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Introduction.

Let (W,S) be a Coxeter system with S finite (that is, W is a Coxeter group
and S is a distinguished set of involutions which generate W , as in [B, p. 11.]).
Associated to (W,S) there is a certain contractible simplicial complex Σ, defined
below, on which W acts properly and cocompactly. In this paper we compute the
cohomology with compact supports of Σ (that is, we compute the “cohomology at
infinity” of Σ). As consequences, given a torsion-free subgroup Γ of finite index in
W , we get a formula for the cohomology of Γ with group ring coefficients, as well
as, a simple necessary and sufficient condition for Γ to be a Poincaré duality group.

Given a subset T of S denote by WT the subgroup generated by T . (If T is the
empty set, then WT is the trivial subgroup.) Denote by Sf the set of those subsets
T of S such that WT is finite; Sf is partially ordered by inclusion. Let WSf denote
the set of all cosets of the form wWT , with w ∈ W and T ∈ Sf . WSf is also
partially ordered by inclusion.

The simplicial complex Σ is defined to be the geometric realization of the poset
WSf . The geometric realization of the poset Sf will be denoted by K.

For each s in S, let Sf≥{s} be the subposet consisting of those T ∈ Sf such that
s ∈ T and let Ks be its geometric realization. So, Ks is a subcomplex of K. (K is
called a chamber of Σ and Ks is a mirror of K.) For any nonempty subset T of S,
set

KT =
⋃
s∈T

Ks.

K is a contractible finite complex; it is homeomorphic to the cone on KS .

For each w ∈W , set

S(w) = {s ∈ S|`(ws) < `(w)}
T (w) = S − S(w),

where `(w) is the minimum length of word in S which represents w. Thus, S(w) is
the set of elements of S in which a word of minimum length for w can end.

For any locally finite simplicial complex Y , let C∗c (Y ) denote the cochain complex
of compactly supported simplicial cochains on Y . Its dual chain complex, Clf∗ (Y ),
of locally finite chains, is the chain complex of, possibly infinite, linear combinations
of oriented simplices in Y .

We will use
∏

to denote a direct product and ⊕ for a direct sum.

Theorem A. H∗c (Σ) ∼= ⊕
w∈W

H∗(K,KT (w)).

The corresponding result for homology is

H lf
∗ (Σ) ∼=

∏
w∈W

H∗(K,KT (w)).
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Corollary. For any subgroup Γ of finite index in W ,

H∗(Γ; ZΓ) ∼= ⊕
w∈W

H∗(K,KT (w)).

Using this result one can determine when W is a virtual Poincaré duality group
(that is, when the classifying space BΓ satisfies Poincaré duality for any torsion-free
subgroup Γ of finite index in W ).

The poset Sf>∅, consisting of those T in Sf other than the empty set, is isomor-
phic to the poset of simplices in a simplicial complex. We denote this simplicial
complex by L (or L(W,S)). Thus, the vertex set of L is S and a subset of T of S
spans a simplex if and only if T ∈ Sf>∅.

The space Σ can be cellulated so that the link of each vertex is L (e.g., see [D3],
[M] or Section 6 of [CD]). Thus, Σ is a polyhedral homology n-manifold if and only
if L is a “generalized homology (n − 1)-sphere” in the sense that it is a homology
(n − 1)-manifold with the same homology as Sn−1. Moreover, it is proved in [D1]
that if L is a generalized homology (n − 1)-sphere, then the singularities of Σ can
be resolved to get a contractible manifold X with a proper cocompact W -action.
Hence, if this condition holds, then, for any torsion-free subgroup Γ of finite index
in W , BΓ is homotopy equivalent to the closed manifold X/Γ and consequently W
is a virtual Poincaré duality group.

The next result states that this is essentially the only way in which W can be a
virtual Poincaré duality group.

Theorem B. Suppose W is a virtual Poincaré duality group of dimension n. Then
W decomposes as a direct product W = WT0 ×WT1 where WT1 is finite and where
L(WT0 , T0) is a generalized homology (n− 1)-sphere.

Theorem A is proved in §4 and Theorem B in §5. In §6 we show how to gener-
alize Theorems A and B to groups constructed by the “reflection group trick” (in
Theorems 6.5 and 6.10, respectively).

In [BB], Bestvina and Brady construct the first known examples of groups which
are type FP but not finitely presented. In Example 6.7, we use the reflection group
trick to show how the Bestvina-Brady examples can be promoted to examples of
Poincaré duality groups. This gives the following result.

Theorem C. In each dimension ≥ 4, there are examples of Poincaré duality groups
which are not finitely presented.

The classifying space of such a Poincaré duality group cannot be homotopy
equivalent to a closed manifold (since the fundamental group of a closed manifold
is finitely presented).

There is a geometric context in which to view these results. G. Moussong proved
in [M] that a natural polyhedral metric on Σ is CAT (0). (This means that, in ad-
dition to being contractible, Σ is nonpositively curved.) It follows, as in [Dr], that
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Σ can be compactified by adding its ideal boundary Σ(∞), the space of asymp-
toty classes of geodesic rays. Moreover, as explained in [Be2], Σ(∞) is a Z-set
in Σ ∪ Σ(∞). It follows that H∗c (Σ) ∼= Ȟ∗−1

(
Σ(∞)

)
and H lf

∗ (Σ) ∼= Hst
∗−1

(
Σ(∞)

)
where Ȟ∗ and Hst

∗ denote, respectively, Čech cohomology and Steenrod homology
(as explained in [F]). Thus, W is a virtual Poincaré duality group of dimension
n if and only if Σ(∞) has the homology of an (n − 1)-sphere. “Nonresolvable”
ANR homology manifolds which are homotopy equivalent to Sn−1 are constructed
in [BFMW]. A. D. Dranishnikov has pointed out that Theorem B implies

∑
(∞)

can never be such a space, i.e., nonresolvable homotopy spheres do not occur as
boundaries of Coxeter groups.

