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1 Introduction
Arithmetic is the theory of the natural numbers and one of the oldest areas
of mathematics. Since almost all other mathematical theories make use of
numbers in some way or other, arithmetic is also one of the most funda-
mental theories of mathematics. But numbers are not just abstract entities
that are subject to mathematical ruminations—they are represented, used,
embodied, and manipulated in order to achieve many di↵erent goals, e.g.,
to count or denote the size of a collection of objects, to trade goods, to
balance bank accounts, or to play the lottery. Consequently, numbers are
both abstract and intimately connected to language and to our interactions
with the world.

In the present paper we provide an overview of research that has ad-
dressed the question of how animals and humans learn, represent, and pro-
cess numbers. The interrelations among mathematics, the world, and the
cognitive capacities that are frequently discussed in terms of mind and brain
have been the subject of many theories and much speculation. Figure 1a
shows that the four basic concepts that anchor this discussion (mathematics,
world, mind, brain) enable six possible binary relationships (four edges and
two diagonals), each of which raises fundamental philosophical questions.
Traditionally, philosophy of mathematics focuses on the triangle between
mind, mathematics, and the world (Figure 1b, �), asks how mushy minds
can grasp abstract numerical concepts, wonders about the nature of math-
ematical truth, and is puzzled by “the uncanny usefulness of mathematical
concepts” (Wigner, 1960). In contrast, psychologists and their colleagues
from cognitive science and neuroscience investigate the relationship between
mind and brain and its relation to the world, that is further sub-divided into
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Figure 1. Schematic views of possible perspectives on the cognitive basis
of arithmetic.

physical and social environments (Figure 1c,  ). From this perspective, the
ability to understand and solve mathematical problems is just one accidental
topic among many others, and is typically overshadowed by more prominent
issues of perception, categorization, language, memory, judgment, and de-
cision making.

As a departure from both of these traditional perspectives, this paper
on the cognitive basis of arithmetic focuses on the manifold relations be-
tween mathematics, mind, and brain (Figure 1d, CBA). To illuminate this
triangle, we shall cross many disciplinary boundaries and collect past and
present insights from philosophy, animal learning, developmental psychol-
ogy, cultural anthropology, cognitive science, and neuroscience. Although
mathematics consists of far more than arithmetic and certainly involves cog-
nitive faculties that extend beyond the ones discussed here (like reasoning
with diagrams and infinite objects), we restrict ourselves to the cognitive ba-
sis of arithmetic. Such a foundation will provide the groundwork for a more
comprehensive understanding of mathematics from a cognitive perspective.

Some basic terminological distinctions. By numbers we mean the ab-
stract entities that are denoted by number words like ‘seventeen’ or numerals
like ‘42.’ The properties of these objects are studied by mathematicians. In
contrast, what we encounter with our senses are collections of things, which
are also called numerosities.1 These are discrete, concrete numerical quan-
tities of objects, like a pile of peas or the musicians in a band called ‘The
Beatles.’ The magnitude or size of such collections are cardinal numbers,

1In ordinary parlance one also speaks of sets of objects, but we shall try to avoid
this term, because it should not be confused with the mathematical notion of set. Some
philosophers play down this di↵erence, in order to account for our epistemic access to
sets (Maddy, 1992, pp. 59–61).
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one two three four five six

(a) Tally system:
(b) Roman numerals: I II III IIII V VI
(c) Greek alphabetic: a b g d e ì

(d) Arabic decimal: 1 2 3 4 5 6
(e) Binary digits: 1 10 11 100 101 110

seven eight nine ten eleven twelve

(a) Tally system:
(b) Roman numerals: VII VIII VIIII X XI XII
(c) Greek alphabetic: z h j i ia ib

(d) Arabic decimal: 7 8 9 10 11 12
(e) Binary digits: 111 1000 1001 1010 1011 1100

Table 1. Di↵erent representational systems to represent numbers. Note
that the letter for the Greek alphabetic numeral for 6 is the now obsolete
Greek letter digamma, and that we represent the Roman numerals without
the ‘subtractive’ notation (i.e., representing 4 as IV, instead of IIII) that
was introduced in the Middle Ages.

while ordinal numbers indicate positions in an ordered sequence (e.g., first,
second, third, etc.).2

Numbers can be represented in multiple ways, and it is important to
distinguish between external and internal representations. The two main
external representations are numerical and lexical notation systems (Chri-
somalis, 2004). The latter are sequences of numeral words in a language,
either written or spoken, with a distinctive phonetic component, while the
former are sequences of numeral phrases or simply numerals, themselves
consisting of a group of elementary numeral signs or symbols. In our famil-
iar decimal place-value numeral system, these are also called digits. Clearly,
di↵erent numerals can denote the same number: Each column in Table 1
denotes the same numerical quantity. In ordinary parlance a numerical no-
tation system is also referred to as a ‘number system’ and authors frequently
use terms like ‘Roman numbers’ to refer to Roman numerals. We might also
slip into this habit, if the context provides su�cient information to prevent
ambiguity. Internal representations of numbers are how numbers are rep-
resented ‘in the head’, which can refer to the level of neurons in the brain,
but also to a higher, more abstract conceptual or representational level.
Note that in the psychological literature a concept is typically understood
to be a mental entity, which is not necessarily so in the philosophical litera-
ture. Indeed, in the tradition of analytic philosophy concepts are expressly

2The related, but somewhat di↵erent, technical notions of cardinal and ordinal num-
bers in set theory are beyond the scope of this paper.
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not considered to be mental entities.3 Thus, cognitive scientists often refer
to mental representations as ways in which a particular system of numer-
als is mapped to internal concepts and also mention mental processes as
operations that translate between external and internal formats and that
manipulate internal representations.

During the following discussion it is useful to keep in mind the distinc-
tion between di↵erent levels of numerical competence. The most basic level
consists in the ability to recognize and distinguish small numerosities. The
second level, that of counting, involves mastering at least an initial segment
of a numerical or lexical notation system and the ability to systematically
map numerosities to that system in a one-to-one fashion. The realization
that there is no greatest number and that the numeral systems are poten-
tially infinite, i.e., that the process of counting can be continued indefinitely,
can be considered a further step in the acquisition of knowledge about num-
bers. Arithmetic competence begins with the ability to perform basic com-
putations, i.e., to correctly apply the operations of addition, subtraction,
multiplication, and division.4 In analogy to the distinction between inter-
nal and external notation systems, we can also distinguish between internal
and external arithmetic. As we shall see in Section 4.3, however, there is
evidence that these systems are closely related. Finally, logical reasoning
about numbers and the ability to prove and understand arithmetic theo-
rems, e.g., that there are infinitely many prime numbers, constitutes the
most advanced level of numerical competence.

Mathematical, philosophical, and psychological perspectives on
arithmetic. Our above characterization of arithmetic as the theory of the
natural numbers is one that a mathematician would provide. From this
point view, practicing arithmetic mainly involves establishing properties of
numbers by means of proofs, resulting in discoveries like Euclid’s theorem
about the infinity of prime numbers and conjectures like Fermat’s Last The-
orem. In the late nineteenth century arithmetic was even considered to be
the most fundamental mathematical theory to which all others should be
reduced (see Klein, 1895). In modern mathematics, however, there are no
restrictions on the methods used for studying numbers; and while mathe-
maticians operate with numerical representations, they usually do not worry
too much about them, since they are interested in establishing relationships
between numbers at an abstract level.

3The analytic tradition follows Frege’s distinction between concepts as logical entities
and ideas as psychological entities (Frege, 1884, pp. xxi–xxii). We return to this issue in
Section 5.

4The di�culties involved in learning the basic arithmetical operations and how these
are related to particular systems of numerals are discussed in (Lengnink and Schlimm,
2010, this volume).
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The metaphysical nature of numbers has been a topic of philosophical
discussion since the ancient Greeks, most famously by Pythagoras, Plato,
and Aristotle. Surprising and counterintuitive results in the mathematics
of the nineteenth century kindled an interest in foundational questions.5 In
order to secure these foundations, Frege (1884) attempted to reduce the con-
cept of number to purely logical notions while Dedekind (1888) and Peano
(1889) provided axiomatizations of the natural number structure. These
developments greatly influenced the practice and understanding of mathe-
matics. Indeed, many contemporary philosophers characterize mathematics
as the science of structures (Shapiro, 2000). According to this view it makes
no sense to regard individual numbers in isolation; instead, they must be
regarded as positions within a natural number structure. This raises the
important question of how we can have access to and knowledge of such an
abstract and infinite structure. Traditionally, philosophers also have paid
very little attention to the representations of numbers, except to motivate
their accounts of our epistemic access to them. In general, they seem to
be content to mention ad hoc accounts based on anecdotal evidence and to
outsource these investigations to cognitive scientists.6

Since mathematical reasoning is often considered to be a fundamental
human ability, the relatively young discipline of cognitive science has shown
great interest in exploring it, with its main concern being how the brain or
the mind processes numerical reasoning (see, e.g., Dehaene, 1997; Butter-
worth, 1999; Lako↵ and Núñez, 2000).

One of the basic issues concerns the relation between basic numerical
processing and the use of language. In particular, cognitive scientists inves-
tigate how the levels of arithmetic competence are related to various internal
and external representations. Theory formation in cognitive science often
goes hand in hand with the gathering of empirical data on arithmetical
abilities of animals and infants, as well as on the use of number words in
di↵erent cultures (see also François and Van Kerkhove, 2010, this volume).
Thus, cognitive scientists are primarily concerned with the lower levels of
numerical competence and with internal representations and rarely discuss
how their empirical findings relate to higher-level mathematical abilities.

Overview. In the following sections we discuss a wide range of empirical
findings on the cognitive foundations of arithmetic from a variety of scientific
disciplines and perspectives. Of particular interest with regard to the phy-
logenetic and ontogenetic developments of numerical abstractions are the
mathematical abilities of animals as well as those of infants (Sections 2.2

5See (Buldt and Schlimm, 2010, this volume), for a general discussion of these devel-
opments.

6See, e.g., (Maddy, 1992, pp. 50–74), (Resnik, 1997, Ch. 11), and (Shapiro, 2000,
pp. 279–280).
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and 2.3). The relation between these abilities and the use of number words
is studied through investigations of the numerical abilities of cultures with
only a limited repertoire of number words (Section 2.4). After discussing re-
search on the localization of arithmetical processes in the brain (Section 3),
we shall turn to questions about arithmetic notation (Section 4). In partic-
ular, we shall ask questions like: How do notations facilitate or constrain
simple and complex arithmetic computations? What is the relationship be-
tween external notations and mental calculations? What is the impact of
resources provided by the computational environment? To address these
more theoretical issues we need to consider fundamental aspects of arith-
metic notations. We shall provide some terminological distinctions and
historical context for the comparative study of number systems. We then
sketch a computational method that allows us to illustrate and quantify the
trade-o↵s between specific numeration systems and the internal and exter-
nal processes they require for performing calculations. Ultimately, we argue
for a more nuanced view of the merits and faults of particular numeration
systems and for a more careful analysis of the connections between inter-
nal and external representations in arithmetic reasoning. A comprehensive
analysis of mathematical practice will have to study the complex interplay
among representational systems, their biological and psychological bases,
and their linguistic and cultural manifestations.

