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Cohesin plays an important role in three-dimensional (3D) 
genome organization through the formation and enlarge-
ment of chromatin loops1–7. This process requires the activ-

ity of cohesin’s ATPase and its regulator SCC2NIPBL (refs. 1–3,7). Loop 
length is restricted by the cohesin release factor WAPL3–5. Together 
these proteins keep the looping process dynamic due to continuous 
cycles of cohesin-dependent formation of loops, their enlargement, 
and DNA release.

In mammals, the position of cohesin-dependent loops is deter-
mined by the architectural protein CTCF, which restricts chromatin 
loops to distinct chromosome domains, also known as topologically 
associated domains (TADs)8–10. Recent work shows that CTCF acts 
as an anchor point to stabilize cohesin on chromatin and promote 
the formation and/or maintenance of CTCF-anchored loops11,12. A 
CTCF mutant deficient in anchoring still displays TAD boundar-
ies11, suggesting that anchoring may not fully explain the mecha-
nism by which CTCF controls chromatin looping. CTCF appears 
also to act as a boundary to prevent passage beyond CTCF sites11–14, 
but whether this boundary function is mediated via cohesin- 
CTCF anchoring or a different molecular mechanism remains  
poorly understood.

The cohesin acetyltransferase ESCO1 acetylates the cohesin 
SMC3 subunit and localizes to CTCF sites12,15,16. ESCO1 was recently 
shown to stabilize cohesin on chromatin and promote the forma-
tion of CTCF-anchored loops. ESCO1 was proposed to do so by 
protecting cohesin against WAPL-mediated release12, similar to the 
mechanism by which cohesin is protected to maintain sister chro-
matid cohesion9,17. A study in budding yeast, however, showed that 
cohesin acetylation restricts chromatin loop length independently 
of WAPL18. The mechanism by which cohesin acetylation regulates 
chromatin looping therefore remains unclear.

While acetylation is important for locking cohesin on DNA, the 
role of deacetylation is less well understood. Cohesin deacetylation 
by the deacetylase HDAC8 (Hos1 in budding yeast) is required for 
recycling of cohesin complexes for the next round of sister chroma-
tid cohesion19–21. HDAC8 is present throughout the cell cycle21, sug-
gesting that it might play a role beyond recycling of cohesive cohesin 
complexes. If cohesin acetylation indeed stabilizes cohesin at CTCF 
sites, HDAC8-mediated deacetylation could provide a mechanism 
to enable further loop enlargement beyond CTCF.

In this study we explore the role of the cohesin acetylation cycle 
in controlling the 3D genome. We show that cohesin acetylation 
regulates chromosome folding by restricting the length of architec-
tural stripes and chromatin loops. Cohesin acetylation appears to 
control genome organization independently of its canonical role in 
protecting against WAPL. We find that cohesin acetylation rather 
converts cohesin into a PDS5A-bound state to restrict the length of 
chromatin loops.

Results
Cohesin acetylation limits the length of stripes and loops. To 
assess whether the cohesin acetylation cycle regulates the 3D 
genome, we generated knockout cells for either ESCO1 or HDAC8 
in the human HAP1 cell line using CRISPR–Cas9 technology  
(Fig. 1a,b). We found that ESCO1 in these cells is responsible for the 
vast majority of SMC3 acetylation (Fig. 1a) while ∆HDAC8 cells, as 
expected, exhibited increased levels of acetylated SMC3 (Fig. 1b). To 
specifically study the role of the cohesin acetylation cycle in chro-
matin looping, in contrast to its role in sister chromatid cohesion, 
we performed Hi-C analysis in G1-sorted cells. This also enabled 
us to assess looping in cells that lack cohesin acetylation, because 
cohesin’s other acetyltransferase, ESCO2, is absent in G1 (ref. 22).
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Hi-C matrices of wild-type cells displayed expected features, 
including TADs, loops connecting CTCF sites, and architectural 
stripes. Such stripes are thought to be formed by monodirectional 
loop extrusion by cohesin that is anchored to CTCF. Interestingly, 
we observed notable differences in these stripes in cells with altered 
cohesin acetylation levels. While cells lacking ESCO1 showed an 
increase in the length of stripes, ∆HDAC8 cells displayed shorter 
stripes (Fig. 1c). To assess these stripes genome wide, we performed 
an aggregate stripe analysis that quantifies the distance of the con-
tacts emanating from CTCF sites. These analyses showed that, 
relative to the wild type, the architectural stripes of ∆ESCO1 cells 
are enriched for longer-range contacts, while these are depleted 
in ∆HDAC8 cells (Fig. 1d and Extended Data Fig. 1b). We found 
that this looping defect in ∆HDAC8 cells is dependent on ESCO1 
(Extended Data Fig. 1d,e). Cohesin acetylation thus seems to limit 
the length of architectural stripes.

We then investigated whether ∆ESCO1 cells harbor CTCF- 
anchored loops that extend even beyond those found in wild-type 
cells. We therefore scored the formation of ‘extended loops’, which 
are predicted to be formed when loops are enlarged beyond those 
computationally detected in wild-type cells (Fig. 1e)3. Extended 
loops indeed were more abundant in ∆ESCO1 cells (Fig. 1f), whereas 
such extended loops were decreased in ∆HDAC8 cells (Fig. 1f and 
Extended Data Figs. 1c and 5a,d). We note that the effects on archi-
tectural stripes were clearer than those on CTCF-anchored loops. 
The combined findings that ∆ESCO1 cells displayed longer architec-
tural stripes and more pronounced extended loops, while ∆HDAC8 
cells displayed shorter architectural stripes and loops, indicate that 
cohesin acetylation limits the degree to which loops can be enlarged.

