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0. Introduction

Let α be an irrational number, (qn)n∈N be the sequence of the denominators of its
continued fraction expansion and (an)n∈N be the sequence of its partial quotients.
Roth-type irrationals have several equivalent arithmetical characterizations:

• in terms of the rate of approximation by rational numbers: for all ε > 0
there exists a positive constant Cε such that |qα − p| ≥ Cεq

−(1+ε) for all
rationals p/q;

• in terms of the growth rate of the denominators of the continued fraction:
qn+1 = O (q1+ε

n ) for all ε > 0;
• in terms of the growth rate of the partial quotients: an+1 = O (qε

n) for all
ε > 0.

In addition to these purely arithmetical characterizations an equivalent definition
arises naturally in the study of the cohomological equation associated to the rotation
Rα : x �→ x + α on the circle T = R/Z: α is of Roth type if and only if for all
r, s ∈ R with r > s + 1 ≥ 1 and for all functions Φ of class Cr on T with zero mean∫

T
Φdx = 0 there exists a unique function Ψ of class Cs on T and with zero mean

such that Ψ − Ψ ◦ Rα = Φ.
The class of Roth-type irrationals enjoys several nice properties: by the cele-

brated theorem of Roth all algebraic irrationals are of Roth type. Moreover the set
of Roth-type numbers has full measure and is invariant under the natural action of
the modular group SL (2, Z).

The goal of this paper is to characterize a class of interval exchange maps
(i.e.m.’s) with similar properties (especially for the solutions of the associated co-
homological equation and the fact of being a full measure class).

0.1. Interval exchange maps. Let A denote an alphabet with d ≥ 2 elements.
Let I be an interval and (Iα)α∈A a partition of I into d subintervals. An interval
exchange map T is an invertible map of I which is a translation on each Iα. Thus
T is orientation–preserving and preserves Lebesgue measure.

When d = 2 then T is just a rotation (modulo identification of the endpoints of
I). It can be thought of as the first return map of a linear flow on a two-dimensional
torus on a transversal circle. Analogously when d ≥ 3 by singular suspension any
i.e.m. is related to the linear flow on a suitable translation surface (see, e.g. [V1]
for details, or section 3 below) typically having genus greater than 2. A well-known
dictionary between translation surfaces and Riemann surfaces relates i.e.m.’s to
the theory of measured foliations on surfaces (see, e.g. [FLP] for an introduction to
measured foliations). Finally i.e.m.’s are related to the study of rational polygonal
billiards (see [Ar], [Ta] and [KH], Chapter 14, for a general introduction to i.e.m.’s,
flows on surfaces and polygonal billiards).

Typical i.e.m.’s are minimal (this is guaranteed by a condition due to Keane
[Ke1], which is automatically dealt with if the interval lengths are rationally inde-
pendent) but note that ergodic properties of minimal i.e.m.’s can differ substantially
from those of circle rotations: first they need not be uniquely ergodic [Ke2, KN, Co],
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and second, being ergodic they can be weakly mixing [KS, V3, V4]. On the other
hand uniquely ergodic i.e.m.’s are generic [KR] and Keane’s conjecture that almost
every i.e.m. is uniquely ergodic was proven independently by Masur and Veech
[Ma, V2]; see also [Ker, Re].

One of the most important consequences for us of Keane’s condition is that it
allows us to introduce and to iterate indefinitely continued fraction algorithms that
generalize the classical algorithm (corresponding to the choice d = 2) [Ra, V2, Z1].
Both the Rauzy–Veech continued fraction algorithm and its accelerated version
due to Zorich are ergodic w.r.t. an absolutely continous invariant measure in the
space of i.e.m.’s. However in the case of the Rauzy–Veech continued fraction the
measure has infinite mass whereas the invariant measure for the Zorich algorithm
has finite mass. The ergodic properties of the continued fraction map and of the
related Teichmüller flow (see Section 4.2 for its definition) have been studied in
detail [V5, V6, V7, Z2, Z4, Fo2].

0.2. The cohomological equation. Our study of the cohomological equation for
i.e.m.’s has been prompted by Forni’s [Fo1] celebrated paper on the cohomological
equation associated to linear flows on surfaces of higher genus. Let us first state
our main theorem.

We will denote by BV (
⊔

Iα) (resp. BV∗ (
⊔

Iα)) the space of functions ϕ whose
restriction to each of the intervals Iα is a function of bounded variation (resp. the
hyperplane of BV (

⊔
Iα) made of functions whose integral on the disjoint union

⊔
Iα

vanishes). We will also denote by BV1
∗ (
⊔

Iα)) the space of functions ϕ which are
absolutely continuous on each Iα and whose first derivative belongs to BV∗ (

⊔
Iα).

Our first main result can be stated as follows:

Theorem A. Let T be an interval exchange map with the Keane property and of
Roth type. Let Φ ∈ BV1

∗ (
⊔

Iα). There exists a function χ constant on each interval
Iα and a bounded function Ψ such that

Ψ − Ψ ◦ T = Φ − χ .

To make the above statement precise we need to define Roth-type i.e.m.’s. This
is the subject of section 1.3 below. For the time being we will content ourselves
with briefly describing the three conditions which a Roth-type i.e.m. must satisfy:

(a) The first condition is a growth rate condition for the matrices appearing
in an accelerated version of the Zorich continued fraction algorithm (see
Section 1.2.4 for details). This condition is the precise analogue of the
third of the equivalent arithmetical characterizations of Roth-type irrational
numbers given above.

(b) The second condition is a spectral condition which guarantees unique ergod-
icity of Roth-type i.e.m.’s. This condition does not follow from condition
(a) (see Appendix B for a counterexample, and also [Ch]) but is automat-
ically satisfied if the i.e.m. is of constant type (i.e. the matrices considered
in (a) have bounded norm).

(c) The third and last condition is a coherence condition.
The second main result of this paper is

Theorem B. Roth-type interval exchange maps form a full measure set in the
space of all interval exchange maps.
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Obviously, Theorem A is closely connected to Forni’s fundamental theorem [Fo1]
on the cohomological equation for area-preserving vector fields on surfaces. By
singular suspension (“zippered rectangles”, see Section 3), one obtains from an
interval exchange map an area-preserving flow on a singular flat surface. Forni
develops some Fourier analysis tools in this context, which allow him to solve the
cohomological equation for almost every direction; our methods are completely
different. He works in the Sobolev scale and his methods allow him to lose no more
than 3 + ε derivatives (for every ε > 0) [Fo3]. Our loss is smaller and we get an
explicit Diophantine condition. On the other hand, given a singular flat surface, we
do not know if almost every direction leads to a Roth-type interval exchange map.

The connection with singular flat surfaces explains the type of regularity we
introduce when we consider the cohomological equation for more regular data: we
still allow discontinuities for Φ at the endpoints for the Iα; on the other hand, we
require the solution Ψ to be continuous on all of I. New linear conditions on Φ
appear by integration of the cohomological equation. See Section 3 below for the
precise statements.

When the singular suspension of an i.e.m. T is an invariant foliation for a pseudo–
Anosov diffeomorphism, the continued fraction expansion of T is eventually peri-
odic. This implies a strong version of condition (a).

Conditions (b) and (c) are also satisfied. Hence T is of Roth type (even of
“bounded type”) and Theorem A applies. This answers positively a question raised
by Forni ([Fo1], p. 342).

0.3. Summary of the contents. In the first section we introduce interval ex-
change maps and we develop the continued fraction algorithms to an extent which
allows us to introduce Roth-type i.e.m.’s. The Keane property (see 1.1.6) does not
only guarantee that an i.e.m. is minimal but it also implies that the Rauzy–Veech
continued fraction algorithm (described in 1.2.1–1.2.3) can be iterated indefinitely.
Accelerating the Rauzy–Veech map by grouping together arrows with the same
name in the Rauzy diagram leads to the Zorich continued fraction algorithm (de-
scribed in 1.2.4) which has the advantage of having a finite mass a.c.i.m. On the
other hand, since every name is taken infinitely many times in the sequence of
arrows in the Rauzy diagram corresponding to a given i.e.m. one can produce a
further acceleration of the scheme by grouping together all arrows which take all
possible names but one: this leads to the algorithm we will use in the definition
of Roth-type i.e.m.’s given in Section 1.3 and already briefly described above. The
notation and the presentation of the Rauzy–Veech–Zorich algorithms follow closely
the expository paper [Y].

Section 2 is devoted to the study of the cohomological equation and to the proof
of our main theorem A. When T is a minimal homeomorphism of a compact space
X, we know from a theorem of Gottschalk and Hedlund [GH] that a continuous
function on X is a T–coboundary of some continuous function as soon as its Birkhoff
sums at some point of X are bounded (see Section 2.1.1). An i.e.m. with the Keane
property is minimal but not continuous. Nevertheless, a Denjoy-like construction
(see Section 2.1.2) allows us to apply Gottschalk–Hedlund’s theorem and conclude
that a continuous function whose Birkhoff sums at some point are bounded is the
T -coboundary of a bounded function. The next step in the proof is the reduction of
the control of a general Birkhoff sum to the control of those special Birkhoff sums
which are obtained by considering the return times of the point under iteration of
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the map (Section 2.2). These can be conveniently analyzed using the continued
fraction. The estimates of these special Birkhoff sums for functions of bounded
variation are given in Section 2.3 and the proof of the theorem is completed in
Section 2.4.

In Section 3 we first recall how to construct a linear flow on a translation surface
starting from an i.e.m. and certain suspension data (Sections 3.1–3.3). Then we
relate the discrete cohomological equation for i.e.m.’s to the continuous one for the
vertical (area-preserving) vector field constructed by suspension: this allows us to
consider more regular data (i.e. belonging to the space BVr

∗ of functions whose r–th
derivative has bounded variation on each Iα and all intermediate derivatives have
zero mean on

⊔
Iα). We prove that for those the loss of differentiability in solving

the cohomological equation is the same as for functions in BV1
∗ (Section 3.4).

Section 4 is devoted to the proof of theorem B, i.e. that Roth-type i.e.m.’s have
full measure. To this purpose we need to describe how the Rauzy–Veech map acts
at the level of the suspension data (Section 4.1). Then we combine the continued
fraction algorithm (in Zorich form) with the Teichmüller flow in order to get a ver-
sion which is normalized w.r.t. scales (Section 4.2). A careful comparison between
the a.c.i.m. for the continued fraction map and the Lebesgue measure is carried out
in Section 4.3 whereas in Section 4.4, following Zorich [Z1] we prove the integra-
bility condition on the matrices needed to apply Oseledets’ multiplicative ergodic
theorem. Then conditions (b) and (c) in the definition of Roth-type i.e.m.’s have
full measure (Section 4.5) by Oseledets’ theorem and the almost sure existence of
a spectral gap proved by Veech in [V3]. Showing that condition (a) also has full
measure requires more work and more precise information on the combinatorics of
the continued fraction map. This is summarized in a Proposition stated in Section
4.6 and proved in Section 4.8 whereas in Section 4.3 we show how to conclude the
proof of theorem B by putting together the results of Sections 4.3 and 4.7 and
applying a Borel–Cantelli argument.

The two appendices are devoted to the construction of concrete examples of
Roth-type i.e.m.’s and to the construction of non-uniquely ergodic i.e.m.’s satisfying
condition (a) in Roth type (but of course not condition (b)).

1. The continued fraction algorithm for interval exchange maps

1.1. Interval exchange maps.

1.1.1. An interval exchange map (i.e.m.) is determined by combinatorial data on
one side, length data on the other side.

The combinatorial data consists of a finite set A of names for the intervals and
of two bijections (π0, π1) from A onto {1, . . . , d} (where d is the cardinality of A):
these indicate in which order the intervals are met before and after the map.

The length data (λα)α∈A give the length λα > 0 of the corresponding interval.
More precisely, we set

Iα := [0, λα) × {α} ,

λ∗ :=
∑
α∈A

λα ,

I := [0, λ∗) .
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We then define, for ε = 0, 1, a bijection jε from
⊔

α∈A Iα onto I:

jε(x, α) =
∑

πε(β)<πε(α)

λβ + x .

The i.e.m. T associated to these data is the bijection T = j1 ◦ j−1
0 of I.

1.1.2. If A, π0, π1, λα are as above and χ : A′ → A is a bijection, we can define a
new set of data by

π′
ε = πε ◦ χ , ε = 0, 1 ,

λ′
α′ = λχ(α′) , α′ ∈ A′ .

Obviously, the new i.e.m. T ′ determined by these data is the same, except for
names, as the old one. In particular, we could restrict our attention to normalized
combinatorial data characterized by

A = {1, . . . , d} , π0 = idA .

However, this leads later to more complicated formulas in the continued fraction
algorithm because the basic operations on i.e.m.’s do not preserve normalization.

1.1.3. Given combinatorial data (A, π0, π1), we set, for α, β ∈ A,

Ωα,β =

⎧⎪⎨
⎪⎩

+1 if π0(β) > π0(α) , π1(β) < π1(α),
−1 if π0(β) < π0(α) , π1(β) > π1(α),
0 otherwise.

The matrix Ω = (Ωα,β)(α,β)∈A2 is antisymmetric.
Let (λα)α∈A be the length data and let T be the associated i.e.m. For α ∈ A,

y ∈ j0(Iα), we have
T (y) = y + δα ,

where the translation vector δ = (δα)α∈A is related to the length vector λ = (λα)α∈A
by

δ = Ωλ .

1.1.4. There is a canonical involution I acting on the set of combinatorial data
which exchange π0 and π1. For any set (λα)α∈A of length data, the intervals Iα, I
are unchanged, but j0 and j1 are exchanged and T is replaced by T−1. The matrix
Ω is replaced by −Ω and the translation vector δ by −δ. Observe that I does not
respect the combinatorial normalization.

1.1.5. In the following, we will always consider only combinatorial data
(A, π0, π1) which are admissible, meaning that for all k = 1, 2, . . . , d − 1, we have

π−1
0 ({1, . . . , k}) �= π−1

1 ({1, . . . , k}) .

Indeed, if we had π−1
0 ({1, . . . , k}) = π−1

1 ({1, . . . , k}) for some k < d, for any
length data (λα)α∈A, the interval I would decompose into two disjoint invariant
subintervals and the study of the dynamics would be reduced to simpler combina-
torial data.
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1.1.6. The Keane property. Let T be an i.e.m. defined by combinatorial data
(A, π0, π1) and length data (λα)α∈A.

Definition. A connection for T is a triple (α, β, m) where α, β ∈ A, π0(β) > 1, m
is a positive integer, and

Tm(j0(0, α)) = j0(0, β) .

We say that T has the Keane property if there is no connection for T .

It turns out that this property is the appropriate notion of irrationality for i.e.m.
The following results are due to Keane ([Ke1]):

• An i.e.m. with Keane’s property is minimal (i.e. all orbits are dense).
• If the length data are rationally independent (and the combinatorial data

are admissible), then T has Keane’s property.

