The Coefficients of Capacity and the Mutual Attractions or Repulsions of Two Electrified Spherical Conductors when close together.

By Alexander Russell, M.A., D.Sc., M.I.E.E.

(Communicated by Dr. C. Chree, F.R.S. Received June 2,-Read June 17, 1909.)

Introduction.

In connection with spark systems of wireless telegraphy, a knowledge of the electrostatic energy stored between spherical electrodes at the instant of the disruptive discharge is of great value to the engineer. In order to increase this energy, without unduly increasing the applied potential difference, the electrodes have been placed in compressed or highly rarefied gases and in oils or other liquid dielectrics having great electric strength. In these cases the least distance between the electrodes may only be a small fraction of the radius of either, and so the computation of the electrostatic energy by the ordinary formulæ is so laborious that it is practically prohibitive.

By extending a mathematical theorem first given by Schlömilch,* the author has succeeded in greatly simplifying the computation of this energy. The formulæ given below are very easily evaluated when the spheres are close together, and hence, in conjunction with Kirchhoff'st final modification of his own formulæ, they give the complete practical solution of this important historical problem.

The formulæ obtained enable the attractive or repulsive forces between electrified spherical conductors to be easily calculated, however close the spheres are to one another. They have been employed to recalculate the latter portion of the table published by Kelvin. \ddagger This table has also been extended so as to make it more useful to physicists and electricians.

Mathematical Theorems.

By Schlömilch's method (loc. cit.) we can prove that

$$
\begin{align*}
\sum_{s=1}^{s=\infty} \frac{1}{\epsilon^{(1+n s) x}-1}=\frac{\mathrm{F}(n)-\log x}{n x}+\frac{1}{2}\left(\frac{1}{n}-\frac{1}{2}\right)-\frac{\mathrm{B}_{1} n x}{2!} & \mathrm{A}_{1}-\frac{\mathrm{B}_{3} n^{3} x^{3}}{4!} \mathrm{A}_{3} \\
& -\frac{\mathrm{B}_{2 m-1}(n x)^{2 m-1}}{2 m!} \mathrm{A}_{2 m-1}, \tag{1}
\end{align*}
$$

[^0]approximately, provided that the last term is very small compared with unity. In this formula $B_{1}, B_{3}, B_{5}, \ldots$, are Bernoulli's numbers,
\[

$$
\begin{equation*}
\mathrm{F}(n)=\frac{n}{2}+\frac{\mathrm{B}_{1}}{2} n^{2}-\frac{\mathrm{B}_{3}}{4} n^{4}+\frac{\mathrm{B}_{5}}{6} n^{6}-\ldots \tag{2}
\end{equation*}
$$

\]

and

$$
\begin{align*}
(-)^{m-1} \mathrm{~A}_{2 m-1} & =\frac{1}{2 m n^{2 m}}-\frac{1}{2 n^{2 m-1}}+\frac{(2 m-1) \mathrm{B}_{1}}{2!n^{2 m-2}} \\
& -\frac{(2 m-1)(2 m-2)(2 m-3) \mathrm{B}_{3}}{4!n^{2 m-4}}+\ldots+(-)^{m-1} \frac{\mathrm{~B}_{2 m-1}}{2 m} \tag{3}
\end{align*}
$$

It is easy to show by Stirling's theorem that

$$
\begin{equation*}
\mathrm{F}(n)=-\Gamma^{\prime}(1 / n) / \Gamma(1 / n)-\log n \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{F}(n)-\mathrm{F}\left(\frac{n}{n-1}\right)=\pi \cot \frac{\pi}{n}-\log (n-1) \tag{5}
\end{equation*}
$$

