
The Cognitive Coprocessor Architecture
for Interactive User Interfaces

George G. Robertson, Stuart I<. Card, and Jock D. Mackinlay
Xerox Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto. CA 94304

Abstract

The graphics capabilities and speed of current hardware
systems allow the exploration of 3D and animation in
user interfaces, while improving the degree of int,erac-
tion as well. In order to fully utilize these capabilities,
new software architectures must support multiple, asyn-
chronous, interacting agents (the Multiple Agent Prob-
lem), and support smooth interactive anima.tion (the
Animation Problem). The Cognitive Coprocessor is a
new user interface architecture designed to solve these
two problems, while supporting highly interactive user
interfaces that have 2D and 3D animations. This a.rchi-
tecture includes 3D Rooms, a 3D analogy to the Rooms
system with Rooms Buttons extended to Interactive Ob-
jects that deal with 3D, animation, and gestures. This
research is being tested in the domain of I?tformation
Visualization, which uses 2D a.nd 3D animated artifa.cts
to represent the structure of informa.tion. A prototype,
called the Information Visualizer, has been built.

1 Introduction

Rapid improvements in computer and peripheral hard-
ware in recent years have dra.matica.lly increased the
opportunities for building highly intera.ctive and sophis-
ticated user interfaces for a wide variety of applications.
The graphics capabilities a.nd speed of current, hardwa.re
systems allow the exploration of 3D and a.nimation in
user interfaces, while improving the degree of interac-
tion as well. However, in order to fully utilize these

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear. and notice is given that copying is by

permission of the Association for Computing Machinery. To copy other-

wise, or to republish, requires a fee and/or specific permission.

@ 1989 ACM O-89791-335-3/89/001 l/O010 $1.50

capabilities in a systematic way, new software architec-
tures are needed. Two problems, in particular, need to
be addressed by these new architectures. First, the de-
gree (and complexity) of interaction increases rapidly as
interfaces begin to deal with multiple interacting agents
(the Multiple Agent Problem), Second, there is a trend
toward increased use of interactive animation in inter-
faces because animation can decrease the cognitive load
on the user (the Animation Problem). This paper de-
scribes a new user interface architecture, called the Cog-
nitive Coprocessor, which provides systematic ways of
dealing with both the Multiple Agent Problem and the
Animation Problem.

After describing the Multiple Agent Problem and An-
imation Problem in more detail, we describe an ap-
plication, called Information Visualization, which uses
2D and 3D animation to explore information and its
structure. We then describe the basis, background,
and structure of the Cognitive Coprocessor architec-
ture. Managing collections of visualizations, or virtual
workspaces, is done with a 3D analogy to the Rooms sys-
tem [4], called 3D Rooms. Interaction is accomplished
through Interactive Objects, which are similar to Rooms
Buttons, but have been extended to deal with 3D, ani-
mation, and gestures. All of these components are being
integrated into a prototype system, called the Informa-
tion Visualizer. The paper concludes with a discussion
of open implementation issues and the benifits of the
architecture.

2 The Multiple Agent Problem

The behavior of an interactive system can be described
as the product of the interactions of (at least) three
agents [a]: a user, a user discourse nzachine, and a
task ma.chine or application (see Figure 1). The user
and the user discourse machine engage in a form of di-
alogue communication. This dialogue is not, of course,
in the form of natural language, but in terms of utter-
ances peculiarly suited to conversation between human

10

and machine. An interesting feature of such conversa?
tions is that, unlike human-human conversations, the
utterances are between fundamentally dissimilar agents
- a human on one end, and a machine on the other.
The machine sends its utterances to the human prima.r-
ily through graphical presentations (pictures or text) or
maybe by sound. The human sends his or her utterances
to the machine through manipulations of some sort of
input device, such as a keyboard or a mouse. The asym-
metries in the conversation reflect (1) the highly devel-
oped perceptual abilities of the huma.n compa.red to the
relatively crude perceptual abilities of machines, (2) the
ability of many machines to generate (at high speed)
graphical information matched to this human percep-
tual ability, and (3) the greater cognitive resources for
semantic processing on the pa.rt of humans. In addition
to widely dissimilar dialogue languages, these a.gents op-
erate with very different time constants. For exa.mple,
a search process in an application a.nd the gra.pl1ica.l
display of its results may be slow, while the user’s per-
ception of displayed results may be quite fast. The user
interface must provide a form of impeda.nce ma.tching
(dealing with different time constants) between the var-
ious agents as well as translate between different lan-
guages of interaction.