2 Developing arithmetic
2.1 Intuitive arithmetic
Up to the eighteenth century, philosophers of mathematics were primarily
intrigued by the relationship between human cognition and the abstract
objects that mathematical entities seem to be. Our apparent epistemic ac-
cess to such objects needed an explanation. In the dialogue Meno, Plato
proposed that our knowledge of geometry actually stems from recollecting
(anàmnhsic) forms that we knew from before we were born. Descartes and
Kant also thought that geometry derives from ‘innate’ knowledge—Kant’s
argument from geometry was an ambitious attempt to demonstrate that our
cognitive capacities are reflected in Euclidean geometry.7 Similar claims
were made about numbers and arithmetic. Leibniz, for example, argued
that mathematical knowledge must be innate, because it pertains to neces-
sary truths rather than contingent facts. Nevertheless, he believed that this

7
Innateness is a notion associated with a complex, shifting range of meanings. Today,

under the influence of cognitive ethology, it has a distinctly biological meaning (as in
genetically determined, or developmentally invariant) that it did not originally possess.
As it is beyond the scope of this paper to present a detailed discussion of nativism in
philosophy and psychology, su�ce it to say that ‘innate’ for these authors was something
akin to the notion of a priori.
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innate knowledge needed to elicited through education: “The truths about
numbers are in us; but still we learn them” (Leibniz, 1765, p. 85). Elsewhere
he likens innate knowledge to veins in marble that outline a shape to be un-
covered by a sculptor: our innate knowledge is uncovered through learning
(Leibniz, 1765, p. 52). By contrast, Locke (1690) argued that numerical
cognition can be traced back to perceptual knowledge. The number one,
for him, is an idea, i.e., a mental representation due to perceptual input:
“Amongst all the ideas we have, as there is none suggested to the mind by
more ways, so there is none more simple, than that of unity, or one” (Locke,
1690, Book II, Ch. XVI). This “simplest and most universal idea” (Locke,
1690, Book II, Ch. XVI) can then be taken as a starting point to make other
numbers; for example, by repeating the number one, we end up with larger
natural numbers.

Since the late nineteenth century, philosophers of mathematics have
turned away from examining the relationship between cognition and mathe-
matics, focusing instead on formal properties and foundational ideas, such as
how the natural numbers can be derived from set theory. Recently, however,
philosophers of mathematics have taken a renewed interest in epistemic is-
sues, primarily driven by the increased focus on mathematical practice, i.e.,
on mathematics as a human activity.

The emphasis on formal aspects of mathematics, such as proofs, is a
recent phenomenon of Western culture that seems absent in other cultures
with rich mathematical traditions, such as China, India, and the medieval
Arabic world. Even Western mathematics up to the eighteenth century
was result-driven, with proofs subservient to methods for solving specific
mathematical problems. Today, intuitions have not disappeared in math-
ematical practice, as Thurston (1994) observes: mathematicians are born
and enculturated in a rich fabric of pre-existing mathematical procedures
and concepts. Some of these ideas are akin to living oral traditions in that
they have never been published but yet are tacitly accepted by the math-
ematical community. Mathematicians have accorded a privileged role to
intuition as a source of creativity. In their influential account of how math-
ematicians work, Davis and Hersh (1981, p. 399) go as far as to say: “[T]he
study of mental objects with reproducible properties is called mathematics.
Intuition is the faculty by which we can consider or examine these (internal,
mental) objects.”

Where does mathematical intuition come from? As we shall see in Sec-
tion 2.3, some developmental psychologists argue for an innate basis of
mathematical knowledge. A growing body of experimental literature indi-
cates that infants can predict the outcomes of simple numerical operations.
The study of numerical cognition in animals (see Section 2.2) predates this
literature, again providing evidence of animals’ successes in estimating car-
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dinalities, comparing numbers of di↵erent magnitudes, and predicting the
outcomes of arithmetic operations. Complementary to this is neuroscien-
tific evidence (see Section 3), which shows that some areas of the human
brain are consistently involved in arithmetical tasks, strengthening the case
for evolved, numerical competence. Finally, in Section 4, we shall argue
that humans also draw on their external environment to make mathemat-
ical problems more tractable. Thus, mathematical cognitive processes can
be situated both internally (inside the head) and externally (in the world).

2.2 Animals’ arithmetic
Examining the numeric competence of non-linguistic creatures presents a
methodological challenge: In the absence of language the evidence for arith-
metic abilities or their underlying representations has to be inferred from
overt behavior. As failed attempts at meeting this challenge have lead to
famous misattributions, popular accounts of animal arithmetic (e.g., De-
haene, 1997; Shettleworth, 1998) often begin with the cautionary tale of
Clever Hans. Clever Hans was a horse that lived in the early 1900s and ap-
peared to have astonishing arithmetic abilities. Among various verbal and
calendar-related feats, Hans could add, subtract, multiply, divide, and even
work out fractions, indicating the results by tapping his hoof. The skepti-
cal inquiry of Oskar Pfungst (1907) revealed that Hans indeed was clever,
but his abilities consisted in detecting the subtle cues that his questioners
or audience inadvertently would provide. Even after debunking Hans’ al-
leged abilities, Pfungst was unable to refrain from providing signals that
the horse could use. Thus, the story of Clever Hans teaches an important
lesson to comparative psychology: To prevent observer-expectancy e↵ects,
the number senses of animals and pre-verbal infants ought to be probed ei-
ther without experimenter intervention or in double-blind designs in which
neither the examined creature nor the experimenter is aware of the cor-
rect answer. More generally, we have to be cautious not to over-interpret
the abilities of animals by anthropomorphizing them. Whenever animals—
including humans—show surprising arithmetic abilities we need to distin-
guish between ingenious trickery, natural competence, and the results of
extensive training.

After several decades of deep skepticism there has been a resurgence of
research e↵orts to probe the arithmetic abilities of animals by behavioral
means. In 1993 a prominent researcher concluded enthusiastically that “the
common laboratory animals order, add, subtract, multiply, and divide rep-
resentatives of numerosity [. . .]. Their ability to do so is not surprising if
number is taken as a mental primitive [. . .] rather than something abstracted
by the brain from sense data only with di�culty and long experience” (Gal-
listel, 1993, p. 222). We shall organize our discussion of animals’ abilities
according to di↵erent levels of numerical competence.
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Numerosity discrimination. Using an operant conditioning paradigm
that required rats to press n times on a lever A before obtaining a treat by
pressing another lever B once, Mechner (1958) demonstrated that rats can
associate rewards with a specific number of repeated actions. Interestingly,
the rodents never performed fully error-free and the variance of their actual
runs increased as n increased (from a minimum of 4 to a maximum of 16).
As premature switches were punished (by not obtaining a reward at all) the
rats’ number of responses were skewed toward over-estimates, rather than
under-estimates.

Because the number n of lever presses was confounded with the time t it
took to perform these actions a rival explanation of the rats’ alleged ability
to discriminate between di↵erent numbers was that they could have used
duration as a cue to estimate number. However, Mechner and Guevrekian
(1962) ruled out this alternative account by depriving rats of water for dif-
ferent periods of times. Whereas thirsty animals pressed the lever much
faster, their degree of deprivation had little e↵ect on the number of re-
sponses. Meck and Church (1983) later showed that rats spontaneously
attend to both the number and duration of a series of discrete events.

Counting. Capaldi and Miller (1988) provided evidence that rats count
the number of rewarded trials. By randomly exposing them to sequences
of trials RRRN and NRRRN (where R stands for a rewarded and N for a
non-rewarded trial) rats learned that they could expect to be rewarded on
three trials. A much slower speed on the last (N) trial of both sequences
shows that rats no longer counted on being rewarded after having accu-
mulated three rewards on earlier trials. Importantly, rats readily transfer
their counts to other types of food and even integrate their counts across
di↵erent types of food, suggesting that their internal counts are abstract
rather than tied to concrete events. As counting the types and amount of
food items obtained from a particular patch is a fundamental part of animal
foraging such abilities may not come as a complete surprise (Shettleworth,
1998). But it is easily overlooked that systematically exploiting many food
resources requires some basic—and possibly implicit—method for keeping
track of both time and number.

Merely identifying and counting numerical quantities does not neces-
sarily require an abstract concept of counting or number. As a possible
mechanism Dehaene (1997) suggests the metaphor of an analog accumula-
tor that gathers the amount of some continuous variable (like water) rather
than discrete quantities (like pebbles). By incrementing and decrementing
such an accumulator animals would possess an approximate representation
of numerical quantities that would allow for basic comparisons, as well as
elementary additions and subtractions. A fuzzy or noisy boundary of the
elementary counting unit implies that larger quantities get increasingly im-



68

precise. The resulting consequences that two numbers are more easily dis-
tinguished when they are further apart and that two numbers of a fixed
distance are harder to discriminate as they get larger are known as the
distance and magnitude e↵ects in both animal and human experiments on
number comparisons.

To model the identification of a number of objects from visual or audi-
tory perception Dehaene and Changeux (1993) developed a neuronal net-
work model that relies on number-detecting neurons. Despite its simplicity,
this model can account for the detection and discrimination of numerosities
in animals and pre-verbal infants without assuming any ability to count
explicitly.

Abstract and symbolic representations. We just saw that comparing
and counting numerosities does not yet imply the mastery of an abstract
concept of number (see Shettleworth, 1998, p. 369). However, there is also
evidence that rats can abstract from sensory modalities and add discrete
events. Church and Meck (1984) trained rats to discriminate between two
vs. four tones and two vs. four light flashes by teaching them the regularities
ll ! L, llll ! R, tt ! L, and tttt ! R, where lowercase l and t stand for
flashes of light or tones, and uppercase L vs. R correspond to pressing
either a left or right lever, respectively. What happens if rats that have
learned those contingencies are confronted with a stimulus configuration
of lltt? Despite the double dose of stimuli that individually required a
L response to “twoness” throughout the training phase, the rodents now
pressed the right lever R, indicating that they instinctively added 2+2 = 4.
To emphasize the significance of this finding, Dehaene (1997) compares it to
a fictitious experiment that trained rats to discriminate both between red
and green objects and between square and circular shapes. Surely it would
seem surprising if presenting a red square evoked the response for green and
circular objects. Both our own intuition and the rats of (Church and Meck,
1984) suggest that discrete events are to be integrated in an additive fashion,
rather than by a merging process that combines perceptual properties like
color and shape.

To address the question of whether animals can associate and manipulate
numeric symbols we have to turn to parrots and chimpanzees. Pepperberg
(1994) trained the African grey parrot Alex to vocally label collections of 2 to
6 simultaneously presented homogeneous objects and showed that he could
then identify quantities of subsets in heterogeneous collections. For instance,
Alex would be shown a collection of blue and red keys and cups and then
identified the number of blue cups with an overall accuracy of over 80%.
Boysen and Berntson (1989) demonstrated that their chimpanzee Sheba
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could assign Indo-Arabic8 numerals to collections of objects and vice versa.
In addition, Sheba could add up small numbers of oranges or numerals (up
to a total of 4) when they were hidden in di↵erent locations.9

This section has shown that an assessment of the numeric competence
of animals needs to strike a balance between two extremes: On the one
hand, abundant credulity or näıve enthusiasm about animals’ numeric feats
would overlook that the numeric competence of non-human animals is fun-
damentally di↵erent from that demonstrated by humans. Almost always
any abstract mastery of numeric symbols is the result of extensive train-
ing, is specific to a few numbers (i.e., di�cult to generalize), and remains
notoriously error-prone, particularly with numbers beyond 6 or 8. On the
other hand, a refusal to acknowledge that lower animals can distinguish,
count, and represent numerical quantities in some way would border on
species chauvinism. There is no reason in principle why the perception of
numerosity ought to be more complex than that of color, shape, or spatial
orientation. And as detecting the amounts of prey, predators, or potential
mates conveys a clear advantage for survival we should not be surprised that
evolution has endowed non-human animals with at least some rudimentary
number sense.