In many cases the value of $\mathrm{F}(n)$ may be simply expressed. For instance, if $\boldsymbol{\gamma}$ denote Euler's constant, we have $\mathrm{F}(1)=\boldsymbol{\gamma}, \mathrm{F}(2)=\boldsymbol{\gamma}+\log 2$, $\mathrm{F}(3)=\gamma+\pi / 2 \sqrt{3}+\frac{1}{2} \log 3, \mathrm{~F}(4)=\gamma+\pi / 2+\log 2$, etc. In general, however, the value of $\mathrm{F}(n)$ has to be computed by a series formula. In our problem n is never less than unity, and so the following formula can always. be used-

$$
\begin{equation*}
\mathrm{F}(n)=\frac{n}{2}+\gamma+\frac{1}{n^{2}-1}+\frac{\pi}{2} \cot \frac{\pi}{n}-\log n+\frac{\mathrm{S}_{3}-1}{n^{2}}+\frac{\mathrm{S}_{5}-1}{n^{4}}+\ldots \tag{6}
\end{equation*}
$$

where $\mathrm{S}_{m}=\frac{1}{1^{m}}+\frac{1}{2^{m}}+\frac{1}{3^{m}}+\ldots$. The values of $\mathrm{S}_{3}, \mathrm{~S}_{5}, \ldots$, are given (e.g.) in Dale's ' Mathematical Tables.'

From (3) we can show that when n is unity $\mathrm{A}_{2 m-1}^{\prime}=\mathrm{B}_{2 m-1} /(2 m)$, and when n is $2, \mathrm{~A}^{\prime \prime}{ }_{2 m-1}=-\mathrm{B}_{2 m-1}\left(1-2^{-2 m+1}\right) /(2 m)$. We can also show that for any value of n, other than 1 or $2, \mathrm{~A}_{2 m-1}$ lies in value between $\mathrm{A}_{2 m-1}^{\prime}$ and $\mathrm{A}^{\prime \prime}{ }_{2 m-1}$. Its value also is not altered when we write $1-1 / n$ for $1 / n$.

Writing t for $(n-1) / n^{2}$, we easily find that

$$
\begin{aligned}
& \mathrm{A}_{1}=\frac{1}{12}-\frac{t}{2}, \quad \mathrm{~A}_{3}=\frac{1}{120}-\frac{t^{2}}{4}, \quad \mathrm{~A}_{5}=\frac{1}{252}-\frac{t^{3}}{6}-\frac{t^{2}}{12}, \\
& \mathrm{~A}_{7}=\frac{1}{240}-\frac{t^{4}}{8}-\frac{t^{3}}{6}-\frac{t^{2}}{12}, \quad \text { and } \quad \mathrm{A}_{9}=\frac{5}{660}-\frac{t^{5}}{10}-\frac{t^{4}}{4}-\frac{3 t^{3}}{10}-\frac{3 t^{2}}{20} .
\end{aligned}
$$

The author has verified by actual calculation that, to a seven figure accuracy at least, formula (1) is true, both when n is 1 and when n is 2 , even when x is as great as $2 \log 2$, i.e. 1386 nearly, and powers of x greater than the ninth are neglected.

Putting $n=1$ in (1) we get Schlömilch's Theorem. Schlömileh has verified by actual calculation that when x is $\log 2 \cdot 5$, i.e. $0 \cdot 916$ nearly, his formula, neglecting powers of x beyond the ninth, practically gives the numerical value of the series correctly to 10 significant figures. He has also shown that when x is not greater than $\log (10 / 9)$, i.e. $0 \cdot 105$ nearly, the formula

$$
\begin{equation*}
\sum_{1}^{\infty} \frac{1}{\epsilon^{s x}-1}=\frac{\gamma-\log x}{x}+\frac{1}{4}-\frac{x}{144} \tag{7}
\end{equation*}
$$

gives a seven figure accuracy. To obtain the same accuracy by Clausen's Theorem, which was utilised and extended by Kirchhoff (loc: cit.), 13 terms would have to be taken, and the calculation of the later terms is very laborious.

The Capacity Coefficients of Two Spheres.

