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THE COHERENT FLAME MODEL FOR TURBULENT CHEMICAL REACTIONS 

Abstract 

A description of the turbulent diffusion flame is proposed in which 
the flame structure is composed of a distribution of laminar diffusion 
flame elements, whose thickness is small in comparison with the large 
eddies. These elements retain their identity during the flame development; 
they are strained in their own plane by the gas motion, a process that not 
only extends their surface area, but also establishes the rate at which a 
flame element consumes the reactants. Where this flame stretching process 
has produced a high flame surface density, the flame area per unit volume, 
adjacent flame elements may consume the intervening reactant, thereby 
annihilating both flame segments. This is the flame shortening mechanism 
which, in balance with the flame stretching process, establishes the local 
level of the flame density. The consumption rate of reactant is then given 
simply by the product of the local flame density and the reactant consump
tion rate per unit area of flame surface. The proposed description permits 
a rather complete separation of the turbulent flow structure, on one hand, 
and the flame structure, on the other, and in this manner permits the 
treatment of reactions with complex chemistry with a minimum of added 
labor. The structure of the strained laminar diffusion flame may be 
determined by analysis, numerical computation, and by experiment without 
significant change to the model. 

The flame density and the mass fractions of reactant are described 
by non-linear diffusion equations in which those equations for the reactants 
each contain a consumption or production term proportional to the local 
flame density. The flame density equation contains a production term 
associated with flame surface stretching and a consumption term describing 
the flame shortening by mutual annihilation. Each of the equations contains 
a turbulent diffusion term utilizing a scalar diffusivity. The model of 
inhomogeneous turbulence, proposed by Saffman, completes the description 
of the problem and couples with the flame and composition equations to 
determine the velocity distribution and the turbulent diffusivity. A 
single additional universal constant, over those appearing in Saffman's 
model, is required in the model equations for the flame. 

The coherent flame model has been applied to diffusion flame structure 
in the mixing region between two streams and predicts correctly the result 
that the reactant consumption per unit length of flame is independent of 
the distance from the initiation of mixing. In this example which is 
carried out for small density changes, both the fluid mechanical and flame 
variables possess similarity solutions. 

The coherent flame model is also applied to the turbulent fuel jet 
which clearly does not have a similarity solution simply because the finite 
mass flow of fuel is eventually consumed. The problem is solved utilizing 
an integral technique and numerical integration of the resulting differential 
equations. The model predicts the flame length and superficial comparison 
with experiments suggest a value for the single universal constant. The 
theory correctly predicts the change of flame length with changes in stoich
iometric ratio for the chemical reaction. 
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1. INTRODUCTION 

Some of the earliest considerations of turbulent combustion processes, 

e.g., Damk~hler, (1) Shchelkin, (2) included the suggestion that a turbulent 

combustion field consists of a collection of laminar flame surfaces in which 

the laminar flame structure retains its identity while being distorted by the 

turbulent motion. This conjecture found additional support a decade later in 

the work of Hawthorne, et a1. ,(3) Hottel, (4) Karlovitz, et al. (5) Wohl, (6) 

and others. That brief period provided some provacative experiments through 

schlieren PhotOgraPhs(7) and ion probe measurements(8) that demonstrated the 

presence of concentrated reaction zones in turbulent flames. Looking back 

on some of these experiments, e.g., Hottel, (9) Zukoski, (10) we find clear 

evidence of the large structure of inhomogeneous turbulence that, until the 

recent work of Brown and Roshko, (11) escaped the attention of workers in 

turbulence research. This early interest in a possible laminar flame struc-

ture within turbulent combustion zones stimulated no serious steps toward a 

qualitative formulation of these ideas; rather, subsequent theoretical devel

opments were guided by the Reynolds, (12) Taylor, (13) Karman, (14) tradition 

and, as a consequence, treated the local reaction rates in terms of mean' 

values of products of fluctuating state quantities. Each viewpoint has its 

merits; each has its advantage in interpreting the effects of certain 

portions of the turbulence spectrum, a fact that was clearly noted by 

Damk~hler(l) and Shche1kin. (2) 

It is the aim of the present work, which extends an analysis carried 

out by the present authors(15) with support of the Air Force Weapons Labor

atory, to develop an analytical formulation to the concept of a turbulent 

flame consisting of coherent laminar flame elements, where by coherent, it ' 

is implied that a local laminar flame element retains its identity although 

it is severely distorted and strained by the turbulent motions. More 

specifically, the thickness of the diffusion flame is assumed small in com

parison with the wave length of prominent disturbances in the gas. Then 

the local flame element is stretched and distorted by the local gas rotation 

and strain rate, but the diffusion flame structure is affected only by the 

strain rate in its own plane. 
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According to this physical picture, the rate at which reactants are 

consumed, in volume of dimensions small compared with the physical problem 

but large with respect to laminar flame thickness, is the product of flame 

surface area and reacting consumption rate per unit flame surface. A 

simplified illustration of this process is shown in Figure 1 for a mixing 

zone. The straining associated with the diffusive character of turbulence 

not only leads to the growth of flame surface area but is essential in 

determining the reactant consumption per unit of flame surface. A greater 

reaction rate is associated with a II stretching" diffusion flame because 

the straining in the plane of the flame induces a flow of gas toward the 

reaction line steepening the concentration gradients and thus augmenting 

the diffusion of reactants to the flame. 

TH1E = t 

OXIDIZER .. 
SHORTENED 
SURFACE 

STRETCHED 
SURFACE 

TIME = t + ~t 

Figure 1. Schematic Drawing of Flame Surface Stretching 
and Shortening. 

As the straining motion continues to increase the flame surface, regions 

develop where flame fronts move so close to one another that they interact, 

Figure 1. In time, the two neighboring flame elements move together, consume 

the intervening reactant and destroy these two elements of flame surface. 

This is the flame shortening mechanism that eventually balances the extension 

caused by straining, and it is an essential feature that was notably absent 

from earlier intuitive discussions of the flame element model of turbulent 
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combustion. It is necessary that in the combustion of unmixed reactants, 

the competition between i) flame surface growth by straining and ii) flame 

surface reduction by mutual annihilation of reaction fronts, establishes the 

level of reactant consumption per unit volume. 

A particularly attractive feature of the coherent flame model is the 

effective separation of the details of the chemistry from the details of the 

turbulent structure. The chemistry appears only in the plane laminar dif

fusion flame subjected to strain rate, a calculation in which complex chemistry 

may be incorporated with relative ease. The turbulent structure, on the other 

hand, only involves the heat release in its response to the corresponding 

density changes. Thus, the description of the turbulence and the description 

of chemistry and thermodynamics of the reaction are coupled in a rather 

elementary way; when the heat of reaction is low, the coupling is correspond-

ingly weak. 

A formulation of the coherent flame model for the turbulent diffusion 

flame then requires i) a model for inhomogeneous turbulence, including 

closure conditions; ii) a model for flame surface distribution over the 

turbulent region, which leads to a corresponding reactant consumption and 

heat release; and iii) calculation or measurement of the reactant consump-

tion rate for a laminar diffusion flame that is undergoing strain in its 

own plane. 