2.3 Infants’ arithmetical skills
Prior to the late 1970s, developmental psychologists interested in the do-
main of numerical competence almost exclusively examined the development
of explicit counting and exact positive integer representation during the
preschool years. The early focus on explicit skills was partly due to method-
ological limitations (how to study cognition in infants) and partly due to
firm conceptions about the cognitive foundations of arithmetical skills. Pi-
aget’s 1952 seminal work places the development of arithmetical skills late
in cognitive development, between 5 and 12 years of age. Piaget thought
that children must first master abstract reasoning skills, such as transitive
reasoning or one-to-one correspondence. A problem with this framework
is that it assumes that abstract reasoning skills are psychologically primi-
tive for understanding number. The attraction of this view is that features
such as one-to-one correspondence do play an important role in foundational
work on mathematics, such as attempts to reduce arithmetic to set theory.
However, it may be a category mistake to take that which is primitive in
the development of formal arithmetic as psychologically primitive. As we
shall see, infants and young children have some understanding of number
which develops independently of other abstract reasoning skills. In 1978,

8See Section 4.2 for this terminology.
9See the review chapters by Boysen (1993) and Rumbaugh and Washburn (1993) for

more details on the numeric competence of monkeys and chimpanzees.
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Gelman and Gallistel published an influential monograph on arithmetical
skills in preschoolers. From then on, the road was open for developmen-
tal psychologists to examine numerical capacity in infants. The early focus
on explicit number representations has given way to the study of a broad
domain of mathematical skills that are related to quantities, including the
exact and immediate counting of small numerosities (subitizing), relative
numerical judgments, and approximate systems of counting of larger sets
(estimation). In this short review, we shall focus on arithmetic skills.

In a pioneering series of experiments, Karen Wynn (1992) tested the abil-
ity of five-month-olds to perform addition and subtraction on small quanti-
ties. To probe her subjects’ capacities, she relied on the looking time proce-
dure and the violation of expectation paradigm. The looking time procedure
aims to probe cognitive abilities with a minimum of task demands. Clearly,
infants cannot speak, so any test to probe infant knowledge is necessarily
non-verbal (as was also the case with animals in Section 2.2). Moreover,
human infants are motorically helpless (e.g., they are unable to release ob-
jects intentionally until 9 months of age), so one cannot rely on tasks that
involve manual dexterity—this is importantly di↵erent from animal studies,
which frequently require the subject to perform some particular action (e.g.,
pecking, pressing a lever). The violation of expectation paradigm exploits
the propensity of humans and other animals to look longer at unexpected
than at expected events. Our knowledge of the world enables us to make
predictions of how objects will behave. For example, we expect co↵ee to
remain in a stationary cup, but to flow out of a cup in which holes were
drilled. When something happens that violates these predictions, we are
surprised. Prior to the test trials, infants are exposed to habituation or fa-
miliarization trials to acquaint them with various aspects of the test events.
With appropriate controls, evidence that infants look reliably longer at the
unexpected than at the expected event is taken to indicate that they (1)
possess the expectation under investigation, (2) detect the violation in the
unexpected event, and (3) are surprised by this violation. The term ‘sur-
prise’ is used here simply as a short-hand descriptor to denote a state of
heightened attention or interest caused by an expectation violation.

In one of Wynn’s experiments, a group of infants watched a 1 + 1 oper-
ation: a Mickey Mouse doll was placed on a display stage, a screen rotated
upwards to temporarily hide it from view, a hand entered the display stage
with another identical looking doll, and placed it behind the screen. Then
the screen was lowered to reveal either the possible outcome 1 + 1 = 2, or
the impossible outcome 1+1 = 1. The infants looked significantly longer at
the impossible outcome than at the possible one, suggesting to Wynn that
they expected the outcome of 1 + 1 to be 2. Similarly, they gazed longer at
2 � 1 = 2 than at 2 � 1 = 1. A methodological problem with the looking
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time procedure is that one cannot be sure what causes the longer looking
times. Wynn (1992) favored an account in terms of fairly advanced con-
ceptual cognition, namely that infants possess the ability to reason about
number and perform arithmetical operations.

Wynn’s interpretation is not the only possible way to account for these
data. It is equally possible that the results are caused by lower-level cogni-
tive capacities, such as a preference for visual stimuli that are familiar. For
instance, Cohen and Marks (2002) proposed that the infants’ longer looking
time could be explained by a familiarity preference: they looked longer at
one doll in the case of 1+ 1 = 1 or 2, because during habituation, when the
infants were familiarized with the setup, they saw one doll. Similarly, for the
case of 2�1 = 2 or 1, they looked longer at two dolls since that is what they
saw during the familiarization trials. Importantly, developmental psychol-
ogists who probe innate knowledge do not exclude this possibility—indeed,
they attempt to minimize familiarization e↵ects by designing controls. Sev-
eral subsequent experiments in independent labs (e.g., Kobayashi et al.,
2004) have attempted to control for these alternative explanations, such
as placing the puppets on rotating platforms, or familiarizing the infants
equally with one, two, and three puppets. The results of these studies have
supported Wynn’s original experiment, and by controlling for lower-level
cognitive accounts, have made the case for early developed numerical skills
stronger.

Still, it is important to note that translating the experimental setup into
mathematical notation can be misleading; it is not evident that Wynn’s ex-
periments show that infants are capable of operations that are equivalent to
the mathematical notions of addition and subtraction. For instance, Uller
et al. (1999) have argued that the experiments show that infants represent
the objects that are being added and subtracted not as integers, but as
object-files. According to this view, an object-file of two entities is repre-
sented as follows: there is an entity, and there is another entity numerical
distinct from it, and each entity is an object, and there is no other object,
i.e.,

(9x)(9y){(object[x] & object[y])
& x 6= y & 8z(object[z] ! [z = x] _ [z = y])}.

This conception of numerosity is di↵erent from formal mathematical no-
tions, but it is compatible with the empirical data on infants.

Later studies have probed whether infants can reason with larger quan-
tities, and predict the outcomes of arithmetical operations that yield an
absence of objects. McCrink and Wynn (2004), for example used a similar
setup to Wynn’s original experiment to investigate whether or not infants of
10 months of age can predict that 5+5 = 10 and not 5, and that 10�5 = 5
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and not 10. This time, they used a computer-animated setup so that they
could adequately control for total surface area (e.g., in the case of 5 + 5,
either ten objects of the same size as the original objects were shown, or
five very large objects). The fact that infants could reliably predict these
results strengthens the view that ten-month-olds can predict the outcomes
of additions and subtractions of items in a visual display over larger num-
bers than previously studied, even when other factors such as the size of
objects are controlled for.

The case of operations that yield an absence of objects reveals some
limitations of this intuitive arithmetic. Wynn and Chiang (1998) used a
looking-time experiment to show eight-month-olds subtraction events which
had outcomes of no items (e.g., 1 � 1 = 0). In contrast to the earlier
experiments, the infants’ looking time did not di↵er between the expected,
correct result of 1� 1 = 0 and the incorrect, surprising outcome of 1� 1 =
1. This might suggest that infants have di�culties representing zero as
a cardinal number. Unrelated experiments with chimpanzees yield similar
results: although these animals can learn to distinguish between numbers up
to 9 with good accuracy, they keep on confusing zero with very small natural
numbers (1 and 2; Biro and Matsuzawa, 2001). These results are in tune
with observations of mathematical practice in history and across cultures:
most indigenous mathematical systems do not have a zero, neither as a
placeholder symbol nor as a number.

Other limitations on infant arithmetic are related to working memory.
In one study, Feigenson et al. (2002) presented infants of 10 and 12 months
with the choice between two opaque buckets whose contents they were un-
able to see. In each of them, a number of crackers were dropped, one by
one, so that at the end of each trial the buckets contained di↵erent numbers
of crackers. After presentation, the subjects were allowed to crawl to the
bucket of their choice to retrieve the crackers. Although the infants could
successfully choose between 3 vs. 2 (i.e., they realized that 1+1 < 1+1+1),
they performed at chance level in the two versus four and three versus six
conditions, despite the highly discriminable ratio between the quantities.
Control tests ensured that this experiment cannot be explained by move-
ment complexity. Possibly, working memory demands are a limiting factor:
it is perhaps di�cult to keep two collections with more than three objects
each hidden from view in working memory. Indeed, as will be discussed in
Section 3, humans rely on a host of complementary resources when doing
arithmetic, including spatial representations, verbal labeling, finger repre-
sentations, and imagined motion.

The results from studies with nonhuman animals and infants suggest
that humans are furnished with an unlearned, early-developing capacity to
perform simple arithmetical operations. However, one may wonder whether
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these studies can tell us anything relevant about arithmetic as a culturally
elaborated skill. Some authors (e.g., Rips et al., 2008) remain deeply skep-
tical about the role of such evolved competencies in formal mathematical
reasoning. It is indeed possible that similarities between infants’ perfor-
mance on some tasks and adult mathematical knowledge are superficial,
and that there is no overlap between intuitive and formal mathematical
concepts. Although we can describe Wynn’s (1992) experiment in mathe-
matical terms as 1 + 1 = 1 or 2, does this mean that babies actually know
that 1 + 1 6= 1? It may be problematic to use symbolic notation to describe
such events, given that symbolic notations themselves influence mathemat-
ical cognition, a point that will be developed in more detail in Section 4.
Non-numerical factors like language and verbal memory play an important
role in elementary mathematics education, as is demonstrated by the mem-
orizing of exact addition facts like 5 + 7 = 12 or multiplication facts like
7⇥ 9 = 63. Young children also rely extensively on fingers and hands when
they add and subtract.

Notwithstanding their sometimes problematic interpretation of the re-
sults, cognitive scientists o↵er the best hope of explaining our epistemic
access to mathematical objects. Several lines of evidence indicate a causal
connection between the early development of numerical skills and formal
numerical competence. Halberda et al. (2008) found that children who are
better at estimating numerical magnitudes (e.g., guessing the number of
dots on a screen) also achieve better results in mathematics at school. Thus,
approximate numerical skills are important for the development of more for-
malized ways of manipulating numbers such as symbolic arithmetic. Indeed,
a study by Barth et al. (2006) found that both adults and preschoolers can
perform additions and subtractions approximately, without the use of sym-
bolic aids. In one of their experiments, inspired by Wynn’s procedure, the
preschoolers were shown a large number of blue dots. Then the blue dots
were covered by a screen, and some more blue dots were shown to go hiding
behind the screen. The children were then asked whether there were less
or more blue dots compared to a set of visible red dots. The subjects an-
swered well above chance level, indicating that approximate addition over
large numbers develops prior to extensive training on arithmetical principles.
Moreover, developmental dyscalculia, a disruption in the normal develop-
ment of mathematical skills in some children, is correlated with an inability
to grasp the concept of numerosity (Butterworth, 2005). Molko et al. (2003)
studied the brain structure of subjects with developmental dyscalculia and
found that their intraparietal sulci (which, as we shall see in Section 3, is
implicated in numerical cognition) showed abnormal structural properties.