I would like to thank A. D. Dranishnikov for an illuminating observation, C.
Gonciulea for several useful suggestions and J. Harlander for pointing out an error
in the first version of this paper.

§1. Preliminaries on Coxeter groups.

The basic reference for this material is Chapter IV of [B].

(W,S) is a Coxeter system and S(w), T (w) and Sf are as in the Introduction.
For each subset T of S define the following subsets of W :

AT = {w ∈W |`(wt) > `(w), for all t ∈ T},
BT = {w ∈W |`(tw) > `(w), for all t ∈ T},
WT = {w ∈W |S(w) = T}.

An element w is in AT (resp. BT ) if and only if any reduced word which repre-
sents it doesn’t end (resp. doesn’t begin) with an element of T .

In the first lemma we collect a few tautologies.

Lemma 1.1. Let T be a subset of S and w ∈W .

(i) WT ⊂ BS−T
(ii) WT ⊂ AS−T . In particular, w ∈ AT (w).

(iii) S(w) = ∅ if and only if w = 1.

Lemma 1.2. (Lemma 7.12 in [D1]). For each w ∈ W , S(w) ∈ Sf (i.e., WS(w) is
a finite group).

Lemma 1.3. (Exercise 3, p. 37 in [B]). Given an element w in W and a subset T
of S, there is a unique element p′T (w) (resp. pT (w)) of shortest length in the coset
wWT (resp. in WTw). Moreover, the following statements are equivalent:

(i) p′T (w) = w (resp. pT (w) = w),

(ii) w ∈ AT (resp. w ∈ BT ),

(iii) For each u ∈WT , `(wu) = `(w) + `(u) (resp. `(uw) = `(u) + `(w) ).
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Lemma 1.4. (Exercise 22, p. 43 in [B]). Suppose T ∈ Sf . Then there is a unique
element wT in WT of longest length. Moreover, the following statements are true.

(i) wT is an involution.

(ii) For any x ∈WT , x = wT if and only if S(x) = T .

(iii) For any x ∈WT , `(wTx) = `(wT )− `(x).

Lemma 1.5. (Lemma 2 (iv) in [D2]). Suppose T ∈ Sf . For any v ∈ WT and
x ∈WT , `(vx) = `(v)− `(x).

Lemma 1.6. Suppose T ∈ Sf and w ∈ W . Then there is a unique element in
wWT of longest length (namely, the element p′T (w)wT ). Moreover, the following
statements are equivalent:

(i) w is the element of longest length in wWT ,

(ii) w = uwT , for some u ∈ AT ,

(iii) T ⊂ S(w).

Proof. Let u = p′T (w) be the element of shortest length in wWT . Then u ∈ AT
(Lemma 1.3). The other elements in this coset have the form ux, with x ∈ WT .
By Lemma 1.3, `(ux) = `(u) + `(x); hence, uwT , where wT is the element of
longest length in WT , is the unique element of longest length in wWT . Thus, (i) is
equivalent to (ii).

Suppose (ii) holds. Since for each t ∈ T , `(uwT t) = `(u) + `(wT t) = `(u) +
`(wT ) − 1 = `(uwT ) − 1, we have that T ⊂ S(w). So (ii) ⇒ (iii). Conversely,
suppose (iii) holds. Set u = wwT . Since wT ∈ WT ⊂ WS(w), Lemma 1.5 implies
that `(u) = `(w) − `(wT ) and hence, u is the element of shortest length in wWT .
So, (iii)⇒ (ii). �

Lemma 1.7. (Théorème 2, p. 20 in [B]). For any subsets T and T ′ of S, WT ∩
WT ′ = WT∩T ′ .

Lemma 1.8. (p. 18 in [B]). Suppose s, s′ ∈ S and w ∈W are such that w ∈ B{s}
and ws′ /∈ B{s}. Then sw = ws′.

For each pair of elements s, t in S, let m(s, t) denote the order of st in W .

Lemma 1.9. Suppose T ∈ Sf and s ∈ S − T . Then swT = wT s if and only if
m(s, t) = 2 for all t ∈ T .

Proof. If m(s, t) = 2, then s and t commute. Hence, if m(s, t) = 2 for all t = T ,
then s and wT commute.

Conversely, suppose s and wT commute, where s /∈ T . Then `(wT s) = `(wT )+1,
so s ∈ S(wT s). Since wT s = swT , T ⊂ S(wT s). Therefore, S(wT s) = T ∪ {s}.
We want to show that m(s, t) = 2 for all t ∈ T . Suppose, to the contrary, that
m(s, t) > 2, for some t ∈ T . Since {s, t} ⊂ S(wT s) and since S(wT s) generates
a finite subgroup (Lemma 1.2), m(s, t) 6= ∞. Consider the dihedral group W{s,t}
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generated by {s, t}. By Lemma 1.5, for any u ∈W{s,t}, `(wT su) = `(wT s)−`(u). In
particular, consider the element u = sts. Since m(s, t) > 2, `(sts) = 3. Therefore,
`
(
(wT s)(sts)

)
= `(wT s) − 3. On the other hand, `

(
(wT s)(sts)

)
= `(wT ts) =

`(wT t) + 1 = `(wT ) = `(wT s)− 1, a contradiction. �

The following lemma plays a key role in the proof of Theorem B in § 5.

Lemma 1.10. Suppose that for some T ∈ Sf , WT is a singleton. Then W de-
composes as a direct product: W = WS−T ×WT .