Let us consider the case of two spherical conductors whose radii are a and b respectively, and let c be the distance between their centres. If the charges and potentials of the spheres be q_{1}, q_{2} and v_{1}, v_{2} respectively, we have
and

$$
\left.\begin{array}{l}
q_{1}=k_{1,1} v_{1}+k_{1,2} v_{2} \tag{8}\\
q_{2}=k_{2,2} v_{2}+k_{1,2} v_{1}
\end{array}\right\}
$$

where $k_{1,1}$ and $k_{1,2}$ are the capacity coefficients of the two spheres. The values of these quantities in terms of a, b, and c are given by the following equations* :

$$
\begin{align*}
k_{1,1} & =\lambda \sum_{s=0}^{s=\infty} \frac{1}{\sinh (\alpha+s \omega)}, \tag{9}\\
-k_{1,2} & =\lambda \sum_{1}^{\infty} \frac{1}{\sinh s \omega}, \tag{10}\\
k_{2,2} & =\lambda \sum_{0}^{\infty} \frac{1}{\sinh (\beta+s \omega)}, \tag{11}
\end{align*}
$$

where

$$
\begin{gather*}
4 c^{2} \lambda^{2}=(c+a+b)(c-a-b)(c+a-b)(c-a+b), \tag{12}\\
\sinh \alpha=\lambda / a, \quad \sinh \beta=\lambda / b, \quad \text { and } \quad \sinh \omega=\lambda c / a b . \tag{13}
\end{gather*}
$$

We also have

$$
\begin{equation*}
\omega=\alpha+\beta \quad \text { and } \quad \alpha=\log \left(\frac{\lambda}{a}+\sqrt{1+\frac{\lambda^{2}}{a^{2}}}\right) . \tag{14}
\end{equation*}
$$

When $c-a-b$ is small, it is necessary to alter the formulæ (9), (10) and * Cf. Maxwell, vol. 1, § 173.
(11) by means of (1) so as to lessen the labour involved in the computation. From (9) we have

$$
\begin{align*}
& \frac{k_{1,1}}{2 \lambda}= \sum_{0}^{\infty} \frac{1}{\epsilon^{a+s \omega}}-1 \\
& \sum_{0}^{\infty} \frac{1}{\epsilon^{2 a+2 s \omega}}-1 \\
&= \frac{\mathrm{F}(n)-\log (\omega / 2 n)}{2 \omega}+\frac{\mathrm{B}_{1} \omega}{2!} \mathrm{A}_{1}+\frac{7 \mathrm{~B}_{3} \omega^{3}}{4!} \mathrm{A}_{3}+\frac{31 \mathrm{~B}_{5} \omega^{5}}{6!} \mathrm{A}_{5} \tag{15}\\
& \quad+\frac{127 \mathrm{~B}_{7} \omega^{7}}{8!} \mathrm{A}_{7}+\frac{511 \mathrm{~B}_{9} \omega^{9}}{10!} \mathrm{A}_{9},
\end{align*}
$$

very approximately, where $n=\omega / \alpha$.
Finding the corresponding formula for $k_{2,2} / 2 \lambda$ and subtracting it from (15), we get, by (5),

$$
\begin{equation*}
k_{1,1}-k_{2,2}=\frac{\pi \lambda}{\alpha+\beta} \cot \frac{\pi \alpha}{\alpha+\beta}, \tag{16}
\end{equation*}
$$

very approximately.
When the spheres are so close together that λ is small compared with or $b, \alpha=\lambda / a$ and $\beta=\lambda / b$, and hence

$$
\begin{equation*}
k_{1,1}-k_{2,2}=\frac{\pi a b}{a+b} \cot \frac{\pi b}{a+b} . \tag{17}
\end{equation*}
$$

This formula* has been obtained previously for the case of spheres in contact.

From (10) also we find that

$$
\begin{array}{r}
-\frac{k_{1,2}}{2 \lambda}=\frac{\gamma-\log (\omega / 2)}{2 \omega}+\frac{\omega}{144}+\frac{7 \omega^{3}}{86400}+\frac{31 \omega^{5}}{7620480} \\
+\frac{127 \omega^{7}}{290304000}+\frac{511 \omega^{9}}{3161410560} \tag{18}
\end{array}
$$

very approximately.