Acetylation controls loop length independently of WAPL. 
Previous studies revealed that the cohesin-release factor WAPL 
restricts the extension of chromatin loops3,4. We show that ESCO1, 
to some degree, is also important in restricting the size of chroma-
tin loops. If cohesin acetylation simply protects cohesin against 
WAPL-mediated release, one would not expect to find an increase 
in long-range interactions in ∆ESCO1 cells. To directly test whether 
ESCO1 and WAPL might regulate looping independently, we 
generated double-knockout cells for ESCO1 and WAPL, and per-
formed Hi-C analyses in G1-sorted cells (Fig. 2a,b). These analyses 
revealed that deletion of ESCO1 exacerbates the ∆WAPL phenotype  
(Fig. 2a). In comparison with ∆WAPL cells, ∆ESCO1/∆WAPL cells 
displayed longer architectural stripes and harbored more pro-
nounced extended loops (Fig. 2c,d and Extended Data Fig. 2a,b). 
We thus find that cohesin acetylation restricts the size of chromatin 
loops in a manner that is at least partially independent of WAPL.

Acetylation converts cohesin into a PDS5A-bound state. To 
identify which factors are key to the mechanism by which cohe-
sin acetylation controls loop length, we performed a haploid 
genetic screen23. To find genetic interactors of HDAC8, we com-
pared control HAP1 cells with ∆HDAC8 HAP1 cells (Fig. 3a). This 
screen revealed that ∆HDAC8 cells specifically benefit from losing 
PDS5A (Fig. 3b, Extended Data Fig. 3a,b and Supplementary Table 
3). PDS5A is a regulatory cohesin subunit that inhibits cohesin’s 
ATPase activity24,25. To test whether cohesin acetylation affects 
the binding of cohesin to PDS5A, we performed coimmunopre-
cipitation experiments. Pulldown of the core cohesin component 
SMC1 revealed that PDS5A is more frequently bound to cohesin 

–5
0 

kb 3′
50

 kb

–5
0 

kb 3′
50

 kb

–5
0 

kb 3′
50

 kb

–50 kb
5′

50 kb

–50 kb
5′

50 kb

ESCO1

AcSMC3

SCC1

HSP90

SMC3

W
ild

 ty
pe

W
ild

 ty
pe

ΔESCO1

ΔHDAC8

140

135

130

130 135 140 130 135 140 130 135 140

Wild type ΔHDAC8ΔESCO1

0

80

C
ontacts

140

135

130

140

135

130

µ contacts

a b

e

c

fd
Wild type ΔESCO1 ΔHDAC8

Extended loops

–0.4
0
0.4

Difference
Δ1 - WTWT - WT Δ8 - WT

Small
primary

loop
Extended

loop

Large
primary

loop

1.00

1.05

1.10

1.15

1.20

0 2 4 6

Distance (Mb)

S
tr

ip
e 

en
ric

hm
en

t (
ob

s/
ex

p) Wild type 
ΔESCO1
ΔHDAC8

2.0
2.5
3.0
3.5
4.0

100

130

130
130

100

AcSMC3

SCC1

HSP90

HDAC8

130

100

55

130

Fig. 1 | Cohesin acetylation restricts the length of architectural stripes and chromatin loops. a, Immunoblot analysis of ∆ESCO1 cells. The ∆ESCO1 cell 
line displays reduced levels of acetylated SMC3 (AcSMC3). This experiment was performed three times, with similar results. b, Immunoblot analysis of 
∆HDAC8 cells; these cells have increased levels of acetylated SMC3. This experiment was performed three times, with similar results. c, Hi-C contact 
matrices for G1 cells of the indicated genotypes. A locus at chromosome 4 is shown at 20-kb resolution. Matrices were normalized to 100 million contacts 
per sample. The arrows indicate examples of architectural stripes whose length has changed in ∆ESCO1 and ∆HDAC8 cells. d, Aggregate stripe analysis 
to quantify signal enrichment emanating from CTCF sites at 100-kb resolution. Typically, interactions are formed close to the diagonal and decay over 
distance. These so-called expected contacts were obtained from a distance-normalized contact matrix; we then calculated enrichment of the observed 
(obs) contacts over the expected (exp) contacts at 100-kb resolution. This method reveals the presence of architectural stripes emanating from CTCF 
sites. ∆ESCO1 cells are enriched for long interactions while ∆HDAC8 cells display shorter interactions. e, Cartoon illustrating the difference between 
primary and extended loops. f, APA for extended loops. Differential APA plots for extended loops compared with wild type (WT). ∆ESCO1 (∆1) cells show 
an increase in extended loops while ∆HDAC8 (∆8) cells show a decrease.
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in ∆HDAC8 cells in comparison with wild-type cells (Fig. 3c and 
Extended Data Fig. 3d). Cohesin acetylation apparently converts 
cohesin into a PDS5A-bound state. It remains unclear whether we 
identified PDS5A as a hit in our screen due to a role for this factor 
in DNA looping, or rather due to a role in for example sister chro-
matid cohesion.