Proof. Let wT be the element of longest length in WT . By Lemma 1.4 (ii), S(wT ) =
T , and hence, since WT is a singleton, WT = {wT }. Let s ∈ S − T . Clearly,
T ⊂ S(swT ) ⊂ {s} ∪ T , and since swT /∈ WT , we must have S(swT ) = {s} ∪ T .
Thus, `

(
s(wT s)

)
= `
(
(swT )s

)
= `(swT ) − 1 = `

(
(swT )−1

)
− 1 = `(wT s) − 1. In

other words, wT s /∈ B{s}. Since wT ∈ B{s}, Lemma 1.8 implies that swT = wT s
and then Lemma 1.9 implies that m(s, t) = 2 for all t in T . Since this holds for each
s ∈ S − T , the Coxeter system is reducible (if T is nonempty) and W decomposes
as W = WS−T ×WT (by Proposition 8, p. 22 in [B]).

§2. Preliminaries on simplicial complexes.

Let L be a simplicial complex. Denote by V (L) the vertex set of L and by P (L)
the set of simplices in L together with the empty set. P (L) is partially ordered
by inclusion. Throughout this section, we shall identify any simplex in L with its
vertex set. Thus, given a subset T of V (L), T ∈ P (L) if and only if T spans a
simplex in L or T = ∅.

Let P be any poset. Given p ∈ P , set P≤p = {x ∈ P |x ≤ p}. The subposets
P≥p, P<p and P>p are similarly defined. P is an abstract simplicial complex if it is
isomorphic to P (L)>∅ for some simplicial complex L; L is called the realization of
P .

For any T ∈ P (L), the poset P (L)>T is an abstract simplicial complex; its
realization is denoted Lk(T, L) and called the link of T in L. (If T = ∅, then
Lk(T, L) = L.) In fact, Lk(T, L) can be identified with the subcomplex of L
consisting of all simplices T ′ such that T ′ ∩ T = ∅ and T ′ ∪ T spans a simplex in L
(this simplex is called the join of T ′ and T ).

The derived complex of a poset P , denoted by P ′, is the set of all finite chains
in P , partially ordered by inclusion. It is an abstract simplicial complex. The
geometric realization of P , denoted geom(P ), is defined to be the realization of P ′.

Given a simplicial complex L we define another simplicial complex K and a
subcomplex ∂K by

K = geom
(
P (L)

)
∂K = geom

(
P (L)>∅

)
Then ∂K is isomorphic to the barycentric subdivision of L and K is the cone on ∂K
(the empty set provides the cone point). For any T ∈ P (L), define subcomplexes
KT and ∂KT of K by



THE COHOMOLOGY OF A COXETER GROUP WITH GROUP RING COEFFICIENTS 7

KT = geom
(
P (L)≥T

)
∂KT = geom

(
P (L)>T

)
.

KT is called the dual face to T ; it is isomorphic to the cone on ∂KT and ∂KT is
isomorphic to the barycentric subdivision of Lk(T, L). If v is a vertex, write Kv

instead of K{v}. Thus, Kv is the closed star of v in the barycentric subdivision of
L.

For any nonempty subset J of V (L), set

KJ =
⋃
v∈J

Kv.

§3. The simplicial complex Σ.

(W,S) is a Coxeter system and Sf and WSf are the posets defined in the
Introduction. Sf>∅ is an abstract simplicial complex; its realization is denoted L (so
that V (L) = S and P (L) = Sf ). Also,

K = geom(Sf ) and

Σ = geom(WSf ).

(So, K is the cone on the barycentric subdivision of L.) The group W acts on Σ
via simplicial automorphisms.

The natural projection WSf → Sf defined by wWT → T induces a projection
Σ → K which is constant on W -orbits and induces an identification Σ/W ∼= K.
The embedding Sf → WSf defined by T → WT induces an embedding K → Σ
which we regard as an inclusion. A translate of K by an element w in W is denoted
wK and called a chamber of Σ.

A simplex σ in K corresponds to chain T0 < T1 · · · < Tn in Sf . Set S(σ) = T0.
(So, KS(σ) is the smallest dual face which contains σ.) The stabilizer of σ is WS(σ)

and this group fixes KS(σ) pointwise.

For any subset X of W define a subcomplex Σ(X) of Σ by

Σ(X) =
⋃
w∈X

wK.

We are particularly interested in the subcomplexes Σ(BT ), where BT is as defined
in §1. We shall call such a subcomplex a positive sector. (It is “positive” because
it contains the fundamental chamber K.) Similarly, for each s ∈ S, Σ(B{s}) is a
positive half-space. The involution s acts on Σ as a “reflection” interchanging the
half-spaces Σ(B{s}) and Σ(sB{s}). For each subset T of S, Σ(BT ) is the intersection
of the positive half-spaces, Σ(B{s}), s ∈ T .

The map pT : W → BT , defined in Lemma 1.3, induces a projection πT : Σ →
Σ(BT ) which sends a simplex wσ to pT (w)σ. The map πT is constant on W -orbits
and induces an identification Σ/WT = Σ(BT ).
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§4. The isomorphism ρ.

For any subset T of S, we have that Σ(BT − {1}) ∩ K = KS−T . Hence,
C∗(Σ(BT ),Σ(BT − {1})) can be identified with C∗(K,KS−T ). Let jT denote the
inclusion, C∗(K,KS−T ) = C∗(Σ(BT ),Σ(BT − {1})) → C∗c (Σ(BT )). If WT is fi-
nite, then the projection map πT : Σ → Σ(BT ) is finite-to-one; hence, it induces
a cochain map π#

T : C∗c (Σ(BT )) → C∗c (Σ). So, for each T ∈ Sf , we have the
cochain map ρT = π#

T ◦ jT : C∗(K,KS−T ) → C∗c (Σ). For each w ∈ W define
ρw : C∗(K,KT (w))→ C∗c (Σ) by

ρw = w−1 ◦ ρS(w),

where w−1 : C∗c (Σ)→ C∗c (Σ) is the automorphism induced by translation by w−1.