1.2. The continued fraction algorithm.

1.2.1. The basic operation (Rauzy [Ra], Veech [V2]). Let T be an i.e.m. defined by
combinatorial data (A, π0, π1) and length data (λα)α∈A. We assume as always that
the combinatorial data are admissible.

We denote by α0, α1 the (distinct) elements of A such that

π0(α0) = π1(α1) = d .

Observe that if λα0 = λα1 , the triple (α0, α1, 1) is a connection and T has not the
Keane property.

We now assume that λα0 �= λα1 and define ε ∈ {0, 1} by

λαε
= Max (λα0 , λα1) .

We set

λ̂∗ = λ∗ − λα1−ε
,

Î = [0, λ̂∗) ⊂ I ,

and define T̂ : Î → Î to be the first return map of T in Î.
When ε = 0 we have

T̂ (y) =

{
T (y) if y /∈ j0(Iα1),
T 2(y) if y ∈ j0(Iα1).

When ε = 1 we have similarly

T̂−1(y) =

{
T−1(y) if y /∈ j1(Iα0),
T−2(y) if y ∈ j1(Iα0).

In both cases, it appears that T̂ is again an interval exchange map which can be
defined using the same alphabet A. The length data for T̂ are given by

λ̂α = λα if α �= αε ,

λ̂αε
= λαε

− λα1−ε
.

The combinatorial data (π̂0, π̂1) for T̂ are given by

π̂ε = πε
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Figure 1. Rauzy diagrams d = 2 and 3

and

π̂1−ε(α) =

⎧⎪⎨
⎪⎩

π1−ε(α) if π1−ε(α) ≤ π1−ε(αε),
π1−ε(α) + 1 if π1−ε(αε) < π1−ε(α) < d,

π1−ε(αε) + 1 if π1−ε(α) = d.

We rewrite the relation between old and new length data as

λ = V λ̂ ,

where
V = I + Eαεα1−ε

has now nonnegative integer coefficients and belongs to the group SL (ZA). We also
write

(π̂0, π̂1) = Rε(π0, π1)
and observe that these new combinatorial data are admissible.

1.2.2. Rauzy diagrams. Let A be an alphabet. We define an oriented graph as
follows. The vertices are the admissible pairs (π0, π1). Each vertex (π0, π1) is the
starting point of exactly two arrows with endpoints at R0(π0, π1) and R1(π0, π1).
The arrow connecting (π0, π1) to Rε(π0, π1) is said to be of type ε.

The operations R0, R1 are obviously invertible. Therefore each vertex is also the
endpoint of exactly two arrows, one of each type.

To each arrow in the graph, we associate a name in A: it is the element αε such
that πε(αε) = d (where (π0, π1) is the starting point of the arrow and ε is its type).
The element α1−ε will then be called the secondary name of this arrow. A Rauzy
diagram is a connected component of this oriented graph.

Obviously, the Rauzy operations R0, R1 commute with a change of names (see
1.2). Up to a change of names, there is only one Rauzy diagram with d = cardA =
2, and one with d = cardA = 3 (see Figure 1).

In the diagrams above the pair (π0, π1) is denoted by the symbol

π−1
0 (1) . . . π−1

0 (d),
π−1

1 (1) . . . π−1
1 (d).

For d = cardA = 4 there are 2 distinct Rauzy diagrams: see Figure 2.
In each of these diagrams, the symmetry with respect to the vertical axis corre-

sponds to the action of the canonical involution.
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Figure 2. Rauzy diagrams for d = 4

In the last diagram, there is a further symmetry with respect to the center of
the diagram, which corresponds to the exchange of the names B0, B1. This is a
monodromy phenomenon: to each admissible pair (π0, π1), one can associate the
permutation π := π1◦π−1

0 of {1, . . . , d}, which is invariant under a change of names.
When we identify vertices with the same permutation, we obtain a reduced Rauzy
diagram and we have a covering map from the Rauzy diagram onto the reduced
Rauzy diagram.

In the first three examples above, the covering map is an isomorphism. In the
last example, the degree of the covering map is 2 and the reduced Rauzy diagram
is given in Figure 3, where π is denoted by (π−1(1), . . . , π−1(d)).
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Figure 3. Reduced Rauzy diagram for d = 4

1.2.3. The Rauzy–Veech algorithm. Let T be an i.e.m. with admissible combinato-
rial data. If T has Keane’s property, the basic operation is defined for T and it is
immediate to check that the new i.e.m. T̂ again has Keane’s property. Therefore
we can iterate the basic operation and generate a sequence (T (n))n≥0 of i.e.m.’s
(with T (0) = T ). We will denote by (π(n)

0 , π
(n)
1 ) the combinatorial data of T (n),

by (λ(n)
α )α∈A its length data, by γ(n) the arrow in the Rauzy diagram connecting

(π(n−1)
0 , π

(n−1)
1 ) to (π(n)

0 , π
(n)
1 ), by V (n) the matrix relating λ(n−1) to λ(n) through

λ(n−1) = V (n)λ(n) .

Conversely, it is not difficult to check that when T has a connection, the algorithm
has to stop because, at some point in the equality, one runs into the case λα0 = λα1

in the basic operation.

Proposition. Each name in A is taken infinitely many times by the sequence of
arrows (γ(n))n>0.

Proof. Let A′ be the set of names which are taken infinitely many times and let
A = A \ A′. Replacing T by some T (N), we can assume that names in A′′ are
not taken at all. Then the lengths λ

(n)
α , α ∈ A′′, do not depend on n. But then

elements α ∈ A′′ can only appear as secondary names at most finitely many times.
Replacing again T by some T (N), we can assume that secondary names are never
in A′′. Then the sequences (π(n)

ε (α))n>0, for ε ∈ {0, 1}, α ∈ A′′, are nondecreasing
and we can assume (replacing once again T by some T (N)) that they are constant.

We now claim that we must have π
(0)
ε (α′′) < π

(0)
ε (α′) for all α′′ ∈ A′′, α′ ∈ A′

and ε ∈ {0, 1}. Because the pair (π(0)
0 , π

(0)
1 ) is admissible, this implies A′ = A.

To prove the claim, assume that there exist α′ ∈ A′, α′′ ∈ A′′, ε ∈ {0, 1} with
π

(0)
ε (α′) < π

(0)
ε (α′′). As π

(n)
ε (α′′) = π

(0)
ε (α′′) for all n ≥ 0, we can never have

π
(n)
ε (α′) = d for some n > 0. By definition of A′, there must exist n ≥ 0 such that

π
(n)
1−ε(α

′) = d; but then π
(n+1)
ε (α′′) �= π

(0)
ε (α′′), which gives a contradiction. �

1.2.4. The Zorich algorithm and its accelerations. When d = 2, setting x = λB/λA,
the basic operation reduces to the well-known map

g(x) =

{
x

1−x for 0 < x < 1/2,
1−x

x for 1/2 < x < 1,
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with a parabolic fixed point at 0. There is a unique absolutely continuous invariant
measure, namely dx/x, but this measure is infinite. On the other hand, the Gauss
map generating the continued fraction algorithm has dx/(1 + x) as a finite a.c.i.m.

For i.e.m.’s with more intervals, identifying i.e.m.’s with proportional length data
(and the same combinatorial data), Veech has shown [V2] that there exists again
for the basic operation a unique absolutely continuous invariant measure. Again
this measure is infinite. Zorich has discovered ([Z1]) how to concatenate several
steps of the basic operations in order to get a finite a.c.i.m.

Let T be an i.e.m. with Keane’s property, T (n), γ(n), V (n) the data generated by
the iteration of the basic operation. Let also 1 ≤ D < d. We define inductively an
increasing sequence nD(k) = nD(k, T ) by setting nD(0) = 0 and where nD(k + 1)
is the largest integer such that no more than D names are taken by the γ(n), for
nD(k) < n ≤ nD(k + 1).

The sequence is well defined because of the Proposition above.
Obviously, for 1 < D < d, (nD(k))k≥0 is a subsequence of (nD−1(l))l≥0.
We will define, for k > 0,

Z(D)(k) = V (nD(k−1)+1) · · ·V (nD(k)) .

The case D = 1 is the one considered by Zorich ([Z1]). We will on the other
hand be interested in the case D = d − 1.

When the context is clear, we will simply write Z(k) for Z(d−1)(k) and T (k) for
T (nd−1(k)), λ(k) for its length data. With this notation, we have

λ(k) = Z(k + 1)λ(k+1) .

We will also set, for k < l,

Q(k, l) = Z(k + 1) · · ·Z(l) ,

in order to have
λ(k) = Q(k, l)λ(l) .

We will also write Q(l) for Q(0, l). The coefficients Qαβ(k, l) have the following
interpretation. Let I(k) =

⊔
α∈A j0(I

(k)
α ) be the domain of T (k). For l ≥ k, we have

I(l) ⊂ I(k) and T (l) is the first return map of T (k) in I(l). Then, the nonnegative
integer Qαβ(k, l) is the time spent in j0(I

(k)
α ) by any point of j0(I

(l)
β ) until it returns

in I(l).
We will also introduce

Qβ(k, l) =
∑
α∈A

Qαβ(k, l) ,

which is the return time in I(l) for points in I
(l)
β .

The following lemma is the main reason to choose D = d− 1 rather than D = 1.

Lemma. Let T satisfy Keane’s condition. Assume that

l ≥
{

k + 2d − 3 if d ≥ 3,

k + 2 if d = 2.

Then, for all α, β ∈ A, we have Qαβ(k, l) > 0.
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Proof. Replacing T by T (k), it is sufficient to consider the case k = 0. For r ≥ 0,
set

Q̂(r) = V (1) · · ·V (r) ;

as the diagonal terms of the V matrices are equal to 1 (and all the terms are
nonnegative) we have

Q̂αβ(r) > 0 ⇒ Q̂αβ(r + 1) > 0 .

Fix α, β ∈ A. We will construct a sequence of distinct indices α1 = α, α2, . . . , αs

= β and integers r1 = 0 < r2 < . . . < rs such that

Q̂α1αj
(r) > 0 for r ≥ rj .

If α = β, then s = 1, r1 = 0 and the property is satisfied. Otherwise, let r2 be
the smallest positive integer such that the name of γ(r2) is α1, and let α2 be the
secondary name of γ(r2); we have α2 �= α1 and V

(r2)
α1α2 = 1; hence Q̂α1α2(r) > 0 for

r ≥ r2.
Assume that α1, . . . , αj , r1, . . . , rj have been constructed, with β �= αl for 1 ≤

l ≤ j. Let r′j be the smallest integer > rj such that the name of γ(r′
j) does not

belong to {α1, . . . , αj} and let rj+1 be the smallest integer > r′j such that the
name of γ(rj+1) belongs to {α1, . . . , αj}; let αj+1 be the secondary name of γ(rj+1).
Then αj+1 is the name of γ(rj+1−1) and therefore is distinct from α1, . . . , αj . By
construction, we have, for some 1 ≤ l ≤ j,

V (rj+1)
αlαj+1

= 1 ,

and also

Q̂α1αl
(rj+1 − 1) > 0

because rj+1 > rl. We conclude that

Q̂α1αj+1(r) > 0 for r ≥ rj+1 .

At some point we will obtain αs = β. It remains to see how many steps of the
accelerated Zorich algorithm (with D = d − 1) are needed to attain rs. Obviously,
we have r2 ≤ nd−1(1) + 1. Then, for 2 ≤ j < d − 1, we have

r′j ≤ nd−1(2j − 2) ,

rj+1 ≤ nd−1(2j − 1) .

Finally, when s = d > 2, we have

r′d−1 ≤ nd−1(2d − 4) + 1 ,

rd ≤ nd−1(2d − 3) .

�

1.3. Roth-type interval exchange maps. Roth-type i.e.m.’s should satisfy
Keane’s condition so that the continued fraction algorithm is defined, and three
further conditions which are now explained.
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1.3.1. Size of the Z matrices. Take D = d − 1 in 1.2.4. We will first ask for the Z
matrices to be not too big in the following sense:

(a) for every ε > 0 there exists Cε > 0 such that for all k ≥ 0 we have

‖Z(k + 1)‖ ≤ Cε‖Q(k)‖ε .

When d = 2, this amounts exactly to the classical Roth-type approximation
property for an irrational number θ: for all ε > 0, there exists γε > 0 such that for
all rational p/q one has

|θ − p/q| ≥ γεq
−2−ε.

In terms of the convergents (pk/qk)k≥0 of θ with partial quotients (ak)k≥1, this is
equivalent to having, for all ε > 0,

ak+1 = O (qε
k) ,

which explains our terminology.
We can reformulate (a) in terms of the lengths λ

(k)
α . It is convenient here to take

as the norm of a matrix the sum of all coefficients (in absolute value; the matrices
that we consider here have nonnegative entries).

Proposition. We have always, for k ≥ 0,

Maxα∈A λ(k)
α ≥ λ∗‖Q(k)‖−1 ≥ Minα∈A λ(k)

α .

Condition (a) is equivalent to the following converse estimate: for all ε > 0, there
exists Cε > 0 such that

Maxα∈A λ(k)
α ≤ Cε Minα∈A λ(k)

α ‖Q(k)‖ε .

Proof. The first estimate follows from

λ∗ =
∑
α∈A

λ(0)
α =

∑
β∈A

Qβ(k)λ(k)
β .

Assume (a) is satisfied. Let l be equal to k + 2d − 3 (if d ≥ 3) or k + 2 (if d = 2)
as in the lemma in 1.2.4. We have

‖Q(k, l)‖ ≤ C ′
ε‖Q(k)‖ε

for all ε > 0 (with an appropriate constant C ′
ε).

This gives
Maxα∈Aλ(k)

α ≤ C ′
ε‖Q(k)‖εMaxα∈Aλ(l)

α .

On the other hand, Lemma 1.2.4 gives

Minα∈Aλ(k)
α ≥ Maxα∈Aλ(l)

α ,

giving the required estimate. Assume now that the estimate of the proposition
holds. We have always

Maxα∈Aλ(k)
α ≥ d−1‖Z(k + 1)‖Minα∈Aλ(k+1)

α .

