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This paper contains both theoretical results and experimen-
tal data on the behavior of the dimensions of the cohomol-
ogy spaces H1(Γ, En), where Γ is a lattice in SL(2, C) and
En = Symn ⊗Symn, n ∈ N ∪ {0}, is one of the standard self-
dual modules. In the case Γ = SL(2,O) for the ring of integers
O in an imaginary quadratic number field, we make the the-
ory of lifting explicit and obtain lower bounds linear in n. We
present a large amount of experimental data for this case, as well
as for some geometrically constructed and mostly nonarithmetic
groups. The computations for SL(2,O) lead us to discover two
instances with nonlifted classes in the cohomology. We also de-
rive an upper bound of size O(n2/ log n) for any fixed lattice Γ

in the general case. We discuss a number of new questions and
conjectures suggested by our results and our experimental data.

1. INTRODUCTION

For a semisimple Lie group G and a lattice Γ in G (i.e.,
a discrete subgroup of finite covolume), it is natural to
consider the cohomology groups H∗(Γ, E) of Γ with co-
efficients in finite-dimensional representation spaces E
of G. If K is a maximal compact subgroup of G and
X = G/K the associated Riemannian symmetric space,
these cohomology groups are canonically isomorphic to
the cohomology groups of the quotient orbifold Γ \ X
with coefficients in the local system associated to E.

By the main result of [Franke and Schwermer 98], at
least for arithmetic Γ the cohomology of Γ can be de-
scribed by automorphic forms. For the contribution of
the cuspidal spectrum one has (for general Γ) a gener-
alized Matsushima formula describing the so-called cus-
pidal cohomology in terms of the multiplicities of coho-
mological unitary representations of G in L2

cusp(Γ \ G),
a well-known result of [Borel 81] predating [Franke and
Schwermer 98]. The closer study of the noncuspidal part
is the object of the theory of Eisenstein cohomology ini-
tiated by G. Harder (see, for example, the works cited
above and [Harder 87]), and there are fairly complete
results in many cases.
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While there is therefore a complete correspondence
between cohomology and representation theory for the
cuspidal part, generalizing the classical Eichler–Shimura
homomorphism for the case G = SL(2,R) to all G, the
behavior of the dimensions of the cohomology spaces is
understood only under the hypothesis that G has a com-
pact Cartan subgroup.

In this case, one can compute these dimensions using
Euler–Poincaré characteristics [Serre 71] and the trace
formula [Arthur 89]. If the highest weight of the repre-
sentation E is regular, Arthur obtained an explicit for-
mula for the dimension of the cohomology, which in this
case is accounted for by the packet of discrete series rep-
resentations with the same infinitesimal character as the
dual of E. In particular, the leading term in his formula
is a constant multiple of the dimension of E. The ques-
tion of computing the cohomology for nonregular highest
weights and of separating the individual representations
in the packet is connected to the stabilization of the trace
formula and to Arthur’s conjectures.

In the easiest case, namely for lattices Γ in G =
SL(2,R), it is well known that the dimension of the coho-
mology with coefficients in the symmetric power repre-
sentations ofG can be explicitly computed in terms of the
basic invariants of Γ (i.e., the covolume and the orders
of the elliptic elements), and in fact, such a dimension
formula follows without difficulty from the description of
the group-theoretic structure of Γ or from the Riemann–
Roch theorem (see (1–4) below).

The situation is different if G has no compact Cartan
subgroup and there are therefore no discrete series rep-
resentations. No explicit dimension formulas are known
in this case. We consider the simplest case of this type,
namely lattices in the Lie group G = SL(2,C). Although
the structure of this Lie group is very simple, the study
of the cohomology of lattices in G presents a number of
deep problems. The irreducible finite-dimensional repre-
sentations of G are given by the tensor products

En,m = Symn ⊗ Symm (n,m ∈ Z, n,m ≥ 0). (1–1)

Here Symn stands for the nth symmetric power of the
standard two-dimensional representation of G and Symm

for its complex conjugate.
For a lattice Γ in G = SL(2,C) we consider therefore

the finite-dimensional cohomology spaces

Hi(Γ, En,m).