Cohesin acetylation controls loop length through PDS5A. To 
assess whether PDS5A is key to the mechanism by which cohesin 
acetylation restricts loop length, we deleted PDS5A in ∆HDAC8 
cells (Fig. 4a). Hi-C analyses on G1-sorted cells revealed that 
∆HDAC8/∆PDS5A cells display an increase in both extended loops 
and the length of architectural stripes, which is comparable to 
what is observed in ∆PDS5A cells (Fig. 4b–e and Extended Data 
Fig. 2c,d). Notably, ∆HDAC8/∆PDS5A cells retained high levels of 
cohesin acetylation (Fig. 4a). Together, these findings suggest that 
cohesin acetylation by itself does not prevent loop enlargement, 
and that the restrictive role of cohesin acetylation in DNA looping 
requires PDS5A.

Interestingly, single knockouts for PDS5A already displayed 
a distinct chromatin looping phenotype (Fig. 4b). ∆PDS5A cells 
showed an increase in extended loops, which appeared to be at the 
expense of primary loops (Fig. 4c,d). The difference plot, however, 
revealed that this increase in long-range interactions is not specific 
to CTCF sites, as we did not see a clear focal enrichment at the loop 
anchor (Fig. 4d). Likewise, ∆PDS5A cells showed an increase in the 
length of stripes, while this signal was less enriched close to CTCF 
sites (Fig. 4e). These findings suggest that PDS5A not only pro-
motes the formation of CTCF-anchored loops, but also restricts the 
enlargement of chromatin loops genome wide.

No prominent role for PDS5B in 3D genome organization. 
Cells deficient for the PDS5A paralog PDS5B displayed no evi-
dent changes in primary loops, extended loops, or the length of 
architectural stripes (Extended Data Fig. 4a–d and Extended Data  
Fig. 2e,f). Our observation that only ∆PDS5A cells, and not ∆PDS5B 
cells, display such phenotypes could be explained by differences in 
abundance, because we found that PDS5A is considerably more 
abundant than PDS5B (Extended Data Fig. 4e,f). Chromatin loop-
ing in HAP1 cells thus appears to be largely controlled by PDS5A.

Discussion
Taken together, we find that the cohesin acetylation cycle regulates 
genome folding, and does so by modulating the length of loops and 
architectural stripes. While ESCO1 prevents the extension of such 
loops and stripes, HDAC8 promotes this extension (Fig. 5a). This role 
in controlling loop length turns out to be distinct from the canoni-
cal role of cohesin acetylation that protects against WAPL-mediated 
DNA release. We show that the cohesin acetylation cycle instead 
controls the binding of PDS5A to regulate loop enlargement.

Our findings indicate that cohesin acetylation regulates the 
looping process at CTCF sites through PDS5A. These findings 
fit with earlier work in HeLa cells showing that combined deple-
tion of PDS5A and PDS5B decreased the amount of CTCF loops4. 
Importantly, we find that cohesin acetylation and PDS5A do not 
control the presence of architectural stripes, but rather their length. 
This suggests that the acetylation cycle does not control CTCF 
anchoring by itself. It is more likely that a PDS5A-dependent brake 
mechanism allows for the pausing of loop enlargement at CTCF 
sites. This mechanism in turn could enable CTCF to act as a bound-
ary, albeit transiently. Such a PDS5A brake mechanism appears to 
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not be limited to CTCF sites, because Pds5 likewise inhibits the 
loop enlargement process in yeast, which have no CTCF18,26. We 
suggest that cohesin acetylation and PDS5 binding thus represent 
an ancient regulatory mechanism, which is taken advantage of by 
CTCF to control loop length.

But how, mechanistically speaking, could the cohesin acetyla-
tion cycle and PDS5A binding then control looping? Earlier work 
showed that SCC2NIPBL stimulates cohesin’s ATPase, whereas PDS5 
inhibits cohesin’s ATPase activity24,25. This fits well with the finding 
that cohesin can initiate and enlarge DNA loops only in the pres-
ence of SCC2NIPBL1,2 but not in the presence of PDS5 (ref. 1). Because 
PDS5 and SCC2NIPBL compete for the same binding interface on 
SCC1 (refs. 25,27), regulation of this exchange could provide a mecha-
nism to control the loop enlargement process.

Recent structural work reveals that SCC2NIPBL binds cohesin at 
multiple interfaces, including SMC3’s ATPase head28–32. Binding to 
this latter interface is observed in cohesin’s unacetylated state28–30. 
A key part of this interface contains the two lysines that are acety-
lated by cohesin’s acetyltransferases. Acetylation of these lysines 
neutralizes their charge and has been proposed to disfavor interac-
tion with SCC2NIPBL (ref. 30). However, mutant cohesin complexes in 
which these lysines are replaced by ‘acetyl-mimicking’ glutamines 
are barely impaired in their ATPase activity29. We indeed found that 
SCC2NIPBL can still bind to acetylated cohesin complexes (Extended 
Data Fig. 3e). Together this would indicate that cohesin acetyla-
tion does not intrinsically compromise SCC2NIPBL binding, and that 
cohesin acetylation can be compatible with ATPase activity.