In the following sections, an analytical formulation for this model is 

suggested and some general properties are discussed. The equations are then 

applied, for very rapid reaction rates and low heat releases, to the problems 

of the turbulent mixing layer and the turbulent fuel jet. 
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2. THE COHERENT FLAME MODEL 

According to the coherent flame model for turbulent diffusion flames, 

the f10wfie1d is divided into two regions by a flame sheet, one of the 

reactants existing on each side of the sheet. The sheet becomes extensively 

distorted and dispersed during the turbulent combustion process and it is, 

therefore, appropriate to define a field variable L(X.,t) which specifies 
1 

the flame surface area per unit volume. This quantity is denoted the flame 

density and has the dimension of a reciprocal length. All of the chemical 

reaction takes place within a region that is small in comparison with the 

predominant length which describes the distortion of the flame front. We 

know that in a laminar diffusion flame, such as that represented by the 

flame sheet, the combustion products remain within the diffusion layer, a 

layer which under the most elementary circumstances grows as If. The situ

ation is different when the turbulent motion is continually extending the 

flame surface, say at a linear strain rate E, and in such a flame, the 

diffusion zones quickly stabilize at a thickness proportional to E-1/2. The 

newly-formed reaction products then remain within this small distance of the 

flame sheet and are distributed over the geometric mixing zone by the exten

sion and migration of the flame sheet. In the volume for which the flame 

density is L(xi,t), we may similarly define mass fractions Kl(xi,t), 

K
2

(x
i
,t) of the reactants, the mass fraction K3(x i ,t) of the reaction pro

ducts, and a mass fraction K4(x i ,t) of an inert diluent. 

If the process of flame extension were to continue without modification, 

the flame surface would become dense in some regions and the spacing between 

surfaces, which on the average is L-
1

, would be of the same order as the 

thickness of the flame diffusion zones. In this event, neighboring flame 

sheets are no longer isolated; they interact and quickly consume the inter

vening reactant. (16) This process shortens the flame surface and, hence, 

reduces the flame surface density at a rate proportional to the volume rate 

of reactant consumption by a unit area of the flame, V
D

, and inversely pro-

portional to the distance between the two flame fronts bounding the reactant 

in question. Now the distance between flame fronts that is occupied by a 

particular species is of the order of the volume fraction of that species 

divided by the flame surface per unit volume. Then for the species with 
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volume fraction vi' the effective distance between flame fronts occupied by 

the ith chemical species is v./I. But is proves convenient to describe this 
1 

in terms of mass fractions Ki and the molecular weights Mi of the species, 

v. = (K./M.)(!K./M.)-l, so that the characteristic length associated with 
1 th 1 1 J J 

the i chemical species is 

K. 
1 

rvr/I ! K ·/M· 
i J J 

It should be noted here that when the molecular weights of the reactants 

and products are nearly equal, that is M
l
= M2 = M

3
, then (r Kj/M

j
) Mi = 1 

and the above characteristic length becomes = Ki /I , a form that we shall 

employ in later calculations. 

With this result, we may establish the physical order of the rate of 

flame surface reduction due to the consumption of the ith reactant as 

per unit of flame surface, or 

VOi 
-I 
V. 

1 

(1) 

per unit of volume that contains a flame area I. We shall write the flame 

surface reduction caused by consumption of the fuel and oxidizer components, 

i = 1 and i = 2, as the sum of terms of the type given by expression 1. 

Now it is a matter of formal calculation to obtain an equation for the 

change in area of an element associated with fluid particles, as it is 

stretched and deformed by a turbulent medium. In fact, Batchelor(17) has 

done exactly this calculation in examining the behavior of line segments 

and surface elements in homogeneous isotropic turbulence. For our purposes, 

the result states that the Eulerian time derivative of I is given by the sum 

of the turbulent diffusion of this quantity and the increase of flame density 
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by the local strain rate of the mean motion. It is presumed that, for 

inhomogeneous turbulence, the strain rate of the mean motion is sufficiently 

dominant that the additional straining associated with turbulent fluctuations 

may be neglected. For two reasons, this result does not describe accurately 

the behavior of a flame element. First, the flame front generally moves with 

respect to the fluid and thus does not always contain the same fluid particles. 

Second, the flame shortening mechanism, in which adjacent flame fronts consume 

the intervening reactant and annihilate each other, must be accounted for. 

They are two aspects of the same differences which contrast the behavior of 

the flame sheet with that of a surface element consisting of the same fluid 

elements. The first of these will be neglected in our formulation while the 

second, and dominant, effect will be accounted for by shortening mechanisms 

discussed above. 

Then in a turbulent fluid field with mean velocity components U
i

, scalar 

turbulent diffusivity V and local scalar mean strain rate £, we postulate 

that the flame surface density satisfies the partial differential equation 

where the speci fi c subscri pts j = 1 and j = 2 wi 11 denote the "fuel" and 

lIoxidizer" reactants, respectively. 

(2) 

A notable advantage of the coherent flame model, upon which we shall 

elaborate later, is that the chemical reaction rate may be expressed in 

terms of the local flame surface density. Thus, for example, the mass 

of species 1 that is being consumed per unit volume is just p VOi L since 

VOi is volume consumption rate of fuel by a unit flame area. Then by well 

known techniques, we write the continuity equation for the fuel constituent 

in a turbulent flow 

(3 ) 
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and similarly for the oxidizer component, 

(4) 

where cr* is an appropriate turbulent Schmidt number. Because I Kj = 1, the 

remaining species conservation equation is unnecessary so long as the inert 

diluent may be grouped with other species or is absent. It is assumed, of 

course, that the reactant consumption rates VOl' V
02 

for a unit flame area 

are available in terms of the local variables and transport properties. 

The reactant consumption rate may, in the case of the complex chemistry, 

require a numerical calculation or, in the case of rapid kinetics which we 

shall examine subsequently in more detail, it may be expressed analytically 

in a simple closed form. Under any circumstances, the quantity of importance, 

VOl' is obtained from a one-dimensional calculation that is independent of 

the detailed solution of the partial differential equations describing the 

turbulent flame. 

To complete the formulation, a model for inhomogeneous turbulence is 

required which yields, in addition to the velocity field, the scalar dif

fusivity and the scalar straining rate E. The model that is the most closely 

related is that suggested by Saffman(18) which utilizes the specific vorticity 

Iwl and the specific turbulent kinetic energy as independent variables, 

employs a scalar diffusivity and recognizes the role of the local magnitude 

of the straining motion in the mechanism for producing both vorticity and 

energy. Then for an incompressible medium, implying that the heat of reac-

tion is small, this model gives 

(5) 

(6 ) 
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· ~ + U ~ = a* _a_ (v .QL) + a * .. / (2 S .. ) 
2 

e - S * w S 
at k aX k aX k aXk ' lJ 

(7) 

2 2 
~+U ~= 
at k aXk 

a _a (v aw
2)+ "~(;Ui)2 w2 _ Sw . w2 

aXk aXk aXj 
(8) 

The first two equations are of the standard form, and it is assumed that 

the Reynolds stresses -- as well as other diffusion processes -- may be 

described by a scalar turbulent diffusivity V. It is a familiar dimensional 

argument that the turbulent diffusivity, which has the dimension of a veloc-

ity times a length, may be constructed from local field quantities; in fact, 

this is the essence of Karman's original concept of mechanical similitude. (19) 

In the model we use, Saffman chooses the turbulent energy density e (£2/ t 2) 

and the magnitude w of the vorticity (l/t) as the local physical quantities. 