The main problem studied in this paper is the behavior
of the dimension of these spaces as a function of n and

m for a fixed Γ. Another problem that we consider is
the behavior of the dimensions as Γ ranges over the sub-
groups of finite index in a lattice Γ0. Since the virtual
cohomological dimension of Γ is 3 in the cocompact case,
and 2 otherwise, the only dimensions with interesting co-
homology are i = 1 and i = 2.

We now define the subspaces of cuspidal cohomology
classes and give their description in terms of automorphic
forms. As a consequence, it will turn out that we have
only to consider the case n = m and may in addition
restrict to the first cohomology.

Consider the set of all proper parabolic subgroups P =
MU of SL(2,C) with the property that Γ∩U is a lattice
in U . Here U is the unipotent radical of P , and M is a
Levi subgroup of P . Let C be a system of representatives
for the finitely many classes of such parabolics under Γ-
conjugation and consider the direct sum of restriction
maps

Hi(Γ, En,m) −→ U i(Γ, En,m) =
⊕
P∈C

Hi(Γ ∩ P,En,m).

(1–2)
The kernel of this map is called the cuspidal cohomology
of Γ and denoted by

Hi
cusp(Γ, En,m) ⊆ Hi(Γ, En,m).

If Γ is cocompact, the set C is empty and we have
Hi

cusp(Γ, En,m) = Hi(Γ, En,m).
We can also describe this construction geometrically.

The group of orientation-preserving isometries of three-
dimensional hyperbolic space X = H3 can be identified
with PSL(2,C) = SL(2,C)/{±1}, and every lattice Γ of
SL(2,C) gives rise to a quotient orbifold Γ \ X . If this
orbifold is not compact, it can be compactified by adding
a boundary ∂(Γ \ H3), which consists of finitely many
disjoint two-dimensional tori or spheres. The inclusion

Γ \ H3 ↪→ Γ̂ \ H3 := Γ \ H3 ∪ ∂(Γ \ H3)

is a homotopy equivalence. The cohomology of Γ with
coefficients in En,m can be computed as the cohomology
of a sheaf Ên,m on the compactified orbifold Γ̂ \ H3.

The restriction map

Hi(Γ, En,m) ∼= Hi(Γ̂ \ H3, Ên,m) → Hi(∂(Γ \ H3), Ên,m)

coincides with the restriction map (1–2) (see [Grunewald
and Singhof 08] for a more detailed account). The spaces
H1

cusp and H2
cusp are then dual to each other under

Poincaré duality (cf. [Borel and Wallach 80, Section I.7],
[Grunewald and Singhof 08]), and we will therefore re-
strict to the case i = 1 in the following.
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Furthermore, by a result of Serre [Serre 70,
Théorème 8], for i = 1 the dimension of the image of
the map in (1–2) is one-half the dimension of the target
space U1(Γ, En,m). It is not difficult to calculate the lat-
ter dimension explicitly. For example, if Γ∩P ⊆ ±U for
all P ∈ C and n+m is even, the dimension of the image
is equal to the number of cusps (the number of elements
of C) by [Serre 70, Corollaire 1]. For i = 2 one sees im-
mediately from the long exact cohomology sequence for
the pair (Γ̂ \ H3, ∂(Γ\H3)) that the image of (1–2) is the
entire target space, except in the case n = m = 0, where
it has codimension one. It therefore remains to study the
space H1

cusp.
The theorem of Borel mentioned above yields an iso-

morphism

H1
cusp(Γ, En,m) 
 H1(g,K;L2

cusp(Γ \G)∞ ⊗ En,m),

where the superscript ∞ denotes the subspace of smooth
vectors. Since the space of cuspidal functions decomposes
discretely as a representation of G, we can also write

H1
cusp(Γ, En,m) (1–3)



⊕
π∈Ĝ

Hom(π, L2
cusp(Γ \G)) ⊗H1(g,K;H∞

π ⊗ En,m),

where Ĝ denotes the unitary dual of G.
From the computation of the (g,K)-cohomology of ad-

missible irreducible representations of G [Borel and Wal-
lach 80, Chapter II], we can deduce the following vanish-
ing theorem:

H1
cusp(Γ, En,m) = {0}, for n �= m.