Correspondingly, we found that cohesin acetylation by itself 
does not restrict chromatin looping, but only does so in the pres-
ence of PDS5A. Cryo-EM structures of yeast cohesin show that 
Pds5 binds to the Smc3 ATPase head32. Our data suggest that acety-
lation of SMC3 actually enhances the binding of cohesin to PDS5A. 
Further support for this model comes from observations in yeast 
that nonacetylatable Smc3 mutants display reduced Pds5 binding 
(see the paper by Bastié et al.33), and that acetylation promotes the 
stability of Pds5 on chromatin34,35.

The interconnection between SCC2NIPBL and PDS5, and how 
these proteins regulate the activities of cohesin, remains incom-
pletely understood. Future studies will be needed to assess whether 
PDS5 binding to acetylated cohesin indeed prevents SCC2NIPBL 
binding to the SMC3 ATPase head, and whether SCC2NIPBL may 
then remain connected to the complex through another interface. It 
would also be relevant to test whether acetylation-dependent PDS5 
binding indeed inhibits SCC2NIPBL-stimulated ATPase activity. Such 
experiments could include in vitro ATPase assays on acetylated 
cohesin complexes, in which the amount of PDS5 is titrated until 
SCC2NIPBL-stimulated ATPase activity is inhibited, similar to previ-
ous experiments using unacetylated cohesin complexes32.

While questions remain regarding SCC2NIPBL, our data support 
the model where the binding of PDS5 to cohesin stabilizes the com-
plex in a conformation that prevents ATP hydrolysis and further 
loop enlargement. By promoting the binding of PDS5, cohesin 
acetylation could maintain this conformation and thereby convert 
enlarging loops into static loops. HDAC8-mediated deacetylation in 
turn could alleviate this paused state to restart the looping reaction 
(Fig. 5b). This key regulatory mechanism turns out to be conserved 
from yeast to humans (see the paper by Bastié et al.33). The modu-
lation of cohesin’s looping activity by cohesin acetylation could 
therefore be a universal mechanism that controls genome topology 
across the eukaryotic tree of life.
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Methods
Cell culture and gene editing. HAP1 cells36 were cultured in Iscove’s modified  
Dulbecco’s medium (Invitrogen) supplemented with 10% fetal calf serum  
(FCS; Clontech), 1% UltraGlutamin (Lonza) and 1% penicillin-streptomycin 
(Invitrogen). Knockout cell lines were generated either by insertion of a resistance  
cassette in the first coding exon after the start ATG or by generation of small out- 
of-frame indels using CRISPR–Cas9 technology. CRISPRs targeting ESCO1  
(5’-CATGAGTACAAGGTCATCAA-3’ and 5’-AGCTTAACCGGAGATCACA 
A-3’), HDAC8 (5’-CAGTGGGCAGTCGCTGGTCC-3’ and 5’-CGGGACTATA 
GATATAAACC-3’), PDS5A (5’-GTGGCGTCGTGAGTGCCGACGGG-3’ and  
5’-GGAAGATCGCTTACCCTCCG-3’) and PDS5B (5’-TCTGATATTTCCTTG 
ACCCC-3’) were cloned into px330 (Addgene plasmid no. 42230). ∆WAPL cells 
were generated as previously described3, and used as a parental cell line to generate 
double-knockout cells for WAPL and ESCO1. Either blasticidin or puromycin 
resistance cassettes were used, as described previously23. Knockout cell lines were  
confirmed by PCR genotyping and immunoblotting analysis. The following oligos  
were used for ESCO1: 5’-CCAGGACACAAAAATCCTCTTC-3’ and 5’-CTTCAT 
CTCATTCTTTTTCGGG-3’; for HDAC8: 5’-TAGGGCAACAAGGATGGTTA 
GT-3’ and 5’-TTTCTTGGGATTACAGGCAGAT-3’; for PDS5A: 5’-ACTGTGA 
ACCAAAAGTTGTCCC-3’ and 5’-ATCAAAATCCGTCCAGACACTT-3’; and  
for PDS5B: 5’-GTTACAAATTTTGGTTGGTGGG-3’ and 5’-CCTCTGCCC 
TACACAGATGTAA-3’. A list of cell lines used in this manuscript is given in 
Supplementary Table 1.

To endogenously tag the C terminus of SCC1RAD21 with a HALO-tag, we used 
an approach previously described32 with slight adaptations. Because ∆PDS5A and 
∆PDS5B cells were already resistant to puromycin, we cotransfected pRS-BLAST at 
a 1:10 ratio to the px459 plasmid. Transfected clones were selected using 10 μg ml–1 
blasticidin for 2 days. Colonies were picked when clearly visible. Integration of the 
HALO-tag at the correct location was then confirmed by PCR genotyping and 
immunoblotting analysis. Wild-type cells with SCC1-HALO tagged were generated 
as previously described32.

Immunoblotting. Cells were pelleted at 500g for 3 min and resuspended in 
RIPA buffer consisting of 10 mM Tris-Cl (pH 8.0), 1 mM EDTA, 0.5 mM EGTA, 
1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS and 140 mM NaCl, 
supplemented with protease inhibitors (Roche). Lysates were vortexed for 30 s 
and incubated on ice for 30 min. Lysates were spun at 20,000g for 10 min at 4 °C, 
and supernatants were quantified by Bradford analysis (Bio-Rad). Denatured 
proteins (10–20 μg) were loaded and run on polyacrylamide gels and transferred 
to nitrocellulose membranes. Membranes were blocked with 5% w/v milk in 
TBS-Tween (TBS-T, 0.1%). Primary and secondary antibody incubations were 
performed in 5% milk in TBS-Tween (0.1%) and membranes were washed with 
TBS-T, except for SCC2NIPBL, which was incubated in 5% bovine serum albumin 
(Sigma) in TBS-T (0.1%). The signal was developed with Clarity Western ECL 
Substrate (Bio-Rad) or Immobilon western Chemiluminescent HRP substrate 
(Millipore) on the ChemiDoc Imaging System (Bio-Rad).

