing the value of 
the physical resources which could be thrown away without preventing 
the achievement of the prescribed levels of satisfaction. This definition 
seems to obviate the shortcomings of the older ones. 

The theory which led to the introduction of p can be imbedded in a 
more general one. Let us consider the ratio of the money value of any 
complex of resources that allows one to achieve for each consumption 
unit at least t? to the money value of actually available resources, the 
price system being arbitrary. The antagonistic activities of a central 
agency, which chooses the prices so as to make this ratio as large as 
possible, and of the economic units, which behave in such a way as to 
make it as small as possible, eventually give the value p to it. 

This minimax interpretation of p points out a rather striking iso- 
morphism with the theory of statistical decision functions. 

The end of Section 9 might be useful as a supplement to this introduc- 
tion by its more detailed exposition of the significance of the coefficient 
of resource utilization. The two most important sections are 6, where 
the noncalculus proof of the basic theorem of the new welfare economics 
is given, and 9, where p is introduced. Section 11, which gives the 
minimax interpretation of p, is a natural complement of 9. Section 12, 
which brings out the isomorphism with the theory of statistical decision 
functions, includes an elementary and self-contained exposition of the 
latter. 

2. BASIC MATHEMATICAL CONCEPTS 

Vectors are denoted by bold face lower case roman or Greek types; 
their components, by corresponding ordinary lower case types with a 
subscript characterizing the coordinate axis. We use the following 
notations for inequalities among vectors: 

u > v if u, > v, for every t, 

u > v if u, > v, for every t, 

u > v if u > v and u $ v. 
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276 GERARD DEBREU 

A function w(u) is increasing (resp. nondecreasing) if "u2 ) u1" im- 
plies "w(u2) > w(u') [resp. w(u2) > w(u')]." 

Sets are denoted by German letters. According to the usual termi- 
nology, v is a maximal (resp. minimal) element of U if (1) v eU and (2) 
there is no u such that u e U and v < u (resp. v ) u). The set of maxi- 
mal (resp. minimal) elements of U is denoted by Umax (resp. Umin). 

The vector sum of a finite number of sets U,, Q = Z U,, is the 
set of v = E u,, )U, e U, . 

A set U is convex if "u e U, v e U, 0 < t _ 1" implies "tu + (1 - t)v e 
U.)) 

A set U is closed if it contains every point at a zero distance from 
U. 

u is an interior point of U if there exists a sphere of nonzero radius, 
centered at u and entirely contained in U. 

A set U2 is greater than (more strictly speaking, at least as great as) 
a set U1 if it includes U1; i.e., U2 D 11. 

3. DESCRIPTION OF THE ECONOMIC SYSTEM 

A commodity of the economic system is characterized by a subscript 
h (h = 1, * * , 1). This concept can be given various contents: it can 
be a good or a service, direct or indirect, playing a role in any produc- 
tion or consumption process (for example, the training of pilots by some 
Air Force agency). The quantity of the hth commodity can either vary 
continuously or be an integral multiple of a given unit. The discontin- 
uous case, which is indeed very widespread, can easily be included in 
the frame we present, as will be shown. 

A consumption unit is characterized by a subscript i (i = 1, m. , ; 
its activity is represented by a consumption vector xi of the i-dimensional 
Euclidean commodity space 9?1; the components Xhi are quantities of 
commodities actually consumed or negatives of quantities of com- 
modities produced (for a consumer of the classical type the only negative 
components correspond to the different kinds of labor he can produce). 
We assume that, if x1 and x2 are two arbitrary consumption vectors oI 

1 2, 
the ith consumption unit, it either "prefers xi to x ,- "thinks x1 equiva- 
lent to x2, ) or "prefers x2 to xi" (x2 > xl excluding xs preferred to x2, 
with the usual transitivity property. One can therefore construct equiv 
alence classes (an equivalence class may happen to contain only on( 
vector), which will be denoted by G ; a given xi belongs to one and only 
one such class, B)(xi). The preference ordering on the xi induces a 
complete ordering on the Bi which will be denoted by 2 > 0' (an ele 
ment of &1is not preferred to an element of 2). The usual procedure ie 
to assume that a one-to-one, order preserving correspondence can b( 
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COEFFICIENT OF RESOURCE UTILIZATION 277 

established between the set of i and the set of real numbers so that a 
satisfaction function si(xi) is obtained. First of all, such a correspond- 
ence need not exist, but even more important is the fact that the nu- 
merical value of this function has never any role to play, that only the 
ordering itself matters. The advisability of introducing such a function 
(always accompanied by the mention "defined but for an arbitrary 
monotonically increasing transformation"), which is useless and which 
moreover might not exist at all, may be questionable. However, one's 
intuition is likely to be helped if one views the ordering of the 0i as the 
ordering of real numbers; we will draw Figures la and 3a in that spirit. 
The m i, are considered as the components of the element 0 = 