In the case n = m the module

En := En,n = Symn ⊗ Symn

is self-dual in the terminology of [Borel and Wallach 80],
and the dimension of H1

cusp(Γ, En) is equal to the mul-
tiplicity of the principal series representation π2n+2,0

(the representation unitarily induced from the charac-
ter z → (z/|z|)2n+2 of the maximal torus T 
 C×) in the
space L2

cusp(Γ \G).
We will use this connection extensively in the follow-

ing. We would like to stress that it does not yield an
explicit dimension formula.

In the following we study the behavior of the dimen-
sion ofH1(Γ, En) both theoretically and numerically. We
focus primarily on the following problems:

A: How does the dimension of H1(Γ, En) behave when
Γ is fixed and n grows?

B: Are there formulas for the dimension ofH1(Γ, En) in
terms of n at least for some groups Γ? Are there for-
mulas for the dimension valid for all n ≥ n0, where
n0 is allowed to depend on Γ?

C: Are there lattices Γ such that H1
cusp(Γ, En) = 0 or

H1(Γ, En) = 0 for all n (necessarily cocompact in
the latter case)?

D: How do the dimensions of H1(Γ, En) and
H1

cusp(Γ, En) behave when n is fixed and Γ
ranges over the subgroups of finite index of a fixed
lattice in G?

E: How does the asymptotic behavior of H1(Γ, En) and
that of H1

cusp(Γ, En) for n → ∞ change as Γ ranges
over the subgroups of finite index of a fixed lattice
in G?

While we do not know of previous work on problems
A, B, C, and E, problem D has been studied quali-
tatively in the context of limit multiplicities [Calegari
and Emerton 09, de George and Wallach 78, Lott and
Lück 95, Savin 89] and in that of the conjecture of Wald-
hausen and Thurston (cf. [Dunfield and Thurston 03]) in
three-manifold topology.

The results and computations described below are of a
very preliminary nature, but we hope to provide at least
some evidence about what might be true. In Section 1.1
we summarize our theoretical results on upper and lower
bounds for the dimension of H1(Γ, En). In Section 1.2
we shall formulate more specific questions about the be-
havior of the these dimensions and discuss the numerical
evidence accumulated in the later sections.

1.1 Theoretical Results

We now describe our theoretical results. Before we pro-
ceed, let us briefly comment on the situation for Fuchsian
groups, i.e., discrete subgroups Γ of SL(2,R) of finite co-
volume. Let g be the genus of Γ, k the number of cusps,
and r1, . . . , rs the orders of the elliptic elements in the im-
age of Γ in PSL(2,R), considered up to conjugacy. For an
integer n and a positive integer r let μ be the remainder
of n after division by 2r and set

d(n, r) =

⎧⎪⎨
⎪⎩

1 − μ+1
r , μ even,

−μ+1
r , 0 ≤ μ < r odd,

2 − μ+1
r , r ≤ μ < 2r odd.



32 Experimental Mathematics, Vol. 19 (2010), No. 1

Then a consideration of the group-theoretic structure of
Γ shows that

dimH1(Γ, Symn) =
(
2g − 2 + k +

s∑
i=1

(
1 − 1

ri

))
(n+ 1)

−
s∑

i=1

d(n, ri) (1–4)

for all n > 0, where for −1 ∈ Γ one has in addition to as-
sume n to be even (the cohomology spaces vanish for odd
n in this case). Thus the dimension of the cohomology
is given by simple linear functions on congruence classes.
Note also that the coefficient of n+1 in (1–4) is equal to
vol(Γ \ H2)/2π.

Our first theoretical result on lattices in SL(2,C) con-
cerns a general upper bound for the dimension of the
cohomology.

Theorem 1.1. Let Γ ⊆ SL(2,C) be a discrete subgroup of
finite covolume. Then

dim H1(Γ, En) = O

(
n2

logn

)

as n→ ∞.