The Attractions or Repulsions between the Spheres.

If the potentials of the spheres be maintained constant, Kelvin \dagger proved that when they alter their positions owing to their mutual electric actions they move in such a way that the electrostatic energy of the ${ }_{3}^{\text {s }}$ system is increased by an amount exactly equal to the work done on the conducting spheres by the electric forces. If W be the electrostatic energy, we have
and therefore

$$
\mathrm{W}=\frac{1}{2} k_{1,1} v_{1}^{2}+\frac{1}{2} k_{2,2} v_{2}^{2}+k_{1,2} v_{1} v_{2},
$$

$$
\frac{\partial \mathrm{W}}{\partial x}=\frac{1}{2} v_{1}^{2} \frac{\partial k_{1,1}}{\partial x}+\frac{1}{2} v_{2} \frac{\partial k_{2,2}}{\partial x}+v_{1} v_{2} \frac{\partial k_{1,2}}{\partial x}=\mathrm{F}
$$

[^1]where $x=c-a-b=$ the least distance between the spheres, and F is the force between them. If F is negative, W increases as x diminishes, and therefore the force is attractive, but if F is positive the force is repulsive. The values of $\partial k_{1,1} / \partial x, \partial k_{2,2} / \partial x$ and $\partial k_{1,2} / \partial x$ can easily be found from the preceding formulæ.

Spheres at Microscopic Distances apart.

In this case, $x /(a+b)$ being supposed negligibly small compared with unity, we have $\lambda^{2}=\frac{2 a b}{a+b} x$, and $\omega^{2}=\frac{2(a+b)}{a b} x$, and hence

$$
\begin{align*}
& k_{1,1}=\frac{a b}{a+b}\left\{\mathrm{~F}\left(1+\frac{a}{b}\right)+\frac{1}{2} \log \frac{2 a(a+b)}{b}+\frac{1}{2} \log \frac{1}{x}\right\} \\
& k_{2,2}=\frac{a b}{a+b}\left\{\mathrm{~F}\left(1+\frac{b}{a}\right)+\frac{1}{2} \log \frac{2 b(a+b)}{a}+\frac{1}{2} \log \frac{1}{x}\right\} \tag{19}\\
& -k_{1,2}=\frac{a b}{a+b}\left\{\gamma+\frac{1}{2} \log \frac{2 a b}{a+b}+\frac{1}{2} \log \frac{1}{x}\right\} .
\end{align*}
$$

If the difference of potential produced between the spheres by giving a charge $+q$ to one and $-q$ to the other be V , then q / V is defined* to be the capacity between the spheres.

This is the capacity that is generally considered by electrical engineers. It is easy to show that its value is

$$
\frac{k_{1,1} k_{2,2}-k_{1,2}{ }^{2}}{k_{1,1}+k_{2,2}+2 k_{1,2}},
$$

and hence it can be found by (19).
The joint capacity of the two spheres when at the same potential is $k_{1,1}+k_{2,2}+2 k_{1,2}$. It therefore equals

$$
\begin{equation*}
\frac{a b}{a+b}\left\{\mathrm{~F}\left(1+\frac{a}{b}\right)+\mathrm{F}\left(1+\frac{b}{a}\right)-2 \gamma+\log \frac{(a+b)^{2}}{a b}\right\} . \tag{20}
\end{equation*}
$$

When $a=b$, this capacity is $2 a \log 2$; when $a=2 b$, it equals $a \log 3$; when $a=3 b$, it equals $\frac{3}{4} a \log 4$, etc.