Coimmunoprecipitation. Cells were pelleted at 500g for 5 min and resuspended in 
lysis buffer consisting of 50 mM Tris (pH 7.5), 5 mM EDTA, 150 mM NaCl and 0.1% 
NP-40, supplemented with protease inhibitors (Roche) and phosphatase inhibitors 
(Sigma, 1:100). Cells were incubated for 30 min on ice. Lysates were supplemented 
with Ambion DNase I (Invitrogen, 1:100) and Benzonase Nuclease (Millipore, 
600 U ml–1) and incubated for 4 h on a rotator at 4 °C. Lysates were spun at 20,000g 
for 10 min at 4 °C and supernatants were mixed with two volumes of TNENG 
buffer, consisting of 50 mM Tris (pH 7.5), 5 mM EDTA, 150 mM NaCl, 0.1% NP-40 
and 10% glycerol, supplemented with protease inhibitors (Roche). Supernatants 
were quantified by Bradford analysis (Bio-Rad). Protein lysate (300 μg for SMC1 
IP and 750 μg for SCC2 IP) was used, along with 3 μg of antibody. Lysates were 
mixed with 30 μl of Protein G Dynabeads (Invitrogen) and incubated overnight at 
4 °C while tumbling. Beads were washed three times with wash buffer consisting of 
50 mM Tris (pH 7.5), 5 mM EDTA, 150 mM NaCl and 0.1% NP-40, and proteins 
were denatured using Laemmli buffer at 95 °C for 10 min. Coimmunoprecipitation 
was checked by immunoblotting analysis, as described above.

Antibodies. Coimmunoprecipitation experiments were performed with the following 
antibodies: SMC1 (Bethyl, no. A300-055A) and SCC2 (Bethyl, no. A301-779A). 
Immunoblots were performed using the following antibodies and dilutions: HSP90 
(Santa Cruz, no. sc13119 F8, 1:10,000), ESCO1 (a kind gift from S. Rankin37, 1:1,500), 
HDAC8 (Sigma-Aldrich, no. WH0055869M1, 1:1,000), AcSMC3 (a kind gift from K. 
Shirahige38, 1:1,500), WAPL (Santa Cruz, no. sc365189, 1:1,000), SMC1 (Bethyl, no. 
A300-055A, 1:2,000), SMC3 (Bethyl, no. A300-060A-5, 1:2,000), SCC1 (Millipore, 
no. 05-908, 1:1,000), PDS5A (Bethyl, no. A300-089A, 1:1,000), PDS5B (Bethyl, no. 
A300-538A, 1:500), SCC2 (Santa Cruz, no. sc374625, 1:1,000), SCC4 (Abcam, no. 
ab46906, 1:1,000), Actin (Abcam, no. ab6276, 1:5,000) and Tubulin (Abcam, no. 
ab18251, 1:10.000). Secondary antibodies Goat-anti-Mouse-PO (DAKO, no. P0447) 
and Goat-anti-Rabbit-PO (DAKO, no. P0448) were used at 1:2,000 dilution.

Fluorescence recovery after photobleaching. Cells with endogenously tagged 
SCC1 were grown on LabTekII-chambered cover glass (Thermo Scientific Nunc). 

To be able to specifically perform fluorescence recovery after photobleaching 
(FRAP) on G1 cells, cells were transfected with DNA helicase B fragment fused 
with near-infrared fluorescent protein (DHB-iRFP) using FuGENE Transfection 
Reagent 2–3 days before imaging. On the day of imaging, cells were incubated for 
30 min with 300 nM HALO-ligand JF549 (Promega). Cells were washed three times 
with normal medium and incubated for 30 min to allow removal of excess ligand. 
The medium was replaced with Leibovitz L-15 imaging medium (Invitrogen), 
then FRAP analysis was performed on a Leica SP5 confocal microscope with a 
×63/1.4 numerical aperture oil objective using the LAS-AF FRAP-Wizard. G1 
cells were selected based on nuclear localization of DHB-iRFP, as described in 
ref. 11. Five images were taken before bleaching, then half of the nucleus was 
photobleached using five pulses of 100% transmission of the 561-nm laser. After 
bleaching, ten frames were taken every 2 s and subsequently 120 frames were 
taken every 10 s. Fluorescence intensity was measured in bleached and unbleached 
areas by user-defined regions in ImageJ v.2.1.0/1.53k. Recovery was quantified 
by calculating the difference in intensity between bleached and unbleached 
regions. To ensure that we quantified cells with homogeneous SCC1 distribution, 
we excluded those in which the difference in intensity between bleached and 
unbleached areas was already >10% in prebleaching frames.