This result is obtained by an application of the Selberg
trace formula in Section 5. Note that the module En has
dimension (n + 1)2. Since a group Γ as above is finitely
presented, dim H1(Γ, En) = O(n2) is the trivial upper
bound (cf. Lemma 3.1 below). Nontrivial lower bounds
are not known for general lattices Γ ⊆ SL(2,C). In fact,
our examples in Sections 7.2 and 7.3 indicate that there
are probably none.

Lattices in SL(2,C) can be classified into arithmetic
and nonarithmetic ones. The arithmetic lattices arise
from quaternion algebras over number fields with pre-
cisely one complex place, and are intimately connected
to number theory. They are distinguished by the exis-
tence of a large algebra of correspondences acting on their
cohomology, the Hecke algebra (cf. Section 3.2 below).
The primary examples are the Bianchi groups SL(2,OK),
where OK is the ring of integers of an imaginary quad-
ratic field K. It is well known that every noncocompact
arithmetic lattice in SL(2,C) is commensurable with a
Bianchi group.

For congruence subgroups of arithmetic groups one
can use Langlands functoriality (base change, automor-
phic induction, and the Jacquet–Langlands correspon-
dence) to obtain lower bounds on the cohomology in
certain cases (cf. [Clozel 87, Labesse and Schwermer 86,

Rajan 04]). Unfortunately, because base change is avail-
able only for solvable extensions of number fields, the
results are not complete (cf. [Lackenby et al. 08, Section
6]). Also, the Langlands conjectures relate the cohomol-
ogy of these groups to important number-theoretic ob-
jects, namely �-adic Galois representations and motives.

In the case of congruence subgroups of the Bianchi
groups, [Harris et al. 93, Taylor 94] have indeed associ-
ated (under a restriction on the central character) �-adic
Galois representations of the absolute Galois group of
the corresponding imaginary quadratic field K to eigen-
classes of the Hecke algebra. More recently, these au-
thors’ work has been completed in [Berger and Harcos
07]. In the special case of trivial coefficients, one ex-
pects that Hecke eigenclasses correspond to elliptic curves
and abelian varieties over the field K (cf. [Cremona
84, Grunewald et al.7̃8, Grunewald and Mennicke 78]).

The structure of the nonarithmetic lattices is even less
well understood. The explicit examples considered in this
paper are on the one hand Bianchi groups for certain K
of small discriminant, and on the other hand certain ge-
ometrically constructed lattices and series of lattices, al-
most all of which are nonarithmetic.

A related (but in general not equivalent) method for
obtaining lower bounds is based on studying the action
of the complex conjugation automorphism c of SL(2,C)
on the cohomology if the lattice Γ is invariant under c
(as the Bianchi groups are, for example). In this case,
one can use the Lefschetz fixed-point formula to compute
the trace of this involution acting on H1

cusp(Γ, En), and
thereby obtain a lower bound for the dimension of this
space.

For the case of the Bianchi groups with trivial co-
efficients this approach was carried out in [Krämer 85,
Rohlfs 85]. Here the results turn out to be equivalent to
those given by the theory of base change. While this
method is not restricted to arithmetic groups, on the
other hand, it does not cover all lower bounds obtain-
able by Langlands functoriality for arithmetic groups.

We work out the consequences of base change and au-
tomorphic induction (CM automorphic forms) for the
cohomology of the Bianchi groups in Section 4 below.
The base change construction detailed there associates to
holomorphic automorphic forms for certain congruence
subgroups of SL(2,Z) elements of H1(SL(2,OK), En).
Let us write

H1
bc(SL(2,OK), En) ⊆ H1

cusp(SL(2,OK), En)

for the corresponding subspace. Our main result here is a
precise formula for the dimension of H1

bc(SL(2,OK), En)
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in terms of the prime factorization of the discriminant of
K. To state it, we need to introduce functions εk and μk

defined for all integers k that depend only on the residue
classes of k modulo 4 and 3, respectively, and a function
νK,k depending onK and at most on k modulo 2 or 3 (see
Sections 4.1 and 4.3 below for the precise definitions).