Both turbulent kinetic energy and vorticity have physically understood 

transport laws, and they are related through the association of the turbulent 

velocities with the vorticity that induces them. Then take 

v :: e/w (9) 

which not only defines the turbulent diffus;vity, but establishes a magni

tude relationship between e and w. 

The transport Equation 7 for the turbulent energy has a physically 

recognizable form; the three terms on the right-hand side are, in order: 

diffusion, production, and dissipation. The turbulent diffusion term is 

clear and the production term is patterned after the one which occurs 

naturally in turbulence theory which is proportional to the Reynolds stresses 

acting on the mean strain rates. Here, e is taken as a measure of the 

Reynolds stress, which t (aui/axj + auj/ax i ) is the strain rate of the mean 

flow, and we have denoted it S... The last term, the dissipation, must be 
lJ 

constructed from the product of three fluctuating velocities, and Saffman 

has chosen this to be the product of vorticity and turbulent energy. The 

vorticity equation 8 is reminescent of Helmholtz vortex equations and may 

be intuitatively argued from them. Again, the turbulent diffusion of 
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vorticity is described by the diffusivity V. The second term represents the 

production of vorticity by vortex stretching, the stretching being given in 

Saffman's model by the magnitude of the velocity gradient tensor. It should 

be noted that the mean velocity derivatives enter differently in the energy 

and vorticity production terms, Saffman,(18) and it is only for certain 

flowfields that the two become indistinguishable. 

This set of four equations, 5 through 8, results from a complete model 

in the sense that the constants involved are universal, closure being 

achieved by the choice of turbulent diffus;vity V = e/w. In the original 

formulation of the coherent flame model presented in Reference 15, closure 

was achieved by identifying the turbulent diffusivity V as the product of 

a characteristic velocity and a characteristic length defined locally or 

globally. The fact that this choice must be made with some physical insight, 

and differently for each type of flow, shows that the problem is not des

cribed completely by the differential equations; such a model is sometimes 

denoted incomplete, implying that, when coupled with the coherent flame 

model, the coefficients a, a*, etc. are not universal but may require adjust

ment from one flow type to another. 
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3. REACTANT CONSUMPTION RATE 

The reactant consumption rates enter into the problem in the form VOl 

and V02 ' the volume of fuel and oxidizer consumed per unit flame area, 

respectively, and play roles both in the species conservation relations and 

in the equations describing the flame surface density. These quantities 

are assumed to be determined locally by the flame structure and to depend 

only upon local quantities; in particular, for the diffusion flame, they 

are determined by fuel and oxidizer concentrations and a local fluid mech-

anical property. As shall be illustrated, they may be determined analytic

ally, or by numerical calculations when the kinetics are complicated and 

have an essential effect. The important point to keep in mind is that the 

entire flame structure and chemical kinetics are coupled with the field 

analysis rather weakly, so that the consideration of complex kinetics 

complicates only the local flame structure and not the formulation of the 

flowfield and the flame distribution. 

As a first illustration, consider the diffusion flame with rapid 

kinetics; in this approximation the reaction takes place at a surface of 

infinitesimal thickness. Utilizing the coordinates x and y to signify 

distances parallel to and normal to the flame surface, supposed to lie 

along y = 0, the fuel and oxidizer concentrations satisfy the equations 

where 

OK2 + u 3K2 + v 3K2 = 1 ~ ( 0 3K2) 
3t 3x 3y P 3y P oy 

~+ 2.Y.= 0 
3x ay 

(10) 

(11 ) 

(12 ) 

when the heat of reaction is negligible and the gas density p is a constant. 

For the classical diffusion flame, the field is independent of x, but the 

solution is time dependent. Then, since ~ = 0, v = v(t) which as will 
3x ' 

appear, is not generally zero. Then introducing the variable 
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and taking 

~ =.L 
lOt 

v(t) = w ~ 

the species conservation equations are reduced to a similarity form and 

become 

2 
d Ki (.f... ) dKi _ 

2 + 2 - W d~ - 0 
d~ 

(13 ) 

(14 ) 

(15 ) 

where i = 1, 2 for fuel or oxidizer, respectively. This pair of differ

ential equations is required to satisfy the conditions that the fuel and 

oxidizer mass fractions take on the values K1(oo) and K
2

(-00) at y = +00 

and y = _00, respectively and that the mass flux to the diffusion flame, 

y = 0, supplies fuel and oxidizer in the stoichiometric ratio. This latter 

condition is explicitly 

(16 ) 

where f is the known, constant stoichiometric fuel-oxidizer ratio. 

not difficult to show that 

It is 

erf (~ - w) + erf (W) 

Kl = K1 (00) 1 + erf (W) 

and 

erf (- f + w) - erf (H) 

K2 = K
2

(-00) 
1 - erf (\-1) 

satisfying the differential Equation 15 and the boundary conditions at 

y = too. The stoichiometry condition (Equation 16) then determines the 

11 

( 17) 

(18 ) 



characteristic value W, and it is a matter of calculation to show that this 

gives the result 

Kl(oo) (1 - erf (W) ) 
K2(-OO) ( 1 + erf (W)) = f 

(19 ) 

Now Kl (oo)/K2(-oo) is the imposed fuel-oxidizer ratio of the problem, ald the 

quotient of this with the stoichiometric fuel-oxidizer ratio 

K
l

(oo)/K
2

(_oo) 

f 

(20) 

is frequently called the equivalence ratio. Thus, the value of W becomes 

-1(<P -1) W = erf <P + 1 (21) 

This quantity defines the value of the transverse gas velocity 

( ) _ ~flI -1 (<p - 1) 
v t - ~t erf <P + 1 (22) 

which is required to keep the flame stationary at the x-axis. With this 

solution, the values of the reactant volume consumption rates may be cal-

culated as 

(23) 

and 

(24) 

This result exhibits the intuitively clear result that the consumption 

rates decrease with increasing time, because the diffusion layers that 

supply the reactants grow thicker with time. The equivalence ratio, which 
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determines the value of W, is known because Kl(~) and K
2

(-OO) are equal to 

the values remote from the turbulent flame since the diffusion zone thick

ness is assumed small in comparison with flame front spacing. At any point 

within the turbulent flame, therefore, the reactant consumption rates are 

known in terms of the time t elapsed since the formation of the flame. 