In addition to the three agents of Figure 1, there are
increasing numbers of user interfaces that provide cogni-
tive assistance to the user by adding intelligent agents
of various sorts (e.g., an agent to filter and sort your
mail [S]). These additional agents have their own time
constants and langua.ges of interaction tha.t must be a.c-
comodated by the user interface.

Impedance matching can be difficult to a.ccomplish
architecturally because all agents involved want rapid
interaction with no forced waiting on other agents, and
the user wants to be able to rapidly change his or her fo-
cus of attention as new informa.tion becomes availa.ble.
For example, if a user initiates a long sea.rch tha.t pro-
vides intermediate results as they become available, the
user should be able to abort or redirect the sea.rch at
any point (e.g., based on perception of the int,ermedia.te
results), without waiting for a disp1a.y or search prc+
cess to complete. Another example, from the doma.in
of text editors, is the ability of an editor to skip all or
part of a display update when sequences of comma.nds
are typed ahead. The user interface a.rchitecture must
provide a systematic way to manage the interactions
of multiple asynchronous agents that can interrupt a.nd
redirect each other’s work.

3 The Animation Problem

Over the last sixty-five years [$I, animation has come
from a primitive art form to a very complex and ef-
fective discipline for communication. Walt Disney has
been quoted as saying, “Animation can explain what-
ever the mind can conceive.” In fact, when coupled with
computers, animation has been used for a wide range
of things, from the concrete of simulated reality (like
animating the flight of a simulated airplane), through
metaphor (like animating the opening of windows on
a computer desktop), to the abstract (like animating
algorithms [1,3] and Scientific Visualization). Interac-
tive animation is the most difficult of these techniques,
because of its extreme computational requirements.

An important property of interactive animation is
that it can shift a user’s task from cognitive to per-
ceptual activity, freeing cognitive processing capacity
for a.pplication tasks. For example, interactive anima-
tion supports object constancy. Consider an animation
of a complex object that represents some complex rela-
tionships. When the user rotates this object, or moves
around the object, animation of that motion makes it
possible (even easy, since it is at the level of percep-
tion) for the user to retain the relationships of what is
displayed. Without animation, the display would jump
from one configuration to another, and the user would
have to spend time (and cognitive effort) reassimilating
t’he new displa,y. By providing object constancy, ani-
mation significantly reduces the cognitive load on the
user.

The Animation Problem arrises when building a sys-
tem that attempts to provide smooth interactive an-
imation and solve the Multiple Agent Problem. The
difficulty is that smooth animation requires a fixed rate
of guaranteed computational resource, while the highly
interactive and redirectable support of multiple asyn-
chronous agents with different time constants has widely
va.rying computational requirements. The user interface
architecture must balance and protect these very differ-
ent computational requirements.

4 Application: In format ion Vi-
sualizat ion

In order to put the Cognitive Coprocessor in a frame-
work that addresses the problems set forth above, we
has focused on a class of applications that require effec-
tive solutions to those problems. The application area
is Information Visualization, analogous to Scientific Vi-
sualization. In Information Visualization, 2D and 3D
a.nimated objects (or visualizations) are used to repre-
sent botch information and the structural relationships

11

TASK USER USER
MACHINE DISCOURSE

MACHINE

Figure 1: Triple Agent, Model of Human-Computer Interaction.

of information. Direct manipula.tion of these objects
causes changes in the actual structure of the informa-
tion or changes in the a.ctual information. These object,s
are placed in simulated 3D environments, and the user’s
task is to move around those environments, int,eract-
ing with and manipulating the artifacts that he or she
finds. Some interactions invoke time consuming oper-
ations (like searching a database). Other interactions
merely change the user’s orienta.tion or some object’s
orientation in the environment.

Figure 2 shows an example of a simula.ted 3D environ-
ment, called the Ezploraiory, which has a whiteboard on
the right wall and a table with some object placed on
it. In this simple example, the user’s task is to move
around the room, interacting with the objects encoun-
tered in order to discover their content and function.