Theorem 1.2. Let K be an imaginary quadratic extension
of Q, R the set of primes ramified in K (the prime divi-
sors of the discriminant of K), and for each p ∈ R let νp

be the exact power of p dividing the discriminant. Then
there are nonnegative constants c2, c3, and c4 (depending
on K) such that

dimH1
bc(SL(2,OK), En)

=
( 1

24

∏
p∈R

(pνp + 1) + c2(−1)n+1
)
(n+ 1)

− νK,n
hK

2
− 2|R|−2 + c4εn+2 + c3μn+2 + δn,0

for all n ≥ 0, where hK is the class number of K and
δn,0 denotes the Kronecker delta.

Note that for every K the dimension of H1
bc is given

by linear functions of n spread out over the congruence
classes modulo 12. If one takes the precise value of c2
given in Section 4.3 into account, one sees that the coef-
ficient of n in these linear functions is always positive, and
that therefore the dimension of H1

cusp(SL(2,OK), En)
grows at least linearly with n. Also, for a fixed n the
dimension grows linearly in the (absolute value of the)
discriminant. This implies nonvanishing results for the
cuspidal cohomology. The first results of this nature
(in a much more limited situation) were obtained in
[Grunewald and Schwermer 82, Grunewald and Schwer-
mer 81]. Let us describe the special cases K = Q(

√
d),

d = −2, −7, −11, more explicitly.

Proposition 1.3. For all n ≥ 1 we have

dimH1
bc(SL(2,O−2), En)=

⎧⎪⎨
⎪⎩

(n− 1)/2, n ≡ 1 (mod 2),
(n− 2)/4, n ≡ 2 (mod 4),
(n− 4)/4, n ≡ 0 (mod 4),

dimH1
bc(SL(2,O−7), En)=

⎧⎪⎨
⎪⎩

(n− 3)/3, n ≡ 0 (mod 3),
(n− 1)/3, n ≡ 1 (mod 3),
(n− 2)/3, n ≡ 2 (mod 3),

dimH1
bc(SL(2,O−11), En)=

⎧⎪⎨
⎪⎩

(n− 1)/2, n ≡ 1 (mod 2),
n/2, n ≡ 2 (mod 4),
(n− 2)/2, n ≡ 0 (mod 4).

A second construction of cohomology classes is via au-
tomorphic induction from Hecke characters of quadratic
extensions of K (in fact necessarily biquadratic exten-
sions of Q unramified overK). In Section 4.2 we describe
the corresponding contribution H1

CM to the cuspidal co-
homology. In many cases, it is already contained in H1

bc.
The precise criterion for an additional CM contribution
to the cohomology is as follows.

Proposition 1.4. Let K be an imaginary quad-
ratic field. There is a CM contribution to a space
H1

cusp(SL(2,OK), En), n ≥ 0, which is not contained in
H1

bc(SL(2,OK), En), if and only if for some real quad-
ratic field L′ such that KL′/K is unramified, the narrow
class number h+

L′ is strictly greater than the corresponding
number of genera g+

L′ = 2|R(L′)|−1, where R(L′) denotes
the set of primes ramified in L′.

See Section 4.2 for the smallest examples of real quad-
ratic fields L′ with this property. In any case, the ad-
ditional CM contribution is always constant on residue
classes modulo 12, and the total contribution from base
change and automorphic induction is therefore again
given by linear functions on residue classes modulo 12.

The techniques of Langlands functoriality have been
previously used to prove the conjecture of Waldhausen
and Thurston for some arithmetic groups Γ, i.e., to estab-
lish the existence of a finite-index subgroup Δ of Γ with
H1(Δ,C �= 0. In the special case of arithmetic groups
Γ associated to quaternion algebras defined over fields L
such that the extension L/Ltr, where Ltr is the maximal
totally real subfield of L, is quadratic, the methods of
[Labesse and Schwermer 86] imply the following result
on problem E.

Proposition 1.5. Let Γ be an arithmetic subgroup of
SL(2,C) such that the field of definition L of the cor-
responding quaternion algebra is a quadratic extension of
its maximal totally real subfield Ltr. Then for every c > 0
there exists a finite-index subgroup Δ of Γ such that

dimH1(Δ, En) > cn

for all n ≥ 0.

For solvable extensions L/Ltr one obtains a corre-
sponding result for certain twisted variants of the repre-
sentations En (cf. [Rajan 04]). Such a result is expected
to be true for all arithmetic lattices Γ.