., ***, 3m) of the product space (. i could conveniently be called 
the satisfaction or standard of living of the ith consumption unit and 
0 the satisfaction or standard of living of the economic system. A par- 
tial ordering on the satisfaction space e is defined in the following way: 
62 ) 61 if i2 > 0' for every i and 62 5 61. The basic features of this 
reasoning are well known; our purpose is only to reformulate it in a 
language applicable to more general cases, including the discontinuous 
case. Here again the content of the concept of the consumption unit is 
left indeterminate: it can be a consumer, a household unit, a govern- 
mental agency, etc. In an economy provided with a central planning 
board incarnating a social welfare function there is only one consump- 
tion unit. The whole economic system can be divided into nations 
among which consumption units are distributed. The theory to be de- 
veloped applies to all such cases. 

The production activity of the system is represented by the total 
input vector y el 9l1 ; the components of y are inputs (net quantities of 
commodities consumed by the whole production sector during the period 
considered) or negatives of outputs (defined in a symmetrical way). 
Constraints such as the limitation of technological knowledge deter- 
mine the set J of possible y. D is defined independently of the limitation 
of physical resources (which will be dealt with later) and of conditions 
in the consumption sector. The set of efficient vectors in production is 
Dmin. (This concept is studied in great detail in [14] for the case where 
) is a convex polyhedral cone.) 

A family of sets )j (j = 1, *---, n) is a decomposition2 of D if f = 

Es Di ; in other words y = E y y, e Ej . The input vector y, charac- 
terizes the activity of the jth production unit. The concept of production 
unit may coincide with that of industry, firm, plant, etc. This formula- 
tion allows for production and consumption of intermediate commod- 

2 This decomposition is not meant to be unique. If 0 e Di for every j, Di C D. 
A study of decentralization of economic decisions is concerned with the extent to 
which decisions can be made with respect to DJ1 instead of with respect to W. 
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278 GERARD DEBREU 

ities, even in a circular way, with as many intermediate steps as one 
wants. It allows, of course, for discontinuities of variables, or, if they 
are continuous, for nonsmooth surfaces )Jm"', for the existence of fixed 
ratios between some variables, etc. The more usual exposition, which 
amounts to starting from the 2j to obtain 2), is valid only if the assump- 
tion that J is nothing more than Ej Di is explicitly made. In order that 
y 2)min it is necessary but not sufficient that y, e 2)j" & = 1, .. ,* n). 

The vector x =Ei xi is the total consumption vector, and z = x + y 
is the total net consumption of the whole economy (all consumption 
units and all production units) which can come only from the available 
physical resources: we call it the utilized physical resources vector as 
opposed to z?, a vector of 9T, whose components are the available 
quantities of each commodity (natural resources and services of existing 
capital, for example; the different kinds of labor would give rise to zero 
components3). We call z? the utilizable physical resources vector. We thus 
have z < z?. 

4. OPTIMUM AND LOSS DEFINED IN THIE SATISFACTION SPACE 

The constraints imposed on the economic system are4 

y e, z?Z0; 

this determines in e the set e of attainable 6. According to the Paretian 
criterion, if the goal of the economic system is to make the 6i, which 
cannot be compared to each other, as great as possible, 32 is better than 
61 if, and only if, 62 > 61, and 6 is optimal if, and only if, it is maximal: 
6 e 2max. Any economic system, anxious to satisfy the needs of the 
consumption units as well as possible, and confronted with the problem 
of selecting one 6 in 5, would in fact restrict its choice to Smax. 

If 60 4 Smax (Figure 3a)5 a dead loss is associated with 60; its magnitude 
is, intuitively, the distance from 60 to the set @jmax (i.e., the minimum 
of the distance from 60 to a variable 6 belonging to SmaIx). The very 
nature of the space e prevents us from finding a meaningful content 
for that definition. 