On the other hand, by the definition of the Z matrices, there exists α0 ∈ A such
that

λ(k)
α0

= λ(k+1)
α0

.
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But we have

λ(k+1)
α0

≤ Maxα∈Aλ(k+1)
α

≤ CεMinα∈Aλ(k+1)
α ‖Q(k + 1)‖ε

≤ Cεd‖Z(k + 1)‖−1Maxα∈Aλ(k)
α ‖Q(k + 1)‖ε

≤ C2
εd‖Z(k + 1)‖−1Minα∈Aλ(k)

α ‖Q(k)‖ε‖Q(k + 1)‖ε

≤ C2
εd‖Z(k + 1)‖−1λ(k)

α0
‖Q(k)‖ε‖Q(k + 1)‖ε,

which implies
‖Z(k + 1)‖ ≤ C2

εd‖Q(k)‖ε‖Q(k + 1)‖ε

and allows us to conclude that (a) holds. �

Remark 1. Assume condition (a) is satisfied. Set k0 = 2d − 3 if d ≥ 3, k0 = 2
if d = 2. Following the same lines as in the last proposition, we see that for any
ε > 0, there exists Cε > 0 such that for k ≥ k0 we have

Minα,β∈AQαβ(k) ≥ C−1
ε ‖Q(k)‖1−ε .

On the other hand it is easy to see that, even in the case of 3 intervals, this estimate
does not imply condition (a).

Remark 2. Boshernitzan has defined ([Bo]) another condition which generalizes
the Roth condition for irrational numbers. Namely, he asks that T satisfy Keane’s
condition and that the minimum distance mn between discontinuity points of the
n–th iterate Tn of T should satisfy

mn ≥ γ−1
ε

n1+ε
.

He proves that this condition has full measure.
The relation between Boshernitzan’s condition and condition (a) above is how-

ever not clear.

1.3.2. Spectral gap. As soon as k ≥ 2d − 3 (k ≥ 2 if d = 2), all entries in the
matrix Q(k) are strictly positive. It is therefore not unreasonable to expect that
the positive cone is more expanded by Q(k) than the other directions, in the spirit
of the Perron–Frobenius theorem.

However this is not automatic, as attested to by the existence of minimal non-
uniquely ergodic i.e.m.’s (an i.e.m. satisfying Keane’s condition is uniquely ergodic
if and only if the image under Q(k) of the positive cone converges to a ray as
k → ∞).

Our second condition ensures that this weird behaviour does not occur.
For each k ≥ 0, let Γ(k) be a copy of RA. One should think of Γ(k) as the space

of functions on
⊔

α∈A I
(k)
α which are constant on each I

(k)
α . For 0 ≤ k ≤ l, let S(k, l)

be the linear map from Γ(k) to Γ(l) whose matrix in the canonical basis is tQ(k, l).
This can be interpreted as a special Birkhoff sum (see Section 2 below).

For ϕ = (ϕα)α∈A ∈ Γ(k), define

Ik(ϕ) =
∑
α∈A

λ(k)
α ϕα ;

we have then
Il(S(k, l)ϕ) = Ik(ϕ) .
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Denote by Γ(k)
∗ the kernel of the linear form Ik. We will ask the following:

(b) There exists θ > 0, C > 0 such that, for all k ≥ 0, we have

‖S(k) |
Γ

(0)
∗

‖ ≤ C‖S(k)‖1−θ = C‖Q(k)‖1−θ .

Observe that an i.e.m. satisfying Keane’s condition and (b) must be uniquely
ergodic.

In appendix B we construct i.e.m.’s which satisfy condition (a) but are not
uniquely ergodic (see also [Ch]); therefore condition (b) is not a consequence of
condition (a).

However, if instead of condition (a) we consider the stronger condition (being
reminded of bounded-type irrational numbers):

(ã) the sequence Z(k) is bounded,
then condition (b) follows. Indeed, each Q(k, k + 2d − 3) (Q(k, k + 2) when d = 2)
will contract by a definite factor < 1 the Hilbert metric of the projective positive
cone.

1.3.3. Coherence. To define our third condition, we consider again the operators
S(k, l) : Γ(k) → Γ(l). Let Γ(k)

s be the linear subspace of Γ(k) whose elements v
satisfy the following: there exists σ = σ(v) > 0, C = C(v) > 0 such that, for all
l ≥ k, one has

‖S(k, l)v‖ ≤ C‖S(k, l)‖−σ‖v‖ .

We call Γ(k)
s the stable subspace of Γ(k). Obviously, one has Γ(k)

s ⊂ Γ(k)
∗ . On the

other hand, Γ(k)
s is never reduced to 0 because it always contains the translation

vector (δ(k)
α )α∈A.

The operator S(k, l) maps Γ(k)
s onto Γ(l)

s . Therefore we can define a quotient
operator

S	(k, l) : Γ(k)/Γ(k)
s → Γ(l)/Γ(l)

s .

As we have quotiented out the stable directions, it is not unreasonable to expect
that the norm of the inverse of S	(k, l) is not too large. This is what our third
condition is about:

(c) for any ε > 0, there exists Cε > 0 such that, for all l ≥ k, we have

‖[S	(k, l)]−1‖ ≤ Cε‖Q(l)‖ε ,

‖S(k, l) |
Γ

(k)
s

‖ ≤ Cε‖Q(l)‖ε .

Remark. The second estimate in (c) was wrongly omitted in [MMY].

1.3.4. Roth-type interval exchange maps. We say that an i.e.m. T is of Roth type if
it satisfies Keane’s condition and conditions (a), (b), (c).

In the next section, we will solve the cohomological equation for i.e.m.’s of Roth
type. In Section 4 we will prove the following.

Theorem. Roth-type interval exchange maps form a subset of full measure.

We also observe that if an i.e.m. T satisfies Keane’s condition, and its Rauzy–
Veech continued fraction is eventually periodic (meaning that the path γ in the
Rauzy diagram is eventually periodic), then conditions (ã), (b) and (c) are auto-
matically satisfied and therefore T is of Roth type.
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2. The cohomological equation

2.1. The theorem of Gottschalk and Hedlund.

2.1.1. The statement. We recall the following theorem of Gottschalk and Hedlund.
Let X be a compact topological space, f a minimal homeomorphism of X and
ψ a real-valued continuous function on X. Given x0 ∈ X and n ≥ 1 we denote
by Snψ(x0) the Birkhoff sum

∑n−1
j=0 ψ ◦ T j(x0). Suppose that there exists a point

x0 ∈ X and a positive constant C such that for all positive integers n one has
|Snψ(x0)| ≤ C. Then the cohomological equation

ϕ ◦ f − ϕ = ψ

has a continuous solution ϕ.

2.1.2. Application to interval exchange maps. Let T be an i.e.m. satisfying Keane’s
condition. Then T is minimal but not continuous. However, the following well–
known construction, reminiscent of Denjoy counterexamples, allows us to bypass
this problem.

For n ≥ 0, define

D0(n) = {T−n(j0(0, α)) , α ∈ A , π0(α) > 1} ,

D1(n) = {T+n(j1(0, α)) , α ∈ A , π1(α) > 1} .

It follows from the Keane property that these sets are disjoint from each other
and do not contain 0.

Define an atomic measure µ by

µ =
∑
n≥0

∑
y∈D0(n)�D1(n)

2−nδy

and the increasing maps i+, i− : I → R by

i−(y) = y + µ([0, y)) ,

i+(y) = y + µ([0, y]) .

We therefore have

i+(y) < i−(y′) for y < y′ ,

i+(y) = i−(y) for y /∈
⊔
n≥0

(D0(n) � D1(n)) ,

i+(y) = i−(y) + 2−n for y ∈ D0(n) � D1(n) .

We also define
i−(λ∗) = λ∗ + 4(d − 1) = lim

y↗λ∗
i±(y)

and
K = i−(I) ∪ i+(I) ∪ {i−(λ∗)} = i−(I) = i+(I) .

As T is minimal, K is a Cantor set whose gaps are the intervals (i−(y), i+(y)),
y ∈

⋃
n≥0

⋃
ε∈{0,1} Dε(n).

Proposition. There is a unique continuous map T̂ : K → K such that T̂ ◦ i+ =
i+ ◦ T on I. Moreover, T̂ is a minimal homeomorphism.



ROTH-TYPE INTERVAL EXCHANGE MAPS 839

The elementary proof is left to the reader.
Let ψ : I → R be a function which is continuous on each j0(Iα), with finite

limits at the right endpoints of each j0(Iα). There is a unique continuous function
ψ̂ , K → R such that ψ(y) = ψ̂ ◦ i+(y) for all y ∈ I. Assume that, for some
x0 ∈ I the Birkhoff sums of ψ for T are bounded. Then the same is true for the
Birkhoff sums of ψ̂ for T̂ at the point x̂0 = i+(x0). By the theorem of Gottschalk
and Hedlund, there is a continuous function ϕ̂ , K → R satisfying ψ̂ = ϕ̂ ◦ T̂ − ϕ̂.
Define, for y ∈ I,

ϕ(y) = ϕ̂ ◦ i+(y) .

In general, ϕ is not continuous. However it is bounded and satisfies ϕ◦T−ϕ = ψ. In
the following, we will show that under appropriate circumstances certain Birkhoff
sums are bounded.

2.2. Special Birkhoff sums.

2.2.1. Let T be an i.e.m. satisfying Keane’s condition. Denote by T (k) the i.e.m.
obtained by the accelerated Zorich algorithm (with D = d − 1 in 1.2.4).

Let ϕ : I(k) → R be a function defined on the domain I(k) of T (k). Also let
l ≥ k. For β ∈ A, x ∈ j0(I

(l)
β ), the return time of x into I(l) under iteration of T (k)

is Qβ(k, l). Define a function

S(k, l)ϕ : I(l) → R

by the formula
S(k, l)(ϕ)(x) =

∑
0≤i<Qβ(k,l)

ϕ((T (k))i(x)) ,

for x ∈ j0(I
(l)
β ). Observe that when ϕ is constant on each j0(I

(k)
β ), the same is true

of S(k, l)(ϕ) in I(l) and the corresponding linear operator has tQ(k, l) as matrix in
the canonical basis, as anticipated in 1.3.2.

We just write S(k) for S(0, k).

2.2.2. Some elementary properties of the operators S(k, l).
2.2.2.1. For m ≥ l ≥ k one has

S(k, m) = S(l, m) ◦ S(k, l) .

2.2.2.2. The operators S(m, n) preserve all regularity classes which are invariant
by restriction, sum and translation.
2.2.2.3. If ϕ is an integrable function on I(k),∫

I(k)
ϕ(x)dx =

∫
I(l)

(S(k, l)ϕ)(x)dx .

2.2.2.4. The operators S(k, l) commute with taking derivatives.
2.2.2.5. If the restriction of ϕ to each j0(I

(k)
α ) is a polynomial of degree ≤ µ, the

restriction of S(k, l)ϕ to each j0(I
(l)
β ) is also a polynomial of degree ≤ µ. The case

µ = 0 has already been considered.
2.2.2.6. Denote by BV (

⊔
I
(k)
α ) the space of functions ϕ on I(k) whose restriction

to each j0(I
(k)
α ) has bounded variation and define

Var ϕ =
∑
α

Var ϕ|
j0(I

(k)
α )

.
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(We do not take into account the discontinuities of ϕ at the discontinuity points of
T (k).) Then S(k, l) sends BV (

⊔
I
(k)
α ) into BV (

⊔
I
(l)
α ) and we have

VarS(k, l)ϕ ≤ Varϕ .

2.2.3. Reduction of Birkhoff sums to special Birkhoff sums. For diffeomorphisms of
the circle with irrational rotation number, when trying to estimate the Birkhoff
sums of some function, it is a standard trick to consider first the sums associated to
the denominators of the convergents of the rotation number. We will do the same
here.

Let ϕ : I → R be a function, x ∈ I, and N > 0. We want to compute the
Birkhoff sums

SNϕ(x) =
N−1∑
i=0

ϕ(T i(x))

(with T = T (0)).
We first replace x by the point in the orbit {x, T (x), . . . , TN−1(x)} which is

closest to 0 and cut the Birkhoff sum into two parts (one for T and the other for
T−1). Let us assume to keep notation simple that x is actually closest to the origin.

Let k ≥ 0 be the largest integer such that at least one of the points T (x), . . . ,
TN−1(x) belongs to I(k); because T (k) is the first return map into I(k), these points
are precisely T (k)(x), (T (k))2(x), . . . , (T (k))b(k)(x) for some integer b(k) > 0. More-
over, as none of these points belongs to I(k+1) we must have

b(k) < Maxβ∈A
∑
α∈A

Zαβ(k + 1),

the right-hand term being the largest return time of T (k) into I(k+1).
We set xk = x, xk−1 = (T (k))b(k)(x) and define inductively b(l) and xl for

0 ≤ l ≤ k.
The point xl has the property that it belongs to I(l) and none of the points

T (xl), . . . , TN (x) belongs to I(l+1). Those that belong to I(l) are T (l)(xl), . . . ,
(T (l))b(l)(xl) for some integer b(l) ≥ 0. We have

b(l) < Maxβ∈A
∑
α∈A

Zαβ(l + 1) ,

We define xl−1 = (T (l))b(l)(xl). The process stops when xl = TN (x) (or l = 0).
From this construction it is obvious that we have

SNϕ(x) =
k∑

l=0

∑
0≤i<b(l)

S(l)ϕ((T (l))i(xl)),

which in particular implies, if ϕ is bounded:

|SNϕ(x)| ≤
k∑

l=0

‖Z(l + 1)‖‖S(l)ϕ‖L∞ ,

where ‖Z(l + 1)‖ = Maxβ∈A
∑

α∈A Zαβ(l + 1) .
In particular, if we are able to show that for some ω > 0 we have

‖S(l)ϕ‖L∞ ≤ C‖Q(l)‖−ω‖ϕ‖ ,

and condition (a) in 1.3.1 is satisfied, then the Birkhoff sums of ϕ will be bounded.
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2.3. Estimates for functions of bounded variation.

2.3.1. Denote by BV∗ (
⊔

I
(k)
α ) the subspace of BV (

⊔
I
(k)
α ) formed by the functions

of mean 0. The operator S(k, l) sends this subspace into BV∗ (
⊔

I
(l)
α ).

Let ϕ ∈ BV∗ (
⊔

I
(k)
α ). We write

S(k, k + 1)(ϕ) = ϕk+1 + χk+1 ,

with χk+1 ∈ Γ(k+1)
∗ and ϕk+1 of mean zero on each j0(I

(k+1)
α ). Then we go on with

S(j, j + 1)(ϕj) = ϕj+1 + χj+1

with χj+1 ∈ Γ(j+1)
∗ and ϕj+1 of mean zero on each j0(I

(j+1)
α ). We obtain, for l > k,

S(k, l)ϕ = S(l − 1, l)ϕl−1 +
∑

k<j<l

S(j, l)χj .

2.3.2. As ϕj differs from S(k, j)ϕ by a function in Γ(j)
∗ and has mean zero on each

j0(I
(j)
α ) we have (see 2.2.2.6)

‖ϕj‖L∞ ≤ Varϕj ≤ Varϕ .