MS analysis. For protein digestion, frozen cell pellets were lysed in boiling 
guanidine (GuHCl) lysis buffer as previously described39. Protein concentration 
was determined with a Pierce Coomassie (Bradford) Protein Assay Kit (Thermo 
Scientific), according to the manufacturer’s instructions. After dilution to 2 M 
GuHCl, aliquots corresponding to 200 μg of protein were digested twice (4 h and 
overnight) with trypsin (Sigma-Aldrich) at 37 °C, enzyme/substrate ratio 1:75. 
Digestion was quenched by the addition of trifluoroacetic acid (final concentration 
1%), after which peptides were desalted on a Sep-Pak C18 cartridge (Waters). 
Samples were dried in a vacuum centrifuge and reconstituted in 2% formic acid 
for mass spectrometry (MS) analysis. Peptide mixtures were loaded directly on the 
analytical column (ReproSil-Pur 120 C18-AQ, 1.9 μm, 75 μm × 500 mm, packed 
in-house) and analyzed by nano liquid chromatography–tandem MS (LC–MS/
MS) on an Orbitrap Fusion Tribrid mass spectrometer equipped with a Proxeon 
nLC1000 system (Thermo Scientific). Solvent A was 0.1% formic acid/water 
and solvent B was 0.1% formic acid/80% acetonitrile. Peptides were eluted from 
the analytical column at a constant flow of 250 nl min–1 in a 270-min gradient, 
containing a 250-min stepped increase from 3 to 35% solvent B followed by a 
20-min wash in 80% solvent B.

Raw data were analyzed by Proteome Discoverer (v.2.5.0.400, Thermo 
Scientific) using standard settings. MS/MS data were searched against the 
Human Swissprot database (20,395 entries, release 2021_04) using Sequest HT. 
The maximum permitted precursor mass tolerance was 50 ppm and 0.6 Da for 
fragment ion masses. Trypsin was chosen as cleavage specificity, allowing two 
missed cleavages. Carbamidomethylation (C) was set as a fixed modification, while 
oxidation (M) was used as variable modifications. False discovery rates for peptide 
and protein identification were set to 1% and, as an additional filter, Sequest HT 
XCorr>1 was set. For wild-type cells, protein peptide spectrum match (PSM) 
values of PDS5A and PDS5B of three biological replicates were averaged and 
displayed in the panel.

Hi-C analysis. Hi-C libraries were prepared as previously described40, with the 
protocol adapted slightly for G1 analyses. An asynchronous pool of cells was first 
crosslinked using 2% formaldehyde for 10 min at room temperature and quenched 
with 2 M glycine. The 10% smallest cells were then sorted based on forward and 
side scatter using a BD FACSAria II. Five million cells were collected for Hi-C 
analysis and then processed according to a protocol following crosslinking. To assess 
sorting efficiency, 0.5 million sorted cells and 0.5 million asynchronous cells were 
permeabilized for 10 min using 0.1% triton in PBS. Cells were stained with DAPI 
(Sigma-Aldrich) and assayed on a BD LSR Fortessa Machine. Plots were generated 
with FlowJo (v.10). The gating strategy is depicted in Supplementary Fig. 1a.

Raw sequence data were mapped and processed using HiC-Pro v.2.9 and 
v.3.0 (ref. 41), with hg19 as reference; juicebox-ready files were generated using 
Juicebox-pre (juicer tools v.1.9.8)42 (see Supplementary Table 2 for the number of 
valid pairs per sample and the percentage of cis contacts). For visualization and 
downstream analyses, contact matrices were ICE normalized43 and normalized 
to 100 million contacts per sample. For Hi-C analysis on asynchronous cells, we 
first subsampled the data to obtain amounts of reads equal to the sample with the 
lowest amount of reads.

To visualize the genome-wide effects of our knockout cells, we performed 
APA40 using the loops previously identified in wild-type HAP1 cells3. APA was 
performed as implemented in GENOVA v.1.0 (ref. 44). In brief, for the set of loop 
coordinates a square submatrix was selected centred at these locations, including 
a 100-kb flanking region upstream and downstream. These submatrices were then 
averaged to obtain a mean contact map for these locations. The difference plots 
were obtained as the difference of mean contact maps in comparison with the 
indicated control cell line. We performed a similar analysis for extended loops, 
as described previously3. Extended loops are defined as those formed when the 
5’ loop anchor is combined with every 3’ loop anchor in a 3-Mb region that is not 
the primary loop itself. APA scores for primary and extended loops were measured 
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using the quantify function with size 3 in GENOVA v.1.0 to obtain the mean signal 
intensity of each loop.

For analysis of differences in stripes, we used an aggregate analysis similar 
to those described above, as has been done previously45. We selected the top 
10,000 CTCF chromatin immunoprecipitation sequencing peaks in wild-type HAP1 
cells11 as the center location for a submatrix of 6 Mb. To account for differences in 
distance from the diagonal, the signal was normalized to the expected signal per 
sample at that distance before averaging them to obtain mean contact maps. In this 
way we specifically assessed enrichment at stripes, rather than looking at the ‘general’ 
differences in loop length between genotypes. To quantify differences in stripes across 
samples, the signal from 3’ and 5’ average stripes was fit to a polynomial surface using 
local fitting, with stats::loess(), to include the 95% confidence interval in gray.