In sum, the evidence reviewed here strongly indicates that human in-
fants possess elementary numerical skills. Combined with the evidence of
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numerical skills in animals, one could make a case for an evolutionary basis
of numerical cognition. The importance of numerical knowledge in everyday
decision making, such as foraging or forming groups, makes this evolution-
ary origin quite plausible.

2.4 Arithmetic in few-number cultures
As early as 1690, the philosopher John Locke (1690) mentioned possible
e↵ects of a limited numerical vocabulary on numerical cognition: “Some
Americans I have spoken with (who were otherwise of quick and rational
parts enough) could not, as we do, by any means count to 1000; nor had any
distinct idea of that number.” These Americans were the Tououpinambos, a
culture from the Amazon forest in Brazil, who “had no names for numbers
above 5.” Although Locke thought that the absence of count words limited
their ability to reason about large cardinalities, he mentioned that they
could reckon well to twenty, by “showing their fingers, and the fingers of
others who were present.” He thus argues that count words are “conducive
to our well-reckoning,” but not strictly necessary for it (Locke, 1690, all
citations from Book II, ch. XVI). By contrast, Alfred Russell Wallace, co-
discoverer with Darwin of the principle of natural selection, believed that
count words were essential for numerical cognition, in particular arithmetic:
“if, now, we descend to those savage tribes who only count to three or five,
and who find it impossible to comprehend the addition of two and three
without having the objects actually before them, we feel that the chasm
between them and the good mathematician is so vast, that a thousand to
one will probably not fully express it” (Wallace, 1871, p. 339). The question
of the role of language in arithmetic became the focus of recent experimental
psychological studies in cultures with few number words, in particular the
Pirahã and the Mundurukú, two cultures from the Amazon forest with an
extremely limited number vocabulary.10

The Pirahã (Gordon, 2004) have only three words that consistently de-
note cardinality, ‘hói’, ‘hóı’ and ‘baágiso’. These terms are not used as count
words, but rather as approximations of perceived magnitude (not just car-
dinality). For example, the word ‘hói’ is used to denote single objects, but
also as a synonym for small (as in a small child). ‘Hóı’ is used to denote
a few items or a medium quantity, and ‘baágiso’ is used for large items or
large quantities of items. One can ask ‘I want only hói fish’ to denote one
fish, but one cannot use this phrase to ask for one very large fish, except as
a joke (Everett, 2005). The imprecision of the Pirahã count words was re-
cently demonstrated in a series of experiments (Frank et al., 2008a) in which

10The elaboration of mathematical ideas di↵ers considerably between cultures. For an
extensive discussion of ethnomathematics, see (François and Van Kerkhove, 2010), this
volume.
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Pirahã subjects were simply asked to say how many objects they saw. If
the objects were presented in an increasing order, from 1 to 10 items, the
subjects consistently said ‘hói’ for one item and ‘hóı’ for two items. For
more than two items, some subjects said ‘hóı’ or ‘baágiso’. By contrast, if
the objects were presented in a decreasing order, the subjects said both ‘hóı’
or ‘baágiso’ for objects up to 7, and some claimed to see ‘hói’ starting at 6
items. Some years earlier, Gordon (2004) confronted Pirahã with a battery
of experiments to test numeracy, such as probing the capacity to place ob-
jects into a one-to-one correspondence and memory for specific numbers of
items. Their capacity to reason about exact magnitudes was severely com-
promised, especially for numerosities that are above the subitizing range
(n > 4). An example of a matching task required that the subject draw as
many lines as were presented to him or her by the experimenter. The accu-
racy dropped linearly as the target number of lines increased. After 7 items,
none of the participants drew the correct number of lines. In one of the ex-
periments that probed memory for numerosity, the participants witnessed
a quantity of nuts being placed in a can, and then being withdrawn one by
one. After each withdrawal, the subjects responded as to whether the can
still contained nuts or was empty. This task proved extremely di�cult, as
the responses dropped to chance level between 4 and 5 items.

Authors who have studied Pirahã do not agree on the implications of
these experiments on the role of external symbolic systems for numerical
cognition. Gordon (2004, p. 498) claimed that his study “represents a rare
and perhaps unique case for strong linguistic determinism.” In contrast,
Frank et al. (2008a) showed that Pirahã performed relatively well on tasks
that did not involve memory, such as matching tasks (e.g., matching a num-
ber of objects to those that an experimenter showed them), by employing
strategies that involve making one-to-one correspondences. These results
suggest that count words do not create number concepts, but rather concur
with Locke’s view that they are “conducive to our well-reckoning.” Similar
results have been obtained with people from other non-numerate cultures,
such as Australian aboriginal children who speak languages with few count
words. In these studies, the children could even solve division problems if
they could use one-to-one matching, such as dividing six or nine play-doh
discs between three puppets. They simply dealt discs to each puppet one
by one, until all discs were divided (Butterworth et al., 2008).

To better tease apart the role of language and other cultural factors,
Frank et al. (2008b) conducted experiments with American college students
that were very similar to those presented to the Pirahã. These tasks in-
volved both one-to-one matching tasks and memory tasks. In the mean-
time, the participants performed a task that made it impossible for them
to rely on subvocal counting. Apparently, the ability to perform one-to-one
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matchings was relatively unimpaired by the inability to count, but memory
for numbers, as in the nuts-in-a-can task, was severely compromised (sub-
jects answered correctly only 47 % of the time). In addition to language,
other external tools may explain the limited numerical skills in the Pirahã.
For example, Everett (2005) noted that they do not have individual names
for fingers (e.g., ring finger, index), but collectively refer to their fingers
as ‘hand sticks’. In many cultures, finger counting plays a crucial role in
the development of number concepts; the fact that words for ‘one’, ‘four’,
and ‘five’ in many Indo-European languages are related to words for fingers
(or digits) is indicative of this. If fingers are not di↵erentiated, this might
impair the formation of exact magnitude concepts, or vice versa.

The Mundurukú is another Amazonian culture with few number words
(up to five), which are likewise used in an approximate fashion: pũg (‘one’),
xep-xep (‘two’), e-ba-pũg (literally: ‘your arms and one’), e-ba-dip-dip (lit-
erally, ‘your arms and two’, pũg-pog-bi (literally ‘a handful’ or ‘a hand’).
The approximate nature of these quantities is illustrated by the fact that the
use of these terms is inconsistent when Mundurukú subjects have to denote
three or more items. For example, when five dots are presented, the subjects
respond pũg-pog-bi in only 28 % of the trials, and e-ba-dip-dip in 15 % of
the trials. Above five, the Mundurukú do have words to denote numerosi-
ties, but these terms have very little consistency. Subjects refer to 10 items
using the expressions ade ma (‘really many’), adesũ (‘not so many’) and
xep xep pog-bi (‘two hands’) (Pica et al., 2004). Pica et al. (2004) studied
the e↵ects of this limited vocabulary on arithmetic, revealing an interesting
discrepancy between exact and approximate arithmetic. Mundurukú exact
arithmetic proved to be highly compromised. For example, in one study, the
subjects predicted how many objects would be left in a can after several had
been removed. Although the results were small enough to be named with
their number vocabulary (e.g., 6�4 = 2), they were unable to predict them.
In contrast, Mundurukú subjects did very well on approximate arithmetical
tasks, where they were asked whether the addition of two large collections
of dots (e.g., 16 and 16) in a can was smaller or bigger compared to given
number of dots (e.g., 40). In this task, which involved quantities far above
their count range, they did as well as French numerate adults.

Another aspect of numerical cognition that is clearly a↵ected by external
representations are questions regarding the distance between internal repre-
sentations of di↵erent numbers, i.e., the shape of the ‘mental number line’.
Several studies have shown that young children (Siegler and Booth, 2004)
and non-human animals (Nieder and Miller, 2003) represent numbers on a
logarithmic, rather than a linear mental number line. In brief, a logarithmic
mental number line is one where estimations of numerosities conform to the
natural logarithms (ln) of these numbers. This typically leads to an overes-
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timation of the distance between small numbers, such as 1 and 2, where the
psychological distance is typically judged to be much larger than between
larger numbers like 11 and 12. Young children make characteristic errors
when plotting numbers on a scale. Siegler and Booth, for example, gave
five- to seven-year-olds a number line with 0 at the left side and 100 at the
right. Younger children typically place small numbers too far to the right.
For example, they tend to place the number 10 in the middle of the scale,
which is roughly in accordance with a logarithmic representation. As chil-
dren become older, their number lines look more linear. From these results,
Siegler and Booth (2004) conclude that our intuitive number representation
is logarithmic, and that it becomes more linear when children learn to ma-
nipulate exact quantities. Dehaene et al. (2008) adapted this experiment
in an elegant fashion to a study with Mundurukú participants, presenting
them with a line with one dot to the left, and ten dots to the right. Then,
the Mundurukú were given a specific numerical stimulus, either as a number
of tones, or as a number word in Portuguese or Mundurukú. In all cases,
the best fit of the responses was logarithmic, not linear. As the authors
of this study acknowledge, language cannot be the sole factor responsible
for linear numerical representations in Western people, as the Mundurukú
responded logarithmically, regardless of the language or format in which the
numbers were presented. Perhaps other external representations, such as
rulers or the practice of measurement, can explain this change.

Taken together, these results suggest that approximate arithmetic relies
less on external tools such as language than exact arithmetic. The animal,
neuroimaging, and infant studies demonstrate that our intuitive numerical
competence allows for approximate arithmetical tasks. External represen-
tational systems, such as fingers, count words, and numerical notation sys-
tems, serve to enhance exact numerical cognition that ventures beyond the
range of our intuitive capabilities.

3 Arithmetic and the brain
3.1 Lesion studies
Neuropsychological studies o↵er the opportunity to study the neural corre-
lates that underlie our capacity to perform arithmetical operations. What
neural structures enable us to comprehend and compute with numbers?
Are there di↵erences between approximate arithmetic and exact arithmetic?
How are external media, such as symbolic notation systems, reflected in the
brain? The oldest method to study the neural basis of arithmetic relies
on an examination of the e↵ects of brain lesions on various cognitive tasks.
This methodology was developed in the later decades of the 19th century
when physicians like Broca and Wernicke noticed that specific lesions, i.e.,
patterns of brain damage led to an inability to speak. Such lesions can be
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the result of an external injury or a stroke (a blood-clot which momentarily
deprives part of the brain of oxygen and nutrients), leading to specific pat-
terns of cognitive impairment. Indirectly, one can infer from the correlation
between damage to a given brain area X and loss of a certain cognitive
function a, that X and a are functionally correlated.