On the other hand, we have

‖χj‖L∞ ≤ ‖S(j − 1, j)ϕj−1‖L∞

≤ ‖Z(j)‖‖ϕj−1‖L∞

(with ϕj−1 = ϕ when j = k + 1). We obtain therefore

‖S(k, l)ϕ‖L∞ ≤ ‖Z(k + 1)‖‖S(k + 1, l)|
Γ

(k+1)
∗

‖‖ϕ0‖L∞

+
∑

k<j<l

‖Z(j + 1)‖‖S(j + 1, l)|
Γ

(j+1)
∗

‖Var ϕ .

2.3.3. We now take k = 0 and estimate the sum∑
0≤j<l

‖Z(j + 1)‖‖S(j + 1, l)|
Γ

(j+1)
∗

‖ ,

assuming that conditions (a), (b) of Section 1.3 are satisfied.
On one side we have, by condition (a), for all ε > 0:

‖Z(j + 1)‖ ≤ Cε‖Q(j)‖ε .

To estimate ‖S(j + 1, l)|
Γ

(j+1)
∗

‖ we distinguish two cases. We assume condition (b)
of 1.3.2, which involves an exponent 1 − θ with θ > 0.

i) Assume first that ‖Q(j +1)‖ ≤ ‖Q(l)‖θ/d. As Q(j +1) belongs to SL (d, Z),
we have

‖(Q(j + 1))−1‖ ≤ c‖Q(l)‖θ d−1
d .

Next we write

S(j + 1, l) = S(0, l) ◦ (S(0, j + 1))−1 ,

and it follows from condition (b) that we have

‖S(j + 1, l)|
Γ

(j+1)
∗

‖ ≤ C‖Q(l)‖1− θ
d .
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ii) Assume now that ‖Q(j +1)‖ > ‖Q(l)‖θ/d. If l ≤ j +2d− 2 (l ≤ j +3 when
d = 2), we just use

‖S(j + 1, l)|
Γ

(j+1)
∗

‖ ≤ Cε‖Q(l)‖ε

by condition (a). If l > j + 2d − 2 (l > j + 3), we write

S(0, l) = S(j′, l)S(j + 1, j′)S(0, j + 1)

with j′ = j + 2d − 2 (j′ = j + 3 when d = 2). As the entries of Q(j + 1, j′)
are positive integers we have

‖Q(0, l)‖ ≥ C‖Q(j′, l)‖‖Q(0, j + 1)‖ ,

which implies
‖Q(j′, l)‖ ≤ C‖Q(l)‖1− θ

d .

As we have also

‖Q(j + 1, j′)‖ ≤ Cε‖Q(j′)‖ε ,

we obtain in this case that

‖S(j + 1, l)|Γ(j+1)‖ ≤ Cε‖Q(l)‖1− θ
d +ε .

Putting the two cases together and inserting this in the sum, we obtain

Proposition. For ϕ ∈ BV∗(
⊔

α∈A I
(0)
α ), l ≥ 0, one has

‖S(l)ϕ‖L∞ ≤ C‖Q(l)‖1− θ
2d ‖ϕ‖BV .

Remark. In case i), the estimate we got for Q(j+1)−1 is far from optimal (it should
be of the order of Q(j + 1)) but sufficient for our purposes.

2.4. Primitives of functions of bounded variation.

2.4.1. For k ≥ 0, we will denote by BV1 (
⊔

α∈A I
(k)
α ) the space of functions ϕ :

I(k) → R which are absolutely continuous on each j0(I
(k)
α )) and whose derivative

on each j0(I
(k)
α )) is of bounded variation. The condition that the mean value of

the derivative is zero defines a hyperspace BV1
∗ (
⊔

α∈A I
(k)
α ). We recall from 1.3.3

the subspace Γ(k)
s of Γ(k). We will denote by BV

1

∗ (
⊔

α∈A I
(k)
α ) the quotient of

BV1
∗ (
⊔

α∈A I
(k)
α ) by this finite-dimensional subspace.

Given ϕ ∈ BV∗ (
⊔

α∈A I
(0)
α ), we will find a primitive Φ of ϕ (given a priori by

d constants of integration, one for each I
(0)
α ) for which the special Birkhoff sums

are small. The primitive Φ will actually be uniquely determined modΓ(0)
s , i.e. in

BV
1

∗ (
⊔

α∈A I
(0)
α ).

2.4.2. For any ϕ ∈ BV∗ (
⊔

α∈A I
(k)
α ), denote by P

(k)
0 ϕ the class in BV

1

∗ (
⊔

α∈A I
(k)
α )

of the primitive of ϕ which has mean zero on each j0(I
(k)
α ).

This is the most natural choice of primitive, but unfortunately the special Birk-
hoff sums S(k, l) do not commute with these primitive operators, i.e. they do not
preserve the condition of being of mean value 0 on each j0(I

(k)
α ).

Therefore, we will modify P
(k)
0 , considering

P (k) = P
(k)
0 + ∆P (k) ,
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where
∆P (k) : BV∗ (

⊔
α∈A

I(k)
α ) → Γ(k)/Γ(k)

s

is a bounded linear operator. We want this new choice to be equivariant:

S(k, l) ◦ P (k) = P (l) ◦ S(k, l) .

This leads to the following equation for ∆P (k). Define

Λ(k, l) = P
(l)
0 ◦ S(k, l) − S(k, l) ◦ P

(k)
0 .

This is a bounded linear map from BV∗ (
⊔

α∈A I
(k)
α ) to Γ(l)/Γ(l)

s . Then we should
have

(∗) S	(k, l) ◦ ∆P (k) − ∆P (l) ◦ S(k, l) = Λ(k, l),

where S	 was defined in 1.3.3.
Equation (∗) has the formal solution

(∗∗) ∆P (k) =
∑
l>k

(S	(k, l))−1 ◦ Λ(l − 1, l) ◦ S(k, l − 1),

and we will check next that this defines indeed the required primitive.

2.4.3. Estimate for Λ(l − 1, l). Let ϕ ∈ BV∗ (
⊔

α∈A I
(l−1)
α ). As P

(l−1)
0 ϕ has mean

zero on each j0(I
(l−1)
α ), we have

‖P (l−1)
0 ϕ‖L∞ ≤ (Maxα∈Aλ(l−1)

α )‖ϕ‖L∞ .

On the other hand we have

‖S(l − 1, l)ϕ‖L∞ ≤ ‖Z(l)‖‖ϕ‖L∞ ,

‖S(l − 1, l)P (l−1)
0 ϕ‖L∞ ≤ ‖Z(l)‖‖P (l−1)

0 ϕ‖L∞ .

Finally, we get

‖P (l)
0 S(l − 1, l)ϕ‖L∞ ≤ (Maxα∈Aλ(l)

α )‖Z(l)‖‖ϕ‖L∞ ,

which allows us to conclude that

‖Λ(l − 1, l)ϕ‖L∞ ≤ 2‖Z(l)‖(Maxα∈Aλ(l−1)
α )‖ϕ‖L∞ .

2.4.4. Assume now the three conditions (a), (b) and (c) of 1.3. From 1.3.1, we get

Maxα∈Aλ(l−1)
α ≤ Cε‖Q(l − 1)‖ε−1 ,

‖Z(l)‖ ≤ Cε‖Q(l − 1)‖ε ,

and from condition (c) that

‖(S	(0, l))−1‖ ≤ Cε‖Q(l)‖ε .

On the other hand, from the Proposition in 2.3, we obtain

‖S(0, l − 1)ϕ‖L∞ ≤ C‖Q(l − 1)‖1−θ/2d‖ϕ‖BV .

Therefore, for k = 0, the series (**) in 2.4.2 is converging and we obtain

‖∆P (0)ϕ‖ ≤
(∑

l>0

C ′
ε‖Q(l)‖3ε−θ/2d

)
‖ϕ‖BV .

Indeed, we take ε < θ/6d and observe that it follows from the Lemma in 1.2.4
that ‖Q(l)‖ grows at least exponentially fast. In the same way, as T (k) satisfies
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also conditions (a), (b), (c) (with worse constants but the same exponent θ), the
series (**) will converge for all k ≥ 0. In this case, we prefer to estimate directly
∆P (k)S(0, k)ϕ for ϕ ∈ BV∗ (

⊔
α∈A I

(0)
α ). We have

‖∆P (k)S(0, k)ϕ‖ ≤
∑
l>k

‖(S	(k, l))−1‖‖Λ(l − 1, l)‖‖S(0, l − 1)ϕ‖L∞ .

The above estimates now give

‖∆P (k)S(0, k)ϕ‖ ≤
(∑

l>k

C ′
ε‖Q(l)‖3ε−θ/2d

)
‖ϕ‖BV

≤ C‖Q(k)‖−θ/3d‖ϕ‖BV .

2.4.5. Special Birkhoff sums for P (0)ϕ. Let ϕ ∈ BV∗ (
⊔

α∈A I
(0)
α ) and Φ ∈

BV1
∗ (
⊔

α∈A I
(0)
α ) such that the class mod Γ(0)

s of Φ is P (0)ϕ. The class mod Γ(k)
s of

S(k)Φ is P (k)S(k)ϕ by construction.
From the definition of P

(k)
0 and 2.3, we have

‖P (k)
0 S(k)ϕ‖L∞ ≤ C

(
Maxα∈Aλ(k)

α

)
‖Q(k)‖1−θ/2d‖ϕ‖BV ,

with Maxα∈Aλ
(k)
α ≤ Cε‖Q(k)‖ε−1 by condition (a). Joining this with the estimate

for ∆P (k) above, we obtain

‖S(k)P (0)ϕ‖ = ‖P (k)S(k)ϕ‖
≤ C‖Q(k)‖−θ/3d‖ϕ‖BV .

By the definition of a quotient norm, this means that we may write in
BV1

∗ (
⊔

α∈A I
(k)
α ) :

S(k)Φ = Φk + χk ,

with χk ∈ Γ(k)
s and

‖Φk‖L∞ ≤ C‖Q(k)‖−θ/3d‖ϕ‖BV .

We have then

χk+1 = S(k, k + 1)χk + S(k, k + 1)Φk − Φk+1

:= S(k, k + 1)χk + ∆χk+1 ,

with ‖∆χk+1‖ ≤ C‖Q(k + 1)‖−θ/4d‖ϕ‖BV (using once more condition (a)). Then

S(k)Φ = Φk +
∑
j≤k

S(j, k)∆χj .

In the sum, we separate two cases. Recall that there exists σ > 0, C > 0, such that∥∥∥S(j)|
Γ

(0)
s

∥∥∥ ≤ C‖Q(j)‖−σ ,

for all j ≥ 0. If ‖Q(j)‖ ≤ ‖Q(k)‖σ/d, we write S(j, k) = S(k) ◦ (S(j))−1 and get

‖S(j, k)∆χj‖ ≤ C‖Q(k)‖−σ‖(S(j))−1∆χj‖
≤ C‖Q(k)‖−σ‖Q(j)‖d−1‖∆χj‖
≤ C‖Q(k)‖−σ/d‖ϕ‖BV .
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In case ‖Q(j)‖ > ‖Q(k)‖σ/d, we use the second estimate in condition (c) to get

‖S(j, k)∆χj‖ ≤ Cε‖Q(k)‖ε‖∆χj‖

≤ Cε‖Q(k)‖ε−θσ/4d2
‖ϕ‖BV .

We have thus proved the

Theorem. Let T be an i.e.m. of Roth type. There exists ω > 0, depending only on
σ and θ in (b), (c), such that the special Birkhoff sums S(k)Φ satisfy

‖S(k)Φ‖L∞ ≤ C‖Q(k)‖−ω‖ϕ‖BV .

Corollary. Let T be an i.e.m. of Roth type, ϕ ∈ BV∗ (
⊔

α∈A I
(0)
α ). For any primi-

tive Φ of ϕ whose class lies in P (0)ϕ, we can solve the cohomological equation

Ψ ◦ T − Ψ = Φ

with a bounded solution Ψ.

Proof. This follows from the theorem, taking into account the remarks at the end
of Sections 2.1 and 2.2.3. �

3. Suspensions of interval exchange maps

We first recall, basically to fix notation, how to suspend i.e.m.’s in order to get
a Riemann surface with a holomorphic 1–form. The basic reference is [V1].

3.1. Suspension data. Let (A, π0, π1) be admissible combinatorial data, and let
T be an i.e.m. of this combinatorial type, determined by length data (λα)α∈A.
We will construct a Riemann surface with a flow which can be considered as a
suspension of T . In order to do this, we need data which we call suspension data.
We will identify R2 with C. Consider a family τ = (τα)α∈A ∈ RA. To this family
we associate

ζα = λα + iτα , α ∈ A,

ξε
α =

∑
πεβ≤πεα

ζβ , α ∈ A , ε ∈ {0, 1} .

We always have ξ0
α0

= ξ1
α1

, where as before πε(αε) = d. We say that τ defines
suspension data if the following inequalities hold:

�m ξ0
α > 0 for all α ∈ A , α �= α0 ,

�m ξ1
α < 0 for all α ∈ A , α �= α1 .

We also set
θα = ξ1

α − ξ0
α , α ∈ A .

We then have

θ = Ωζ ,

�e θ = δ ,

and define
h = −�mθ = −Ωτ .

One has hα > 0 for all α ∈ A, because of the formula

θα = (ξ1
α − ζα) − (ξ0

α − ζα) .
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One has also
�mξ0

α0
= �m ξ1

α1
∈ [−hα1 , hα0 ] .

3.2. Construction of a Riemann surface. Let (A, π0, π1) and (ζα = λα +
iτα)α∈A be as above. For α ∈ A, consider the rectangles in C = R2:

R0
α = (�e ξ0

α − λα,�e ξ0
α) × [0, hα] ,

R1
α = (�e ξ1

α − λα,�e ξ1
α) × [−hα, 0] ,

and the segments

S0
α = {�e ξ0

α} × [0,�mξ0
α) , α �= α0 ,

S1
α = {�e ξ1

α} × (�mξ1
α, 0] , α �= α1 .

Also let S0
α0

= S1
α1

be the half-open vertical segment [λ∗, ξ0
α0

) = [λ∗, ξ1
α1

).
Define then

Rζ =
⋃

ε∈{0,1}

⋃
α∈A

Rε
α

⋃
ε∈{0,1}

⋃
α∈A

Sε
α .

The translation by θα sends R0
α onto R1

α. If ξ0
α0

= ξ1
α1

= 0, S0
α0

= S1
α1

is empty, ξ0
α1

is the top right corner of R0
α1

and ξ1
α0

is the bottom right corner of R1
α0

. If ξ0
α0

=
ξ1
α1

> 0, the translation by θα1 sends the top part S̃0
α1

= {�e ξ0
α1
} × [hα1 ,�mξ0

α1
)

of S0
α1

onto S1
α1

. If ξ0
α0

= ξ1
α1

< 0, the translation by θα0 sends S0
α0

onto the bottom
part S̃1

α0
= {�e ξ1

α0
} × (�mξ1

α0
,−hα0 ] of S1

α0
.