Genome-wide synthetic viability screen. ∆HDAC8 HAP1 cells were mutagenized 
using a gene-trap retrovirus produced in HEK293T cells (obtained from ATCC) 
and concentrated either by ultracentrifugation as described previously23 or 
employing centrifugal ultrafiltration devices. Here, retrovirus-containing medium 
was harvested on two consecutive days, filtered (0.45 μm) and concentrated using 
Amicon Ultra-15 Centrifugal Filter Units with 100 K MWCO (Merck-Millipore). 
The virus concentrates from both harvests were combined, supplemented with 
8 μg ml–1 protamine sulfate (Sigma) and used to infect ~40 million HAP1 cells.

To map fitness genes in ΔHDAC8 HAP1 cells, mutagenized cells were passaged 
for an additional 14 days after gene-trap virus infection. Cells were then harvested 
and fixed with BD fix buffer I (BD Biosciences) for 10 min at 37 °C. After washing 
with FACS buffer (10% FCS in PBS), cells were stained with DAPI (1 μg ml–1) for 
1 h at room temperature to visualize G1 cells. Twenty-four million G1 haploid cells 
were sorted using a BD FACSAria Fusion, followed by genomic DNA extraction 
and library preparation as described in ref. 23. The gating strategy is depicted in 
Supplementary Fig. 1b.

Insertion mapping and data analysis were performed as described previously23 
with certain modifications. Sequence reads (50 base pairs) were aligned to 
the human genome (v.hg38) using Bowtie, resulting in a unique alignment to 
the human genome with zero or one mismatch. Insertions were assigned to 
protein-coding genes. For every gene, the transcript containing the longest open 
reading frame was used and unique alignments in intronic regions between the 
transcription initiation site and stop codon were counted. Genes enriched for 
gene-trap insertions in either the sense or antisense orientation were identified 
using a false-discovery-rate-corrected binomial test (step 1, P value cutoff 0.05), 
and genes that deviated in ∆HDAC8 cells from wild-type control cells were 
identified by a bidirectional Fisher’s exact test with all independent control datasets 
(step 2, P value cutoff 0.05). An odds ratio cutoff of 0.7 was applied using the 
aggregated wild-type control datasets with a greater Fisher’s test. To find genes 
whose inactivation rescued the growth defect of ∆HDAC8 cells, we focused on 
fitness enhancers. These genes are defined by an increase in sense orientation 
integrations observed in ∆HDAC8 cells but not in wild-type controls (step 1) and 
show a bias in the sense/antisense ratio compared with all control datasets (step 2). 
This yielded PDS5A as the strongest and most important fitness enhancer.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The Hi-C and genetic screen data generated have been deposited in GEO, accession 
no. GSE174628. The proteomics data have been deposited in the PRIDE database, 
accession no. PXD032185. Source data are provided with this paper. Any other 
relevant data are available from the corresponding author upon reasonable request.