Information Visualization can make use of a 3D en-
vironment because the aspect ratio and perspective of
3D make much better use of limited screen space when
displaying large information structlures. It requires a
good solution to the Multiple Agent Problem because of
the varying time constants and computational require-
ments of search, manipulation, and movement. And,
it requires a good solution to the Anima.tion Problem,
because animation is crucial to both movement of the
user about the environment and movement of objects

in the environment (crucial because the user needs the
benefit of object constancy that animation provides in
order to make sense out of movement of complex objects
representing complex structural relationships).

5 Cognitive Coprocessor

Sheridan [7], in his studies of interactive embedded au-
tomation, was the first to arrive at the tri-part divi-
sion of Figure 1 and to explicate the possibie paradigms
of interaction. But it seems clear that the three agent
model can be adapted and enhanced to serve as a model
for human-machine interaction generally [a]. From this
point of view, interactions with computer workstations
are simply a special case of a more general framework
that includes the control of automated airliners, electric
power plants, and space probes. Human interfaces to
network-based computation, for example, introduce de-
lays, bandwidth limitations, and interactive automation
control paradigms previously encountered in embedded
automation system control. It has also been pointed out
[2] that intelligent agents can be introduced at different
sites of the three agent model, creating different classes
of intelligent systems.

The Cognitive Coprocessor is a user interface archi-
tecture that supports the three agent model, the addi-

12

Figure 2: Example 3D-Room: The Exploratory.

tion of intelligent agents, aradsmooth interactive anima-
tion. It includes management of multiple asynchronous
agents that operate with different time constants and
need to interrupt and redirect each other’s work. It’s
name is derived from the cognitive assistance it provides
the user and other agents, as well as the coprocessing of
multiple interacting agents that it supports.

Figure 3 shows the basic structure of the Cognitive
Coprocessor Architecture. The three layers correspond
to the agents of the three agent model (Figure 1). The
basic control mechanism (inner loop) of the Cognitive
Coprocessor is called the Animation Loop. It m&n-
tains a Task Queue, a Display Queue, and a Go,vemor.
Built on top of the Animation Loop is: an informa,tion
workspace manager (and support for 3D simulated en-
vironments), called SD Room; support for navigating
around 3D environments; and support for Infernclive
Objects, which provide basic I/O mecha.nisms for the
user interface. The task ma.chine (which, for the In-
formation Visualization applica.tion, is a collection of
visualizers) couples with the Cognit,ive Coprocessor in
various ways, as illustrated in Figure 3.

5.1 Animation Loop

The Animation Loop is the basic control mechanism for
the Cognitive Coprocessor Architecture, and maintains:
(1) a Task Queue, which contains pending computa-
tional tasks from various agents; (2) a Display Q,ueue,
which contains pending instructions from various agents
about how the screen should be painted on the next an-
imation loop cycle; and (3) a Governor, which keeps
track of time and allows for adjustments to anima.tions
to keep them smooth.

The architecture provides a fra.mework for agents.

Bowever, it is clear that agents must be designed care-
fully to fit in that framework. There are guidelines for
defining agents that specify how they should interact
with and use the animation loop. For instance, these
guidelines indicate the size of tasks and display instruc-
tions permitted during any one cycle of the animation
loop. Agents must be prepared to be interrupted dur-
ing a task and redirect or abort their efforts. This can
be accomplished by either decomposing tasks into small
pieces and allowing one piece to be executed during each
animation cycle (like coroutines), or by spawning pro-
cesses that can be interrupted by interprocess communi-
cation (like multiprogrammed systems). In either case,
the architecture provides the mechanisms and guidelines
to make it easy to construct agents that function well in
this environment, but does not force agents to conform
to the guidelines.

The Tusk Qvezle may contain three different kinds of
tasks: procedures, light-weight process spawn requests,
and heavy-weight process spawn requests. The heavy-
weight processes are supported by the underlying oper-
ating system (e.g., Unix), share no memory with the rest
of the architecture, are communicated with by means
of interprocess communication, and may be aborted at
any time by the architecture (by killing the process).
These are most appropriate for long running tasks or
for parts of agents that already exist in some other soft-
ware package (e.g., a search procedure in a database
manager). The light-weight processes are supported by
the underlying language (e.g., extended Common Lisp),
share memory with the architecture, and are communi-
cated with by means of either shared memory or light-
weight interprocess communication. These are most ap-
propriate for medium and long term tasks that are more

13

Task
Machine

User
Discourse
Machine

3D Navigation ++ 3D Rooms

Task Queue Display Queue

User

Figure 3: Cognitive Coprocessor Architecture.