We now turn to a result that gives an upper bound
for special cases of problem D. We consider finite-index
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subgroups of the Bianchi groups SL(2,OK). For any
nonzero ideal a of OK we have the classical congruence
subgroup

Γ0(a) =
{
γ =

(
a b
c d

)
∈ SL(2,OK) c ∈ a

}
.

The index of Γ0(a) in SL(2,OK) is given by the multi-
plicative function

ι(a) = N(a)
∏
p|a

(
1 +

1
N(p)

)
.

The following theorem gives a bound on the dimension
of H1(Γ ∩ Γ0(a), En) for each subgroup Γ of finite index
in SL2(OK), which improves the trivial bound O(ι(a))
by a logarithm.

Theorem 1.6. Let Γ be a subgroup of finite index in
SL(2,OK), K an imaginary quadratic field. Then for
any fixed n ≥ 0 we have

dimH1(Γ ∩ Γ0(a), En) = O

(
ι(a)

log N(a)

)
, N(a) → ∞.

(1–5)

This theorem, which again results from an application
of the trace formula, should be compared to the limit
multiplicity results of [de George and Wallach 78, Lott
and Lück 95, Savin 89], which imply

lim
i→∞

dimH1(Γi, En)
[Γ : Γi]

= 0

for fixed n and towers of normal subgroups Γi of a fixed
lattice Γ such that

⋂
i Γi = {1}. That the trace formula

implies a bound of this form has been known for some
time in the case of Maass forms of eigenvalue 1

4 for con-
gruence subgroups of SL(2,Z) [Iwaniec 84, p. 173, (3.5)]
(and similarly for modular forms of weight one for such
groups).

Recently, [Calegari and Emerton 09] obtained by p-
adic methods a much better bound in the special case of
the principal congruence subgroups Γ(pk) of SL(2,OK)
whose level is a power of a prime ideal p of OK :

dimH1(Γ
(
pk
)
, En) = O

(
N(p)(3−[Kp:Qp]−1)k

)
, k → ∞,

if n is fixed, whereas

[SL(2,OK) : Γ(pk)] = N(p)3k(1 − N(p)−2).

Here, Kp denotes the completion of K at p. The results
of [Calegari and Emerton 09] cover all arithmetic lattices
in SL(2,C).

Note also that for a = aOK , a a positive integer, we
can get by base-change arguments a lower bound of the
form Ca = CN(a)1/2. If a and its conjugate are rela-
tively prime, there is no nontrivial lower bound known.
In fact, in the papers [Boston and Ellenberg 06, Calegari
and Dunfield 06], examples of cocompact (arithmetic and
nonarithmetic) lattices Γ in SL(2,C) and infinite towers
of congruence subgroups Γi of Γ (of p-power level for a
suitable prime ideal p of a number field K associated
to Γ) are given that satisfy H1(Γi,C) = 0 for all i. Using
certain specific link complements and cyclic covers, it is
possible to construct nested sequences of subgroups Γi

(i ∈ N) of certain lattices Γ with H1
cusp(Γi,C) = 0 for

all i (see [Grunewald and Hirsch 95]).
On the other hand, it is certainly not possible to im-

prove the trivial bound O([SL(2,OK) : Γ]) on the di-
mension of H1(Γ, En) for finite-index subgroups Γ of
SL(2,OK) without making any assumption on Γ. This
follows easily from the fact that the Bianchi groups (and
more generally all noncocompact lattices in SL(2,C)) are
large, i.e., contain a finite-index subgroup surjecting onto
a nonabelian free group. This property is in fact conjec-
tured to be true for all lattices (cf. [Lackenby et al. 08]).

1.2 Experimental Results and Questions

Here we formulate more specific versions of problems A
through E from above. We shall also discuss the numer-
ical results accumulated in the later sections.

Let us begin by reporting on our numerical calcula-
tions. In Section 3.1 we describe how the cohomology
space H1(Γ, En) can be effectively computed from a pre-
sentation of Γ together with explicit matrices for the gen-
erators. We have developed computer codes for this task.
The results of the computations are documented in Sec-
tions 6 and 7.