In disucss;ng the turbulent flame structure earlier, it was emphasized 

that the turbulent motions tend to extend the flame surface and that the 

significant part of this extension consists of strain rate in the plane of 

the flame. Now, if the flame is aligned with the x-axis and the remaining 

axes chosen so that straining rate is along the x-axis, the resulting 

strained diffusion flame is also directly soluble. In the particular 

instance when the straining rate in the fluid is large, i.e., where 

_ au 
e:: = ax 

is large and constant, Equations 10 through 14 take the form 

-'+v-'=~ D-' 
aK. aK. (aK .) 
at ay ay ay 

and 

av 
e:: + ay = 0 

(25) 

(26) 

(27) 

If we solve the problem as previously posed, the solution has a brief 

transient followed by a steady solution which we may obtain be neglecting 

aKi/at and taking v and K; to be functions of y only. Then introducing 

the variable 

~ - y (28) 
ID/2e:: 

v = -e::y + 12e::D W (29 ) 

with W unknown, the differential equation 26 becomes 
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(30) 

formally identical with Equation 15. The conditions for y ± 00, as well as 

stoichiometry condition at the flame front, are also identical with those 

of the time-dependent flame, and, hence, the solution for the strained 

flame is likewise given by Equations 17 and 18 together with W evaluated 

by Equation 21, but with ~ as defined in Equation 28. The corresponding 

volume consumption rates of reactants are easily calculated 

and 

Thus, so far as the local flame structure is concerned, the features 

relevant to the turbulent flame calculation are determined by the local 

(31) 

(32) 

strain rate. Because of the simplicity of these analytical results, they 

will be employed in detailed calculations for the mixing zone and the fuel 

jet. 

In many physical problems, the detailed distribution of chemical 

species plays a significant role, and, consequently, the simplification of 

the preceding calculation cannot be employed. But because of the effective 

separation of chemical aspects and turbulence, numerical calculations of 

even very complex flame structures is possible. To illustrate such a com

putation for a complex chemical reaction, we consider the reaction between 

hydrogen and atomic fluorine yielding hydrogen fluoride in the vibrational 

states v: 

H2 + F + HF(v) + H v = 0, 1, 2, and 3. 

Because the vibrational population distribution produced by the reaction 

is partially inverted, the hydrogen fluoride can be caused to lase (in the 
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infrared) in a properly-designed laser cavity. In fact, H2 - F and D2 - F 

chemical lasers are among the most efficient. For this reason, the important 

rate coefficients have been determined to considerable accuracy and for the 

same reason, there is great interest in the turbulent combustion of these 

reactants. It is natural, therefore, to choose the H2 - F flame for the 

illustration. 

It is the chemical laser application as well that necessitates numerical 

calculation of the flame structure. To determine laser performance, it is 

not sufficient to know the H2 and F consumption rates. In addition, the 

production of HF in the various vibrational levels is needed as is the sub-

sequent depopulation rate of these levels by inter-molecular collisions. 

The accurate treatment of these processes and of the inter-diffusion of the 

many species involved is possible only in a numerical calculation. 

For reasons irrelevant to the present discussion, the computations 

were carried out utilizing parallel streams of reactants that cause the 

development of the flame along the axis of the mixing zone. When the two 

streams have the same velocity U, the successive values of x can be con

sidered as successive intervals in time defined by t = x/U. The results 

then become comparable to the time dependent diffusion flame with rapid 

kinetics discussed above. Correspondingly, when a pressure gradient is 

imposed upon the parallel stream to accelerate them in their direction of 

motion, the flame eventually reaches a structure that is independent of 

x and directly comparable with the steady, strained solution for rapid 

kinetics. also discussed above. 

Consider then parallel, accelerating streams of nitrogen, one carrying 

the hydrogen and the other atomic fluorine. See Figure 2. At the initial 

station, x = 0, the pressure in both streams is 5 torr, the temperature is 

500o K, and the velocity 10 em/sec. In the upper stream, the fluorine and 

nitrogen mass fractions are 0.077 and 0.923, respectively; in the lower, 

the hydrogen and nitrogen mass fractions are 0.011 and 0.989, respectively. 

A 'constant strain is imposed on the flow by causing both streams to 

accelerate uniformly to 104 em/sec in a distance of 6 inches. In the 

process, the pressure and temperature drop to 4.67 torr and 490 o K, respec

tively. 
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N2' F y .-
F 

x .. 
N2 • H2 H2 

Figure 2. Strained Laminar Mixing Layer 

The chemical reactions that are considered are described in detail in 

Reference 20. They may be summarized as follows. The reaction H2 + F + 

HF(v) + H is unidirectional and produces vibrational populations in the 

following fractions: v = 0, 0.056; v = 1, 0.111; v = 2,0.555; and 

v = 3, 0.278. The excited states are deactivated by collision with the 

other species present at prescribed efficiencies. In addition, there are 

V-V exchange collisions among the various levels of HF and with molecular 

hydrogen and nitrogen. The rate coefficients for all these molecular pro

cesses are given in Reference 20. 

The multi-component diffusion coefficients are computed from temper

ature dependent binary coefficients under the assumption that the Lewis

Semenov number was constant. The temperature dependence of the species 

viscosities is accounted for by empirical fits to experimental data. 

The system of equations describing this diffusing and chemica11y

reacting system was solved by a computer program that is a modification of 

the B10ttner boundary layer code described in Reference 21. The original 

program has been modified so that it solves the laminar mixing layer 

equations and has subsequently been used in several investigations of the 

of the constant pressure hydrogen-fluorine flame. (22) A further modifica-

tion was made to allow the treatment of the strained flame in the present 

study. 

*The authors thank F. E. Fendell and D. Haflinger for making this modification 
and for obtaining the computer results that are presented. 
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Two sets of calculations were made: one with the complete chemical 

system outlined above and a second in which the HF was taken to be produced 

in a single (ground) state. This latter simplification was made so that an 

investigation of the effect of rate coefficient changes could be made more 

economically. These results are discussed first. 

Figures 3 through 5 show the H
2

, F and HF(O) y distributio~s at several 

downstream locations; that for Figure 3 being close to the initial stations. 

We observe first the evolution of the profiles into the fixed shape that 

the simple analysis, outlined at the beginning of this section, predicts 

for the strained flame. The profiles at x = 6.0 inches are virtually the 

same as those at x = 0.126 inch. This asymtotic state is attained even 

though neither the density nor the velocity are constant in the reaction 

zone. The density is reduced as the heat of reaction increases the temper

ature and then this lighter gas accelerates more than the free stream under 

the imposed pressure gradients. 

The next point of interest in these results has to do with the chemical 

reaction rate relative to diffusion rate. We note that even for x locations 

as close as 0.126 inch to the origin, there is little interpenetration of 

hydrogen and fluorine. This observation suggests that the assumption made 

in the earlier analysis that the reaction rate is infinite may be a good 

approximation for the present condition. Additional evidence that this is 

the case was obtained by repeating the computation with the reaction rate 

coefficient increased by a factor ten. Comparison of Figure 6, given by . 

the computation with Figure 5, shows only a minor increase in the amount 

of HF that has been formed, a result implying that diffusion to the flame 

surface is the rate-limiting process. 