We use these translations to identify in Rζ each R0
α to each R1

α, and S0
α0

= S1
α1

(if nonempty) to either S̃0
α1

or S̃1
α0

.
Denote by M∗

ζ the topological space obtained from Rζ by these identifications.
Observe that M∗

ζ inherits from C the structure of a Riemann surface, and also a
nowhere-vanishing holomorphic 1–form ω (given by dz ) and a vertical vector field
(given by ∂

∂y ).

3.3. Compactification of M∗
ζ . Let A be the set with 2d − 2 elements of pairs

(α, L) and (α, R), except that we identify (α0, R) = (α1, R) and (α′
0, L) = (α′

1, L),
where πε(αε) = d, πε(α′

ε) = 1.
Let σ be the permutation of A defined by

σ(α, R) = (β0, L) ,

σ(α, L) = (β1, R) ,

with π0(β0) = π0(α) + 1, π1(β1) = π1(α) − 1; in particular, we have

σ(α0, R) = (π−1
0 (π0(α1) + 1), L) ,

σ(α′
1, L) = (π−1

1 (π1(α′
0) − 1), R) .

The permutation describes which half planes are met when one winds around an
end of M∗

ζ . Denote by Σ the set of cycles of σ. To each C ∈ Σ is associated in
a one-to-one correspondance an end qC of M∗

ζ . From the local structure around
qC , it is clear that the compactification Mζ = M∗

ζ

⋃
C∈Σ{qC} will be a compact

Riemann surface, with the set of marked points
⋃

C∈Σ{qC} = Mζ \M∗
ζ in canonical

correspondance with Σ. Moreover, the 1–form ω extends to a holomorphic 1–form
on Mζ ; the length of a cycle C is an even number 2nC ; the corresponding marked
point qC is a zero of ω of order nC − 1.
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Let ν = card Σ, and let g be the genus of Mζ . We have

d − 1 =
∑
C∈Σ

nC ,

2g − 2 =
∑
C∈Σ

(nC − 1);

hence
d = 2g + ν − 1 .

Example. Suppose that π0, π1 satisfy

π0(α) + π1(α) = d + 1, for all α ∈ A .

If d is even, there is only one cycle; we have d = 2g and the only zero of ω has order
2g − 2. If d is odd, there are two cycles of equal length d − 1; we have d = 2g + 1,
and each of the two zeros of ω has order g − 1.

The vertical vector field on M∗
ζ does not extend (continuously) to Mζ when

g > 1, unless one slows it near the marked points (which we will not do here).
Nevertheless, it can be considered as a suspension of T : starting from a point (x, 0)
on the bottom side of R0

α, one flows up until reaching the top side where the point
(x, hα) is identified with the point (x+δα, 0) = (T (x), 0) in the top side of R1

α. The
return time is hα. The vector field is not complete, as some orbits reach marked
points in finite time.

3.4. The cohomological equation for higher smoothness.

3.4.1. In this section, we will relate the (discrete) cohomological equation for
i.e.m.’s to the (continuous) cohomological equation for the vertical vector field on
Mζ ; this equation is

Φ̃ =
∂

∂y
Ψ̃ ,

where now Φ̃, Ψ̃ are functions on Mζ . This allows us to compare our results with
the pioneering work of Forni ([Fo1]). We will always assume, as he does, that Φ̃
vanishes in the neighborhood of the marked points of Mζ .

Considering the cohomological equation on the surface leads naturally to some
regularity assumptions on the interval. Because the datum Φ and the solution Ψ
are not related to the corresponding functions Φ̃, Ψ̃ on the surface in the same way
(Ψ is a restriction of Ψ̃ to a segment, while Φ is an integral), the regularity that we
introduce for Φ and Ψ are not of the same kind (even taking the loss of derivatives
into account).

3.4.2. For each integer r ≥ 1, we introduce the space BVr
∗(I) of functions Φ : I →

R such that
• for each α ∈ A, Φ is of class Cr−1 on j0(Iα), Dr−1Φ is absolutely continuous

on j0(Iα) and DrΦ is of bounded variation on j0(Iα);
• each function DlΦ, for 0 < l ≤ r, has mean value 0 in I.

Remark. As before, we allow discontinuities at the discontinuities of T . Observe
however that the mean value condition implies that the sum of the jumps of DlΦ
(0 ≤ l < r) over the discontinuities of T (including the endpoints of I) is zero.
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We will indicate below why the mean value condition is natural.
On the other hand, we will look for solutions in the space Cr−2+Lip(I) of functions

Ψ which are Cr−2 on all of I, the derivative of order r − 2, Dr−2Ψ being Lipschitz
on I. For r = 1, this is just the space of bounded functions on I. Observe that, as
soon as r ≥ 2, we do not allow discontinuities.

3.4.3. For T an i.e.m. of Roth type, denote by ΓT = Γ(0)
T the space of functions

χ ∈ Γ (constant on each j0(Iα)) which can be written as

χ = ψ − ψ ◦ T

with bounded ψ. This is a linear subspace of Γ which is contained in Γ∗ and
contains Γs. We can rephrase our main theorem by saying that there is a well-
defined obstruction map

BV1
∗(I) → Γ/ΓT

which associates to Φ the function in Γ we must subtract from Φ in order to be able
to solve the cohomological equation. We recognize (some of) the Forni distribution
conditions, by choosing a basis in the finite-dimensional space Γ/ΓT . The number
of conditions is just the codimension of ΓT , as the restriction of the obstruction
map to Γ is just the quotient map and thus the obstruction map is onto.

3.4.4. Now let r ≥ 1, Φ ∈ BVr
∗(I), and let us try to solve (under finitely many

linear conditions on Φ) the cohomological equation

Φ = Ψ − Ψ ◦ T ,

with Ψ ∈ Cr−2+Lip(I). We assume that the i.e.m. is of Roth type. Consider the
rd–dimensional space Γ(r) of functions χ on I whose restrictions to each j0(Iα) are
polynomials of degree < r. For r = 1, this is our previous space Γ. Consider also

Γ∗(r) = Γ(r) ∩ BVr
∗(I),

which has codimension (r − 1) in Γ(r). We first describe the subspace ΓT (r) of
Γ∗(r) of functions χ which can be written as

χ = ψ ◦ T − ψ ,

with ψ ∈ Cr−2+Lip(I).

Lemma. For r ≥ 1, the map χ �→ Dχ from Γ(r + 1) to Γ(r) sends Γ∗(r + 1) to
Γ∗(r) and ΓT (r + 1) to ΓT (r). The kernel, i.e. the intersection Γ ∩ ΓT (r + 1), is
equal to Rδ; we have thus

dim ΓT (r) = dim ΓT + (r − 1) .

Proof. It is clear that χ �→ Dχ sends Γ∗(r + 1) to Γ∗(r) and ΓT (r + 1) to ΓT (r).
If ψ0(x) ≡ x, then ψ0 ◦ T (x) − ψ0(x) = δα for x ∈ j0(Iα); hence Rδ ⊂ Γ ∩ ΓT (r)
for all r ≥ 1. Conversely, if χ ∈ Γ ∩ ΓT (r), write χ = ψ ◦ T − ψ with ψ ∈ Lip (I).
Taking derivatives, Dψ is T–invariant, hence constant as T is ergodic. Therefore
χ ∈ Rδ. �

Theorem. Let r ≥ 1. For any Φ ∈ BVr
∗(I), one can find χ ∈ Γ∗(r), ψ ∈

Cr−2+Lip(I) such that
Φ = χ + Ψ ◦ T − Ψ .
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In other terms, the map

Φ �→ χ,

BVr
∗(I) → Γ∗(r)/ΓT (r)

is the obstruction map associated with the cohomological equation with the prescribed
regularities.

Proof. By induction on r, the case r = 1 being our main theorem. Assume Φ ∈
BVr+1

∗ (I). Then DΦ ∈ BVr
∗(I). By the induction hypothesis, one can write

DΦ = χ1 + Ψ1 ◦ T − Ψ1 ,

with χ1 ∈ Γ∗(r) and Ψ1 ∈ Cr−2+Lip(I). Let Ψ be a primitive of Ψ1, χ0 be a
primitive of χ1. Then ψ ∈ Cr−1+Lip(I). As DΦ has mean value 0, χ1 has also mean
value 0 and χ0 ∈ Γ∗(r + 1). The difference χ′

0 = Φ − χ0 − Ψ ◦ T + Ψ belongs to Γ
and we take χ = χ0 + χ′

0. �

3.4.5. We explain now why the regularities for Φ, Ψ are “natural”.
Let ζ = (ζα)α∈A be suspension data, and let Mζ be the surface constructed from

these data as in 3.2.
Let Φ̃ be a continuous function on Mζ . With the notation of 3.1, we define, for

α ∈ A:

I0
α =

∫ �m ξ0
α

0

Φ̃(�e ξ0
α, y)dy ,

I1
α =

∫ 0

�m ξ1
α

Φ̃(�e ξ1
α, y)dy ;

for α ∈ A, x ∈ j0(Iα), we also set

Φ(x) =
∫ hα

0

Φ̃(x, y)dy .

Observe that we have

Φ((�e ξ0
α)−) = I0

α + I1
α ,

Φ(�e ξ0
α − λα) = I0

β0
+ I1

β1
,

where π0(β0) + 1 = π0(α), π1(β1) + 1 = π1(α), except if π0(α) = 1 (respectively
π1(α) = 1) when I0

β0
(resp. I1

β1
) is declared to be 0.

From these formulas and I0
α0

+ I1
α1

= 0 (with πε(αε) = d as usual), we obtain∑
α∈A

Φ((�e ξ0
α)−) =

∑
α∈A

Φ(�e ξ0
α − λα) ,

which means that the derivative of Φ (when it exists) has mean value 0. This
explains the conditions defining BVr

∗(I). On the other hand, if Ψ̃ is a function on
Mζ satisfying

∂

∂y
Ψ̃ = Φ̃

and we define
Ψ(x) = Ψ̃(x, 0),

then we will have
Ψ ◦ T − Ψ = Φ .
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4. Proof of full measure for Roth type

We will first recall the construction of the finite measure, absolutely continuous
w.r.t. Lebesgue measure, which is invariant under the Zorich algorithm (normal-
ized).

4.1. The basic operation of the algorithm for suspensions. Let (A, π0, π1)
and (ζα = λα + iτα)α∈A be as above. Construct Rζ , Mζ as in 3.2 and 3.3. With
πε(αε) = d as above, assume that

λα0 �= λα1 .

Then the formula λαε
= Max (λα0 , λα1) defines uniquely ε ∈ {0, 1} and determines

uniquely the basic step of the continued fraction algorithm; this step produces new
combinatorial data (A, π̂0, π̂1) and length data (λ̂α)α∈A given by

λ̂α = λα , α �= αε,

λ̂αε
= λαε

− λα1−ε
.

For suspension data, we just define in the same way

ζ̂α = ζα , α �= αε,

ζ̂αε
= ζαε

− ζα1−ε
.

This has a nice representation in terms of the corresponding regions Rζ , Rζ̂ . One
cuts from Rζ the part where x ≥ λ̂∗ = λ∗ − λαε

: it is made of R1−ε
α1−ε

and a right
part of Rε

αε
. We glue back R1−ε

α1−ε
to the free horizontal side of R1−ε

αε
, and the right

part of Rε
αε

to Rε
α1−ε

; see Figure 4.
It is easy to check that the new suspension data satisfy the inequalities required

in 3.1; if for instance ε = 0, one has

ξ̂0
α = ξ0

α , α �= α0

with π̂0 = π0 on one hand and

ξ̂1
α = ξ1

α , α �= α0, α1,

ξ̂1
α1

= ξ1
α0

,

ξ̂1
α0

= ξ1
α0

− ζα1 .

The last formula gives

−ξ̂1
α0

= ζα1 − ξ1
α0

= ζα1 − ξ0
α0

− θα0

= ζα1 − ξ1
α1

− θα0

= −ξ1
α̃1

− θα0 ,

with π1(α̃1) = d − 1. We therefore have

−�mξ̂1
α0

= −�m ξ1
α̃1

+ hα0 > 0 .

We also see that (still with ε = 0), if α̂1 ∈ A is such that π̂1(α̂1) = d (we have
α̂1 = α̃1 if α̃1 �= α0, α̂1 = α1 if α̃1 = α0), one has

�mξ̂1
α̂1

= �m ξ1
α̃1

< 0 .
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Figure 4. The Rauzy–Veech operation for suspensions

Conversely, given (A, π0, π1) and (ζα = λα + iτα)α∈A as above, assume that

�mξ0
α0

= �m ξ1
α1

�= 0 ,

and define ε = 0 if �m ξ1
α1

< 0, ε = 1 if �mξ0
α0

> 0. Set

ζ̂α = ζα , α �= αε,

ζ̂αε
= ζαε

+ ζα1−ε
,

and define appropriately new combinatorial data; this operation is the inverse of
the one above. Thus the dynamics of the continued fraction algorithm at the level
of suspension is invertible (on a full measure set) and can be viewed as the natural
extension of the dynamics at the level of i.e.m.
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It is clear that the Riemann surfaces Mζ , Mζ̂ are canonically isomorphic, and
the isomorphism respects the holomorphic 1–form and the vertical vector field.

We can also extend the definition of the Zorich algorithm at the level of suspen-
sion data. These accelerated dynamics can actually be thought of as a first return
map of the previous dynamics. Indeed, in the polyhedral cone of admissible length
and suspension data, consider the polyhedral subcones defined by

Z0 = {λα0 > λα1 , �mξ0
α0

> 0} ,

Z1 = {λα1 > λα0 , �mξ1
α1

< 0} .

The accelerated dynamics are the first return map to Z = Z0 � Z1; this is clear
from the description of the basic step above.

4.2. The Teichmüller flow. Fix combinatorial data (A, π0, π1). Given length
data (λα)α∈A and suspension data (τα)α∈A, one defines for t ∈ R,

U t(λ, τ ) = (et/2λ, e−t/2τ ) .

This flow is called the Teichmüller flow. Observe that the conditions on the length
data λα > 0 and on the suspension data (see 3.1) are preserved under the flow.

It is also obvious that the flow commutes with the basic operation of the contin-
ued fraction algorithm. In particular, the inequality λαε

> λα1−ε
is preserved.

The surface Mζ is canonically equipped with an area form (coming from C) for
which its area is

A := area (Mζ) =
∑
α∈A

λαhα .

The area is preserved by the Teichmüller flow, and also by the basic operation of
the continued fraction algorithm.

The Lebesgue measure dλdτ on the domain RA ×RA defined by the restrictions
on length and suspension data is preserved by the Teichmüller flow, and by the
basic operation of the continued fraction algorithm.