If the square of the difference of potential $\left(v_{1}-v_{2}\right)^{2}$ between the two spheres be not very small compared with $v_{1}{ }^{2}+v_{2}{ }^{2}$, the force F between them is attractive and is given by

$$
\begin{equation*}
\mathbf{F}=\frac{a b\left(v_{1}-v_{2}\right)^{2}}{4(a+b) x} . \tag{21}
\end{equation*}
$$

The Case of Equal Spheres.

When the spheres are equal, $k_{1,1}=k_{2,2}$ and the formulæ become

$$
\begin{align*}
k_{1,1}= & \frac{\lambda}{\omega}\left\{2 \cdot 6566572-\log \omega-\frac{\omega^{2}}{144}-\frac{49 \omega^{4}}{345600}-\frac{961 \omega^{6}}{121927680}-\frac{16129 \omega^{8}}{18579456000}\right. \\
& \left.-\frac{261121 \omega^{10}}{1618642206720}\right\} \tag{22}
\end{align*}
$$

$-k_{1,2}=\frac{\lambda}{\omega}\left\{1 \cdot 2703628-\log \omega+\frac{\omega^{2}}{72}+\frac{7 \omega^{4}}{43200}+\frac{31 \omega^{6}}{3810240}+\frac{127 \omega^{8}}{145152000}\right.$

$$
\begin{equation*}
\left.+\frac{511 \omega^{10}}{3161410560}\right\} \tag{23}
\end{equation*}
$$

$-\frac{\partial k_{1,1}}{\partial x}=-\frac{k_{1,1}}{\lambda^{2}}\left(\frac{c}{4}-\frac{\lambda}{\omega}\right)+\frac{1}{\omega^{2}}\left\{1+\frac{\omega^{2}}{72}+\frac{49 \omega^{4}}{86400}+\frac{961 \omega^{6}}{20321280}+\frac{16129 \omega^{8}}{2322432000}\right.$

$$
\begin{equation*}
\left.+\frac{261121 \omega^{10}}{161864220672}\right\} \tag{24}
\end{equation*}
$$

Efind

$$
\begin{align*}
& \frac{\partial k_{1,2}}{\partial x}= \\
& =-\frac{-k_{1,2}}{\lambda^{2}}\left(\frac{c}{4}-\frac{\lambda}{\omega}\right)+\frac{1}{\omega^{2}}\left(1-\frac{\omega^{2}}{36}-\frac{7 \omega^{4}}{10800}-\frac{31 \omega^{6}}{635040}-\frac{127 \omega^{8}}{18144000}\right. \tag{25}\\
& \\
& \\
& \left.-\frac{511 \omega^{10}}{316141056}\right) .
\end{align*}
$$

If a be the radius of each sphere, we have

$$
\lambda^{2} / a^{2}=x / a+x^{2} /(2 a)^{2} \quad \text { and } \quad \omega=2 \log \left(\lambda / a+\sqrt{1+\lambda^{2} / a^{2}}\right) .
$$

Formulæ (22)-(25) were used in computing the following tables :-

x / a.	$k_{1,1} / a$.		$\underline{-k_{1,2} / a .}$	
	Formula (22).	Ketvin.	Formula (23).	Kelvin.
$0 \cdot 5$	$1 \cdot 25302 *$	$1 \cdot 25324$	$0 \cdot 52537$	$0 \cdot 52537$
$0 \cdot 45$	$1 \cdot 27420$		$0 \cdot 54682$	
0.4 0.35	$1 \cdot 29316$ $1 \cdot 31830$	$1 \cdot 29316$	0.57202 0.60049	0.57202
0.35 0.3	1 1 1 3184838	$1 \cdot 34827$	0.60049 0.63384	$0 \cdot 63395$
$0 \cdot 25$	$1 \cdot 38491$	13482		- 63395
$0 \cdot 2$	$1 \cdot 43131$	$1 \cdot 43131$	$0 \cdot 72378$	0.72378
$0 \cdot 15$	1.49328		$0 \cdot 78927$	
$0 \cdot 1$	1 588396	1.58396	0.88352^{*}	$0 \cdot 88175$