If a ∈ Ckc (Σ) and τ is an oriented k-simplex in Σ, then denote the value of a on
τ by 〈a, τ〉.

Lemma 4.1. Suppose that v, w ∈ W , that a ∈ Ck(K,KT (w)) and that σ is an
oriented k-simplex in K. Then

〈ρw(a), vσ〉 =
{ 〈a, σ〉 ; if v ∈ wWS(w)

0 ; otherwise

Consequently,

(i) 〈ρw(a), σ〉 = 〈a, σ〉, and

(ii) if `(v) ≥ `(w) and v 6= w, then 〈ρw(a), vσ〉 = 0.

Proof. By definition,

〈ρw(a), vσ〉 =
{ 〈a, σ〉 ; if pS(w)(w−1v) ∈WS(σ)

0 ; otherwise

Suppose 〈a, σ〉 6= 0. Then S(σ) ⊂ S(w). (If S(σ) is not contained in S(w), then σ
is contained in KT (w) and consequently, 〈a, σ〉 = 0.) Hence, pS(w)(w−1v) ∈WS(w),
i.e., v ∈ wWS(w). This proves the first formula in the lemma. Formula (i) follows
immediately. By Lemma 1.6, w is the element of longest length in wWS(w). Hence,
if v 6= w and `(v) ≥ `(w), then v 6∈ wWS(w). Therefore, by the first formula,
〈ρw(a), vσ〉 = 0. �

Define
ρ : ⊕

w∈W
C∗(K,KT (w))→ C∗c (Σ)

to be the sum of the ρw).

Theorem A is an immediate consequence of the following result, after taking
cohomology.
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Theorem 4.2. ρ is an isomorphism.

Proof. The proof is similar to the argument on page 101 of [D2]. Order the elements
of W : w1, w2, · · · , so that `(wi) ≤ `(wi+1). Set

Σn = Σ({wi|i > n}),
i.e., Σn is the union of chambers wiK, i > n. First observe that if i ≤ n, then, by
part (ii) of Lemma 4.1, the image of ρwi

is contained in C∗(Σ,Σn). We shall prove,
by induction on n, that

i=n
⊕
i=1

ρwi
:
i=n
⊕
i=1

C∗(K,KT (wi))→ C∗(Σ,Σn)(1)

is an isomorphism.

Since C∗c (Σ) is the direct limit of the C∗(Σ,Σn) as n→∞, the theorem follows.
Since Σ0 = Σ, statement (1) holds trivially for n = 0. So, suppose n ≥ 1 and
that (1) holds for n− 1. Consider the triple (Σ,Σn−1,Σn). We have a short exact
sequence,

0→ C∗(Σ,Σn−1)→ C∗(Σ,Σn)→ C∗(Σn−1,Σn)→ 0.(2)

To simplify notation, put w = wn. For any m > n,wm K ∩wK ⊂ wKT (w). Hence,
C∗(Σn−1,Σn) can be identified with C∗(wK,wKT (w)). Translation by w−1 gives
an isomorphism,

C∗(wK,wKT (w)) ∼= C∗(K,KT (w)).

Let λ denote the composition of the natural projection C∗(Σ,Σn)→ C∗(Σn−1,Σn)
with this isomorphism. So, (2) can be rewritten as

0→ C∗(Σ,Σn−1)→ C∗(Σ,Σn) λ−→ C∗(K,KT (w))→ 0.

By part (i) of Lemma 4.1, the map ρw : C∗(K,KT (w)) → C∗(Σ,Σn) splits λ.
Therefore,

C∗(Σ,Σn−1)⊕ C∗(K,KT (w))
∼=−→ C∗(Σ,Σn)

where the first factor is mapped by the inclusion and the second by ρw. Applying
the inductive hypothesis, we see that (1) holds. �

Remark 4.3. Let Z(WT ) denote the free abelian group WT . Then the formula in
Theorem A can be rewritten as

H∗c (Σ) ∼= ⊕
T∈Sf

Z(WT )⊗H∗(K,KS−T ).

Corollary 4.4.

(i) H∗(W ; ZW ) ∼= ⊕
w∈W

H∗(K,KT (w))

(ii) If Γ is a torsion-free subgroup of finite index in W , then

H∗(Γ; ZΓ) ∼= ⊕
w∈W

H∗(K,KT (w)).

Proof. Statement (ii) follows from Proposition 7.5, p. 209 in [Br] and (i) follows
from Exercise 4 on the same page.
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§5. Generalized homology spheres.

In the first part of this section we return to the general situation of §2 : L is any
simplicial complex and K = geom

(
P (L)

)
. Notation is as in §2, in particular, if

T ∈ P (L), then T is the vertex set of a simplex in L or T = ∅.

Let R be a commutative ring with unit. Then L is a generalized homology m-
sphere over R if for each T ∈ P (L) (including T = ∅) we have that

H∗
(
Lk(T, L);R

) ∼= H∗(Sm−Card(T );R).

Thus, a generalized homology m-sphere is a polyhedral homology m-manifold with
the same homology as Sm.

We say that (K, ∂K) is a generalized homology n-disk over R if for each T ∈ P (L),

H∗(KT , ∂KT ;R) ∼= H∗(Dn−k, Sn−k−1;R)

where k = Card(T ). (In particular, when T = ∅, this says that (K, ∂K) has the
same homology as (Dn, Sn−1).)

Since ∂KT is the barycentric subdivision of Lk(T, L), it is obvious that (K, ∂K)
is a generalized homology n-disk if and only if L is a generalized homology (n− 1)-
sphere.

Here is a third variation of this condition. Given an integer n ≥ 0 and a com-
mutative ring R, we say that (K, ∂K) satisfies hD(n;R) if the following condition
holds:

hD(n;R) :

for any T ∈ P (L), T 6= ∅, Hi(K,KV (L)−T ;R) = 0, for all i ≥ 0.(a)

Hi(K, ∂K;R) =
{

0 , i 6= n
R , i = n.