One now combines the continued fraction algorithm (in Zorich form) with the
Teichmüller flow in order to get a version which is normalized w.r.t. scales.

One could decide to normalize by keeping the total length λ∗ =
∑

α∈A λα con-
stant; actually, we prefer in the sequel a slightly different normalization, which leads
to simpler formulas.

As in 1.2.1, for λαε
> λα1−ε

, we set

λ̂α = λα , α �= αε,

λ̂αε
= λαε

− λα1−ε
.

Define
λ̂∗ =

∑
α∈A

λ̂α = λ∗ − λα1−ε
,

as in 1.2.1. Let (π0, π1, λ, τ ) belong to the domain Z of the Zorich algorithm, and
let (π̄0, π̄1, λ̄, τ̄ ) be the image. Define

t = t(λ) = 2(log λ̂∗ − log ˆ̄λ∗) ,

Ḡ(π0, π1, λ, τ ) = (π̄0, π̄1, U
t(λ)(λ̄, τ̄)) .

The map Ḡ is called the normalized step for the natural extension of the accelerated
algorithm.
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4.3. The absolutely continuous invariant measure. We already observed that
the restriction of Lebesgue measure dλdτ to the simplicial cone of admissible length
and suspension data is invariant under both the basic step of the algorithm and the
Teichmüller flow.

When we further restrict Lebesgue measure to Z, we obtain a measure m0 which
is still invariant under Teichmüller flow and is now invariant under the accelerated
algorithm.

Observe that the function t used in the definition of Ḡ is constant along the
orbits of the Teichmüller flow. It follows that the measure m0 is also invariant
under Ḡ.

The area function A =
∑

α∈A λαhα (where h = −Ωτ ) is also invariant under Ḡ;
we introduce

Z(1) = Z ∩ {A ≤ 1} ,

and denote by m1 the restriction of m0 to Z(1); it is invariant under the restriction
of Ḡ to Z(1).

We now project back to the level of i.e.m., i.e., of length data alone: we obtain
a map

G(π0, π1, λ) = (π̄0, π̄1, e
t(λ)/2λ̄)

and a measure m2, which is the image of m1 under the projection, which is invariant
under G. As λ̂∗ is still invariant under G, we can restrict, by homogeneity, the
measure m2 to {λ̂∗ = 1} to obtain a measure m invariant under the restriction of
G. This is the measure that we are interested in and that we will now describe.

Let (π0, π1, λ) be fixed; assume for instance that λα0 > λα1 . Consider in τ–space
the polyhedral cone

U0 = {�mξ0
α > 0 , ∀α ∈ A , �mξ1

α < 0 , ∀α �= α1} .

The density χ of m2 at (π0, π1, λ) is equal to the volume of U0 ∩ {A ≤ 1}. Write
U0, up to a codimension 1 subset, as a finite union of disjoint simplicial cones U .
For each U , choose a unimodular basis τ (1), . . . , τ (d) of RA generating U and write
h(j) = −Ωτ (j). One has

(∗) χπ0,π1(λ) = (d!)−1
∑
U

d∏
1

(
∑
α∈A

λαh(j)
α )−1 .

If we set

λ̂α0 = λα0 − λα1 ,

λ̂α = λα , α �= α0,

ĥα1 = hα0 + hα1 ,

ĥα = hα , α �= α1,

we have ∑
α∈A

λαh(j)
α =

∑
α∈A

λ̂αĥ(j)
α .

Define
Wj = {α ∈ A , ĥ(j)

α �= 0} .

The key property is now the following ([V2], [Z1]; see also [Y]).
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Lemma. For any X ⊂ A with ∅ �= X �= A, we have

card {j , Wj ∩ X = ∅} + card X < d .

When λα1 > λα0 , the only difference is that we have to start with

U1 = {�mξ0
α > 0 , ∀α �= α0 , �mξ1

α < 0 , ∀α ∈ A} .

In the formula (∗) above for the density, set

χU (λ) =
d∏
1

(
∑
α∈A

λαh(j)
α )−1 .

Up to a constant factor, the density of m on the simplex

∆ = {λ ∈ R
A , λ̂α > 0 , λ̂∗ = 1}

is given by
∑

U χU . One has

(1) c−1 ≤ χU (λ)
d∏

j=1

(
∑
Wj

λ̂α) ≤ c .

To control the size of χU , we decompose ∆ as follows. Set

N = {�n = (nα)α∈A ∈ N
A , min

α
nα = 0} .

For �n ∈ N , ∆(�n) is the set of λ ∈ ∆ such that

λ̂α ≥ 1
2d

ifnα = 0 ,

1
2d

21−nα > λ̂α ≥ 1
2d

2−nα if nα > 0 .

We obtain thus a partition
∆ =

⊔
N

∆(�n) ,

with the estimate

(2) c−1 ≤ 2Σnαvol∆(�n) ≤ c .

For λ ∈ ∆(�n), estimate (1) above gives

(3) c−1 ≤ χU (λ)2−Σj minWj
nα ≤ c .

With fixed �n, let 0 = n0 < n1 < . . . be the values taken by the nα and V i ⊂ A
the set of indices with nα ≥ ni. On one side, one has∑

α∈A
nα =

∑
i≥0

ni(card (V i \ V i+1))

=
∑
i>0

(ni − ni−1)card V i .

On the other side, let Ṽ i be the set of j such that Wj ⊂ V i; one has minWj
nα = ni

if and only if j ∈ Ṽ i \ Ṽ i+1; hence
d∑

j=1

min
Wj

nα =
∑
i≥0

ni(card (Ṽ i \ Ṽ i+1))

=
∑
i>0

(ni − ni−1)card Ṽ i .
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By the lemma above, one has

card Ṽ i < cardV i

as long as 0 < card V i < d. This shows that

∑
α∈A

nα −
d∑

j=1

min
Wj

nα ≥ |�n|∞ := Maxα∈Anα .

The last estimate, introduced into (2), (3) gives

(4) (vol∆(�n))Max∆(�n)χU ≤ c2−|�n|∞ .

The integrability of χU over ∆ now follows from the fact that the number of �n ∈ N
with |�n|∞ = N is of order Nd−2.

If we compare (2) and (4), we obtain

(5) Max∆(�n)χπ0,π1 ≤ c2|�n|1−|�n|∞ ,

with |�n|1 =
∑

α∈A nα. When d = 2, χπ0,π1 is bounded. Assume now d > 2. From
(2) and (5), one obtains

(6) m({χπ0,π1 > 2N}) ≤
∑

|�n|1−|�n|∞≥N−c

c2−|�n|∞ ;

to have |�n|1 ≥ |�n|∞ + N − c, one must have |�n|∞ ≥ N−c
d−2 ; an easy computation

leads to

m({χπ0,π1 > 2N}) ≤ c2−
N

d−2 ,(7)

Leb ({χπ0,π1 > 2N}) ≤ c2−N d−1
d−2 .(8)

It follows, as χπ0,π1 is bounded from below, that we have, for every Borel set X,

c−1Leb (X) ≤ m(X) ≤ c(Leb (X))
1

d−1 .

4.4. Integrability of log ‖Z(1)‖. Recall the function Z(1), with values in SL (ZA),
defined in 1.2.4: the sequence (π(k)

0 , π
(k)
1 , λ(k)) given by the Zorich algorithm satisfies

λ(k) = Z(1)(π
(k)
0 , π

(k)
1 , λ(k))λ(k+1) .

Following Zorich ([Z1]) we estimate ‖Z(1)‖ w.r.t. the absolutely continuous invariant
measure m. This will be used in two ways:

• applying Oseledets’ multiplicative ergodic theorem in order to prove that
conditions (b) and (c) in 1.3 have full measure;

• as a first step in an induction to prove that condition (a) in 1.3.1 has full
measure.

We use as norm the supremum of the coefficients. For k ≥ 0, λαε
> λα1−ε

, we
have

‖Z(1)‖ > k ⇐⇒ λ̂αε
> k

∑
π1−εα>π1−εαε

λ̂α ;

it follows that
‖Z(1)‖ > (2d)2N−1 ⇒ λ ∈

⋃
|�n|∞≥N

∆(�n) ,

which in turn implies that

m({‖Z(1)‖ > 2N}) ≤ cNd−22−N .
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This is the required estimate; it shows that ‖Z(1)‖ρ is m–integrable for all ρ < 1
and a fortiori that log ‖Z(1)‖ is m–integrable.

4.5. Conditions (b) and (c) have full measure. As log ‖Z(1)‖ is m–integrable,
we can apply Oseledets’ theorem and obtain the existence almost everywhere of
Lyapunov exponents for the corresponding cocycle.

The space Γs is then associated to the negative Lyapunov exponents. The two
estimates in condition (c) are immediate consequences of the properties of Oseledets’
decomposition.

For property (b), we recall the result of Veech ([V3]): the largest Lyapunov
exponent is almost everywhere simple. The existence of a spectral gap follows.

At the end of the section, we will prove that property (a) in 1.3.1 has full measure.

4.6. The main step. Let (A, π0, π1) be combinatorial data, D the associated
Rauzy diagram. For an i.e.m. T satisfying Keane’s condition with these data,
the Rauzy–Veech algorithm defines an infinite path (γ(n)(T ))n>0 in D, starting at
(π0, π1).

Conversely, if γ = (γ(n))0<n≤N is a finite path in D starting at (π0, π1), we
denote by ∆(γ) the simplex of normalized T in ∆(π0, π1) such that γ(n)(T ) = γ(n)

for 0 < n ≤ N . We use here the old normalization {λ∗ = 1}.
To such a path γ is associated a matrix Q(γ) ∈ SL (ZA):

Q(γ) = V (γ(1)) · · ·V (γ(n)) ,

and we write as before
Qβ(γ) =

∑
α∈A

Qαβ(γ) .

We have
1 =

∑
α∈A

λ(0)
α =

∑
β∈A

Qβ(γ)λβ

(where λ(0) = Q(γ)λ(N)), and it follows that

vold−1(∆(γ)) = [
∏
β∈A

Qβ(γ)]−1vold−1(∆(π0, π1)) .

Denote by (π(N)
0 , π

N)
1 ) the endpoint of γ, by α

(N)
0 , α

(N)
1 the indices such that

π
(N)
ε (α(N)

ε ) = d. They are the names of the two arrows going out of (π(N)
0 , π

N)
1 ).

The conditional probability, for an i.e.m. T in ∆(γ), that the name of γ(N+1)(T ) is
α

(N)
ε is equal to Q

α
(N)
1−ε

(Q
α

(N)
0

+ Q
α

(N)
1

)−1.

Let 1 ≤ D < d. A segment (γ(n)(T ))k≤n<l is called a D–segment if the ar-
rows of the segment take no more than D distinct names. It is called maximal if
(γ(n)(T ))k≤n≤l is not a D–segment.

The following proposition is the main step in proving that condition (a) has full
measure.

Proposition. There exist an integer l = l(d) and a constant η = η(d) > 0 with the
following properties. Let γ = (γ(n))0<n≤N be a finite path in D such that the set A′

of names of arrows of γ is distinct from A. Assume that D = cardA′ > 1. There
is a subset ∆′(γ) of ∆(γ) with

vold−1(∆′(γ)) ≥ ηvold−1(∆(γ))
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such that, for every T ∈ ∆′(γ), there exists M > N with
• the name of γ(M)(T ) does not belong to A′;
• no more than l (D − 1)–segments are needed to cover (γ(n))N≤n<M .

We will first explain how the full measure estimate for condition (a) follows from
the proposition, and then prove the proposition.

4.7. Condition (a) has full measure. For T ∈ ∆(π0, π1), satisfying Keane’s
condition, and 1 ≤ D < d, denote by Z(D)(T ) the matrix in SL (ZA) associated
with the initial maximal D–segment in (γ(n)(T ))n>0. Denote by M(D)(T ) (resp.
M1

(D)(T )) the minimal number of (D − 1)–segments (resp. 1–segments) needed to
cover this initial maximal D–segment.

Corollary. Let N > 0. Except on a set of measure ≤ c2−cN1/D

, one has

‖Z(D)(T )‖ ≤ 2N ,

M(D)(T ) ≤ N1/D ,

M1
(D)(T ) ≤ N

D−1
D .

Remark. The measure referred to can be either Lebesgue or the invariant measure
m: in view of the last formula of 4.3, it changes only the values of the constants.

Proof. The estimate for Z(1) has been shown in 4.5. Let us show the estimate for
M(D).

Let γ = (γ(n))0<n≤N be any finite path such that (γ(n))0<n<N is a (D − 1)–
segment but γ is not. First apply the proposition once in each ∆(γ). One obtains
that

Leb ({M(D) > l + 1}) < 1 − η .

We next subdivide the set {M(D) > l + 1} into simplices ∆(γ1), where γ1 =
(γ(n)

1 )0<n≤N1 is a D–segment and (γ(n)
1 )0<n<N1 is the concatenation of (l + 1)

maximal (D − 1)–segments. Applying once again the proposition in each ∆(γ1)
gives

Leb ({M(D) > 2l + 1}) < (1 − η)2 .

Iterating this process leads to the required estimate for M(D).
We next show by induction on D that

m(M1
(D) > N

D−1
D ) ≤ c2−cN1/D

.

For D = 2, one has M(D) = M1
(D); the comparison between m and the Lebesgue

measure gives the estimate. Assume D > 2 and write

Z(D)(T ) = Z(D−1)(T0)Z(D−1)(T1) · · ·Z∗
(D−1)(TM−1)

with T0 = T , M = M(D)(T ), and Ti is obtained from T0 by ni iterations of the
Zorich algorithm (we have 0 = n0 < n1 < n2 < . . .); Z∗

(D−1)(TM−1) denotes some
initial part in the product giving Z(D−1)(TM−1).

Neglecting a set of measure ≤ c2−cN1/D

, we can assume that M ≤ N1/D.
By the induction hypothesis, applied with N ′ = N

D−1
D , we have

m(M1
(D−1)(T0) > N

D−2
D ) ≤ c2−cN1/D

.
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As the measure m is invariant under the Zorich algorithm, the same estimate holds
when we put instead of T0 any given iterate T (k) of T0 under the algorithm. Thus
we have

m(Max0≤k<NM1
(D−1)(T

(k)) > N
D−2

D ) ≤ cN2−cN1/D

≤ c′2−c′N1/D

.

On the other side, when

Max0≤k<NM1
(D−1)(T

(k)) ≤ N
D−2

D ,

we have
ni ≤ iN

D−2
D

for
0 ≤ i ≤ M − 1 < N1/D

and
M1

(D)(T ) ≤ N
D−1

D .

This proves the estimate for M1
(D).