* Computed also by Kirchhoff (loc. cit.).

x / a.	$k_{1,1} / a$.	$-k_{1,2} / a$,	x / a.	$k_{1,1} / a$.	$-k_{1,2} / a$.
0.09	1.60805	0.90833	0.02	1.96643	1.27181
0.08	1.63519	0.93619	0.01	2.13667	1.44246
0.07	1.66622	0.96795	$0.0_{2} 1$	2.70920	2.01598
0.06	1.70234	1.0480	0.0 .01	3.28439	2.59124
0.05	1.74543	1.04862	$0.0{ }^{4} 1$	3.85998	3.16684
0.04	1.79864	1.10256	0.051	4.43563	3.74249
0.03	1.86788	1.17253	$0.0_{6} 1$	5.01124	4.31810

x / a.	$-\frac{1}{2}\left(\partial k_{1,1} / \partial x\right)$.		$\sim^{\frac{1}{2}}\left(\partial k_{1,2} / \partial x\right)$.	
	Formula (24).	Kelvin.	Formula (25).	Kelvin.
$0 \cdot 5$	$0 \cdot 17424^{*}$	$0 \cdot 17432$	$0 \cdot 20630$	$0 \cdot 20630$
$0 \cdot 45$ $0 \cdot 4$	$0 \cdot 20105$ $0 \cdot 23158$	$0 \cdot 23159$	$0 \cdot 23107$ $0 \cdot 26464$ 0	0-26464
$0 \cdot 4$ $0 \cdot 35$	$0 \cdot 23158$ $0 \cdot 27319$	$0 \cdot 23159$	0-30673	- 26464
$0 \cdot 3$	0-32924	0.32917 \dagger	0-36325	$0 \cdot 36357$
$0 \cdot 25$	$0 \cdot 40848$		0-44299	
$0 \cdot 2$	$0 \cdot 52853$	$0 \cdot 52852$	0.56352	$0 \cdot 56350$
$0 \cdot 15$	$0 \cdot 73056$ $1 \cdot 13844$		$\begin{aligned} & 0 \cdot 76603 \\ & 1 \cdot 17439 \end{aligned}$	1-17439
$0 \cdot 1$	1-13844	13844		1788

* Given also by Kirchhoff (loc, cit.).
\dagger Kelvin had calculated the value previously by himself and made it 0.32926 (see Reprint, p. 23).

x / a,	$-\frac{1}{2}\left(\partial k_{1,1} / \partial x\right)$.	${ }_{\frac{1}{2}}\left(\partial k_{1,2} / \partial x\right)$.	x / a.	$-\frac{1}{2}\left(\partial k_{1,1} / \partial x\right)$.	$\frac{1}{2}\left(\partial k_{1,2} / \partial x\right)$.
$0 \cdot 09$	$1 \cdot 2751$	$1 \cdot 3111$	0.02	$6 \cdot 1043$	${ }_{6}^{6 \cdot 1410}$
0.08	$1 \cdot 4461$	1.4823	0.01 0.0 .1	$12 \cdot 340$ $124 \cdot 82$	$12 \cdot 377$ $124 \cdot 86$
0.07 0.06	1.6665 1.9608	1.7028 1.9972		$1249 \cdot 8$	$1249 \cdot 8$
${ }_{0}^{0.06}$	${ }_{2} \cdot 3736$	$2 \cdot 4101$	$0 \cdot 0.1$	12500	12500
$0 \cdot 04$	2.9938	3. 0304	0.051 0.061	125000 1250000	125000 1250000
$0 \cdot 03$	$4 \cdot 0294$	$4 \cdot 0661$	$0 \cdot 0_{6} 1$		1250000

Simplified Formulce for Equal Spheres.