14

fully integrated with the rest of the architecture (e.g.,
a search procedure over a data structure built by an
integrated visualizer). Finally, task procedures are exe-
cuted to completion, and are expected to be very short.
They are most appropriate for monitoring the behav-
ior of spawned processes and for short processing tasks
(e.g., checking on the status of a spawned search pro
cess) .

Conceptually, the Display Queue contains procedures
for painting the various aspects of t,he disp1a.y. In pra.c-
tice, the architecture is object oriented, hence the Dis-

l Draw each of the objects on the Display
Queue,

l Swap the display buffers;

5. Loop (go to step 1).

This basic architecture with its guidelines for agent
construction provides the support we need for manag-
ing smooth interactive animation and multiple asyn-
chronous agents.

play Queue contains all of the objects to be drawn. The,
architecture is tailored for double-buffered auimation

5.2 Virtual Workspaces: 3D Rooms

(required for smooth animation), hence all objects are
redrawn on each animation loop cycle. When single-
buffered animation is necessary, the a.rchitecture re-
quires application agents to provide a. method for draw-
ing only the changes for each object, and to place only
changed objects on the Disp1a.y Queue.

The Cognitive Coprocessor and agents should be de-
signed so that the animation loop runs a.t ten cycles per
second or faster (thirty is ideal), to provide smooth a.n-
imation. The Governor provides a, timing mechanism
so that agents can tell when the a.nimation loop cycle
is taking longer than desirable for smooth animation.
Agents are expected to ta.ilor their anima.tions to run
at a fixed real-time rate, hence should use the Governor
to determine how much dista.nce to cover in an anima.-
tion for each animation loop cycle. This prevent,s an
animation from running either too fast or t(oo slow. For
example, a ball bouncing in a room should be designed
to bounce at a fixed rate (e.g., one bounce per secoud).
The distance the ball moves on each a.nimation step de-
pends on how fast the system a.s a whole is running (i.e.,
the ball must move further in one step if the syst,em is
running slower than normal).

Given the other components of the architecture, the
Animation Loop is quite simple. It has two major states:
the idle state and the anima.tion state. In the idle sta.te,
nothing is changing on the display, and the task queue is
empty, so the animation loop simply suspends, waiting
for input from the user or one of the spa.mned agent
task processes. In the animation state, the following
steps are taken:

Most of the Information Visualization application de-
scribed earlier can be supported by the Cognitive CO-
processor Architecture described above. However, two
additions are needed to fully support the application.
First, we need support for simulated 3D environments
in which to place our 2D and 3D visualizations. And
second, we need a way to manage large collections of
visualizations. Both of these are provided by a system
we call 3D Rooms.

The problem of managing large collections of informa-
tion visualizations is very similar to the problem of man-
aging large numbers of windows on a computer desktop.
The Rooms system [4] takes advantage of the fact that
a person’s dynamic access to information tends to ex-
hibit locality of reference, accessing small clusters of
information at a time. Henderson and Card use this
fact as the basis for managing windows in clusters, or
virtual workspaces called Rooms, to significantly reduce
spa,ce contention in window-based user interfaces. In
our Information Visualization application, the virtual
workspaces are small clusters of 2D and 3D visualize
tions.

Since we wish to place our visualizations in 3D en-
vironments, it seems appropriate to use a metaphor of
a physical room, and make each 3D environment be a
t,hree-dimensional simulated room. The extension of the
Rooms system to the 3D Rooms system is then natural.
The 3D Rooms system manages collections of 3D arti-
facts (representing abstractions or simulations of infor-
matiou or information structures) instead of windows,
a.nd keeps each collection in a simulated 3D room.

1. Update the Governor’s clock;

2. Process any pending input from the user or
spawned task processes;

3. Process any pending tasks on the Task Queue;

4. Draw the new display:

l Clear the next display buffer (double-buffered
animation),

5.3 3D Rooms Class Hierarchy

The 3D Rooms system is object oriented. The basic
object class hierarchy is shown in Figure 4. There is
a basic class, called Room, and two major sub-classes,
2D-Room and SD-Room. Sub-classes are created for
ea.ch widely used collection of visualizations. From
each visualization-collection class, individual instances
of rooms are created.