Early studies by Gerstmann (1940) showed that patients with damage to
the left inferior parietal lobule (a subsection of the parietal lobe) often had
marked impairments in mathematical cognition. Lesions in this area often
leave a patient unable to perform very simple arithmetical operations such
as 3�1 or 8⇥9. However, these lesions usually also a↵ect other domains of
cognition. This is exemplified in Gerstmann’s syndrome (Gerstmann, 1940),
a neurological condition that is associated with damage to the parietal lobe,
and that is characterized by an inability to perform arithmetic, count, and
do other numerical tasks, as well as by di�culties in writing (agraphia), the
inability to recognize one’s own fingers (finger agnosia), and left-right con-
fusion (Chochon et al., 1999). The fact that loss of mathematical function
is often accompanied by finger agnosia, agraphia, and left-right confusion
might be due to the fact that lesions usually damage several adjacent func-
tionally specialized brain areas. In that case, the cognitive functions are
not really related, but their damage coincides because the areas correlated
with them are in close anatomical proximity. Alternatively, one could take
these findings as support for the view that finger counting, writing, and spa-
tial skills play an important role in numerical processing. Evidence for this
latter interpretation comes from several modern studies that impair finger
cognition in an experimentally controlled and reversible way. In these repet-
itive transcranial magnetic stimulation (rTMS) experiments, brain activity
was briefly disrupted in areas important for finger cognition, including the
left intraparietal lobule (Sandrini et al., 2004) and the right angular gyrus
(Rusconi et al., 2005). In both studies, disrupting finger cognition led to a
marked increase in reaction time when subjects solved arithmetical opera-
tions. This suggests that finger recognition remains an important part of
adult numerical cognition, even when we no longer count on our fingers.

Lesion studies have also examined whether or not language is essential
for mathematical tasks. This has given rise to a nuanced picture. First, it
seems that language, especially verbal memory, is more important for multi-
plication and addition than for division and subtraction. Lemer et al. (2003)
assessed the di↵erential contributions of brain areas specialized in language
and number for diverse arithmetical operations. In their study, they exam-
ined a patient with a verbal deficit (caused by lesions in the left temporal
lobe), and another patient with a numerical deficit (with a focal lesion in the
left parietal lobe), but intact verbal skills. The authors hypothesized that
language would play an especially important role in arithmetical tasks in
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which verbal memory is important, such as multiplication (due to memoriza-
tion of multiplication facts like 5⇥7 = 35) and addition. By contrast, since
we do not store subtraction facts in verbal memory, this capacity should
be less a↵ected by the loss of language. As predicted, Lemer et al. (2003)
found that the patient with the language impairment performed worse on
multiplications than on subtraction, whereas the patient with numerical im-
pairments exhibited the reverse pattern. Thus it seems that verbal memory
can play an important role in the performance of arithmetical tasks in the
adult human brain.

Another study (Varley et al., 2005) probed whether language may be im-
portant for numerical cognition on a more deep, structural level. Parallels
between recursive structures in mathematics and grammar have suggested
to some authors that the generative power of grammar may provide a gen-
eral cognitive template and a specific constituting mechanism for ‘syntactic’
mathematical operations involving recursiveness and structure dependency,
such as the computation of arithmetical operations involving brackets, e.g.,
50 � ((4 + 7) ⇥ 4). Indeed, Hauser et al. (2002) argue that a domain-
general and uniquely human capacity for recursion underlies our capacity
for mathematics.11 More specifically, they state that “Humans may be
unique [. . .] in the ability to show open-ended, precise quantificational skills
with large numbers, including the integer count list. In parallel with the fac-
ulty of language, our capacity for number relies on a recursive computation”
(p. 1576). To test this relationship between language and numerical cogni-
tion, Varley et al. (2005) examined three severely agrammatic patients (i.e.,
people with an inability to comprehend and make grammatical sentences)
on several numerical tasks, including multiplication tables and bracket op-
erations. Despite their lack of grammar, all three men performed excellently
on these tasks, solving problems like 80 � ((6 + 14) ⇥ 2) accurately. One
of the problems specifically examined the preservation of recursive capaci-
ties in the absence of grammar: it required the patients to come up with
numbers smaller than 2, but larger than 1. Although none of the patients
was capable of generating recursive linguistic expressions, they could solve
these problems, coming up with numbers like 1, 1.9, 1.99, 1.999, . . .. From
this, the authors conclude that, at least in the mature adult brain, the non-
linguistic neural circuits that deal with recursive structure in mathematics
are functionally independent of language. However, it does not follow that
language is unimportant for the development of mathematical competence.
For instance, Donlan et al. (2007) showed that eight-year-old children with
specific language impairments (i.e., children with language impairments but

11A recursion consists of a few simple cases or objects, and rules to break down complex
cases into simpler ones, e.g., my (full) brother is my blood relation (base case), anyone
who is a blood relation of this brother is also a blood relation (recursion).
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overall normal intelligence in other domains) are developmentally delayed
for several numerical tasks compared to children without language impair-
ments: as many as 40 % failed to count to twenty, and they showed problems
in understanding the place-value system. By contrast, these children had
no problems understanding high-level principles of arithmetic, such as com-
mutativity.

3.2 Neuroimaging studies and EEG experiments
A more direct way to study which regions of the brain are involved in per-
forming specific tasks is provided by functional neuroimaging techniques.
All neuroimaging techniques exploit the fact that although the whole brain
is always active, not every part is equally active. Regions that are more
active require more energy (glucose) and oxygen. Neuroimaging techniques
measure di↵erential brain-activation after presentation of a relevant stim-
ulus, and compare these activations to a carefully chosen control stimu-
lus. If this e↵ect is constant across subjects and if it is reproducible, the
cerebral parts that are more active after presentation of the test stimulus
compared to a control stimulus are taken as neural correlates for the task
that the stimulus probes. The most frequently used neuroimaging technique
for probing numerical competence is functional Magnetic Resonance Imag-
ing (fMRI), which relies on strong magnetic fields to measure di↵erences in
oxygen-levels in cerebral blood flow. A problem with most neuroimaging
techniques is that while they have a relatively good spatial resolution (i.e.,
they give a relatively accurate map of di↵erential brain activity), they have
a relatively poor temporal resolution (i.e., they are slow and may not pick
up transient patterns of brain activity). By contrast, electroencephalog-
raphy (EEG) scans, which measure electric activity in the brain through
electrodes on the scalp, can pick up subtle and quick changes in brain ac-
tivity, but have poor spatial resolution, as only areas at the surface of the
brain can be accurately measured. EEG scans can be used to measure the
specific response of the brain for a given task; these task-related patterns
of electric brain activity are termed Event Related Potentials (ERPs).

Dehaene et al. (1999) investigated the relative importance of language
and non-linguistic approximate representations of number in two brain-
imaging studies: one with high temporal resolution (ERPs) and one with
high spatial resolution (fMRI). First, they conducted a behavioral exper-
iment with Russian-English bilinguals. The subjects were taught a series
of exact or approximate sums of two-digit numbers in one of their lan-
guages, either Russian or English. The test condition consisted of a set
of new additions. This was either an exact condition, in which they had
to choose the correct sum from two numerically close numbers, or an ap-
proximate condition, in which they had to estimate the result and select
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Figure 2. Regions of interest mentioned in the text, left hemisphere shown
on the left.

the closest number. After training, response time and accuracy improved
in both types of tasks. However, when tested in the exact condition, sub-
jects performed much faster in the teaching language than in the untaught
language. In contrast, for the approximate condition, there was no cost in
response time when switching between languages. To the authors, this sug-
gested that exact arithmetical facts are stored in a language-specific format;
each new addition is separately stored from neighboring magnitudes, e.g.,
9 + 1 would be stored di↵erently from 9 + 2. Because there was no cost in
the approximate condition when switching between languages, the authors
assumed that number is also stored in a language-independent format (De-
haene et al., 1999, p. 971). The authors examined whether this apparent
behavioral dissociation is the result of distinct cerebral circuits. In fMRI,
the bilateral parietal lobes showed greater activation for the approximate
task than for exact calculations. In the approximate task, the most active
areas were the bilateral horizontal banks of the intraparietal sulci (IPS) (see
Figure 2). Additional activation was found in the left dorsolateral prefrontal
cortex and in the left superior prefrontal gyrus, as well as in the left cere-
bellum, the left and right thalami, and the left and right precentral sulci.
Most of these areas fall outside of the areas associated with language. Exact
calculations elicited a distinctly di↵erent pattern of brain activation, which
was strictly left-lateralized in the inferior frontal lobe. Smaller activations
were also noted in the left and right angular gyri. Previous studies have
shown that the left inferior frontal lobe plays a critical role in verbal associ-
ation tasks. Together with the left angular gyrus, this region may constitute
a network involved in the language-dependent coding of exact addition facts
(Dehaene et al., 1999).

Several studies since then have confirmed that the intraparietal sulci of
both hemispheres, but predominantly of the left, are active during arith-
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metic and other numerical tasks. This is the case even in the absence of
explicit tasks, for example, when subjects are only required to look passively
at Indo-Arabic digits, or to listen to number words spoken out loud (Eger
et al., 2003). The IPS seems to be an important neural correlate for numeri-
cal cognition, regardless of the format in which it is presented. This finding
is confirmed by several studies that measure the firing rate (i.e., electric
activity) of single neurons in monkeys. Tudusciuc and Nieder (2007) found
that neurons in the intraparietal sulci of monkeys were sensitive to di↵er-
ences in numerosity, line length or both. The neurons were optimally tuned
to a specific quantity (e.g., two items) and gradually showed less activity as
the presented numerosity deviated from this preferred quantity. By focus-
ing on which neural correlates are constant across numerical tasks, we have
left open the question of whether the use of symbolic notations and other
external tools a↵ect numerical cognition at the neural level.

An intriguing fMRI study by Tang et al. (2006) provides indirect sup-
port for the role of symbolic representation in numerical cognition.12 In
this study, both native English speakers and native Chinese speakers solved
arithmetical operations. Although the IPS were active in both groups, they
exhibited marked di↵erences in other brain areas. Whereas the English
speakers had a stronger activation in perisylvian, language-related areas
(such as Broca and Wernicke’s areas), the Chinese speakers showed an
enhanced response in premotor areas, involved in the planning of motor
actions. The authors o↵ered a possible reason for this: whereas English
speakers learn arithmetical facts in verbal memory (e.g., when they learn
multiplication tables), Chinese speakers rely on the abacus in their school-
ing. These di↵erences in schooling might still be reflected in arithmetical
practice, with English speakers mentally relying on language-based strate-
gies, and Chinese speakers on motor-based strategies.

Taken together, neuropsychological studies indicate that numerical cog-
nition relies on an interplay of cognitive skills that are specific to number
(primarily located in the IPS) and cognitive skills from other domains, in-
cluding language, finger cognition, and motor skills. Such findings indicate
that numerical cognition is a complex skill, which involves a variety of ca-
pacities that are coordinated in very specific ways.

4 The role of notation in arithmetic
In Sections 2.4 and 3 we have described some connections between intuitive
arithmetic notions and language, and have seen how the use of a lexical
numeral system greatly a↵ects people’s basic arithmetic abilities. We now
turn to the role of notation and its relation to computations. We shall ar-

12For a more detailed discussion on the relationship between extended mind and math-
ematics, we refer to (Johansen, 2010), this volume.
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4 9 2
3 5 7
8 1 6

Figure 3. Arranging the digits 1 to 9 into cells of a 3-by-3 magic square
reveals that the game of number scrabble (see text for details) is isomorphic
to tic-tac-toe.

gue for the thesis that mental arithmetic is an interplay between internal
and external representations. The properties of external media and char-
acteristics of the representational format profoundly a↵ect the process of
manipulating and computing the solutions to arithmetic problems.

4.1 Representational e↵ects
It is hard to overestimate the relevance of representations for problem
solving. As all deductive inferences (e.g., in mathematics) are essentially
changes of representation, an extreme argument for the crucial role of rep-
resentations is that solving a problem is nothing but a change in representa-
tion, or “solving a problem simply means representing it so as to make the
solution transparent” (Simon, 1996, p. 132). Simon illustrates his claim by
the game of number scrabble: Two players alternate in choosing a unique
number from 1 to 9. The player who first manages to select a triple of
numbers that sum to 15 wins the game.