3The quantity of a certain kind of labor can be treated in two different ways: 
either as a component of the xi , if one wishes to emphasize the possibility of 
varying it, or as a nonzero component of z? if the opposite assumption is made. 

' Supplementary constraints such as the existence of some minimum standard 
of living, 6 2 0?, would involve no essential change in the following analysis. 

6 Occasional references will be made to figures. They are all drawn in the two- 
dimensional case and, with one exception, contain only smooth curves, while the 
reasoning deals with a greater number of dimensions, nonsmooth surfaces, and 
even discrete sets of points. They are therefore mere illustrations, loosely con- 
nected with the text but likely to be found useful. 
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COEFFICIENT OF RESOURCE UTILIZATION 279 

5. OPTIMUM AND LOSS DEFINED IN THE COMMODITY SPACE 

Let us therefore study the following dual problem and consider in 
91l the set 3(60) of vectors z defined by the constraints 

y e M), 6 > B0 

3 is the set of utilized physical resources vectors which, taking into 
account the production possibilities 2), enable the economy to achieve 
at least i?. Let Xi(6?) be the set of xi defined by 6i(xi) > , and X(0) = 

2 ; then, since z = x + y, 3 is nothing else than 3 = X + 2). 
3min(60) is a natural concept: it describes the minimal physical re- 

sources required to achieve at least 60. One sees that z? can be defined 
as optimal with respect to 2) and 60 if, and only if, z? e 3min, and that, 
if zo 3Smin (Figure 3b), the dead loss can be defined as the distance from 
z? to the set 3min. This distance can now be meaningful since the coor- 
dinates of the commodity space W1 are quantities of commodities. 

The definitions of optimum and loss given in Sections 4 and 5 are 
not necessarily equivalent but, under conditions which amount essen- 
tially to excluding the saturation cases,6 "i0 e 2m=" is equivalent to 
"Z? 3- ,min.jl (See Figures la and ld.) 

6. THE OPTIMUM THEOREM 

Let us now assume that the sets Xi, %; are all convex and closed 
(convexity implies, of course, that the quantities of all commodities 
can be varied continuously); it follows that 3 = Ei Xi + E, % is 
convex.7 As for the Xi, the assumption is a classical one and needs no 
particular comment; as for the 2)j, it may be worth noticing that if one 
added the two postulates, 

1. 16 2 j Y2 e 2j implies yl + Y2 e j (additivity postulate), 

2. Os7h, 

then 2j would be a cone. 
6 This can be done by a few additional simple postulates which we do not discuss 

in detail for they would lead to very formal developments without throwing more 
light on the heart of our problem. The saturation case has been considered by 
K. J. Arrow in the paper, "A Generalization of the Basic Theorem of Classical 
Welfare Economics" (to be published in the Proceedings of the Second Berkeley 
Symposium), given in the summer of 1950 at the Berkeley meeting of the Econo- 
metric Society independently of the present paper, which was given at the same 
time at the Harvard meeting of the Society. 

7The sum of a finite number of closed sets is not necessarily closed when those 
sets are unbounded. However, it is sufficient that they are all contained in some 
closed, convex, pointed cone for their sum to be closed. We will assume that such 
is the case so that 8 is closed. 
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280 GERARD DEBREU 

We now concentrate our attention on a vector z? - E x? + 
Ej yo (x? e Xi, y? e 2)j) (Figure 1). If $3 denotes the positive orthant of 
ST? (the set of vectors of 9z ? 0), we have the following chain of equiva- 
lent propositions: 

X 

(a) 

1 91 S~~~~~~~~~~~~1 

MMIN MIN > p~~~~~~ 

yoX 

MIN 8MIN~~~MI 

(bCO2) (d) 
FIGURE 1 

1.zO e S2min. 

2. The convex sets ,3 and z? 1 have no other point in common 
than z? (this is just another way of expressing proposition 1).8 

3. There is a plane through z? separating these two sets. (Wrhen two 
closed convex sets with interior points have only one point in common 
there is at least one plane through that point separating them [6].) 

4. There is a vector p > O (normal to the separating plane) such 
that z e- ,3 implies p - (z- z?) >_ O. 

I No distinction is made between a vector such as zO and the set containing 
only this vector. z? - 9 is written in short for z? + (-X). 
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COEFFICIENT OF RESOURCE UTILIZATION 281 

5. There is a vector p > 0 such that 

(1) xi e Xi implies p (xi - x?) _ 0 for every i, 

(2) yi E Ds implies p (y, - y?) > 0 for every 9. 