15

Room

Visualization A Room D

isualization B Room E

Room F
Visualization C

< Room G

Figure 4: Example 3D Rooms Object Class Hierarchy.

A basic Room has the following characteristics (ob-
ject slots): a name, a list of interactive objects (de-
scribed in the next section), and a ma.pping from
keystrokes to selectable interactive objects. A basic
Room has methods for:

0 Initialization,

l Enter-Room,

l Exit-Room,

l Draw-Room,

l Draw-Contents-Of-Room,

l Draw-Interactive-Objects,

l Handle-Mouse-Selection, and

l Handle-Menu-Selection.

A 2D-Room adds some characteristics: a size (x and
y) and a background color. A 3D-Room adds: a size
(x, y, and z), colors for four walls, the floor, a.nd the
ceiling, a focal angle (for 3D perspective control), a.nd
home positions for the body (see na.viga.tion discussion
below), direction the body is facing, and direction the
gaze is facing. Visualization classes a.dd their own cha.r-
acteristics and shadow the basic methods to a.chieve the
desired results.

The Exploratory in Figure 2 is an example of a 3D-
Room. In addition to the whiteboard and table with
some object on it, there is a door on the back wall
(not shown), which leads to another room. The user
moves around this room interacting with the objects
(the whiteboard, the object on the table, and the door).

5.4 Navigation in 3D Rooms

In order to make interaction with 3D artifacts in 3D
Rooms effective, we need a graceful way for the user
to move about a simulated 3D room. We have chosen
to use the metaphor of walking around a room, and
have kept room sizes and egocentric motion controls
as close to familiar physical settings and movement as
possible. The particular motion controls were partially
derived from a theory of input devices [5]. They pro-
vide three virtual joysticks with one mouse button. The
default joystick controls body movement forward and
backward, and body rotation left and right. The other
two virtual joysticks are tied to icons on the screen (see
Figure 2). One icon represents the direction the body
is facing, and its joystick controls body movement up,
down, left, and right. Clicking on the body icon will
return the body to its normal standing position. The
second icon represents the direction the gaze is facing
(the orientation of the head), and its joystick controls
head movement up and down and head rotation left and
right, with natural human limitations (e.g., you cannot
turn your head more than about 80 degrees). Clicking
on the gaze icon will bring the head to a face forward
orientation.

These navigational controls are uniform across the
entire Cognitive Coprocessor Architecture. In order to
provide proper feedback and smooth animation of ego-
centric movement in a 3D-Room, the navigation mech-
a.nism is integrated into the basic animation loop in the
“draw” step (step (4) above).

16

5.5 Interactive Objects (Generalized
Buttons)

The Rooms system [4] h as devices, called Buiions,
which are used for a variety of purposes, such a.s move-
ment, new interface building blocks, and task assistance.
A Button has an appearance (typically, a bitmap) and a
selection action (a procedure to execute when the But-
ton is “pressed”). The most typical Button in Rooms is
a door - when selected, the user passes from one Room
to another. Buttons are abstractions that ca.n be pa.ssed
fromone Room to another, and from one user to another
via electronic mail. In our 3D Rooms system, we pro-
vide a generalization of Rooms Buttons, which we ca.11
Interactive Objects. Interactive objects are extended to
deal with gestures, animation, 2D or 3D a.ppea.ra.nce,
and an extensible set of types.

An interactive object ha.s an appea.ra.nce; but. has a,
draw method instead of a bitma.p, since it. ma.y a.ppear
as a 2D or 3D object. The notion of selection is general-
ized to allow mouse-based gestural input in addition t,o
simple “pressing”. Whenever a user gestures a.t a.11 inter-
active object, a gesture parser is invoked that interprets
mouse movement and classifies it as one of a small set of
easily differentiated gestures (e.g., press, rubout, check,
and throw left, right, up or down). Once a. gesture has
been identified, the interactive object dispa.tches t,o the
appropriate method (i.e., there is a method for ea.& of
the gestures). These gesture methods are specified when
the interactive object is created. The gesture parser ca.n
be easily extended to allow additional gestures a.nd ges-
ture methods, as long as the new gestures are easily
differentiated from all other gest,ures.