(b)

In other words, for each T ∈ P (L)>∅, (∂K,KV (L)−T ) has the same homology as
(Sn−1, Dn−1), while for T = ∅, ∂K has the same homology as Sn−1.

Lemma 5.1. Let L be a simplicial complex and let K = geom
(
P (L)

)
. The follow-

ing statements are equivalent:

(i) L is a generalized homology (n− 1)-sphere over R,

(ii) (K, ∂K) is a generalized homology n-disk over R,

(iii) (K, ∂K) satisfies hD(n;R).

Proof. As was previously observed, (i) and (ii) are equivalent. We first show
that (iii) ⇒ (ii). So, suppose (K, ∂K) satisfies hD(n;R). We must show that
(KT , ∂KT ) has the same homology as (Dn−k, Sn−k−1), where k = Card(T ). This
holds for T = ∅ by part (b) of hD(n;R).
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First consider the case where T = {v}, v a vertex in L. Set L = Lk(v, L) andK =

geom
(
P (L)

)
. Then Kv is isomorphic to K and for any T ∈ P (L), (K,K

V (L)−T
) is

isomorphic to (Kv,Kv∩KV (L)−({v}∪T )). By excision, H∗(Kv,Kv∩KV (L)−({v}∪T ) ∼=
H∗(KV (L)−T ,KV (L)−({v}∪T )). By hD(n;R), KV (L)−({v}∪T )is acyclic and for T 6=
∅, KV (L)−T is also acyclic. Thus, for T 6= ∅, Hi(K,K

V (L)−T
) = 0 for all i. When

T = ∅, we have Hi(K, ∂K) = Hi(KV (L),KV (L)−{v}). Since KV (L)(= ∂K) has the
same homology as Sn−1 and KV (L)−{v} is acyclic, (K, ∂K) has the same homology
as (Dn−1, Sn−2). Thus, (K, ∂K) satisfies hD(n− 1;R).

Next suppose that T is the vertex set of an arbitrary simplex in L and that
Card(T ) = k. We may suppose by induction that (KT ′ , ∂KT ′) satisfies hD(n −
k′;R) for all T ′ ∈ P (L) with k′ = Card(T ′) and k′ < k. Let T ′ be the vertex set of
a codimension-one face of the simplex spanned by T so that T = {v}∪T ′ (i.e., T is
the join of v and T ′). There is a natural identification Lk(T, L) = Lk

(
v, Lk(T ′, L)

)
.

Then hD(n−k−1;R) holds for (KT ′ , ∂KT ′) by inductive hypothesis and hence, for
Lk(T, L) by the argument in the preceding paragraph. In particular, (KT , ∂KT )
has the same homology as (Dn−k, Sn−k−1) and therefore, (K, ∂K) is a generalized
homology n-disk.

Finally, we need to see that (i)⇒ (iii). Suppose that L is a generalized homology
(n − 1)-sphere and that T ∈ P (L). If T = ∅, then KV (L) (= ∂K) has the same
homology as Sn−1. If T 6= ∅, then KT is a regular neighborhood of the simplex T in
the barycentric subdivision of L; hence, KT is contractible. Since L is a polyhedral
homology (n− 1)-manifold, KT is a homology (n− 1)-manifold with boundary, its
boundary being KT ∩KV (L)−T . By Poincaré duality, (KT ,KT ∩KV (L)−T ) has the
same homology as (Dn−1, Sn−2). Hence, H∗(KV (L),KV (L)−T ) ∼= H∗(KT ,KT ∩
KV (L)−T ) ∼= H∗(Dn−1, Sn−2) which implies condition hD(n;R). �

Definition 5.2. Let R be a commutative ring and Γ a torsion-free group. Then
Γ is of type FP over R if R (regarded as a trivial RΓ-module) admits a finitely
generated projective resolution of finite length. Γ is of type FL over R if R admits
a finitely generated free resolution of finite length. The group Γ is an n-dimensional
Poincaré duality group over R if it is of type FP over R and if

Hi(Γ;RΓ) =
{

0 ; i 6= n
R ; i = n

where Γ acts on R via some homomorphism w1 : Γ→ {±1}. A group G is a virtual
Poincaré duality group over R if it contains a torsion-free subgroup Γ of finite index
such that Γ is a Poincaré duality group over R. (If we omit reference to R, then
R = Z.)

If Γ acts freely and cellularly on a CW -complex U , with U/Γ compact, and if U
is acyclic over R, then Γ is of type FL over R. (The cellular chain complex, C∗(U),
provides the free resolution.) In particular, if BΓ is homotopy equivalent to a finite
complex, then Γ is of type FL (since the universal cover of BΓ is contractible).
Conversely, if Γ is finitely presented and of type FL, then BΓis homotopy equivalent
to a finite complex.

It can be shown that Γ is a Poincaré duality group if and only if BΓ satisfies
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Poincaré duality with respect to any local coefficient system (see Theorem 10.1,
p. 222 in [Br]). So, if BΓ has the homotopy type of a closed manifold (or even a
homology manifold), then Γ is a Poincaré duality group. Similarly, if BΓ has the
homotopy type of a closed homology manifold over R, then Γ is a Poincaré duality
group over R.

Remark 5.3. In [Fa] Farrell proved that, for R a field, if Hi(Γ;RΓ) = 0 for all i < n
and if Hn(Γ;RΓ) is nonzero and finite dimensional over R, then Γ is a Poincaré
duality group over R.