Proof of the equivalence of propositions 4 and 5: p* (z - z?) = 

i p (xi - x?) + E. p- (y, - y?); the condition is therefore sufficient. 
It is necessary, for if one term of the right-hand member could be made 
< 0, as all the others can be made = 0, the left-hand member could 
be made < 0.1" 

Finally, (1) is equivalent to 

(1') p. (xi - x?) < 0 implies xi 4 Xi [i.e., (xi) < M(xi) 

for every i] 

or 

(1") p (xi - x?) < 0 implies Bi(xi) _ i(x?) for every i. 

Interpreting p as a price vector and, defining a, p- x (i = 1, * * , 

we have the statement: 
The necessary and sufficient condition for B' to be maximal, or for z? = 

EiXI + Ei y} to be minimal, is the existence of a price vector p > 0 
and of a set of numbers ai (i = 1, ,m) such that 

(a) xi being constrained by p xi < ai, Bi(x ) reaches its maximum 
at xi, for every i, 

(A) y, being constrained by yi e 2)i, p y, reaches its minimum at 
y? for every j. 

This is a formalization of well-known rules of behavior for consump- 
tion units and production units: each consumption unit, subject to a 
budgetary constraint, maximizes its satisfaction and each production 
unit, subject to technological constraints, maximizes its profit. 

Given z?, 2), and 60 e emax the direction of p is not always uniquely 
determined." It is only constrained to belong to the set of directions 
normal to supporting planes for 3 through z?, which we call briefly the 
cone of normals. Even if its direction is known, p is determined only up 
to a multiplication by a positive scalar. Once p is known, the set of 
m numbers (ai) is determined. 

I Therefore x? e X,iPn y? e 
2)T in (this could be seen directly). 

10 The geometric interpretation of this is the following: The necessary and 
sufficient condition for the existence of a supporting plane through z? for 8 is 
the existence of a family of parallel supporting planes through the x? (resp. y?) 
for the Xi (resp. 2)i). Such is the deeper meaning of the optimum theorem to be 
enunciated in a moment. 

11 Unless, of course, "min is a smooth surface having only one normal direction 
at each point. 
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282 GERARD DEBREU 

Given z? and 2), the different &0 belonging to @jmax determine all pos- 
sible pairs p, (as). To attain an arbitrary maximal &0 one can imagine 
the following procedure: choose (ai) among its possible values; then 
find a p > 0 such that, when 

(a') every consumption unit maximizes i8(xi) subject to p xi <_ ai, 
(A') every production unit minimizes p. y, subject to y, E % 

the x? and y? thus determined satisfy x2 x? + Es yj = zo. 
A proper choice of (as) can lead to any given point o E imax that 

one wishes to attain.'2 
If the activity of the economic system extends over t successive time 

intervals of equal length, the subscript h can be made to characterize 
the time interval as well. Nothing is changed in the preceding analysis; 
p now need only be interpreted as a set of actual prices for present and 
future commodities. 

7. HISTORICAL NOTE 

Proofs of this basic theorem of the new welfare economics published 
so far were based on the use of the calculus."3 They required unnecessary 
restrictive assumptions on the existence of derivatives, assumptions 
which cannot be made, for example, in the very simple and realistic 
case of linear programming in which 2) is a polyhedral cone [14]; more- 
over, they could at best establish the existence of a local maximal. In- 
deed, they generally limited themselves to the study of first-order con- 
ditions. 

Pareto himself, who defined [18, 19] an optimal 6 as a maximal 6 and 
conceived the set'4 Smax [20], did not establish those conditions satis- 
factorily in spite of lengthy developments [19]. The gradual improve- 
ments brought by Barone [3], Bergson [4, 5], Hotelling [12, 13], Hicks 
[8], Lange [15], Lerner [16], Allais [1, 2], Samuelson [21], and Tintner 
[25] clarified, made more rigorous, and extended the content of his 
writings. 

The long and piecemeal treatment, which consisted of proving that 
the rates of substitution between any two commodities are independent 
of the individual, of the industry, etc., failed to comply with the syn- 
thetic nature of the problem; moreover, it put the emphasis on the 

12 If the conditions of differentiability are fulfilled, (a') coincides with the 
well-known rule that "every production unit produces its output at the smallest 
possible total cost and sells it at marginal cost." 