Code availability
Hi-C data were analyzed with GENOVA, which can be downloaded here: https://
github.com/deWitLab/GENOVA.
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Extended Data Fig. 1 | The looping defect of ∆HDAC8 cells is ESCO1-dependent. (a) The 10% smallest cells were sorted to obtain G1 cells. FACS plots 
showing the DNA content of unsorted (asynchronous) and sorted (G1) cells. Cells were fixed and stained with DAPI. (b) Aggregate stripe analysis to 
quantify the signal enrichment emanating from CTCF sites at 100-kb resolution. The architectural stripe phenotype is observed in independent clones. 
(c) APA analysis reveals that the extended loop phenotype is also observed in independent clones. Differential APA plots for extended loops compared to 
wild type (WT). ∆ESCO1 (∆1) cells show an increase in extended loops. ∆HDAC8 (∆8) cells show a decrease in extended loops. (d) Western blot analysis 
of the indicated genotypes. This experiment was performed twice with similar results. (e) Aggregate stripe analysis to quantify the signal enrichment 
emanating from CTCF sites at 100-kb resolution. The short stripes in ∆HDAC8 cells are rescued upon ESCO1 deletion. This phenotype is also observed in 
a replicate Hi-C experiment in an independent ∆ESCO1/∆HDAC8 clone (dashed line). (f) Hi-C contact matrices for asynchronous cells of the indicated 
genotypes. A locus at chromosome 2 is shown at 10-kb resolution. Matrices were normalized to 100 million contacts per sample. (g) APA for extended 
loops. Differential APA plots for extended loops compared to wild type (WT). Asynchronous ∆HDAC8 (∆8) cells show a decrease in extended loops. (h) 
Aggregate stripe analysis to quantify the signal enrichment emanating from CTCF sites at 100-kb resolution. Asynchronous ∆HDAC8 cells display shorter 
stripes in comparison to asynchronous wild type cells.
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Extended Data Fig. 2 | Hi-C replicates in G1 cells. (a) Aggregate peak analysis (APA) reveals that the extended loop phenotype is also observed in a 
replicate Hi-C experiment. ∆ESCO1/∆WAPL cells show an increase in extended loops in comparison to ∆WAPL cells. (b) The extended stripe phenotypes 
for ∆WAPL and ∆ESCO1/∆WAPL cells are also observed in a replicate Hi-C experiment. The aggregate stripe analysis quantifies the signal enrichment 
emanating from CTCF sites at 100-kb resolution. (c) APA plots show that the extended loop phenotypes are also observed in a replicate Hi-C experiment. 
For ∆PDS5A (∆5 A) cells we used an independent clone, for ∆HDAC8/∆PDS5A (∆8/∆5A) cells we used the same clone. (d) The extended stripe 
phenotypes for ∆PDS5A and ∆HDAC8/∆PDS5A cells are also observed in a replicate Hi-C experiment in the clones described in (c). The aggregate stripe 
analysis quantifies the signal enrichment emanating from CTCF sites at 100-kb resolution. (e) APA in an independent ∆PDS5B clone confirms that PDS5B 
does not regulate the formation of extended loops. (f) Hi-C analysis in an independent ∆PDS5B clone confirms that PDS5B does not regulate the length of 
architectural stripes.
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Extended Data Fig. 3 | Haploid genetic screen in ∆HDAC8 cells. (a) Plot depicting the screen results for wild type cells and ∆HDAC8 cells. Several cohesin 
regulators are highlighted. (b) Gene-trap integration patterns for PDS5A in anti-sense (blue) or sense (red) orientation in wild type and ∆HDAC8 cells. 
∆HDAC8 cells harbour an increase in sense insertions along the entire gene. (c) Gene-trap integration patterns for SCC2NIPBL in anti-sense (blue) or sense 
(red) orientation in wild type and ∆HDAC8 cells. The sense insertions in ∆HDAC8 cells appear to be tolerated until exon 10, while exons 11 - 47 appear 
to remain essential. This pattern much resembles the pattern found in ∆WAPL cells3. (d) Pulldown experiment on the core cohesin subunit SMC1 in cells 
lacking ESCO1 (∆1) or HDAC8 (∆8). We find that cohesin in ∆HDAC8 cells is enriched for binding to PDS5A, PDS5B, and WAPL. Cohesin’s binding to these 
factors appears to be less evidently affected in ∆ESCO1 cells. We note that in wild type cells only a small fraction of cohesin complexes is acetylated. These 
low acetylation levels could explain why it is relatively difficult to assess differences in binding of the mentioned proteins in ∆ESCO1 cells. This experiment 
was performed 3 times with similar results. (e) Pulldown experiment on the cohesin regulator SCC2NIPBL in cells lacking ESCO1 (∆1) or HDAC8 (∆8). 
The upper three rows belong to one experiment and the lower two rows to another experiment. Both a short exposure (se) and long exposure (le) are 
shown for the core cohesin subunit SMC1. We find that the amount of cohesin acetylation does not affect SCC2NIPBL binding to cohesin. We also find that 
SCC2NIPBL pulls along acetylated cohesin complexes, suggesting that cohesin acetylation and cohesin’s binding to SCC2NIPBL are not mutually exclusive. This 
experiment was performed 3 times with similar results.
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Extended Data Fig. 4 | PDS5B does not control chromatin looping in HAP1 cells. (a) Hi-C contact matrices for G1 cells of the indicated genotypes. A 
locus at chromosome 5 is shown at 10-kb resolution. Matrices were normalized to 100 million contacts per sample. ∆PDS5B cells do not display chromatin 
looping defects. (b) Aggregate stripe analysis to quantify the signal enrichment emanating from CTCF sites at 100-kb resolution. PDS5B does not control 
the length of stripes. (c) Aggregate peak analysis (APA) for primary loops. PDS5B does not regulate primary loops. (d) APA for extended loops. ∆PDS5B 
cells do not show an increase in extended loops. (e) The RNA read counts of PDS5A and PDS5B in wild type HAP1 cells, from11. Mean and standard 
deviation are shown of three biological replicates (grey circles depict replicates). (f) The PSM counts of PDS5A and PDS5B in whole cell proteomics in wild 
type HAP1 cells. Mean and standard deviation are shown of three biological replicates (grey circles depict replicates). (g) Western blot analysis of wild 
type and ∆PDS5A cells with either untagged or tagged SCC1-HALO. (h) Quantification of the FRAP experiment in SCC1-HALO tagged G1 cells. Mean and 
standard deviation for 17 wild type cells and 17 ∆PDS5A cells, measured over 5 independent experiments. (i) Example images of cells used in (h) at the 
indicated time points after photobleaching. White scale bar is 5 µm. Note that the ∆PDS5A cells display a ‘vermicelli’-like SCC1 localization. (j) Western 
blot analysis of wild type and ∆PDS5B cells with either untagged or tagged SCC1-HALO. (k) Quantification of the FRAP experiment in SCC1-HALO tagged 
G1 cells. Mean and standard deviation for 12 wild type cells and 12 ∆PDS5B cells, measured over 4 independent experiments. (l) Example images of cells 
used in (k) at the indicated time points after photobleaching. White scale bar is 5 µm.
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Extended Data Fig. 5 | Overview Hi-C analyses of different genotypes. (a) Hi-C contact matrices for G1 cells of the indicated genotypes. A locus at 
chromosome 4 is shown at 10-kb resolution. Matrices were normalized to 100 million contacts per sample. (b) Hi-C contact matrices for G1 cells of the 
indicated genotypes. A locus at chromosome 4 is shown at 10-kb resolution. Matrices were normalized to 100 million contacts per sample. These Hi-C 
libraries were less deeply sequenced than the Hi-C libraries presented in (a). (c) Aggregate peak analysis (APA) for primary loops using the same scale for 
all genotypes. The bottom right value depicts the APA score. (d) APA for extended loops using the same scale for all genotypes. The bottom right value 
depicts the APA score.
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