Interactive objects can be animated by specifying a
home position and a selected position. When t,he ob-
ject is selected, it flys to its selected position (which
may involve a number of rota,tions and tra.osla.tions).
One example of an animated intera.ctive object. is an
editable text input object which is at home on the floor
of the room, but flys to a vertica.1 orienta.tion when se-
lected so that editing is easier. Another exa.mple of an
animated interactive object is a door t,hat, opens when
the doorknob is touched.

There are a number of types of interactive object,s. In
the current implementation, these include sta.tic text,
editable text, date entry, number entry, set selection,
checkmark, simple button, doors, and thermometers
(for feedback and progress indicators). The set of types
supported for interactive objects can be easily extended.

6 An Information Visualizer:
Discussion

The Information Visualizer is a prototype system that
incorporates all of the architectural features described
for solving the Multiple Agent Problem and Animation
Problem, in the context of the Information Visualiza
tion a.pplication. It provides the integration of: 2D and
3D animated visualizations; 3D Rooms to manage the
virtual workspaces and provide a 3D environment; in-
teractive objects to provide generalized extensions to
Buttons for user interaction; and the Cognitive Copro-
cessor Architecture as the basic underlying architecture
to support multiple asynchronous agents and smooth
interactive animation.

To date, we have contructed six 3D rooms in this
system, providing various 2D and 3D representations
of information and the structure of information. The
Exploratory in Figure 2 is an example of one of those
rooms.

The system we have built runs on a hardware base
(Silicon Gra,phics Iris) that supports 3D graphics and
double-buffered animation. There are a number of im-
plementation issues surrounding the problem of port-
ing the Information Visualizer to other hardware bases.
One major problem has to do with 3D graphics stan-
dards. It is desirable to use a standard to ease the
porting problems, but undesirable if the standard im-
poses implementation layers that slow the system down
a.nd bender smooth animation (with its real-time con-
straints). One solution that we are exploring is the use
of a portable 3D graphics layer that compiles out inter-
mediate implementation layers. Another major prob-
lem has to do with support for both single-buffered and
double-buffered animation. As mentioned earlier, we
a.re exploring the required extensions to 3D Rooms draw
methods to support single-buffered animation. Whether
it can be done effectively enough to support smooth an-
imation is still an open question.

The basic Cognitive Coprocessor Architecture has
proven to be very effective in providing a good frame-
work for working on the Information Visualization ap-
plica.tion. It has been easy to define new visualizations
once they were conceived (conceiving new visualizations
is quite a difficult task, and is not addressed here). And,
it has been easy to achieve the desired kind of responsive
redirectable interaction with multiple agents, while also
a.chieving the desired smooth interactive animation.

References

[l] Brown, M.H. (1987). Algorithm animation. MIT
Press.

17

[2] Card, SK. (1989). H uman Factors and Artificial
Intelligence. In P.A. Hanccock & M.H. Chignell
(Eds.), InteIZigent interfaces: Theory, research and
design. Elsevier Science Publishers B.V. (North-
Holland).

[3] Duisberg, R.A. (1988). Animation using tempo-
ral constraints: an overview of the animus sys-
tem. Human-Computer Interaction, 3, 275-307,
Lawrence Erlbaum.

[4] Henderson, D.A., & Card, S.K. (1986). Rooms: the
use of multiple virtual workspaces to reduce space
contention in a window-based graphical user inter-
face. ACM Transactions on Graphics, 5, 3, 211-
243, July, 1986.

[5] Mackinlay, J .D., Card, S.K., & Robertson, G.G.
(in preparation) A semantic analysis and taxonomy
of input devices. To appear in Human-Computer
Interaction, Lawrence Erlbaum.

[S] Malone, T.W., Grant K.R., Turbak, F.A.,
Brobst, S.A., &z Cohen, M.D. (1987). Intelli-
gent information-sharing systems. Communica-
-tions ACM, 30, 5, May 1987, 390-402.

[7] Sheridan, T.B. (1984). Supervisory control of re-
mote manipulators, vehicles and dynamic pro-
cesses: experiments in command and display aid-
ing. Advances in Man-Machine System Research,
1, 49-137, JAI Press.

[S] Thomas, F., & Johnston, 0. (1981). Disney ani-
mation - the illusion of life. Abbeville Press (New
York).

18