If %J1 is a cone, the minimum of p-y, is zero and (a') coincides with the rule of 
perfect competition within the jth industry. 

13 K. J. Arrow's paper quoted in footnote 6 contains a noncalculus proof of the 
basic theorem. Unfortunately, I had his manuscript in my hands for too short a 
time to appraise it fully here. 

1' Here, as in similar cases, the author quoted did not use the language we use; 
however, the translations should not raise any difficulty. 
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COEFFICIENT OF RESOURCE UTILIZATION 283 

equality of rates of substitution, which disappear in the simplest cases 
(polyhedral cones), instead of putting it on the necessary and sufficient 
existence of a price system (real or virtual), which is the actually mean- 
ingful operational concept. For these reasons the proofs given inde- 
pendently by 0. Lange [15] and M. Allais [1, 2] were of particular 
interest: they were essentially synthetic and some of their Lagrange multi- 
pliers could be interpreted immediately as prices, which was done force- 
fully by M. Allais. However, they used an asymmetrical exposition (one 
individual or one commodity played a particular role) to obtain sym- 
metrical results from symmetrical assumptions. Their Lagrange mul- 
tipliers were a mathematical trick obscuring the more fundamental 
facts; they had the weaknesses of calculus proofs already mentioned. 

R1 

FIGURE, 2 

8. THE DISCONTINUOUS CASE 

If the quantities of some commodities vary discontinuously, we cant 
in an attempt to preserve certain properties of convexity, define a 
quasi-convex set (Figure 2) as a set which has at least one supporting 
plane through each minimal point. But the assumption that all the 
Xi and 2) are quasi-convex does not imply that ~3 = J: X + >:j2) 
is quasi-convex.15 In other words, the theorem proved in Section 6 was 
based on the additivity property of convexity. Quasi-convexity is not 
additive and the theorem cannot be extended; that is, the existence of 
a price vector p > 0 used according to the rules (a) and (p3) is still suffi- 
cient but no longer necessar-y for ~O to be maximal. 

9. THE COEFFICIENT OF RESOURCE UTILIZATION 

We therefore go back to the convexity case and concern ourselves 
with the measurement of the dead loss associated with a vector z0 

15 It is easy to build a two-dimensional counterexample. 
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3min (GO) (Figure 3). This loss is depicted entirely by, and only by, the 
relative positions of z? and the set 3min. However, if we want, instead 
of this complex picture, a simple representation by a number, we de- 
fine the magnitude of the loss as the distance from zo to 3min, i.e., the 
minimum of the distance from the fixed point z? to the point z varying 
in 3min. To have a distance with an economic meaning we evaluate the 
vector z? - z, which represents the nonutilized resources, by the in- 
trinsic price vector p associated with z, whose existence we proved in 
Section 6. We thus obtain p (z? - z). In fact, there can be several p 
associated with z; it is easy to see that, whatever the p chosen in the 
cone of normals, the result to be obtained below is the same. No other 
price vector can be taken for this evaluation, for (1) it is quite possible 
that no price vector exists at all in the concrete economic situation ob- 
served (if, for example, there is no uniqueness of price for one com- 
modity) and (2) even if there were one, let us say p?, it would have no 
intrinsic significance. 

Before we engage in a minimization process we must not forget that 
p is affected by an arbitrary positive multiplicative scalar whose influ- 
ence we eliminate by dividing by a price index for which we may take 
either p . z or p. z?. It must be pointed out that the result to be obtained 
is again independent of this choice. Indeed, the use of p z has a very 
intuitive justification: all the points z of 3min then have the same 
"value." 

We are thus led to look for 

Mmin P (z , i.e., for Max P Z 
zEsmin p*Z z e3min p *Z0 

Let z* be the vector collinear with z? and belonging to 3min: 

z = pz, z* e 3min) 

Max 0 =pMax . 
zEfmin p *Z z e3min p Z 

But the convexity of 3 insures that 

p(z*-z) >_O, i.e., < 1; p.z* - 

since this ratio is equal to 1 when z = z*, we have 

Max p = = ; 
ze8smu1p 
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the maximum is reached at every point z e 3min such that a supporting 
plane through z contains z* (i.e., at every point z contained in a sup- 
porting plane through z*). 