Vibrational state distributions for the run with the full hydrogen

fluorine chemistry are given in Figure 7 through 10. We see that the 

vibrational population total inversion which exists near the origin, 

x = 10-6 inches, has, under the action of the deactivating collisions, 

nearly disappeared at x = 4.4 • 10-
5 

inches. (The inflection in the HF(v) 

distribution at the very low concentrations comes from computation errors 

and may be ignored.) 
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Comparison of Figures 9 and 10 indicates that, in this case, also the 

imposed constant strain rate has formed a flame whose width ;s constant and 

within which the state distributions are nearly constant. This result ;s 

perhaps somewhat unexpected in that the deactivation processes are distri

buted throughout the diffusion zone and, thus, the conditions of the chemi

cal reaction are quite different from those in the simple analysis that lead 

to the constant state. 

These results would be incorporated in the coherent flame model by 

determining the fuel and oxidizer consumption rates from the numerical 

solution. The state of the fluid within the turbulent flame zone would then 

be fixed by knowledge of the flame surface per unit volume, determined from 

the model, and the distribution within the flame. For all axial locations 

except those very close to the origin, the constant state strained distri

butions would be the appropriate ones. It appears, in fact, that in most 

applications, the strain-dominated flame solutions would be used. 

In both the analysis and the numerical calculations just described, 

the assumption is made that no products are present when the flame begins. 

It is clear, however, that in those regions of the turbulent zone where 

flame shortening occurs, products are left behind which may influence the 

subsequent reaction. They may, for instance, separate volumes of fresh 

reactant and thereby reduce the reaction rate. The model has not yet been 

modified to account for such effects, but some indication of their signi

ficance may be obtained from the following idealization. Consider, as an 

initial condition, the situation sketched in Figure 11, meant to represent 

oxidizer 

concentration 

-x 
o 

x = 0 

x 
o 

fuel 

x 

Figure 11. Initial Distribution of Reactants Separated by Product 
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fuel and oxidizer separated by an inert product layer 2 Xo thick. With 

the simplifying assumptions that the stoichiometric ratio is unity, the 

fuel and oxidizer concentrations are equal, the rate is infinite, and the 

density is constant, the reaction is confined to the plane x = 0 and the 

reactant concentrations there are held at zero for t > O. The fuel con

centration distribution satisfying the time-dependent diffusion equation 

with these boundary and initial conditions is: 

2 IiTDt 

which can be written 

(x_x , )2 
40t 

x +x/21Dt 
o 

J 
x -x/21Dt 
o 

- e 

(X+XI )2 

4Dt 

A similar expression applies, of course, to the oxidizer. From these 

solutions, the reactant flux to the flame sheet is found to be 

2 
x 

flux = pO ~~ I 
x=O 

pO K (00) - 4gt 
= 1 e 

lrrOt 

from which it is seen that the consumption rates differ from those of the 

classical case by the factor exp (-X
o
2/40t). This result makes it clear 

that when large masses of product are interposed between the reactants, 

the diffusion flame structure may be strongly altered. 
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4. REACTION IN A TURBULENT MIXING ZONE 

Consider the turbulent mixing and reaction of two parallel streams, 

the upper with undisturbed velocity Ul , fuel mass fraction Kl(oo) and diluent 

mass fraction K4(oo) = 1 - Kl(oo), the lower with undisturbed velocity U2 , 

oxidizer mass fraction K
2

(-OO) and diluent mass fraction K
4

(-OO) = 1 - K
2

(-OO). 

The problem is two-dimensional, steady, and will be treated under the 

boundary layer approximation. If we assume further that the molecular 

weights are nearly equal and that the molecularity of the reaction and 

heat evolved are small enough to produce negligible volumetric changes, 

then the coherent flame leads to the following formulation of the problem 

~ + !i = 0 
oX oy 

U ~ + V ~ = 1L (~ ~) + a* I~I e - s* e w 
oX oy 2 oy w oy oy 

2 2 (2) ow ow 1 0 e ow oU 
U ax- + V ay = Z oy W ay + a I oy 1 

2 3 
w - S w 

In this problem, the magnitude of the mean rate-of-strain tensor and the 

magnitude of the velocity gradient tensor, as employed by Saffman, have 

(33) 

(34) 

(35) 

(36) 

the same value and appear in Equations 35 and 36. The turbulent exchange 

ratios, which relate the turbulent diffusion of energy or vorticity to the 

turbulent diffusion of momentum, have each been taken as 1/2, values found 

acceptable in Saffman's calculations. 

The chemical reaction portion of the model will be formulated here 

utilizing the flame structure based upon very fast kinetics and dependence 

upon the local strain rate. According to this analysis, given in Section 3, 

the local volumetric consumption rates of fuel and oxidizer per unit flame 

area are Kl(oo) t g(~) 10100/oyl and K2{-OO) g(~) lolou/ayl where again lou/oy! 
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appears as the magnitude of the strain-rate tensor, a quantity denoted s in 

Section 3 and g(~) = (1 + ~) exp (-wf). Then the conservation equations 

for the fuel and oxidizer are 

(37) 

(38) 

For the mass fractions of the product and inert diluent, we have similarly 

U aK 4 + V aK 4 = L (~ aK 4) 
ax ay 3y w 3y (40) 

Because of our assumptions regarding the nearly identical molecular weights 

of the gasses, the inert diluent is indistinguishable from other components 

and, hence, K4 may be grouped with any of the other constituents. The only 

alteration will be to define 

and K3 so as to satisfy the relation Kl + K2 + K3 = 1. This general rela

tion permits us to ignore Equation 39 and to rewrite 37 and 38 

aK l 3Kl (3K1 ) 1 f U 
U - + V - = L ~ - - - g(<I» DI~I L: ax 3y 3y w 3y <I> ay 

(41) 
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(42) 

Finally, the flame surface density equation is 

u ~ + V ~ = .L (~ ~) + a I.£.!LI 2: 
ax ay ay w ay ay 

Here we have used the same universal constant a in representing the flame 

surface stretching as was used in representing the vortex stretching in 

Equation 36. Note further that we have introduced only one additional 

universal constant, A, in the flame shortening terms. The quadratic nature 

of the shortening terms allows any universal multiplier to be abosrbed in 

the definition of 2: itself; hence, only one additional constant is necessary. 

Now because of our assumption of small density changes, the fluid 

mechanical problem is uncoupled from the flame structure, and a similarity 

solution for the turbulent mixing zone may be obtained in the same manner 

as given by Saffman. Then introducing ~ = x, n = y/x and defining a stream 

function 

(44) 

where 

(45) 

the velocity components become 

(46) 

v = U* (n F' - F) 

Through dimensional considerations, it is appropriate to write the vorticity 

and the energy densities as 
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1 
w = u* ~ n (n) (47) 

e = U*2 E (n) (48) 

where nand E are dimensionless functions of the similarity variable alone. 