Consider first the case of Bianchi groups explained
in Section 6. We consider the fields K = Q(

√
d) for

d = −1,−2,−3,−5,−6,−7,−10,−11,−14,−19. From
Proposition 1.4 it follows immediately that H1

CM ⊆ H1
bc

in all these cases. In fact, in our computations we had in
all cases except two H1

cusp = H1
bc. The precise range of

the computations can be found in Section 6. The two
exceptions are given in the following proposition.

Proposition 1.7. In the spaces

H1
cusp(SL(2,O−7), E12)

and
H1

cusp(SL(2,O−11), E10)
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the subspace of cohomology classes obtained from base
change has codimension two.

In both cases there is a uniquely determined two-
dimensional complement invariant under the action of the
Hecke algebra. We document the eigenvalues of the first
few Hecke operators on these subspaces in Section 6.2.
As mentioned above, by [Berger and Harcos 07, Harris
et al. 93, Taylor 94] there exist compatible systems of
�-adic Galois representations associated to these Hecke
eigenclasses. The eigenvalues satisfy the Ramanujan con-
jecture within the range of computation, which supports
the conjecture that the associated Galois representations
are motivic (note that this does not follow from their
construction).

The computations suggest the following questions.

Question 1.8. For a given imaginary quadratic field K,
is it true that

H1
cusp(SL(2,OK), En)

= H1
bc(SL(2,OK), En) +H1

CM(SL(2,OK), En)

for all but finitely many n?

Question 1.9. Is it the case that

H1
cusp(SL(2,OK), En) = H1

bc(SL(2,OK), En)

for all n for some K, for example K = Q(
√
d), d =

−1,−2,−3,−5,−6,−10,−14,−19?

Question 1.8 is related to the conjectures and (mostly)
conditional results of Calegari and Mazur on p-adic de-
formations of Galois representations over non-totally-real
base fields [Calegari and Mazur 09]. In fact, an af-
firmative answer would imply special cases of a suit-
able automorphic analogue of [Calegari and Mazur 09,
Conjecture 1.3]. The nonlifted cohomology classes in
H1

cusp(SL(2,O−7), E12) and H1
cusp(SL(2,O−11), E10) can

be used to give further examples of the phenomenon ex-
hibited in [Calegari and Mazur 09, Theorem 1.1].

Regarding Question 1.9, recent experimental results
in [Ash and Pollack 08] suggest that the cohomology
of the group SL(3,Z) behaves similarly to the cases
d = −1,−2,−3,−5,−6,−10,−14,−19 above. Here all
the cuspidal cohomology seems to be in the image of the
symmetric square lift from classical modular forms for
SL(2,Z).

In Section 7 we consider some examples of (mostly)
nonarithmetic lattices. All examples are compatible with
an affirmative answer to the following question.

Question 1.10. For a given lattice Γ in SL(2,C), do there
exist integers n0 ≥ 0, N > 0, depending on Γ such that
for each n ≥ n0 and n in a fixed residue class modulo N ,
the dimension dimH1(Γ, En) is given by a linear function
in n?

As we have seen, an affirmative answer to Question 1.8
would imply that one might take N = 12 for the Bianchi
groups. A weaker but still unresolved question is the
following.

Question 1.11. Do we have dim H1(Γ, En) = O(n) as
n → ∞ for every lattice Γ, or is it possible that these
dimensions grow faster than linearly in n?

The computations in Sections 7.2 and 7.3 suggest an
affirmative answer to the following question.

Question 1.12. Are there lattices Γ such that
dim H1(Γ, En) remains bounded as n → ∞? Is it possi-
ble that H1

cusp(Γ, En) = 0 or even H1(Γ, En) = 0 for all
n (Γ being necessarily cocompact in the latter case)?

In Section 7.2, an infinite sequence of nonarithmetic
groups with one cusp is considered, which provides can-
didates for lattices with H1

cusp(Γ, En) = 0 for all n. In
Section 7.3 we consider a cocompact nonarithmetic lat-
tice and its finite-index subgroups of low index and ob-
tain many candidates for lattices with H1(Γ, En) = 0 for
all n. Concerning problem D, we pose the following vari-
ant of the conjecture of Waldhausen and Thurston as a
question.