We call p defined in the preceding way the coefficient of resource utili- 
zation of the economic system; it is a function p(iP, z?, 2) describing the 
efficiency of the economy. To be precise, it is the smallest fraction of the 
actually available physical resources that would permit the achievement 
of e. p = 1 if and only if &? is maximal (i.e., z? minimal). p < 1 if and 
only if B? is attainable but not maximal. p decreases if B? decreases or if 
) increases, for in both cases 3 increases; it is hardly more difficult to 

see that p decreases if z? increases ("decreases" has been used for short 
to mean "does not increase" and vice versa). 

The appellation suggested for p has a general content which must be 
clearly brought out. An economic system has three kinds of resources: 

P 3 

MAX 7 

(a) (b) 
FIGURE 3 

(1) its physical resources z?, (2) its production possibilities 2), and (3) 
its economic organization possibilities. If i? is not maximal there is a 
loss originating from one or several of the following sources: 

1. underemployment of physical resources, such as unemployment of 
labor, idle machinery, lands uncultivated by agreement, etc. This is 
the most obvious source of loss. In a very narrow sense a coefficient of 
resource utilization would describe only this phenomenon; this is by no 
means our only purpose. 

2. inefficiency in production; y, e ) . This kind of loss is already 
much less obvious but is not, by its very nature, the main concern of 
the economist. 

3. imperfection of economic organization; if the physical resources 
are fully utilized, if the production is perfectly efficient, it is still possible 
that i? is not maximal if the conditions of the basic theorem are not 
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satisfied. As is well known, such a case arises, for example, with monop- 
olies or indirect taxation or a system of tariffs. This kind of loss is the 
most subtle (in fact, perhaps hardly conceivable to the layman) and 
therefore the one for which a numerical evaluation is the most necessary. 

The coefficient p takes into account the three kinds of loss. 
The definition of the coefficient of resource utilization as the ratio of 

a vector collinear with z? to z? can be legitimized in cases more general 
than the convexity case, and defined in still further general cases, but 
this would lead to a certain amount of undesirable sophistication. 

10. DEFINITIONS OF THE ECONOMIC LOSS 

In summary, the loss is z -z* = z?(1 - p); its value is p*zo(1 -p), 
p* being the price vector associated with z*. However, p* has no im- 
mediate concrete significance and, if a price vector p0 exists in the eco- 
nomic situation actually observed, a more interesting evaluation is prob- 
ably p?.z?(1 - p). p?, which was inacceptable in the minimization 
process leading to z?, is, of course, acceptable now that an approximate 
numerical evaluation is sought. Whether one wants the magnitude of the 
loss due to monopolies (in the absence of other distortions, the total de- 
gree of monopoly could be taken as 1 - p), or to a taxation system, 
or to tariffs,'6 the above expression gives the answer under the form of 
a certain number of billions of dollars. p itself, a percentage describing 
the degree of efficiency of the economy, can be found more useful in some 
cases. 

Since J. Dupuit [7] several definitions of the loss described have been 
more or less explicitly suggested. A very simple one is the variation of 
real national income'7 [9, 22] [according to our notation,'8 p- (x2 -X)]; 

other definitions were directly based on the various notions of consumers' 
surplus as presented in their modern forms by J. R. Hicks [10, 11]. All 
of them derived the value of the loss from the comparison of two sets 
of individual consumptions (xl, xl) and (x, ... , x), and, if 
those two sets varied in such a way that W' and 42 did not change, the 
value of the loss did vary. This was inconsistent with the Paretian 
philosophy which considers two situations which yield the same point 
6 to be equivalent.'9 Even if this were overcome by the construction of 
a plausible numerical index of comparison of W' and W, it would still be 

16 The loss thus measured is the loss for the set of nations trading with each 
other as a whole. 

17 But it can be defined only if a price vector with some intrinsic meaning 
exists at all. 

18 The superscripts 1 and 2 will denote the two economic situations compared. 
19 Moreover, the roles played by situations (1) and (2) were generally asym- 

metrical in such a way that inconsistencies pointed out by T. de Scitovsky 
[23, 24] arose. 

This content downloaded from 124.42.78.218 on Tue, 3 Dec 2013 03:50:15 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


COEFFICIENT OF RESOURCE UTILIZATION 287 

unsatisfactory for finding the loss associated with 0' to compare it with 
an 02 arbitrarily selected in e(ma instead of comparing it with the set 
emax 

The treatment of this question by M. Allais [1] overcomes this diffi- 
culty, but its exposition and its results rely entirely on the asymmetrical 
role played by a particular commodity. 