With this representation, the turbulent diffusivity is 

(49) 

a result which allows the momentum Equation 34 to be written in similarity 

form 

F F II + d (~F ") = a Tn n 

With the similarity formalism already introduced, the vorticity and 

energy density equations, Equations 35 and 36, reduce to the following 

ordinary differential equations 

and 

-2n ~ (Fn) = ~ (En I) + a. F" n2 - 6 n3 
un dn 

-F EI = l~(EEI) + a.* FilE - 6* n E 
2 dn n 

Equations 50, 51, and 52 correspond to those given by Saffman for the 

mixing zone problem. 

Turing now to the equations related to the flame and combustion 

problem, it is not obvious that they permit a corresponding similarity 

(50) 

(51) 

(52) 

representation. The peculiar term that occurs in Equations 41, 42, and 43 

is IDlau/ayl which we may write in terms of the similarity variables as 
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(53) 

Then the formal representation of the flame structure, Equations 41 through 

43, in the similarity variables of the fluid mechanical problem gives 

F' 11. -1 F 11. = 1 L {I 11.} + a 1 I Fill ~ 
a~ ~ an ~ an Q an ~ 

By inspection of these results, it appears that for similarity Kl and K2 

are independent of ~ and that L behaves as ~-1/2. Thus, we have 

and the flame density is expressed as 

L (~,n) = _..::..L~(n.!..!..) __ 

g(tP) loao* 

Note the appearance in this expression and in Equations 54 through 55 

of the dimensionless streamwise variable 
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(54) 

(55) 

(56) 

(57) 

(58) 

(59) 



(60) 

which bears the same relation to the Reynolds number as the molecular dif

fusivity 0 does to the kinematic viscosity. Note, then, that the quantity 

ID~/U* has the dimension of a length and gives the flame surface density its 

dimension of a reciprocal length, the variable L(n) being the dimensionless. 

Then, we use the new density variable 

L ( n ) : L ( (0) = L ( _(X») = 0 

With these definitions, Equations 54 through 56 reduce to ordinary 

differential equations in K,(n), K
2

(n), and L(n): 

d (E -) 1 - F ;;:1' = dn Q Kl' - ~ ;rrrrT L 

(61) 

(62) 

(63) 

In contrast to some formulations of turbulent mixing problems, the 

present one, because of its non-linear turbulent diffusivity, may produce 

a sharp boundary between the turbulent zone and the far field. This not 

unfamiliar situation was discussed in some detail by Saffman (18) in connection 

with the fluid dynamic solutions of several problems. The relevant point 

here is that, with the non-linear diffusivity employed, the edges in this 

case are sharp, lying at constant values of n, these values emerging as 

characteristic of the problem. With the value of 1/2 chosen as the 

exchange ratio in Equations 35 and 36, the appropriate boundary values 

for F, E, and Q are 
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(65) 

Subjecting the flame variables Kl' K2' and L to a corresponding analysis, 

we find for the equations -- as formulated 

;l(nl) = ;1 (n2) = 0 

;2(nl) = ;2(n2) = 0 (66) 

L(nl) = L(n2) = 0 

Clearly, there exists a trivial solution L(n) = 0, and in this case, Kl 

and K2 simply become constituents that mix without chemical reaction. In 

fact, Kl(n) and K2(n) are linear functions of F' (n), but this is not the 

solution we seek. 

Some properties of the solution can be obtained quite easily, for 

example the total fuel consumed per unit length of the mixing zone. This 

follows from integration of either Equation 41 or Equation 62 across the 

mixing layer. Working with Equation 41, we find 

Yl 

dy + f ~y (V Kl) 

Y2 

dy = ~DI ~~I 2:, dy 

which, with appropriate substitution for the variables, leads to 
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nl 

- ; U* / IfF"T L dn (67) 

n2 

This expresses the change with respect to x of fuel flux in the mixing 

zone, given by the integral on the left, as the difference between the 

flux of fuel in at the upper boundary and the fuel consumed by the chemi-

cal reaction. The striking result is that this rate is independent of 

distance along the mixing zone, in spite of the fact that all other 

physical quantities have some x-dependence. 

Calculations by Milinazzo and Saffman(18) have provided a good basis 

for the formulation of an integral solution to the turbulent mixing zone 

which we carry through the flame zone problem as well. For this purpose, 

we approximate the stream functions 

(68) 

(69) 

(70) 

in which nl' n2, Q
o

' and Eo appear as constants (functions of the problem 

parameters) to be determined by the integral relations. Using integrals 

of the energy and vorticity equations, together with integrals from O-nl 

and from n2-0 of the momentum equation, the problem reduces to an algebraic 

solution. The technique is familiar and straightforward, although alge

braically tedious and the details will be omitted. For small values of 

(U
l 

- U
2

)/U*, we find that 
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E 1 2 = Q = 153.64 
( 

u - u ) 
o 1 (u + u ) 0 

2 1 2 

The values of nl for specific values of U2/Ul correspond very well with 

numerical results given by Milinazzo and Saffman. (18) 

The integral method may also be applied to the species conservation 

equations and flame density equation, providing suitable representation 

for the profiles may be constructed. Those chosen were 

where the functions fl' f2' and g are 

2 2 
(nl - n) (n - n2) 

g = 
(nl - n2)4 

32 

(71) 

(72 ) 

(73) 

(74) 

(75) 

(76) 

(77 ) 



C1 = C2 = } (1 + ~) + 0.815 A 
-3.857 

(78) 

D = 0.4286/A 

If we utilize the integral technique to evaluate the fuel consumption 

rate in the mixing zone, as expressed by Equation 67, we find that 

approximately 

Yl 

~X / U Kl dy 

Y2 

{ 
Ul 0.037 ( 1 

= Iu 1 - U21 0.225 Ul + U2 - M 1 - 1 
2 (1 + ~) + 0.815 

(79) 

J} 
valid for limited variations of ~ from unity. To the same approximation, 

the ratio of fuel consumption to fuel inflow is 

-:;-i-(-l-+-~ -/-+-0-.-8-15-.) (80) 
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5. TURBULENT FUEL JET 

The fuel jet problem utilizes the same general equations for the fluid 

dynamics as employed for the mixing zone, Section 4, and because we approx-

imate the jet by a two-dimensional momentum source, the solution has the 

familiar similarity property. The similarity, again, rests on the assump

tion that the heat addition is small so that the fluid mechanical and 

combustion problems separate. The combustion part of the problem does not 

have a similarity solution, however, simply because there is a finite amount 

of fuel injected and this is eventually consumed, so that the chemical 

reaction ceases. Moreover, the classical "point" jet similarity solution 

carries an initially zero mass flux while the fuel jet problem requires a 

fixed flux of fuel to be injected at the origin. This difficulty is 

resolved in the familiar manner by displacing the effective origin to an 

appropriate point downstream of the momentum source. 