Example 5.4. In Lemma 11.3 of [D1] it is proved that given any finite simplicial
complex X, there is a Coxeter system (W,S) with L

(
= L(W,S)

)
equal to the

barycentric subdivision of X. For example, we can find (W,S) with L a lens space
S2k−1/Zm or the suspension of such a lens space. Such an L will be a generalized
homology sphere over Z[ 1

m ]. Since Σ has a cell structure in which the link of each
vertex is isomorphic to L, Σ is a homology manifold over Z[ 1

m ] and consequently,
W is a virtual Poincaré duality group over Z[ 1

m ]. On the other hand, for m 6= 1,
H∗(K, ∂K; Z) ∼= H∗−1(L; Z) has nontrivial m-torsion and hence, by Theorem A,
so does H∗c (Σ; Z). Thus, W is not a virtual Poincaré duality group over Z.

The following result is a more precise version of Theorem B in the Introduction.

Theorem 5.5. A Coxeter group W is a virtual Poincaré duality group of dimen-
sion n over a principal ideal domain R if and only if W decomposes as a direct
product W = WT0×WT1 with T1 ∈ Sf , so that the simplicial complex L0 associated
to (WT0 , T0) is a generalized homology (n− 1)-sphere over R.

Proof. First suppose that W decomposes as a direct product as in the theorem and
that L0 is a generalized homology (n−1)-sphere over R. Then Σ0

(
= Σ(WT0 , T0)

)
is a homology n-manifold over R. Hence, WT0 is a virtual Poincaré duality group
over R and, since WT1 is finite, so is W .

Conversely, suppose that W is a virtual Poincaré duality group over R of dimen-
sion n. Then

Hi
c(Σ;R) =

{
0 , i 6= n
R , i = n

By Theorem 4.2,

H∗c (Σ;R) ∼= ⊕
w∈W

H∗(K,KT (w);R).

Since R is a principal ideal domain only one summand on the right hand side can
be nonzero. Therefore, there is a T1 ∈ Sf such that

(a) if T ∈ Sf and T 6= T1, then Hi(K,KS−T ;R) = 0 for all i,

(b) Hi(K,KS−T1 ;R) =
{

0 , i 6= n
R , i = n



THE COHOMOLOGY OF A COXETER GROUP WITH GROUP RING COEFFICIENTS13

(c) WT1 is a singleton.

According to Lemma 1.10, (c) implies that W decomposes as a direct product
W = WT0 ×WT1 . It follows that

K = K0 ×K1

Σ = Σ0 × Σ1

L = L0 ∗ L1( the join of L0 and L1)

where Ki,Σi, Li are the complexes associated to (WTi , Ti). Moreover, L1 is a sim-
plex, while K1 and Σ1 are both cells. Thus,

(a)′ if T ∈ Sf (WT0 , T0) and T 6= ∅, then Hi(K0,K
T0−T
0 ;R) = 0 for all i, and

(b)′ Hi(K0, ∂K0;R) =
{

0 ; i 6= n
R ; i = n

.

That is to say, K0 satisfies hD(n;R). By Lemma 5.1, L0 is a generalized homology
(n− 1)-sphere. �

Suppose W = WT0×WT1 is a virtual Poincaré duality group of dimension n over
Z/2. Then L0 is a generalized homology (n−1)-sphere over Z/2 and the fixed point
set of each s ∈ T0 on Σ(WT0 , T0) is a contractible Z/2-homology (n− 1)- manifold.
Since CW (s), the centralizer of s in W , acts properly and cocompactly on this fixed
set, it follows that CW (s) is a virtual Poincaré duality group of dimension (n− 1)
over Z/2. (This observation is due to S. Prassidis.) If s ∈ T1, then CW (s) is of
finite index in W and hence, is a virtual Poincaré duality group of dimension n over
Z/2. These observations lead to the following corollary of Theorem 5.5.

Corollary 5.6. Suppose that a Coxeter group W acts effectively, properly and
cocompactly on a Z/2-acyclic n-manifold M . Then W acts as a group generated
by reflections in the following sense. For each s ∈ S, let Ms denote the fixed point
set of s on M . Then Ms is a Z/2-acyclic, Z/2-homology (n − 1)-manifold which
separates M and s interchanges the two components of M −Ms.

Proof. By Smith theory, the fixed point set of any involution in W is Z/2-acyclic
and a Z/2-homology manifold. Since M is a Z/2-acyclic manifold and W acts
properly, effectivley and cocompactly, W is a virtual Poincaré duality group of
dimension n over Z/2. Hence, W = WT0 ×WT1 , as in Theorem 5.5. For any s ∈ S,
since CW (s) acts properly and cocompactly on Ms and since Ms is Z/2-acyclic,
we see that the dimension of Ms must equal the virtual cohomological dimension
of CW (s) over Z/2. If s ∈ T1, this virtual cohomological dimension is n; hence,
Ms = M . Since the action is supposed to be effective, this can only happen if
T1 = ∅. So, W = WT0 . If s ∈ T0, then dimMs = n − 1. Then, by Alexander
duality, M −Ms has two components and these must be interchanged by s. �

Corollary 5.7. Suppose that M is a symmetric space of noncompact type and that
a Coxeter group W is a discrete, cocompact subgroup of the group of isometries of
M . Then M must be a product of a Euclidean space and (real) hyperbolic spaces.

Proof. Since W acts on M by isometries, the fixed point set of each s in S must
be totally geodesic submanifold of M . By the previous corollary, this submanifold
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must be of codimension one. But symmetric spaces of noncompact type do not
contain totally geodesic submanifolds of codimenion one unless each irreducible
factor is R1 or a real hyperbolic space. �

Remark 5.8. An m-dimensional simplicial complex L is a Cohen-Macaulay complex
if a) every simplex is contained in an m-simplex, b) the reduced homology Hi(L)
vanishes for i 6= m, and c) for each simplex T in L, Hi

(
Lk(T, L)

)
vanishes for

i 6= m−Card(T ). A torsion-free group Γ of type FP is a duality group of dimension
n, if Hi(Γ; ZΓ) vanishes for i 6= n. It then follows that Hi(Γ;M) ∼= Hn−i(Γ;D⊗M)
for any Γ-module M , where D = Hn(Γ; ZΓ). (See Theorem 10.1, p. 220, in [Br].)
It follows easily from Theorem A that if L(W,S) is a Cohen-Macaulay complex of
dimension (n− 1), then W is a virtual duality group of dimension n.