Most people find this game rather abstract and have di�culties in choos-
ing numbers strategically. However, when the game is represented as in Fig-
ure 3, it becomes apparent that number scrabble is structurally identical to
the game of tic-tac-toe, in which players alternatively pick a cell of a 3-by-3
grid and win by first occupying three cells on a straight line. The spatial
re-representation makes it easier to ‘see’ that some numbers (e.g., 5) are
more valuable for winning than others, as they are part of more potential
solutions and allow for the obstruction of more opponent moves.

The phenomenon that di↵erent representations of a problem can greatly
change their level of di�culty is referred to as a representational e↵ect and
problems that are identical except for the their surface representation are
called isomorphs (e.g., Kotovsky et al., 1985; Kotovsky and Simon, 1990).
Our introductory distinction between numbers and numerical notation sys-
tems (see Table 1 on page 61) illustrated that many alternative representa-
tional systems can represent the same entities.

From a cognitive standpoint the distinction between computational and
informational equivalence is important for characterizing alternative rep-
resentations (Simon, 1978; Larkin and Simon, 1987). Two representations
are informationally equivalent if they allow the same information to be
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represented, but they are computationally equivalent if in addition any in-
formation that can be inferred ‘easily and quickly’ from one representation
can also be inferred ‘easily and quickly’ from the other. Larkin and Simon
(1987) admit that these definitions are inherently vague, but they are still
useful in describing the e↵ects of di↵erent numeric representations on the
ease or di�culty of arithmetic calculations. Two systems are information-
ally equivalent with regard to a set of tasks if they both allow the same
tasks to be performed. They are additionally computationally equivalent if
the relative di�culty of tasks is the same no matter which representation is
used (Bibby and Payne, 1996; Payne, 2003).

The distinction between the two di↵erent types of equivalence can readily
be applied to numeration systems. The representational systems illustrated
in Table 1 are all informationally equivalent, as every natural number can be
unambiguously expressed in each system. Nonetheless, the di↵erent systems
di↵er in their computational properties. Whereas the tally system makes
the summation of two numbers a simple matter of combining their respective
number of elementary strokes, the Indo-Arabic decimal system requires the
recognition of di↵erent symbol shapes and the retrieval of arithmetic facts
from memory.

Particular representational systems can be exploited in di↵erent ways to
reveal properties of the represented entities. For instance, judging whether
a particular number is even or odd requires a cumbersome counting pro-
cess when it is represented in tallies (e.g., ), but only requires looking
at the last digit when the same number is represented in binary or deci-
mal notation (e.g., 1001 or 9, respectively). As another example, a natural
number represented in decimal notation is divisible by nine when the sum
of its digits is divisible by nine. Importantly, these computational short-
cuts are not only dependent upon particular representations, but they are
only available when both the meaning of the elementary symbols and their
arithmetic properties are known to and actively used by the problem solver.

The terminology introduced above allows us to state that di↵erent num-
ber systems are isomorphs for the mathematical theory of arithmetic. Dif-
ferences between their usefulness for solving particular problems are repre-
sentational e↵ects, i.e., phenomena in which representational systems that
are informationally equivalent lack computational equivalence. Importantly,
any judgment about task di�culty needs to consider the triad of the specific
arithmetic task at hand, the representational system used, and the problem
solver’s mental (representational and computational) capacities.

The crucial question to be addressed in the following sections is: What
causes or explains representational e↵ects? As the definition of computa-
tional equivalence included a reference to the ease of operations that can
be internal or external we need to consider the internal and external mech-
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anisms involved in solving a problem to explain the genesis of represen-
tational e↵ects. For instance, the ease of tic-tac-toe when compared to
number scrabble can possibly be explained by the claim that visuo-spatial
representations are more compatible with the cognitive mechanisms of or-
dinary human beings than the arithmetic properties of small numbers. But
the relative ease or di�culty of operations also depend on the task to be
performed. Note that a game of number scrabble could be communicated
much more concisely (e.g., during a telephone call) than the identical game
of tic-tac-toe. For an analogous argument about the usefulness of number
systems we need to investigate their properties and computational demands
on cognition for particular tasks.

4.2 Computations with di↵erent notation systems
Traditional accounts of number systems (e.g., Dantzig, 1954; Ifrah, 1985)
draw a basic distinction between additive and place-value systems. More-
over, it is usually claimed that the positional system is superior, because it
allows for more complex calculations, like the application of multiplication
algorithms.13 However, assessing the strengths and weaknesses of di↵erent
notational systems is not as simple as this suggests and demands a much
more nuanced analysis.

Cipherization. By contrasting several numerical notation systems, in par-
ticular the Greek alphabetic system of numerals (see Table 1c), which is
not positional, and the Babylonian sexagesimal place-value system, Boyer
(1944) argued that it is not so much the use of the principle of place-value
that guarantees the ease of computation, but ‘independent representation’
or ‘cipherization.’ Characteristic for the latter is that individual symbols,
that are brief and easy to write and read, are introduced to represent num-
bers in a concise way, avoiding the frequent repetition of basic symbols.
What makes the Babylonian system cumbersome to use, despite the fact
that it is a place-value system, is that is uses an additive system to repre-
sent numbers less than 60. Thus, for example, 57 is essentially represented
by hhhhh |||||||. By contrast, the Greek alphabetic system (see Table 2) repre-
sents numbers up to 999 by combining 27 di↵erent elementary symbols and
uses at most three di↵erent symbols per number. Since the Greek system is
not positional, it does not need a symbol to mark an empty position (zero),
but—in contrast to the system of Roman numerals—its basic symbols never
occur repeatedly in a numeral. As a consequence, numbers are represented
by even fewer symbols on average than in our familiar decimal place-value
notation. For example, the number 208 is written as ‘sh’, and 400 simply as
‘u’. As in the Roman system to be discussed below, larger numbers require
new symbols or a systematic scheme for modifications (see Boyer, 1944).

13See, e.g., (Menninger, 1969, p. 294), (Ifrah, 1985, p. 431), and (Dehaene, 1997, p. 98).
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1 2 3 4 5 6 7 8 9
⇥1 a b g d e ì z h j

⇥10 i k l m n x o p ✓

⇥100 r sv t u f q y w �

Table 2. The Greek alphabetic system of numerals. The numerals for 6,
90, and 900 are the now obsolete symbols digamma (ì), koppa (✓), and san
(�) (see Ifrah, 1985).

Typology for numerical notation. Boyer’s observations have been taken
up by Chrisomalis (2004), who developed a two-dimensional typology for
numerical notation, with intraexponential (e.g., cumulative or ciphered) and
interexponential structuring (e.g., additive or positional) as the two inde-
pendent dimensions. In this terminology the Greek alphabetic and the
Roman system di↵er with regard to their intraexponential representations:
The former is ciphered, while the latter is cumulative. Using this classifi-
cation he was able to discern some patterns in the evolutionary change of
number systems that go beyond the traditional view that takes the devel-
opment of numeral systems to be linear, always from additive systems to
positional ones.

Trade-o↵s. We already mentioned that the succinctness of the Greek al-
phabetic system is achieved through the use of 27 elementary symbols to
represent the numbers from 1 to 999. Thus, the Greek system requires
more symbols to be memorized, and more single addition and multipli-
cation facts to be learned than our familiar decimal system. We see here
clearly a trade-o↵ between the complexity of an external representation sys-
tem and the cognitive capacities (in this case recognition memory) that are
required to master it. Arguably the best way to evaluate such di↵erences
would be to familiarize oneself equally thoroughly with multiple systems and
then conduct the same computations in di↵erent systems. Unfortunately,
such comparisons have rarely been done—presumably due to considerable
practical limitations. However, the historian of mathematics Paul Tannery
reported in 1882 that he practiced the Greek alphabetic system and “found
that this notation has practical advantages which he had hardly suspected
before, and that the operations took little longer with Greek than with
modern numerals” (Boyer, 1944, pp. 160 f.). Unfortunately, Tannery did
not provide more details about his experiences.

In the following, two di↵erent numerical notation systems are presented
in detail, and some trade-o↵s with regard to the ease of computations and
the cognitive abilities needed to master each system are discussed.
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The decimal number system. It has been claimed that the numerical
competence of the average teenager in today’s Western societies exceeds that
of an educated adult in antiquity by far (Nickerson, 1988, p. 198). Moreover,
due to the nearly universal adoption of the decimal place-value system and
our high degree of familiarity with it from early childhood it is hard for us
to recognize it as a cultural convention. Despite its universality today, it
originated in India and was only introduced to Europe in the 10th century
C. E. by way of the Arabic world. We shall refer to it as the Indo-Arabic
system.14

An important characteristic of the Indo-Arabic system is its economy of
expression: Ten elementary symbols su�ce to represent every conceivable
natural number. This is possible because the basic values of a symbol and
its position in the numeral sequence jointly determine its value. Hence, the
order of digits in a numeral carries magnitude information and cannot be
changed inconsequentially. Note how the value represented by the symbol
‘4’ in the numeral 420 is 400, whereas the same symbol signifies 40 in the
numeral 42. The fact that only numbers smaller than ten can be expressed
within the numerical ‘alphabet’ of single symbols makes the Indo-Arabic
system a base-10 or decimal number system. This base, in turn, is respon-
sible for the operational decade e↵ects, which we discuss in Section 4.3. In
general, in a place-value system with base p, the value of a numeral phrase
containing n + 1 symbols a

n

a
n�1 . . . a2a1a0, where each a

i

is an elementary
symbol, is equal to

P
n

i=0(ai

⇥ pi), i.e.,

(a
n

⇥ pn) + (a
n�1 ⇥ pn�1) + · · · + (a2 ⇥ p2) + (a1 ⇥ p) + a0.

It becomes clear from this notation that the position of a symbol, which is
denoted by the subscript, must also be taken into account when performing
basic arithmetic operations. For example, addition of two numerals a

n

. . . a0

and b
m

. . . b0 in a place-value system, amounts to adding two polynomials,
which results in

((a
n

+ b
n

)⇥ pn) + ((a
n�1 + b

n�1)⇥ pn�1) + · · ·+ ((a1 + b1)⇥ p) + (a0 + b0).

Note that only the as and bs that are at the same position, i.e., that have
the same index, are added. Moreover, one has to take special care of the
fact that every single digit of the result must be smaller than the base p.
This is done by ‘carrying’ into the next position if (a

i

+ b
i

) � p. Analo-
gously, multiplication of two numerals in a place-value system amounts to

14Most commonly this system is known as the Hindu-Arabic system, but has also been
referred to as ‘Western,’ since the digits have nothing to do with the Hindu religion and
are di↵erent from Arabic scripts (Chrisomalis, 2004). A still better name might be the
‘indic’ system of numerals, as was suggested to us by Brendan Gillon. See (Menninger,
1969) and (Ifrah, 1985) for historic accounts of number system development.
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multiplication of two polynomials, and the value of the result of multiplying
the two numerals a

n

. . . a0 and b
m

. . . b0 is

nX

i=0

mX

j=0

( a
i

⇥ b
j

⇥ pi+j ).