Because the combustion solution is non-similar, the differential 

equations for the chemical species and the flame surface density do not 

reduce to ordinary differential equations, but become partial differential 

equations in terms of the fluid dynamic similarity variables. Simplifica-

tion of the resulting problem is achieved by the familiar procedure of 

constructing a linear combination of the various mass fractions in which 

specific atom concentrations are conserved and, hence, satisfy a homogeneous 

differential equation. In the present case, it proves possible to develop 

such a combination of fuel and oxidizer mass fractions that is equal to the 

similarity velocity distribution. The mathematical problem then reduces to 

a pair of partial differential equations, one linear and one non-linear, 

with an algebraic integral which allows determination of the individual 

species mass fractions. 

The similarity variables for the two-dimensional jet follow from the 

observations: i) that there is no natural length and, hence, the jet should 

spread linearly along lines n = x/y = constant, and ii) that the momentum 

injected by the jet is conserved so that the integral Ju 2 dy over the jet 

is constant. But since the jet width increases directly with x, the velocity 

distribution must vary as x- l / 2. It also follows that the flow in the jet 

varies as xl/2, so that the injected mass flow is zero, the point that 

prompted the earlier observation about fuel flow. 
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The appropriate variables are then 

I; = x 
(81) 

n = y/x 

and if we denote the momentum efflux from the jet, per unit depth of the 

x-y plane, as p~, where p is the constant density of the fluid, then it is 

appropriate to write the stream function 

(82) 

For the similarity to hold, it is clear from Equation 7 that ~ = V ~ 1;1/2, 

and from Equation 8 that w ~ 1;-3/2. Therefore, it is appropr~ate to write 

1/2 
w = ~ ~(n) 

I; 

e = H.. E(n) 
I; 

with ~(n) and E(n) dimensionless. Under these definitions, the velocity 

components are 

and Equation 6 becomes 

_ 1 (F I ) 2 _ 1 F F I = 1 £... (f F I) 
"2" "2" "2" d n ~ 

The momentum equation may be integrated directly to give 
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(85) 

(86) 
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i F F' + ; F" = 0 

where the constant of integration vanishes because of the conditions on F' 

and E/n at the edge of the jet. Equation 7 reduces to the form 

- F' E - i FE' = i ~n {~ E'} + .*1 F" I E - En (88) 

where, following Saffman's choice, we have taken S* = 1. We note further 

by the boundary conditions and symmetry of the problem, IFill = - F" for 

n ~ 0 in which region the calculation will be carried out. Finally, 

Equation 8 becomes 

- 3F ' n
2 

- F n nl = %n (E n') + alF"1 n
2 

- sn
3 

(89) 

The conditions on the dependent variables are that, at the edge nl of the 

jet, F' (nl) = n(nl) = E' (nl) = 0, while on the symmetry axis, F(O) = E' (0) = 
nl(O) = O. In addition, the momentum].1 per unit mass is 

from which it follows that 

(F,)2 dn = 1 
2 

(90) 

In treating the chemical composition and flame density, we make cor

responding assumptions that were made for the mixing layer concerning 

molecular weights of the constituent and the possibility of grouping an 

inert diluent with any of the other constituents. Thus, we deal with only 

three species that satisfy equations 
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o~l o~l 0 (e O~l) 1 .. / au 
u ax + v ay = oy w ay - ~ 9 (q» t' 0 I oy I L 

(91) 

(92) 

o~3 o~3 0 (e OK3) ( 1 ) ~ u - + v - = - - - + 1 + - 9 (q> ) 0 I-I L ox oy oy W oy q> oy (93) 

Now by virtue of the linearity of these equations in their respective con

centrations and the fact that the consumption terms differ by only multip

licative constants, it is possible to write linear combinations of the mass 

fractions that are conserved. The obvious one, which we have utilized in 

the last example, is 

where the normalization is included in the definition of mass fraction. A 

second linear combination, of use to us in the present example, is 

(95) 

which satisfies the homogeneous equation 

U~+V~=L(e~) oX oy oy W oy (96) 

and vanishes for large values of y, outside the jet. Therefore, because it 

satisfies the same equations and the same remote conditions as U(x,y), it 

is proportional to this function and the constant of porportionality must 

be given by an integral condition, similar to the momentum integral, 

Equation 90, for the jet itself. 

This condition can be determined by stipulating that the jet initially 

injects a volume flow rate Yl of fuel which implies that the entire injected 

flow rate of fuel plus diluent is Yl [1 + K4(O)/K,(O)]. Far from the point 
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of injection, where the fuel is entirely reacted to combustion products, 

the jet will carry a flow rate of combustion products 

(97) 

in which the injected flow has been augmented by the chemically correct 

amount of the ambient fluid to react the fuel in the stoichiometric ratio. 

Ca 11 i ng 

(98) 

expression 97 becomes 

y(l + $) (99) 

Thus the integral condition on the reaction products is, where the reaction 

is complete, 

Yl 

1 i m 2 / U ;3 dy = y (1 + $) 
x-+oo a 

But, because Kl -+ a for large x, indicating that the fuel is eventually 

reacted, Equation 95 gives 

so that 

1 im J = 
x-+oo 

Yl 

1 i m 2 / U J dy = y 

x-+oo a 

(100) 

(101) 

To express this condition, it has been necessary to introduce a volume 

flow rate y of material that initially constitutes the jet which, in turn, 
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must carry the momentum~. This is clearly not admissible in the theory of 

the point jet, for which y = 0, because between the flow rate and momentum 

flux, we may define a length y2/~ and a velocity ~/y that characterize a 

jet of finite dimensions. The appropriate viewpoint, however, is similar 

to the description of a finite jet by means of a point jet with.a displaced 

origin, and shares with that approximation the difficulty that some early 

portion of the jet structure is described inaccurately. 

Now because the function J(x,y) is proportional to the velocity U(x,y), 

it may be written in similarity coordinates 

J = if F' (n) (102 ) 

where d is an unknown length. Substituting this expression in Equation 101 

gives 

2 
(F I) dn = y (103 ) 

But the integral is independent of s and holds for all s so that the normal

ization of the momentum integral, Equation 90, permits determination of the 

unknown length scale, 

d = y2 
~ 

(104 ) 

which we have defined earlier as the effective height of the jet discharge. 

The explicit solution for J that we have obtained permits us, using 

Equations 94 and 95, to write the oxidizer mass fraction in the form 

and therefore 

39 

(105 ) 



This algebraic integral, together with Equation 94, makes it necessary to 

determine only two unknowns, Kl(~'n) and r(~'n)' by the solution of differ-

ential equations. 

To complete the formulation of the jet problem, we shall consider the 

expressions for fuel conservation, Equation 91, and the flame surface density, 

Equation 2, the latter written in the form 

This form of the flame density equation differs slightly from that we 

employed previously, in the form of the flame shortening terms. Here, the 

two terms are replaced by a single one that reproduces the general physical 

idea and preserves the important behavior of the term at Kl = 0 and at 
-K2 = 0, since the two never vanish simultaneously. 