§6. The reflection group trick.

Suppose we are given the following data:

1) a CW -complex X, a group π and an epimorphism ϕ : π1(X)→ π,

2) a Coxeter system (W,S) with associated simplicial complex L, and

3) a continuous map f : L→ X.

Replacing f by a cellular approximation and X by the mapping cylinder of f , we
can assume that L is a subcomplex of X and that f is the inclusion.

One can construct a W -space Ω from these data in exactly the same manner as
Σ is constructed from K. Thus, Ω = (W ×X)/ ∼ where the equivalence relation
∼ is defined as follows: for each s ∈ S, let Xs denote the closed star of s in the
barycentric subdivision of L, for each x ∈ X let S(x) be the set of s such that x
belongs to Xs, then (w, x) ∼ (w′, x′) if and only if x = x′ and w−1w′ ∈WS(x).

Let p : X̃ → X be the covering space associated to ϕ : π1(X)→ π. Thus, π acts
on X̃ as the group of deck transformations. Let L̃ denote the inverse image of L in
X̃. The vertex set of L̃ (i.e., p−1(S)) is denoted S̃. We define a Coxeter matrix on
S̃ as follows. Suppose s̃, t̃ are elements of S̃ lying over s and t in S, respectively.
Define m(s̃, t̃) to be m(s, t) (the order of st in W ) if s̃ = t̃ or if s̃ and t̃ are connected
by an edge in L̃ and to be ∞ otherwise. Denote the resulting Coxeter system by
(W̃ , S̃); its associated simplicial complex is clearly L̃. The fundamental group π of
X acts on S̃ (via deck transformations) and hence on W̃ . The group G is defined
to be the semidirect product: G = W̃ o π.

We can construct a space Ω̃ from W̃ and X̃ exactly as before. For each t ∈ S̃,
let X̃t denote the closed star of t in the barycentric subdivision of L̃. Then Ω̃ =
(W̃ × X̃)/ ∼, where the equivalence relation is defined as before. The group π acts
freely on Ω̃ if α ∈ π and [w̃, x̃] ∈ Ω̃, then α · [w̃, x̃] = [θα(w̃), αx̃], where θα is the
automorphism of W̃ induced by α. The orbit space Ω̃/π is identified with Ω via the
natural surjection W̃ ×X̃ →W ×X. (So, Ω̃ is the covering space of Ω associated to
the epimorphism ϕ ◦ r∗ : π1(Ω)→ π where r : Ω→ X denotes natural retraction.)
Furthermore, the actions of W̃ and π generate an action of the semidirect product
G on Ω̃ and Ω̃/G ∼= X. (So, G is the group of homeomorphisms of Ω̃ consisting of
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all lifts of the W -action on Ω to Ω̃.)

Remark 6.1. Actually one can carry out the above construction under slightly
weaker assumptions: the space L need not be the simplicial complex associated

to a Coxeter system. All one need assume is that a)
∼
L is the simplicial complex

associated to a Coxeter system (
∼
W,
∼
S), b)

∼
L/π = L, and c) the Coxeter matrix

m(
∼
s,
∼
t ) is π-equivariant.

For the remainder of the paper we shall assume the following.

Hypotheses 6.2. (i) The set S is finite (i.e., the Coxeter group W is finitely
generated).

(ii) X is a finite complex.

(iii) The covering space X̃ is acyclic.

Remark 6.3. Hypotheses (ii) and (iii) are satisfied if X is a finite aspherical complex
and ϕ : π1(X)→ π is the identity (so that X̃ is the universal covering space).

Theorem 6.4. Under Hypotheses 6.2 the following statements are true.

(i) Ω̃ is acyclic.

(ii) G is virtually torsion-free.

(iii) If Γ is a torsion-free subgroup of finite index in G, then Γ is of type FL
(and then, a fortiori, of type FP ).

(iv) If X is aspherical and ϕ : π1(X)→ π is the identity and Γ is as above, then
BΓ is homotopy equivalent to a finite complex.

Proof. (i) That Ω̃ is acyclic follows from [D1] or [D2]. (Strictly speaking, Theorem
10 in [D1] is stated only for finitely generated Coxeter groups; however, as pointed
out in [DL], the same argument works for (W̃ , S̃), when S̃ is infinite).

(ii) Since S is finite, W has a faithful representation into GL(m; R) (where
m = card(S)). By Selberg’s Lemma, this implies that W is virtually torsion-free.
Let Γ′ be a torsion-free subgroup of finite index in W , let Γ̃ be its inverse image
in W̃ and Γ its inverse image in G. The natural surjection W̃ → W is injective
when restricted to any finite subgroup, so Γ̃ is torsion-free. Since π acts freely on
the finite dimensional acyclic complex X̃, it is torsion-free. It follows easily that
Γ = Γ̃ o π is also torsion-free.

(iii) C∗(Ω̃) provides the desired resolution of Z by finitely generated free ZΓ
modules.

(iv) If X is aspherical and π1(X) = π, then Ω̃ is contractible (by [D1]) and
BΓ = Ω̃/Γ, which is a finite complex. �

The proofs of Theorem 4.2 and Corollary 4.4 go through to give the following.

Theorem 6.5. Under Hypotheses 6.2,
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H∗c (Ω̃) ∼= ⊕
w∈fW H∗c (X̃, X̃T (w))(i)

(ii) For any subgroup Γ of finite index in G, H∗(Γ; ZΓ) = H∗c (Ω̃).