11. MINIMAX INTERPRETATION OF p 

In Section 9 we were led to consider the expression (p-z/p-zO), where 
z e S3min(60) and p is one of the normals to ,3min at z. It was proved that 
its maximum is reached at z* (and possibly at other points) collinear 
with z?, and that its value is p, the ratio of z* to z?. This is but a part 
of a more complete theory that we present now. 

We still assume that the quantity of every commodity varies con- 
tinuously, but we drop for a moment the convexity hypothesis and look 
for 

p.Z 
Min Max P-, 

Ze3 pef p *z 

where $' is the closed positive orthant, origin excluded. z being given, 

Max o = Max 
ZA 

pC$I p*Z h Zh 

which may be infinite.20 
If z e 8, (zh/lz) > p for at least one h; otherwise one would have 

z < z*, contradicting the fact that z* C 3min. Therefore, Maxpfaj (p-z/ 
p.z?) 2 p whatever be z in ?3; it is equal to p if, and only if, z = z* 
(again an immediate consequence of "z* e Smin "). In other words, 
Minz,, Maxp4e,(p-z/p-z0) = p; it is reached for z* and p arbitrary in 
'. If p is chosen (say by some central agency) in $3' so as to make 

(p- z/p- z?) as great as possible, and if z is chosen in ?3 so as to make this 
expression as small as possible [this amounts to choosing yj in 2)j (resp. 
xi in Xi) so as to make p.y, (resp. p.xi) as small as possible for every 
j (resp. i)], the economic system is led to z* and the final value of the 
expression is p. The order in which the operations Max and Min are 
carried out is of utmost importance. 

If the set 3 is convex (this property of 83 has been studied in Sections 
6 and 9), this order becomes indifferent. In effect, let us look for 

p.Z 
Max Min - . 
P't ze3 p z 

2 Some ratios (zl/zl) might be of the form (0/0); they would be disregarded in 
the operation described by the right-hand member. 
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p being given, MinZE3 (p z/p z?) is reached for a point of 3min (and 
possibly other points of 3). We can therefore restrict ourselves to the 
case where z e S3min and p is a normal to 3min at z. The problem of finding 
the maximum of (p . z/p * z?) under these conditions is precisely the prob- 
lem we solved in Section 9. The maximum p is reached at z* (and pos- 
sibly at other points of S3min), the corresponding p* being any one of 
the normals to S3min at z*. 

To sum up, 

p = Min Max P Z - Max Min P Z- 
ze3 p4$ p IZ0 pe$1 ze3 PIz? 

the set of saddle points of the function (p.z/p.z?) is the product [17, 
Section 13] of: 

the set of z where Minz Maxp (p z/p z?) is reached; it is composed of 
z* only; 

the set of p where Maxp Minz (p z/p z?) is reached; it is composed of 
the normals p* to S3min at z*.21 

If 0O is maximal, the value of the minimax is, of course, 1. 

12. ISOMORPHISM WITH THE THEORY OF STATISTICAL DECISION 

FUNCTIONS 

If none of the components of z? is null, we can, by an appropriate 
choice of the units, make them all equal to 1. The expression (p . z/p * z?) 
then takes the form (P/ h ph) * Z; we put P = (P/7 >h Ph), normalizing 
the price vector in such a way that the sum of its components is 1, and 
we have, finally, the very simple form pz, where z e 3, p e $, the sim- 
plex defined by jh Ph = 1 and Ph > 0 

We have proved that, 23 being convex, 

p = Min MaK p z = Max Min pz. 
ze3 je ieq4 ze3 

The saddle points are z*, all of whose components are equal to p, asso- 
ciated with any normal p* to Smin at z*. They appear to be the result 
of the antagonistic activities of a central agency which chooses p in 
aJ so as to maximize p z and of production units (resp. consumption 
units) which choose yj (resp. xi) in 2)j (resp. Xi) so as to minimize p.z. 

21 If we were interested only in the fact that the operations Min and Max can 
be inverted, we could give the very short following proof: choose z* and one of 
the p* and show that this is a saddle point [17, Section 13]. This is indeed im- 
mediate but hardly enlightening. 