When x / a is small, we find that

$$
\begin{align*}
k_{1,1} & =\frac{a}{2}\left(1+\frac{x}{6 a}-\frac{x^{2}}{180 a^{2}}\right)\left(1.96351+\frac{1}{2} \log _{e} \frac{a}{x}+\frac{x}{72 a}-\frac{213 x^{2}}{43200 a^{2}}\right) \tag{26}\\
-k_{1,2} & =\frac{a}{2}\left(1+\frac{x}{6 a}-\frac{x^{2}}{180 a^{2}}\right)\left(0.577216+\frac{1}{2} \log _{e} \frac{a}{x}+\frac{7 x}{72 a}-\frac{251 x^{2}}{43200 a^{2}}\right) \tag{27}
\end{align*}
$$

Putting $x / a=1 / 10$ in these formulæ, we find that $k_{1,1}=1.58397$ and $-k_{1,2}=0.88355$. The true values are 1.58395 and 0.88352 . Hence (26) and (27) can be used in all practical calculations when x / a is not greater than a tenth.

When an accuracy of the hundredth part of 1 per cent. suffices and x / a is not greater than $1 / 10$, we may use the formule
and

$$
\begin{align*}
& \frac{1}{2}\left(k_{1,1}-k_{1,2}\right)=\frac{a}{2}\left(1+\frac{x}{6 a}\right)\left(1 \cdot 2704+\frac{1}{2} \log _{\epsilon} \frac{a}{x}+\frac{x}{18 a}\right), \tag{28}\\
& 2\left(k_{1,1}+k_{1,2}\right)=a\left(1+\frac{x}{6 a}\right)\left(1 \cdot 3863-\frac{x}{12 a}\right) \tag{29}
\end{align*}
$$

for the capacity between the two spheres and their joint capacity respectively.

It will be seen that this latter capacity is very little greater than $2 a \log _{\mathrm{e}} 2$ ， the value which it has when they touch．

Similarly，when the squares and higher powers of x / a are negligibly small compared with unity，the electrostatic force F between them is given by

$$
\begin{align*}
& \mathrm{F}=-\frac{a\left(v_{1}-v_{2}\right)^{2}}{8 x}\left\{1-\frac{12 \gamma+1}{36} \frac{x}{a}-\frac{1}{6} \frac{x}{a} \log \frac{a}{x}+\frac{x^{2}}{90 a^{2}} \log \frac{a}{x}\right\} \\
& \text { त्र } \tag{30}\\
& \text { त्र }
\end{align*}
$$

$\stackrel{\rightharpoonup}{x}$ When x / a is small，and $\left(v_{1}-v_{2}\right)^{2}$ is not very small compared with $v_{1}^{2}+v_{2}^{2}$ ，品 magnitude of the attractive force is approximately

$$
\begin{equation*}
\frac{a\left(v_{1}-v_{2}\right)^{2}}{8 x} . \tag{31}
\end{equation*}
$$

We see，therefore，that when the spheres are very close together the咕tractive force varies as the diameter of either sphere，as the square of Eineir difference of potential，and inversely as the least distance between
： flem．
When the spheres are at the same potential，the formula given by（30） ． oheres in contact．As he pointed out，this force is independent of the size彩 the spheres．
Finally，if the charges on the spheres be $+q$ and $-q$ respectively，we ond by（28）and（31）that the attraction between them is given by

$$
\mathrm{F}=q^{2} / 2 a x\left\{1 \cdot 2704+\frac{1}{2} \log _{e}(a / x)\right\}^{2}
$$

Downloaded from hich when 2.54 can be neglected compared with $\log _{\epsilon}(a / x)$ may be written

$$
\mathrm{F}=2 q^{2} / a x\left\{\log _{\mathrm{e}}(a / x)\right\}^{2} .
$$

[^0]: * ' Zeitschrift für Mathematik und Physik,' vol. 6, p. 407, 1860.
 + 'Annalen der Physik,' vol. 27, p. 673, 1886.
 \ddagger 'Phil. Mag.' A pril and August, 1853, or Reprint, p. 83.

[^1]: * See Maxwell, vol. 1, § 175 and the references given there.
 + Reprint, p. 466, Second Edition.