Remark 6.6. We call the above construction the “reflection group trick”. It has
been used in the following context. Start with a finite aspherical complex Y with
fundamental group π. Then thicken Y to a compact manifold with boundary X
(e.g., embed Y in Euclidean space and let X be its regular neighborhood). Take
ϕ : π1(X) → π to be the identity. Let L be a (sufficiently fine) triangulation
of ∂X and let (W,S) be a Coxeter system with associated simplicial complex L.
Finally, let Γ′ be a torsion-free subgroup of finite index in W . Then Ω/Γ′ is a closed
manifold. It is aspherical since its universal cover Ω̃ is contractible (by Theorem
6.4 (i)). The natural retraction Ω → X descends to a retraction Ω/Γ′ → X.
Thus, Γ = π1(X/Γ′) retracts onto π. This reflection group trick was introduced by
Thurston in the context of hyperbolic 3-manifolds. In the above generality it was
explained in Remark 15.9 of [D1]. It can be used to constuct examples of closed
aspherical manifolds with fundamental groups having various interesting properties.
The idea is to start with a group π such that (a) Bπ is homotopy equivalent to a
finite complex Y and (b) π has some property which also holds for any group which
retracts onto it. The reflection group trick then yields Ω/Γ′, the fundamental group
of which retract onto π. For example, this idea is used in [Me] to show that the
fundamental group of an aspherical manifold need not be residually finite. A slight
variation of this construction gives the following.

Example 6.7. In [BB] Bestvina and Brady construct an example of a finite 2-
complex Y , a group π and an epimorphism ϕ : π1(Y ) → π such that (i) the
associated covering space Ỹ is acyclic and (ii) the group π cannot be finitely pre-
sented. Such a group was the first example of a group of type FP which is not
finitely presented. As in the previous remark, thicken Y to a compact n-manifold
with boundary X (we can take X to be 4-dimensional) and apply the reflection
group trick. Let Γ = Γ̃ o π be a torsion-free subgroup of finite index in G as in the
proof of Theorem 6.4 (ii). Since Ω̃ is an acyclic manifold,

Hi
c(Ω̃) =

{ Z ; i = n

0 ; i 6= n
,

so Γ is a Poincaré duality group of dimension n. Since π is a retract of Γ and π
cannot be finitely presented, neither can Γ (see Lemma 1.3 in [W]). This example
proves Theorem C.

We turn now to the question of finding necessary and sufficient conditions for G
to be a virtual Poincaré duality group.

Definition 6.8. Suppose that A is a finite CW complex, that B is a subcomplex,
that π is a group and that ϕ : π1(A)→ π is an epimorphism. Then any Zπ-module
gives a local coefficient system on A. We say that (A,B) is a Poincaré pair over



THE COHOMOLOGY OF A COXETER GROUP WITH GROUP RING COEFFICIENTS17

π (of dimension n) if there is a class µ ∈ Hn(A,B;D) (where D denotes a local
coefficient system on A defined via some homomorphism w1 : π1(A)→ {±1}) such
that

∩µ : Hi(A;M)→ Hn−i(A,B;D ⊗M)
is an isomorphism for all i and for any Zπ-module M . If π = π1(A) and ϕ is the
identity, then (A,B) is simply a Poincaré pair.

For example, a compact manifold with boundary is a Poincaré pair.

Lemma 6.9. Suppose that (A,B) is a pair of finite CW complexes, that ϕ :
π1(A) → π is an epimorphism, that Ã is the covering space of A defined by ϕ

and that B̃ is the inverse image of B in Ã. Suppose further that Ã is acyclic. Then
the following two statements are equivalent.

(i) (A,B) is a Poincaré pair over π of dimension n.

(ii) Hi
c(Ã, B̃) =

{ Z ; i = n

0 ; i 6= n
.

The proof in the absolute case (where B = ∅) can be found on pages 220-221 of
[Br] and, in fact, the argument given there proves the lemma above.

Theorem 6.10. Assume that Hypotheses 6.2 hold and that the group π is non-
trivial. Then G is a virtual Poincaré duality group of dimension n if and only
if

a) L is an (n− 1)-dimensional homology manifold, and

b) (X,L) is an n-dimensional Poincaré pair over π.

Proof. If conditions a) and b) hold then it is easy to see that Ω is a Poincaré space
as is Ω/Γ for any torsion-free subgroup Γ of finite index in W and hence, that G is a
virtual Poincaré duality group. (This was previously observed in [DH].) Conversely,
suppose that G is a virtual Poincaré duality group. Then Hi

c(Ω̃) = 0 for i 6= n and
Hn
c (Ω̃) = Z. As in the proof of Theorem 5.5, Theorem 6.5 implies that there is

a subset T̃ of S̃ such that W̃ eT is a singleton. Since T̃ generates a finite subgroup
so does its image T in W . Suppose T 6= ∅. Then W splits as a nontrivial direct
product and L = L0 ∗L1 where L1 is a simplex. Since this implies that L is simply
connected and since π is nontrivial, L̃ has many components each of which would
contribute to Hn

c (Ω̃), contradicting the assumption that it is Z. Therefore, T and
T̃ are empty, and Hn

c (Ω̃) = Hn
c (X̃, L̃). So, Lemma 6.9 implies that (X,L) is an

n-dimensional Poincaré pair. Moreover, the argument of Lemma 5.1 shows that L̃
(and hence L) is an (n− 1)-dimensional homology manifold. �

Suppose we want to use the reflection group trick to construct an example of a
finitely presented Poincaré duality group which is not the fundamental group of a
closed aspherical manifold. If we require that π1(X) = π, so that X is aspherical,
then Theorem 6.10 states that (X,L) must be a Poincaré pair and that L must be
a homology manifold. So, essentially, L is a manifold. But the problem of finding
such a pair (X,L) which is not homotopy equivalent rel L to a compact manifold
with boundary is just the relative version of the original problem.
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