22 The structure of the set 8 makes these antagonistic activities formally 
different from a zero-sum two-person game in the von Neumann-Morgenstern 
[17, Section 17] sense. 
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On the other hand, a simple case of the theory of statistical decision 
functions can be presented in the following way.23 Let F(x) be the 
cumulative distribution function of a random variable t, a vector with 
possibly a denumerable infinity of components (probability that t < x); 
F is merely known to be an element of a finite set (F1, * * *, F, *... , F,). 
The statistician is faced with the choice of a decision d in a set Z. With 
every pair F,, d is associated a number r > 0 called risk, expressing 
what it costs to use d when F, is true. 

The expression r(F,, d) can be more conveniently written r,(d); 
it is thus clear that to each d corresponds a risk vector r(d) 
(r1,r***, r, ***,r,) of the space ,. The image of the set Z by the 
function r(d) is a set 1 of 1, , and the initial problem of choice of d in 

MIN-/ 

r1 
FIGURE 4 

Z can be replaced by the problem of choosing a point r in T. In the 
usual framework of the theory (including the use of randomized deci- 
sions; i.e., d1 and d2 being two decisions, one can choose di with the 
probability a and d2 with the probability 1 - a), T is closed and con- 
vex. If r' < r2, r' is better than r2 [whatever be the true F, , r(F, , di) ! 

r(F,, d2), the strict inequality holding for at least one L], and the choice 
of r is therefore restricted to Jmin. Let us make the further assumption 
that the straight line whose equations are r1 = r2 = . = r, meets 

23 The theory of which this paragraph and the three following ones give a 
summary is developed in greater detail and generality in the basic work of A. 
Wald [26]. Its geometric interpretation was pointed out by J. Wolfowitz at the 
Chicago meeting of the Econometric Society in December, 1950, in a paper, 
"Some Recent Advances in the Theory of Decision Functions," which is un- 
fortunately not available in printed form. 
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9? and meets it for the first time (when one is moving away from the 
origin) at a point r* of Tmin (Figure 4); this assumption is not significant 
for the theory of statistical decision functions, but the isomorphism 
can be brought out in this case. 

The principle of minimizing the maximum risk amounts to taking 
Minr Max, (r1, * **, r,); it leads to the selection of r*. Indeed, if p is 
a vector whose v components p, satisfy p, _ 0 and E p= 1, the Min 
Max operation mentioned is equivalent to Minr Max; pjr. The formal 
analogy with our former concepts is obvious: z and 3 have been re- 
placed by r and T; the normalized price vector p, by the vector p whose 
interpretation will be given in a moment. We proved in Section 11 that 
the operation Minr Maxp per leads to r*. 

We proved also that the operations Min and Max can be inverted. 
Max, Minr p-r now has the following interpretation: p is a probability 
vector, p, being the a priori probability that F, is true. The statistician 
minimizes the expected risk and Minr p-r gives the Bayes solution 
relative to the a priori distribution p. It is a point of 9Zmin. (Conversely, 
every point of ?min is a Bayes solution for a properly chosen p.) There- 
fore r* is the Bayes solution relative to p* (one of the normals to 9?min at 
r*); p* is the a priori distribution which gives the greatest value to the 
minimum expected risk, i.e., the least favorable a priori distribution. 

In the same way that prices were historically first considered as pri- 
mary data and later only as an indirect theoretical construction with 
optimal properties, the controversial concept of an a priori distribution, 
at first taken at its face value, is here considered as an indirect con- 
struction with intrinsic optimal properties. 

The formal analogies between the theories of zero-sum two-person 
games, statistical decision functions, and resource allocation are valu- 
able since a result obtained in any one of them can have an interesting 
counterpart in the two others; the differences between their philoso- 
phies should, however, by no means be overlooked. In a game we have 
a clear-cut case of naturally antagonistic interests: one player tries to 
make his gain as great as possible, the other tries to make his loss as 
small as possible. In a statistical decision problem, according to A. 
Wald's words [26, Section 1.6], "Whereas the experimenter wishes to 
minimize the risk r(F, d), we can hardly say that Nature wishes to 
maximize r(F, d). Nevertheless, since Nature's choice is unknown to 
the experimenter, it is perhaps not unreasonable for the experimenter to 
behave as if Nature wanted to maximize the risk. But, even if one is not 
willing to take this attitude, the theory of games remains of funda- 
mental importance for the problem of statistical decisions, since ... it 
leads to basic results concerning admissible decision functions and com- 
plete classes of decision functions." In the resource allocation problem 
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the central agency determining p is not inert and its behavior can be 
chosen precisely to conflict fully with the behavior of the various eco- 
nomic units. 

Cowles Commission for Research in Economics 
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