The estimate on Z(D) is again proven by induction on D, the case D = 1 having
been done in 4.4. Neglecting a set of measure c2−cN1/D

, we may assume M(D)(T ) ≤
N1/D and M1

(D)(T ) ≤ N
D−1

D . Write Z(D)(T ) as above.
If ‖Z(D)(T )‖ > 2N , one can find i ∈ {0, 1, . . . , M − 1} such that

‖Z(D−1)(Ti)‖ > 2N/M ≥ 2N
D−1

D .

By the induction hypothesis, we have

m

(
{‖Z(D−1)(T0)‖ > 2N

D−1
D

)
≤ c2−cN1/D

and the same estimate holds if we replace T0 by any given T (k). It is sufficient to
consider k ≤ N

D−1
D . Again, one has

cN
D−1

D 2−cN1/D

≤ c′2−c′N1/D

,

and this concludes the proof of the corollary. �

The proof that condition (a) has full measure follows now from a usual Borel–
Cantelli argument. Take D = d − 1 and write N = (κ log k)d−1 with fixed large
κ > 0 and an integer k ≥ 0. One has

m
(
{‖Z(d−1)(T )‖ > 2N}

)
≤ ck−cκ .

If κ is large enough, the right-hand terms form a converging series. As m is invariant
under the Zorich algorithm, we conclude that almost surely, the iterates T (k) of T
under the Zorich algorithm satisfy

‖Z(d−1)(T (k))‖ ≤ 2κ(log k)d−1
,

for all large k.
On the other hand, the exponential rate of growth of the Q(k) (in the Zorich

algorithm) is given by the largest Lyapunov exponent of the Teichmüller flow, which
is positive.
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We conclude that there exists κ1 such that almost all i.e.m. T satisfy

log ‖Z(d−1)(k)‖ ≤ κ1[log log ‖Q(k)‖]d−1

for all large enough k.

Question. Does one have almost surely

‖Z(d−1)(k)‖ = O ([log ‖Q(k)‖]C)

for some C > 0?

4.8. Proof of the proposition. Let γ, A′, D be as in the proposition. Let T be
an i.e.m. in ∆(γ) satisfying Keane’s condition. Define, for n ≥ 0,

Q′(n, T ) =
∑

α∈A′

Qα(n, T ) ,

Qext(n, T ) =
∑

α∈A\A′

Qα(n, T ) ,

where Qα(n, T ) is the shorthand for Qα((γj(T ))0≤j≤n) (see the beginning of 4.6).

Lemma 1. If the names of the arrows γ(m)(T ) belong to A′ for m ≤ n, we have

Qext(n, T ) ≤ (d − 2)Q′(n, T ) .

(Recall that, as 1 < D < d, we have d ≥ 3.)

Proof. We start with Qα(0, T ) = 1 for all α ∈ A. Divide the segment [1, n] into
maximal 1–segments into which the name of the arrows is the same; let [ni, ni+1)
be such a segment, with arrows of name αi ∈ A′. The secondary names of these
arrows appear with some periodicity di < d; moreover, if ni > 1, the secondary
name of γ(ni) is αi−1 ∈ A′; if ni = 1, i = 0, n1 > d0, the secondary name of γ(m)

is α1 for each m = n1 − kd0, k > 0. For ni ≤ m < ni+1 we have

Qext(m, T ) = Qext(m − 1, T ) ,

Q′(m, T ) = Q′(m − 1, T ) + Qαi
(ni − 1, T )

if the secondary name of γ(m) is in A′ and

Qext(m, T ) = Qext(m − 1, T ) + Qαi
(ni − 1, T ) ,

Q′(m, T ) = Q′(m − 1, T )

otherwise. In each segment except perhaps the first one, the number of secondary
names in A \ A′ does not exceed (d − 2) times the number of secondary names in
A′. In the first segment, we write n1 = kd0 +n′

1, 0 < n′
1 ≤ d0; again the number of

secondary names in A \A′ does not exceed (d − 2) times the number of secondary
names in A′ in the subsegment [n′

1, n1). Finally we have for 0 ≤ m < n′
1 that

Q′(m, T ) ≥ D ≥ 2, Qext(m, T ) ≤ Qext(0, T ) + m ≤ d − D + d0 − 1 ≤ 2d − 4 and
the estimate of the lemma follows. �

Let 1 ≤ D1 ≤ D, n ≥ 0, C1 > 0. We say that T ∈ ∆(γ) is (D1, n, C1)–balanced
if we have

Qα(n, T ) ≥ C−1
1 Q′(n, T )

for at least D1 of the indices α ∈ A′. The property only depends on the path
(γ(m)(T ))0<m≤n, and we will also say that this path is (D1, n, C1)–balanced. Clearly,
any T is (1, n, D)–balanced (for all n ≥ 0).



860 S. MARMI, P. MOUSSA, AND J.-C. YOCCOZ

Lemma 2. Assume that γ is (D, N, C0)–balanced, for some constant C0 > 0. Then
we can find ∆′(γ) ⊂ ∆(γ) satisfying the conclusions of the proposition, with l = l(d)
and η = η(d, C0).

Proof. Let γ′ = (γ(n))0<n≤M be an extension of γ with minimal length such that
the name α of γ(M) is not in A′. Then M − N is bounded by the diameter of
D, i.e. in terms of d only. Therefore there exists C∗ = C∗(d) such that γ′ is
(D, M − 1, C∗C0)–balanced; moreover, the path γ′′ = (γ(n))0<n<M satisfies

vold−1 ∆(γ′′) ≥ η′′vold−1 ∆(γ) ,

with η′′ = η′′(C0, d). Then, for all β ∈ A′, we have

Qα(M − 1, T ) ≤ Qext(M − 1, T )

≤ (d − 2)Q′(M − 1, T )

≤ (d − 2)C∗C0Qβ(M − 1, T ) ,

and therefore
vold−1 ∆(γ′) ≥ η′vold−1 ∆(γ′′) ,

with η′ = (1 + (d − 2)C∗C0)−1. We take η = η′η′′, ∆′(γ) = ∆(γ′). Finally l is
bounded because M − N is bounded. �

When γ is only (D̃, N, C̃)–balanced for some D̃ < D, the strategy will be to
extend γ without losing volume in order to obtain a more balanced path; at the
end we should be able to apply Lemma 2 (unless we have already found ∆′(γ)).

We therefore assume that γ is (D̃, N, C̃)–balanced. This is certainly satisfied
with D̃ = 1, C̃ = D. Denote by Ã the set of α such that

Qα(N, T ) ≥ C̃−1Q′(N, T ) .

The first step is to extend γ to a path γ′ = (γ(n)(T ))0<n≤N ′ of minimal length such
that the name of γ(N ′) is not in Ã. When N ′ = N + 1, there might be two choices
for γ(N ′)and we choose the one which gives the largest volume to ∆(γ′).

In any case, an argument completely similar to the one in the proof of Lemma 2
leads to the estimate

vold−1 ∆(γ′) ≥ η′vold−1 ∆(γ) ,

with a constant η′ = η′(d, C̃).
If the name of γ(N ′) does not belong to A′, we can take as in Lemma 2, ∆′(γ) =

∆(γ′) and the proof of the proposition is over. We now assume that the name of
γ(N ′) belongs to A′ \ Ã.

The subset ∆′(γ) of ∆(γ) we are looking for will be contained in ∆(γ′). Observe
that there exists C∗ = C∗(d) such that γ′ is (D̃, N ′, C∗C̃)–balanced.

Case A. In the loop of arrows of the same name which starts with γ(N ′), no
secondary name belongs to A′ \ Ã.

Let α be the name of γ(N ′), β0, . . . , βr−1 being the successive secondary names
in the loop. Letting k > 0, we write k = rl + m, 0 ≤ m < r. Let γ1(k) be the path
extending γ′ such that

• the name of γ1(k)(n) is α for N ′ < n < N ′ + k := N1(k);
• the name of γ1(k)(N1(k)) is βm.
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Observe that it follows immediately from the definition of R0, R1 in 1.2.1 that the
indices β0, . . . , βr−1 are distinct. Therefore, we will have, for 0 ≤ k1 = rl1+m1 < k:

Qβj
(N ′ + k1, T ) = Qβj

(N ′ − 1, T ) +

{
l1Qα(N ′ − 1, T ) if m1 < j,

(l1 + 1)Qα(N ′ − 1, T ) if m1 ≥ j,

Qα(N ′ + k1, T ) = Qα(N ′ − 1, T ) ,

and also

Qβj
(N ′ + k, T ) = Qβj

(N ′ + k − 1, T ) ,

Qα(N ′ + k, T ) = Qα(N ′ − 1, T ) + Qβm
(N ′ + k − 1, T ) .

For any k > 0, the extension from γ to γ1(k) is covered by the same number of
(D − 1)–segments, which is bounded in terms of d only.

For those k such that βm /∈ A′, we include ∆(γ1(k)) in ∆′(γ).
The formulas for the volumes give

vold−1

([ ⋃
0<k1<k

∆(γ1(k1))

]c)
=

∏
Qβj

(N ′, T )∏
Qβj

(N ′ + k − 1, T )
vold−1∆(γ′) .

We keep for further consideration all γ1(k) with

kQα(N ′ − 1, T ) ≤ Q′(N ′ − 1, T ) .

The formula above shows that together they will fill a definite proportion of
∆(γ′).

We also see that when βm ∈ Ã, γ1(k) will be (D̃ + 1, N1(k), C1)–balanced,
with C1 depending only on d. For each such γ1(k), we either apply Lemma 2 (if
D̃ + 1 = D) or repeat the discussion, with γ1(k) in the place of γ, from a better
starting hypothesis.

Case B. The complement of case A.
For an i.e.m. in ∆(γ′) satisfying Keane’s condition, we consider the three mutu-

ally exclusive possibilities:
• T is of type I if there exists N1 ≥ N ′ such that all arrows γ(n)(T ), N ′ ≤

n ≤ N1, have names in A′ \ Ã, and we have∑
α∈A′\Ã

Qα(N1, T ) ≥ Q′(N ′, T ) .

We take a minimal such N1.
• T is of type II (respectively of type III) if it is not of type I and the first

name of an arrow γ(n)(T ), n > N ′, which does not belong to A′ \Ã belongs
to Ã (resp. to A \ A′).

We deal separately with the three types.
a) All T of type III will be contained in ∆′(γ); for such a T , M is the first integer

> N ′ for which the name does not belong to A′ \ Ã. Observe that the segment
(γ(n)(T ))N ′≤n<M is a (D − 1)–segment because card (A′ \ Ã) < D. As N ′ − N
is bounded in terms of d only, the number of (D − 1)–segments needed to cover
(γ(n)(T ))N≤n<M is bounded in terms of d only.

b) Assume that T is of type II. Let N1 be the smallest integer n > N ′ such
that the name of γ(n)(T ) does not belong to A′ \ Ã; this name belongs to Ã. Let
γ1 = (γ(n)(T ))0<n≤N1 . When T varies among i.e.m.’s of type II, the γ1 form an at
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most countable collection such that the corresponding simplices ∆(γ1) have disjoint
interiors (and are contained in ∆(γ′)). Every T1 belonging to some ∆(γ1) is also
of type II. We claim that every γ1 is (D1, N1, C1)–balanced with D1 > D̃ and
C1 = C1(C̃, d) (see the proof below). As for type III, the number of (D − 1)–
segments needed to cover γ

(n)
1 , N ≤ n < N1, is bounded in terms of d only.

c) Assume that T is of type I. With N1 minimal as in the definition of type I, take
γ1 = (γ(n)(T ))0<n≤N1 . When T varies among i.e.m.’s of type I, the γ1 form again
an at most countable collection for which the corresponding simplices ∆(γ1) have
disjoint interiors (and are contained in ∆(γ′)). Every T1 belonging to some ∆(γ1)
is also of type I. We claim that every γ1 is (D1, N1, C1)–balanced with D1 > D̃ and
C1 = C1(C̃, d) (see the proof below). The number of (D − 1)–segments needed to
cover γ

(n)
1 , N ≤ n < N1, is bounded in terms of d only.

The discussion above leads in case B to a countable partition (up to a codimen-
sion one subset) of ∆(γ′) into subsimplices of type III which will be included in
∆′(γ) and simplices ∆(γ1) (of type I or II) which satisfy the same hypotheses as
∆(γ) but are better balanced (i.e. D1 > D̃); when D1 = D, we can apply Lemma
2 to γ1; when D1 < D, we repeat the discussion with γ1 instead of γ. The process
stops in less than D steps and gives the conclusion of the proposition. �

Proof of the claim for type II. As T is not of type I, we have∑
α∈A′\Ã

Qα(N1 − 1, T ) < Q′(N ′, T ) .

Let us consider a maximal 1–segment contained in (γ(n)(T ))N ′≤n<N1 . As we
are not in case A, there is a definite proportion, depending only on d, of secondary
names which belong to A′ \ Ã. This implies that we must have

Q′(N1 − 1, T ) ≤ C ′
1Q

′(N ′, T ) ,

with C ′
1 depending only on d. On the other hand, if α ∈ A′ \ Ã and β ∈ Ã are the

names of γ(N1−1)(T ), γ(N1)(T ) respectively, we have

Qα(N1, T ) = Qα(N1 − 1, T ) + Qβ(N1 − 1, T )

≥ (C∗C̃)−1Q′(N ′, T ) .

It follows that γ1 is (D̃ + 1, N1, C1)–balanced with C1 = C ′
1C∗C̃. �

Proof of the claim for type I. By definition of N1, we have again∑
α∈A′\Ã

Qα(N1 − 1, T ) < Q′(N ′, T ) ,

and it follows again that

Q′(N1 − 1, T ) ≤ C ′
1Q

′(N ′, T ) .

By definition of N1, we have now∑
α∈A′\Ã

Qα(N1, T ) ≥ Q′(N ′, T ) ,

and it follows that γ1 is (D̃ + 1, N1, C1)–balanced with C1 depending only on C̃
and d. �
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The proof of the proposition, and therefore also of the full measure statement,
is now complete.

Appendix A. Roth-type conditions in a concrete family of interval ex-
change maps.

A.1. Let A = (A, B, C, D). The Rauzy diagram of the pair

(π0, π1) =
(

A B C D
D C B A

)

is indicated in 1.2.2. The suspension of an i.e.m. with these combinatorial data
leads to a holomorphic 1–form with a double zero on a genus two surface.

In this diagram, we define for n ≥ 0 a loop γ(n) based at (π0, π1) by asking that
the names of the successive arrows should be D2CDA2BnA. The product of the
V matrices around this loop is

M(n) =

⎛
⎜⎜⎝

1 1 1 1
n n + 1 0 0
0 0 2 1

n + 1 n + 2 2 2

⎞
⎟⎟⎠

with characteristic polynomial

χn(X) = X4 − (n + 6)X3 + (3n + 10)X2 − (n + 6)X + 1.

Setting U = X + X−1 leads to

χn(X) = X2(U2 − (n + 6)U + 3n + 8) .