It remains to write Equations 91 and 106 in similarity variables and 

to make the appropriate choices for the detailed representations for Kl and 

r. Note that if there were no reactant consumption terms in Equation 91 

for the fuel mass fraction, the quantity Kl would also be proportional to 

the velocity and to emphasize this fact, we write 

(107 ) 

remembering that in the absence of combustion, kl(~,n) = F' (n). Further

more, it will prove convenient to define a new variable (cf. Equation 59) 

related to the flame density 

(108 ) 

where it is particularly to be noted that a dimensionless physical parameter 

has been constructed of the molecular diffusivity and the volume flow y per 
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unit depth. It is then a matter of a straightforward reduction to show that 

kl(~,n) and L(~,n) satisfies the partial differential equations 

and 

where now, from Equation 105, 

(111 ) 

For use in some of the calculations that follow, and because of their 

intrinsic value, the fuel and flame density equations may be integrated 

across the jet to give the resulting relations 

and 

n 

kl dn = - ! jll""F'T L dn 

n
l 

n, 

IF"IL dn - AI 
-n 1 

(112 ) 

(113 ) 

The single term on the right-hand side of Equation 112 represents the 

integrated fuel consumption, while those terms on the right-hand side of 

Equation 113 represent, respectively, the flame surface growth by stretch

ing and the flame shortening by mutual annihilation. 

The problem of the turbulent jet has been treated numerically utilizing 

an integral technique and reasonable representations of the profiles. In 

chosing the general profiles to represent the vorticity and energy densities 

in the turbulence, numerical calculations done by Dr. F. Milinazzo, privately 

communicated to the authors, were very useful. 
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Again, omitting the tedious algebraic details that characterize an 

integral method, it was found that the velocity, vorticity, and energy 

distributions could be represented adequately as 

2 
Q = Q(O) (1 - 8 ) 

where F' (0), Q(O), and E(O) are the values of these variables on the 

symmetry axis and 

8 = T)/T)1 

and their numerical values are 

F I (0) = 1.995 

Q{O) = 3.570 

E(O) = 0.724 

T)l = 0.290 

As before, the values of the universal constants in the turbulence model 

were taken as a = 0.2, a* = 0.3, and S = 5/3. 

(114 ) 

(115 ) 

(116 ) 

( 117) 

(118 ) 

Proceeding to the combustion portion of the model, we wish to reduce 

the integral relations, Equations 112 and 113, to ordinary differential 

equations by the choice of fuel concentration and flame density profiles. 

The results are made more manageable by the separation of ~ and T) depend

ence of these functions to the degree reasonable. With this aim in mind, 

we choose to represent 

which for k(~) = 1, yields an exact result in the absence of chemical 

reaction, and, consequently, we know in general that k(~) < 1. The fuel 
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mass fraction then becomes 

(120 ) 

so that, for the physical bound that Kl ~ 1 to hold, there is a lower limit 

on the value of ~ for which our representation is valid. Clearly this is 

and we shall consider this as the minimum value of ~ for which we can 

expect a reasonable representation of the jet flame. 

The choice for the flame density representation will be 

(121 ) 

(122 ) 

which has the obvious advantages not only of behaving correctly at the jet 

boundaries but in making the second integral on the right-hand side of 

Equation 113 more convenient to handle. Substituting the representations 

for kl(~,n) and ;2(~,n), Equations 111 and 119, respectively, we write 

(123) 

where g(~), formally equal to 2(~) k(~), appears as the second unknown 

function. It is assumed in the representations of both Kl(~,n) and L(~,n) 

that F' (n), where it occurs, is given by Equation 115 and, hence, known. 

Again omitting much laborious detail and denoting ~ = Z, the species 

concentration integral, Equation 112, may be written 

(124 ) 

where it is convenient to use the group ~k in the numerical calculations. 

Proceding in a similar manner, the integrated equation for the flame 
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density, Equation 113, becomes 

z * = ~{~ (5M + 1.2295 N - 2) + 3.0737 Ng [- :~ + 1.6755 (})J} (125) 

where 
M = 1 - 1.6755 (1 + i - ~k) (126 ) 

N = 1 _ 1.4109 (1 + ~ - Pk) (127) 

specification of the equivalence ratio The numerical integration requires 

~ and the initial value k(zo) = 1. 

constant A must be selected and the 

In addition, a value for the universal 

initial value g(z ) specified. One of 
o 

the difficulties in our point jet approximation is that the initial develop-

ment of the jet of finite cross section is not described correctly. There-

fore, the present theory gives no description of the transition between 

the mixing zone-dominated portion and the fully-developed jet and, hence, 

provides no information concerning the flame density with which to initiate 

the jet calculation. It is possible to make an estimate for g(zo) from the 

results obtained in Section 4 for the flame structure of the mixing zone. 

While a matching procedure has not been carried out in detail for various 

values of ~, it appears that 0.1 < g(zo) < 0.3 is reasonable for non-extreme 

values of the equivalence ratio. 

In the calculations that have been carried out, g(zo) has generally 

been taken as 0.2, and the effects of variations from this value have been 

explored only to a limited extent. The item of principle interest in the 

calculation is the variation of the fuel concentration along the jet axis. 

It is this quantity that is frequently measured and, properly interpreted, 

gives the best information on the burn-out of the jet. Thus since our fuel 

has been approximated in the form 

K = _Id F' (rd k(x/d) 
1 fX-

it will suffice to show the values of k(X/d) and infer that the centerline 

fuel mass fraction, 
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Kl (x,D) = ~ F' (0) k(x/d) (128) 

decreases somewhat more rapidly with x. Because the fuel concentration of 

the non-reacting jet will decrease as Id/x along the axis [k(x/d) = 1J, the 

observed decrease of k(x/d) with x is due only to the chemical reaction, 

rather than to the normal dilution due to mixing. 

Figure 12 shows the value of k(x/d) in terms of distance from the fuel 

injection point for three different values of A. It will be recalled that 

A is the single additional universal constant that enters in the coherent 

flame model and is associated with the flame shortening mechanism. All 

three curves were computed for the equivalence ratio, ~ = 1.0. The geometry 

of the curves appear quite reasonable when compared with the experimental 

results shown in Figures 14 through 17 of Reference 3. The effect of A is 

quite clear from our calculations. For large A, the flame shortening 

process is accentuated which, in turn, leads to a low flame density and a 

long flame. Smaller values of A produce a correspondingly denser flame 

structure and shorter flames. As Figure 12 indicates, the results are 

quite sensitive to A and here it should be possible to obtain a reasonably 

good determination of the value of A from the fuel jet experiments that are 

available. This systematic and detailed comparison has not yet been made, 

but a superficial examination would indicate the A will be some where 

between 0.1 and 0.5. 

Figure 13 is presented to show the effect of equivalence ratio, ~, 

on the flame length when the value of A has been fixed. Clearly large 

equivalence ratios lead to long flames and low equivalence ratios lead 

to shorter ones. This behavior results from the relatively larger amount 

of oxidizer that must generally be entrained and mixed for a flame with 

high equivalence ratios than for one of low equivalence ratio. Familiar 

examples of high and low equivalence ratio are the methane-air flame and 

the hydrogen-air flame, respectively. The results of Figure 13, computed 

using the value A = 0.5, suggest, upon comparison with the experiments, 

that a somewhat smaller value of A would be appropriate. 
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