From this form of representation two things become evident: that m ⇥ n
operations (i.e., multiplications of two single digits) are necessary, and that
one has to keep track of the position (i + j) of the intermediate terms
a

i

⇥ b
j

in the resulting numeral. In the various multiplication algorithms
for computations on paper this is achieved by the careful positioning of the
intermediate terms (e.g., in columns).

The purpose of our presentation of the familiar Indo-Arabic system in
these rather abstract terms is to bring to the fore its inner complexities,
which are usually hidden from us due to our familiarity with it. Most edu-
cated adults will be able to instantly ‘read o↵’ the number denoted by the
numeral 4711, without any deliberations, but the situation is very di↵erent
for children or if we replaced the familiar symbols with unfamiliar ones.
This shows that we have internalized the recognition and transformation of
Indo-Arabic numerals in a very e↵ective way and our familiarity with this
system hides the underlying complexity of such processes. In turn, the fact
that a numeral system looks unfamiliar to us should not play a role in its
assessment.15

Place-value systems enable e�ciency of representation in two important
ways: Their use of only a finite number of basic symbols (in general, a base-
n system requires n di↵erent symbols) and the relatively short length of
their numerical phrases. The small number of symbols reduces the mental
e↵orts needed to interpret and write the numerals as well as the number
of basic facts that have been stored in long-term memory. (See Nicker-
son, 1988; Zhang and Norman, 1993, 1995, for a more detailed treatment of
these issues.) On the other hand, the fact that the position of symbols has
to be kept track of in computations increases the complexity of the algo-
rithms that are needed. Dealing with columns and carries, which are both
devices to keep track of positions, are the major stumbling blocks children
face in learning to compute with Indo-Arabic numerals (see Lengnink and
Schlimm, 2010).

One final issue about place-value numeral system concerns the choice of
the base. This choice is essentially arbitrary, though it has been speculated
that it may be due to the “anatomical accident” (Ifrah, 2000, p. 12) of
the human body having ten fingers (see also Section 2.4, page 76). Ifrah
also suggests that from a purely computational perspective a base of 11

15This was noted also by Anderson (1956), but see (Menninger, 1969, p. 294).
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could in some circumstances be better (by virtue of being a prime number),
and for trade purposes a base-12 system would yield benefits, as it would
allow for more even divisors. A system with base 60 would fare even better
in this last respect, and the ancient Babylonians did in fact use such a
system. As another extreme, a base-2 (or binary) system would lead to the
smallest number of basic symbols for a positional system, but also greatly
increases the length of the numerals. Binary and hexadecimal (base-16)
systems are in common usage in engineering and computer science, and their
properties illustrate additional trade-o↵s between representational e�ciency
and implementation requirements. Thus, even the choice of the value of the
base involves substantial trade-o↵s.

The system of Roman numerals. The system of Roman numerals is
a purely additive system, in which each elementary symbol in a numeral
phrase has a fixed value.16 For example, the symbols I, V, X, L, C, D, M,
stand for 1, 5, 10, 50, 100, 500, and 1000, respectively. The value of the
numeral is then obtained by simply adding the values of its constituents.
Thus, for a numeral a0a1 . . . a

n

, the value obtained is:

a0 + a1 + · · · + a
n

. (1)

Comparing this with the process required for reading o↵ the value of an
Indo-Arabic numeral (in Equation 4.2 above) emphasizes the simplicity of
additive systems. This internal simplicity comes at the cost of requiring a
potentially infinite amount of elementary symbols if all natural numbers are
to be represented. However, this theoretical limitation may be extenuated
by the fact that only numbers up to a certain limit are used in practice.

A quantitative route for the evaluation of di↵erent notational systems
in terms of their cognitive demands has been taken by Schlimm and Neth
(2008). Using a computational cognitive modeling approach (along the lines
of Payne et al., 1993), they analyzed algorithms for addition and multi-
plication with Roman and Indo-Arabic numerals in order to quantify the
trade-o↵s between basic perceptual-motor operations and (short-term and
long-term) memory requirements. For their comparisons, they modeled the
common paper-and-pencil algorithms for addition and multiplication with
the Indo-Arabic numerals, collecting information regarding the number of
symbols used, single perceptual activities (e.g., reading a symbol), atten-
tional shifts (to the next symbol in an array or to some absolute position on
paper), memory usage (retrieval of addition and multiplication facts from
long term memory, remembering of intermediate results, internal computa-
tions, etc.), and output activities (writing or deleting symbols). They also

16The ‘subtractive notation,’ according to which 4 is represented as IV and not as IIII
in Roman numerals, was introduced only in the Middle Ages and is not discussed here.
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devised paper-and-pencil algorithms for addition and multiplication with
Roman numerals, and despite common prejudices, these algorithms were
found not to be more di�cult for humans to execute than those for the
Indo-Arabic numerals (see Schlimm and Neth, 2008, for a description of
the algorithms).

The analysis by Schlimm and Neth (2008) of the elementary information
processes employed in the computations revealed that addition with Indo-
Arabic numerals requires knowledge of many basic addition facts (like ‘2 +
3 = 5’), but that only few simplification rules (like ‘IIIII ! V’) need to
be mastered for additions with Roman numerals. The fact that a Roman
numeral is on average longer than the Indo-Arabic numeral of the same
value, has the e↵ect that many more individual steps (perceptions, attention
shifts, write operations) have to be carried out, but that these put little
strain on working memory. The authors also noticed that the Indo-Arabic
algorithms are highly optimized in order to reduce external computations
and thus employ more internal ones, whereas the Roman algorithm they
devised made heavy use of external representations. Thus, not only the
di↵erent numeral systems themselves, but also the di↵erent computational
strategies that they require, have considerable e↵ects on the ease and speed
with which both systems are used.

As mentioned above, one of the main disadvantages of the Roman nu-
meral system in comparison with the Indo-Arabic one is the on average
longer length of its numerals, which results in lengthier computations. How-
ever, it is important to keep in mind that this only holds on average (assum-
ing that uniform ranges of natural numbers are used), since, for particular
numbers, the Roman numerals can be shorter than the corresponding ones
in the Indo-Arabic system. As an example, compare M with 1000. One
could make a case that it is exactly these kinds of (round) numbers that are
used most frequently in practice.

Computing with artifacts. We have argued above that notions of prob-
lem di�culty or computational equivalence between two problems require
a reference to the machinery or mechanism involved in solving the prob-
lems (see Section 4.1, page 83). Our emphasis on the actual computational
process also revealed the crucial role of external resources. For instance,
the paper-and-pencil algorithms for arithmetic computations with Roman
numerals discussed in Schlimm and Neth (2008) could also be carried out
on an abacus, whereby the computations would be simplified considerably.
This observation naturally leads to the consideration of the use of artifacts
for computations. Examples of such artifacts are the digits on one’s hands
or toes, sand tablets, paper and pencil, the abacus, but also cash regis-
ters, pocket calculators, and modern computers. The interactions between
such devices and arithmetical practice are manifold: On the one hand, each
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device operates with a particular representation of numbers, so that this
representation a↵ects the mechanical computations. For instance, one of
the biggest challenges when constructing the first ‘analytical engine’ was to
devise an automatic mechanism to carry the tens, which is needed even for
simple additions such as 9 + 2 = 11:

“The most important part of the Analytical Engine was undoubtedly
the mechanical method of carrying the tens. On this I laboured in-
cessantly, each succeeding improvement advancing me a step or two.
[. . .] At last I came to the conclusion that [. . .] nothing but teaching
the Engine to foresee and then to act upon that foresight could ever
lead me to the object I desired. . . ” (Babbage, 1864, p. 114, Ch. VIII)

Babbage’s conundrum has nothing to do with the mathematical features of
addition, and everything to do with the arbitrary properties of the base-
ten place-value notation system. Not only do the properties of notations
constrain the design of calculators, but the availability of calculators can
also influence our arithmetic abilities. For instance, the negative e↵ects of
the widespread availability and use of pocket calculators on students’ math-
ematical abilities have been widely discussed.17 While we cannot go into
further detail about these interactions, they illustrate the subtle interplay
between cultural (technological) and cognitive (mental) operations.

All the analyses we have described so far concern the ease with which
external numeric representations are processed during computation. But
arithmetic is often done ‘in the head’ suggesting that constraints imposed
by external (perceptual or motor) processes should not apply. However,
we shall argue that notation, in particular the Indo-Arabic decimal system,
exerts some subtle e↵ects on arithmetic performance, even when the tasks
are performed primarily mentally.

4.3 Notation and mental arithmetic
If a particular notation constrains the design of mechanical devices, what are
the e↵ects of adopting the Indo-Arabic decimal system on the ‘machinery’
of mental arithmetic? The very notion of ‘mental’ arithmetic might suggest
that any e↵ects are limited to the translation between input and output
formats, as in the simple three-stage view of problem solving attributed to
Craik (1943). He claims that, after some initial translation process, oper-
ations are carried out in some medium of thought (mentalese) before the
final answer is returned. A more embodied and embedded view of cognition
(as promoted in di↵erent ways by Clark, 1997; Wilson, 2002; Neth et al.,
2007) would argue that this simple model needs to be elaborated with a

17See (Dehaene, 1997, pp. 134–136) and (Butterworth, 1999, p. 350), but more system-
atic studies are needed.
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more interactive view of arithmetic that might allow the environment, in-
cluding external representations, a more potent role in shaping mental rep-
resentations and processes. However, most psychological studies of mental
arithmetic have ignored notational e↵ects and concentrate only on the rep-
resentation of number and of number processing independently of specific
numeral systems.

A notable exception is the existing research on representational e↵ects in
the psychological literature on mental arithmetic. One body of research on
that topic analyzes the influence of particular representational systems on
the ease with which mental operations can be carried out. For example, in
comparing the Indo-Arabic number system with Roman numerals Nickerson
(1988) and Zhang and Norman (1993, 1995) point out that each system
selectively facilitates di↵erent subprocesses. Zhang and Norman analyze
such di↵erences in terms of which computational constraints are enforced
by the notation, and which need to be maintained mentally. The thrust
of this work is more theoretical than empirical. Some empirical work on
the e↵ects of di↵erent number systems has shown that notational e↵ects
can be measured on internal operations as well as on interactive read-write
processes.

Gonzalez and Kolers (1982) showed that the reaction times of very sim-
ple addition tasks (with sums below 10) were influenced by notation. They
used a verification/rejection task in which participants were presented with
equations like IV+2 =VI, displayed in a variety of mixtures of Roman and
Indo-Arabic numerals, and showed that the notation used a↵ected the slope
of problem-size e↵ects. On this basis, they suggested that di↵erent men-
tal operations were applied to Roman and Indo-Arabic numerals, so that
the notation was exerting an e↵ect even on internal transformation pro-
cesses (Gonzalez and Kolers, 1987). Other examples of research directed
at representational e↵ects in arithmetic include investigations of linguistic
number name e↵ects (see, e.g., Miller, 1992), based on discrepancies in the
regularities of number names in di↵erent languages.

More recently, Campbell and Fugelsang (2001) presented simple addition
problems in a verification task in either Indo-Arabic digit or English number
word format and monitored participants’ adding strategies. As participants
were less likely to retrieve results, but rather resorted to calculation when
facing number word problems, and this di↵erence increased with problem
size, they concluded that presentation format does have an impact on cen-
tral aspects of cognitive arithmetic. In a similar vein Nuerk et al. (2001)
suggested on the basis of a number comparison paradigm that tens and
units might not be represented on a single continuous mental number line.