The eigenvalues of M(n) are thus given by

λ + λ−1 = U± :=
1
2
(n + 6 ±

√
n2 + 4) .

The case n = 0 is degenerate, with U+ = 4, U− = 2. When n > 0, both U+, U−

are > 2; we will denote the eigenvalues by λ+
u > λ−

u (> 1) > λ−
s > λ+

s , and denote
by e+

u , e−u , e−s , e+
s the corresponding eigenvectors of the transposed matrix tM(n).

The eigenvector associated to the eigenvalue λ is proportional to

((λ − 1)(λ2 − 4λ + 2), λ3 − 4λ2 + 3λ − 1, λ(λ − 1), (λ − 1)2) .

A.2. As n → +∞, one has

limU+ − (n + 3) = limλ+
u − (n + 3) = 0 ,

limU− = 3 , limλ−
u = G :=

√
5 + 3
2

.

One can also choose eigenvectors to obtain:

lim e+
u = E+

u := (1, 1, 0, 0),

lim e−u = E−
u := (−1,−1, G − 1, 1),

lim e−s = E−
s := (−1,−1, G−1 − 1, 1),

lim e+
s = E+

s := (2, 1, 0,−1) .
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These four limit vectors form a basis of R4 in which we rewrite tM(n):

tM(n)E+
u = (n + 3)E+

u − E+
s +

1√
5
(E−

u − E−
s ) ,

tM(n)E+
s = E+

u ,
tM(n)E−

u = G(E+
u + E−

u ) ,

tM(n)E−
s = G−1(E+

u + E−
s ) .

For the corresponding coordinates, this gives

X+
u = (n + 3)x+

u + x+
s + Gx−

u + G−1x−
s ,

X+
s = −x+

u ,

X−
u =

1√
5
x+

u + Gx−
u ,

X−
s = − 1√

5
x+

u + G−1x−
u .

A.3. The following two lemmas express that for n ≥ 4 certain cone conditions are
satisfied.

Lemma 1. For n ≥ 4, x+
u ≥ Max (|x+

s |, |x−
u |, |x−

s |) one has

X+
u ≥ Max

(
(n − 1)|X+

s |, (n − 1)|X−
s |, 10 − 3

√
5

3
|X−

u |
)

and
X+

u ≥ (n − 1)x+
u .

Proof. As G−1 + 1√
5

< 1 and G + G−1 = 3, we have

Max
(
(n − 1)|X+

s |, (n − 1)|X−
s |, (n − 1)|x+

u |
)
≤ X+

u .

If x−
u ≥ 0, one has

X+
u ≥ (n + 1)x+

u + Gx−
u ≥ 2X−

u

because n + 1 − 2/
√

5 > G for n ≥ 4.
For x−

u < 0, one has X+
u ≥ (n + 1)x+

u − G|x−
u |. On the one hand,

(n + 1)x+
u − G|x−

u | ≥ (n + 1)
√

5X−
u ;

on the other hand,
(n + 1)x+

u − G|x−
u | ≥ −γX−

u

as soon as n + 1 + γ/
√

5 ≥ (γ + 1)G, which allows us to take γ = 10−3
√

5
3 for

n ≥ 4. �

Lemma 2. For n ≥ 4, Max (|x+
u |, |x−

u |) ≥ Max (|x+
s |, |x−

s |), one has

Max (|X+
u |, |X−

u |) ≥
(

G − 1√
5

)
Max (|X+

s |, |X−
s |) ,

Max (|X+
u |, |X−

u |) ≥
(

G − 1√
5

)
Max (|x+

u |, |x−
u |) .
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Proof. When |x+
u | ≥ |x−

u |, this follows from Lemma 1. If 0 ≤ |x+
u | ≤ x−

u , one has

X−
u ≥

(
G − 1√

5

)
x−

u ≥
(

G − 1√
5

)
Max (|X+

s |, |X−
s |)

because G−1 + 1√
5

< 1. �

One should observe in Lemma 1 that 10−3
√

5
3 > 1 and in Lemma 2 that G− 1√

5
>

1.

Lemma 3. Equip RA with the sup norm. Then, for any integers n1, . . . , nk > 0,
we have

k∏
i=1

(ni + 1) ≤ ‖tM(nk) · · ·t M(n1)‖∞ ≤
k∏

i=1

(2ni + 4) .

Proof. The upper bound follows from ‖tM(n)‖ ≤ 2n+4 for n > 0, the lower bound
from the fact that

tM(n)(1, 1, 0, 0)− (n + 1)(1, 1, 0, 0)

is a nonnegative vector. �

A.4. Let Σ be the set of sequences (ni)i>0 of integers ≥ 4. To each sequence
in Σ we associate the infinite path γ(n1)γ(n2) · · · starting at (π0, π1). The cone
property of Lemma 1 guarantees that there is exactly one i.e.m. satisfying Keane’s
condition associated with this path. On the space Γ of functions constant on each
j0(Iα), we have a complete filtration: the space Γs has dimension 2 according to
Lemma 2, contains the line Rδ (where δ is the displacement vector) and is contained
in the hyperplane Γ∗ of zero mean.

Therefore conditions (b) and (c) in 1.3.2, 1.3.3 are automatically satisfied. Con-
dition (a) is equivalent, in view of Lemma 3, to

log nk = o

(∑
i<k

log ni

)
.

Appendix B. A nonuniquely ergodic interval exchange map satisfying
condition (a).

B.1. Let m, n, p be nonnegative integers. In the Rauzy diagram of the pair (π0, π1)

=
(

A B C D
D C B A

)
(cf. 1.2.2), consider the loop γ0(m, n, p) based at (π0, π1) such

that the names of the successive arrows are

D3m+1BCnBDCpD.

We also consider the dual loop γ1(m, n, p) which is deduced from γ0(m, n, p) by
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means of the canonical involution and whose arrows have names

A3m+1CBnCABpA.

Given three sequences (mk)k≥0, (nk)k≥0 and (pk)k≥0 we also consider the infinite

path Γ, based at
(

A B C D
D C B A

)
, which is obtained by composing

γ0(m0, n0, p0)γ1(m1, n1, p1) · · · γ0(m2k, n2k, p2k)γ1(m2k+1, n2k+1, p2k+1) · · · .

The matrix Z0(m, n, p) associated to γ0(m, n, p) is

⎛
⎜⎜⎝

1 0 0 0
0 2 p + 2 p + 1
0 n (n + 1)(p + 1) p(n + 1)

m + 1 m(n + 2) + 1 m(n + 2)(p + 1) + m + 1 pm(n + 2) + m + 1

⎞
⎟⎟⎠ ,

where the vectors of the canonical basis of RA are ordered alphabetically. Analo-
gously the matrix Z1(m, n, p) associated to γ1(m, n, p) is

⎛
⎜⎜⎝

pm(n + 2) + m + 1 m(n + 2)(p + 1) + m + 1 m(n + 2) + 1 m + 1
p(n + 1) (n + 1)(p + 1) n 0

p + 1 p + 2 2 0
0 0 0 1

⎞
⎟⎟⎠ .

We set

Q(k) = Z0(m0, n0, p0)Z1(m1, n1, p1) · · ·Zε(mk−1, nk−1, pk−1) ,

with k − 1 ≡ ε mod 2. We denote by eA(k), eB(k), eC(k), eD(k) the column vectors
of Q(k).

B.2. Let m0 = 0 and choose n0 � 1. The integer p0 will be chosen later but it will
be such that p0 ≥ n0. One has

eA(1) = t
(
1 0 0 1

)
,

eB(1) = n0

[
t
(
0 0 1 0

)
+ O (n−1

0 )
]

,

eC(1) = n0p0

[
t
(
0 0 1 0

)
+ O (n−1

0 )
]

,

eD(1) = n0p0

[
t
(
0 0 1 0

)
+ O (n−1

0 )
]

.
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We determine then m1, p0, n1, m2, . . . , mk, pk−1, nk, mk+1, pk, . . . through the fol-
lowing formulas:

Π0 := n0 ,

Π1 := m1Π−1
0 = n2

0 ,

Π2 := p0Π−1
1 = (n0 + 1)2 ,

...

Π3l := nlΠ−1
3l−1 = (n0 + 3l − 1)2,

Π3l+1 := ml+1Π−1
3l = (n0 + 3l)2 ,

Π3l+2 := plΠ−1
3l+1 = (no + 3l + 1)2 ,

...

m1 := n3
0 ,

p0 := (n0 + 1)2Π1 = n2
0(n0 + 1)2 ,

n1 := (n0 + 2)2Π2 = (n0 + 1)2(n0 + 2)2,

...

ml+1 := (n0 + 3l)2Π3l ,

pl := (n0 + 3l + 1)2Π3l+1 ,

nl+1 := (n0 + 3l + 2)2Π3l+2 ,

...

Thus one has, for l ≥ 0,

pl = (n0 + 3l)2(n0 + 3l + 1)2 ,

nl+1 = (n0 + 3l + 1)2(n0 + 3l + 2)2 ,

ml+2 = (n0 + 3l + 2)2(n0 + 3l + 3)2 ,

and also m1 = n3
0. For all k ≥ −1 we set

ck = n3
0

[
(n0 + k)!

n0!

]2
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so that one has n0 = c−1 and

c1 = n0p0 ,

c2 = m1n1 ,

c4 = m1n1p1 ,

c5 = m2n2n0p0 ,

c7 = m2n2p2n0p0 ,

c8 = m3n3m1n1p1 ,

...
c10 = m3n3p3m1n1p1 ,

...

Let us check by induction that, setting c−2 = 1, one has for l ≥ 0:

eA(2l − 1) = c6l−8

[
t
(
1 0 0 1

)
+ O(n−1

0 )
]

,

eB(2l − 1) = c6l−7

[
t
(
0 0 1 0

)
+ O(n−1

0 )
]

,

eC(2l − 1) = c6l−5

[
t
(
0 0 1 0

)
+ O(n−1

0 )
]

,

eD(2l − 1) = c6l−5

[
t
(
0 0 1 0

)
+ O(n−1

0 )
]

,

eD(2l) = c6l−5

[
t
(
0 0 1 0

)
+ O(n−1

0 )
]

,

eC(2l) = c6l−4

[
t
(
1 0 0 1

)
+ O(n−1

0 )
]

,

eB(2l) = c6l−2

[
t
(
1 0 0 1

)
+ O(n−1

0 )
]

,

eA(2l) = c6l−2

[
t
(
1 0 0 1

)
+ O(n−1

0 )
]
.

We have already checked the first four relations for l = 1. Assume that the first
four relations are verified for a given value of l. Then

eD(2l) = eD(2l − 1) + (m2l−1 + 1)eA(2l − 1) ,

with
m2l−1c6l−8 = c6l−6 = c6l−5(n0 + 6l − 5)−2 .

Moreover

eC(2l) = 2eC(2l − 1) + n2l−1eB(2l − 1) + [m2l−1(n2l−1 + 2) + 1]eA(2l − 1) ,

with

m2l−1n2l−1c6l−8 = c6l−4 ,

n2l−1c6l−7 = (n0 + 6l − 6)−2c6l−4 ,

2c6l−5 = 2(n0 + 6l − 4)−2c6l−4 ,

(2m2l−1 + 1)c6l−8 = O((n0 + 6l)−2)c6l−4

and

eB(2l) = (p2l−1 + 2)eC(2l − 1) + (n2l−1 + 1)(p2l−1 + 1)eB(2l − 1)

+ (m2l−1(n2l−1 + 2)(p2l−1 + 1) + m2l−1 + 1)eA(2l − 1)
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with

(p2l−1 + 2)c6l−5 = O ((n0 + 6l)−2c6l−2) ,

(n2l−1 + 1)(p2l−1 + 1)c6l−7 = O ((n0 + 6l)−2c6l−2) ,

[1 + m2l−1(n2l−1 + 2p2l−1 + 1)]c6l−8 = O ((n0 + 6l)−4c6l−2) ,

m2l−1n2l−1p2l−1c6l−8 = c6l−2 .

The formula for eA(2l) is completely similar.
Since one has ∏

k≥0

[1 + O ((n0 + k)−2)] − 1 = O (n−1
0 ) ,

one gets the four last relations. Taking into account the canonical involution one
can analogously obtain the first four relations.

B.3. The decomposition of the infinite path Γ into loops γ0(m2k, n2k, p2k) and
γ1(m2k+1, n2k+1, p2k+1) is nothing else than the decomposition for the accelerated
Zorich algorithm. One has

‖Zε(mk, nk, pk)‖ ∼ (n0 + 3k)12

(with ε ≡ k mod 2), and

‖Q(k)‖ ∼ c3k−2 = n3
0

[
(n0 + 3k − 2)!

n0!

]2
.

Thus one obtains

‖Zε(mk, nk, pk)‖ = o
(
[log ‖Q(k)‖]12

)
and the first condition in the definition of the Roth-type interval exchange map is
(by far) satisfied.

B.4. From the formula and estimates of Section A.2.2 one gets

eD(2l)
‖eD(2l)‖1

=
eD(2l − 1)

‖eD(2l − 1)‖1
+ O ((n0 + 6l)−2) ,

eC(2l)
‖eC(2l)‖1

=
eA(2l − 1)

‖eA(2l − 1)‖1
+ O ((n0 + 6l)−2) ,

eB(2l)
‖eB(2l)‖1

=
eA(2l − 1)

‖eA(2l − 1)‖1
+ O ((n0 + 6l)−2) ,

eA(2l)
‖eA(2l)‖1

=
eA(2l − 1)

‖eA(2l − 1)‖1
+ O ((n0 + 6l)−2) ,

and by applying the canonical involution one obtains similar formulas at the order
2l +1. Therefore one can conclude that if there exist two vectors uA and uD in RA
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such that ‖uA‖ = ‖uD‖ = 1, then

uA =

⎛
⎜⎜⎝

1/2
0
0

1/2

⎞
⎟⎟⎠+ O (n−1

0 ) ,

uD =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠+ O (n−1

0 ) ,

lim
l→+∞

eA(l)
‖eA(l)‖1

= lim
l→+∞

eB(2l)
‖eB(2l)‖1

= lim
l→+∞

eC(2l)
‖eC(2l)‖1

= uA ,

lim
l→+∞

eD(l)
‖eD(l)‖1

= lim
l→+∞

eC(2l + 1)
‖eC(2l + 1)‖1

= lim
l→+∞

eB(2l + 1)
‖eB(2l + 1)‖1

= uD .

It is now easy to see that each point u of the segment [uA, uD] ⊂ (R+)A is the lengths

datum for an interval exchange map with combinatorial datum
(

A B C D
D C B A

)
,

satisfying Keane’s condition and which is not uniquely ergodic: the interval ex-
change maps of this one-parameter family are topologically conjugate.
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