The work of LeFevre et al. (1996) links two pervasive issues in experi-
mental studies of arithmetic skills. First, even relatively simple arithmetic
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tasks involve a choice between alternative strategies. For instance, the prob-
lem 3+6 can be solved by retrieving the answer 9 from memory or by using
an incremental counting procedure to generate the answer. If some stepwise
algorithm is used one might start with the number 3 and count up 6 units
from it, or, more e�ciently, one might reverse the left-right order of addends
to start with the larger number 6 and count up 3 from that (see Siegler and
Shrager, 1984; Siegler, 1987; Siegler and Lemaire, 1997; Shrager and Siegler,
1998; Siegler and Stern, 1997, for developmental studies of strategy selec-
tion).

The phenomenon that problems involving larger numbers (e.g., 4 + 5)
are generally solved more slowly than those with smaller numbers (4 + 3)
is known as the problem size e↵ect (Parkman and Groen, 1971; Groen and
Parkman, 1972; Campbell, 1995; Zbrodo↵, 1995; Geary, 1996). While ex-
planations for the problem size e↵ect remain controversial, LeFevre et al.
(1996) have suggested that it may be related to the issue of strategy choice.
If di↵erent participants resorted, at di↵erent points, to counting strategies
(which show a linear relationship between addend size and count duration)
then a problem size e↵ect could be explained as a methodological conse-
quence of averaging over an entire group of participants. (See also Siegler,
1987, for a similar point.)

Interestingly, a related analysis of addition tasks is sensitive to the prop-
erties of the Indo-Arabic decimal number system. LeFevre et al. (1996)
report that when the sum of a pair of digits exceeds ten, an adder is more
likely to use a counting rather than a fact retrieval strategy. According to
this account, sums greater than ten (e.g., 6 + 7) are sometimes decomposed
into two stages: up to the decade (6 + 4), and beyond (10 + 3). Moreover,
Geary (1996) reports evidence that even adults frequently use decomposi-
tion as a back-up strategy, particularly on larger-valued addition problems
(with sums exceeding ten). If this strategy is indeed widespread, then it
makes an interesting prediction, namely, that those additions that sum to
ten are likely to be the most practiced of all additions. In this case, one
would predict that sums to ten, or more generally, sums reaching decade
boundaries will be even easier than smaller sums. Neth (2004) investigated
this hypothesis by letting participants add up sequences of random single-
digit numbers and measuring the time for each individual addition (see also
Neth and Payne, 2001). The results show clear decade e↵ects in mental ad-
dition. So-called complements (two addends adding up to a round sum, e.g.,
16+4) are added faster than sub-complements (e.g., 16+3), which, in turn,
are faster than super-complements (e.g., 16+5). As the first of these results
in particular cannot be explained by problem size e↵ects, the duration of
mental operations is influenced by arbitrary properties of a numeric nota-
tion. In line with this argument is the observation that post-complements
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(e.g., 20 + 6) are computed faster than any other type of addition, presum-
ably because such operations do not require any actual addition, but can
be achieved by mere replacement of the unit digit 0 by the current addend
6. Thus, the neural gears of our minds seem to be a↵ected by properties
of our decimal notation just like Babbage’s analytical engine required some
special ingenuity to carry the tens.

In this section we highlighted various trade-o↵s between the richness of
a representational system (in terms of its basic set of symbols), its demands
on human cognition (e.g., the need to memorize symbol meanings and rules
for symbol manipulation), and the resulting potential for algorithmic com-
putations. This potential not only depends on the mental machinery of
the human mind but is modulated by the availability of external tools (like
paper and pencil, an abacus, or an electronic calculator). More generally,
the di�culty of any arithmetic problem crucially depends on the relations
among the specific task to be solved, the representational system used to
grasp and frame it, and the internal and external capacities and resources
that are available and required to solve it.

5 Conclusion
As was mentioned briefly in Sections 1 and 2.1, philosophers of mathe-
matics in general, and analytic philosophers in particular, have shown great
reservations toward taking seriously the work of psychologists on mathemat-
ical reasoning. This is possibly due to the influence of Frege’s arguments
against psychological accounts of mathematical objects, which he deemed
either unsatisfactory or subjective. Since then anti-psychologistic tenden-
cies have been popular in philosophy of mathematics, so that philosophers
have shunned the idea that any psychological insights might be relevant to
their enterprise. The distinction made between the contexts of discovery
and justification (Reichenbach, 1938), together with the view that philoso-
phy has nothing to say about the former, has further ingrained this attitude
(see Schlimm, 2006, for a general discussion of these developments). Objec-
tions to these sentiments were raised mainly by mathematicians, who tried
to get a better understanding of their practices, and who were fully aware
that their activities had strong psychological components.18

Frege’s emphasis on mathematical objects as logical entities led to a
static view of mathematics and a focus on the ontological nature of math-
ematical objects, which dominated philosophy of mathematics for a long
time. With the turn toward history and mathematical practice that was
pushed by the work of Lakatos (1976), philosophy of mathematics began to
show more interest in the cognitive foundations of mathematical reasoning.
Nevertheless, the relationship between mathematics and cognition is still

18See, e.g., (Klein, 1926, p. 152) and (Hadamard, 1945).
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tenuous, as can be seen by the reserved interest of philosophers in the first
attempt to relate cognitive psychology to mathematical practice (Lako↵ and
Núñez, 2000).

One point that we have stressed in this presentation is that notation
is relevant for understanding how we deal with numbers and that even
mental arithmetic is best understood as an interplay between internal and
external representations. This suggests that mathematical notation also
plays an important role in our understanding of higher mathematics and
mathematical practice in general. Indeed, if notation is an irreducible part
of our mathematical cognition, this might have important consequences
for philosophy of mathematics, in particular for our epistemic access to
mathematical objects.

While philosophers can learn from psychologists about the cognitive un-
derpinnings of mathematics, psychologists can also learn from philosophers,
in particular when it comes to conceptual clarification. The basic termino-
logical distinctions presented in Sections 1 and 4 are not always adhered to
in psychology, where we frequently find the terms ‘number,’ ‘number con-
cept,’ and sometimes even ‘numeral’ used interchangeably. We have also
seen that what cognitive scientists mean by ‘arithmetic’ (simple computa-
tions with mostly natural numbers) is not necessarily what philosophers or
mathematicians take it to be (e.g., the study of properties of prime num-
bers). And indeed, mathematics extends far beyond di↵erentiating between
heaps of discrete objects, and counting up to small numbers. Therefore, the
question arises whether empirical results about the ways in which humans
or lower animals deal with small numerosities tell us anything at all about
high-level mathematics. Related to this are issues regarding the nature
of infinity. Many mathematical objects—like the set of natural numbers,
the continuum, the functions in analysis, and the lines in geometry—are
essentially infinite. How human beings are able to reason about such struc-
tures is still largely a mystery from a cognitive perspective. This opens new
opportunities for cognitive science, which hitherto has mainly dealt with
elementary numerical cognition, to investigate the cognitive underpinnings
of more complex mathematical thought.

At the beginning of this paper, we presented our aim as illuminating
the relationship between mathematics, mind, and brain from various per-
spectives (recall Figure 1d on page 60). We now realize that even our
interdisciplinary journey could not do full justice to all the nuances of our
topic. Any comprehensive treatment of the cognitive basis of arithmetic will
have to include specifications of the world in which mathematical problem
solving is situated. Such references to the context must not only include de-
scriptions of the physical environment (e.g., a characterization of the precise
task to be solved, the shape of our bodies, and the availability of artifacts),
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Math World

BrainMind

Representations

Figure 4. Representations shape and are shaped by the relations between
mathematics, world, mind, and brain.

but also aspects of the social, linguistic, and historical context in which
particular problems occurred. As we have seen, representations play a key
role in the explanation of the various relationships between our four main
reference points of mathematics, mind, brain, and world (Figure 4). Due
to their mediating role representations not only shape our interactions with
mathematical problems and constructs (e.g., by determining the di�culty
of mathematical tasks), but they are themselves adapted and shaped by the
need to solve specific mathematical problems in particular environments.
The theory of arithmetic and the development of numerical notations as
tools to solve mathematical tasks cannot meaningfully be studied in isola-
tion from the physical, social, historical, psychological, and biological con-
text in which theory and tools were conceived and applied. We hope that
future work in this direction will further illuminate the cognitive basis of
arithmetic and of mathematics as a whole.
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Räsch, T., editors, Foundations of the Formal Sciences IV, volume 3 of
Studies in Logic, pages 233–253, London. College Publications.

Schlimm, D. and Neth, H. (2008). Modeling ancient and modern arithmetic
practices: Addition and multiplication with Arabic and Roman numerals.



105

In Love, B., McRae, K., and Sloutsky, V., editors, Proceedings of the 30th
Annual Meeting of the Cognitive Science Society, pages 2097–2102, Austin
TX. Cognitive Science Society.

Shapiro, S. (2000). Thinking about Mathematics: The Philosophy of Math-
ematics. Oxford University Press, Oxford.

Shettleworth, S. J. (1998). Cognition, Evolution, and Behavior. Oxford
University Press, New York NY.

Shrager, J. and Siegler, R. S. (1998). SCADS: A model of children’s strat-
egy choices and strategy discoveries. Psychological Science, 9(5):405–410.

Siegler, R. S. (1987). The perils of averaging data over strategies: An
example from children’s addition. Journal of Experimental Psychology:
General, 116(3):250–264.

Siegler, R. S. and Booth, J. L. (2004). Development of numerical estimation
in young children. Child Development, 75:428–444.

Siegler, R. S. and Lemaire, P. (1997). Older and younger adults’ strat-
egy choices in multiplication: Testing predictions of ASCM using the
choice/no-choice method. Journal of Experimental Psychology: General,
126(1):71–92.

Siegler, R. S. and Shrager, J. (1984). Strategy choice in addition and
subtraction: How do children know what to do? In Sophian, C., editor,
Origins of cognitive skills, pages 229–293. Lawrence Erlbaum Associates,
Hillsdale NJ.

Siegler, R. S. and Stern, E. (1997). Conscious and unconscious strategy
discoveries: A microgenetic analysis. Journal of Experimental Psychology:
General, 127(4):377–397.

Simon, H. A. (1978). On the forms of mental representation. In Savage,
C. W., editor, Perception and Cognition. Issues in the Foundations of
Psychology, volume IX of Minnesota Studies in the Philosophy of Science,
pages 3–18. University of Minnesota Press, Minneapolis MN.

Simon, H. A. (1996). The Sciences of the Artificial. MIT Press, Cambridge
MA, 3rd edition.

Tang, Y., Zhang, W., Chen, K., Feng, S., Ji, Y., Shen, J., Reiman, E.,
and Liu, Y. (2006). Arithmetic processing in the brain shaped by cultures.
Proceedings of the National Academy of Sciences of the United States of
America, 103:10775–10780.



106

Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin
of the American Mathematical Society, 30(2):161–177.

Tudusciuc, O. and Nieder, A. (2007). Neuronal population coding of con-
tinuous and discrete quantity in the primate posterior parietal cortex. Pro-
ceedings of the National Academy of Sciences of the United States of Amer-
ica, 104:14513–14518.

Uller, C., Carey, S., Huntley-Fenner, G., and Klatt, L. (1999). What
representations might underlie infant numerical knowledge? Cognitive
Development, 14:1–36.

van Heijenoort, J., editor (1967). From Frege to Gödel. A Source Book
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