Question 1.13. Given a lattice Γ and n ≥ 0, is there a
subgroup Δ of finite index in Γ such that H1

cusp(Δ, En) �=
0? More strongly, is there a subgroup Δ such that
H1

cusp(Δ, En) �= 0 for all n?

We are able to provide an affirmative answer for all
examples that we computed (see Sections 7.2 and 7.3).

We have also made extensive computations of
dimH1(Γ0(p),C) for the standard congruence subgroups
Γ0(p) of SL(2,O−1) associated with degree-one prime ide-
als p of O−1. The results are documented in Section 6.3.

The cohomology groups H1(Γ0(p),C) are particularly
interesting for number theory, since their nonvanishing
is conjectured to be related to the existence of certain
elliptic curves (or more generally abelian varieties) de-
fined over K = Q(i) (cf. [Cremona 84, Grunewald et
al. 78, Grunewald and Mennicke 78]). Also, the methods
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of Langlands functoriality do not provide any nontriv-
ial lower bound for the dimension, and in fact, there are
many examples of prime ideals p with H1(Γ0(p),C) = 0.
In analogy with distribution questions for elliptic curves
(cf. [Brumer and McGuinness 90]), we pose the following
question.

Question 1.14. Is there a constant C such that the
asymptotic relation

∑
p, N(p)≤x

dimH1(Γ0(p),C) ∼ C
x5/6

log x

holds as x tends to infinity, where the sum is to be ex-
tended over all degree-one prime ideals p of O−1 of norm
at most x?

If the cohomology indeed corresponds to abelian va-
rieties and the distribution heuristics of [Brumer and
McGuinness 90] are valid, this question asks simply
whether a positive proportion of the cohomology is ac-
counted for by elliptic curves. Note that this is defi-
nitely not the case for the cohomology of the congru-
ence subgroups Γ0(p) of SL(2,Z). The computational
results in Section 6.3 are compatible with an affirmative
answer, but the range of our computations seems to be
too small to allow a more detailed analysis (cf. [Brumer
and McGuinness 90]). The behavior of the dimensions
dimH1(Γ0(p), En) seems to be quite different if n ≥ 1 is
fixed and p varies (see Section 6.3).

Finally, we pose the following question regarding prob-
lem E. Here, our computations do not suggest a general
answer.

Question 1.15. For a given lattice Γ, does there exist a
subgroup Δ of finite index such that

lim inf
n→∞

dimH1(Δ, En)
n

> 0?

The theoretical evidence summarized in Section 1.1
shows that this question has an affirmative answer for
some arithmetic lattices Γ. Our computations for nonar-
ithmetic groups are inconclusive. Namely, for the groups
considered in Sections 7.2 and 7.3 we were not able to find
such a finite-index subgroup Δ, but to search through
all subgroups of a given index very quickly becomes
prohibitive.

2. THE BIANCHI GROUPS

This section contains some notation and preliminary ma-
terial concerning the Bianchi groups, as well as the ex-
plicit finite presentations on which our computer calcula-
tions are based. The first subsection fixes notation that
we will use throughout this paper. The results needed
from algebraic number theory are contained in [Lang 94].
We also follow this book in our notational conventions.

2.1 The Bianchi Groups and Their
Congruence Subgroups

Let d be a square-free negative integer, K = Q(
√
d) ⊂ C

the corresponding imaginary quadratic number field, and
O = Od = OK its ring of integers. The ring Od has a
Z-basis consisting of 1 and ωd, where

ω = ωd =

⎧⎨
⎩
√
d, if d �≡ 1 (mod 4),

1 +
√
d

2
, if d ≡ 1 (mod 4).

The discriminant of the field K is

D = Dd =

{
d, if d ≡ 1 (mod 4),
4d, if d ≡ 2, 3 (mod 4).

We set R = Rd for the set of rational primes p ramified
in K. The set Rd consists exactly of the prime divisors
of Dd.

We also fix the following notation concerning sub-
groups of SL(2,C) commensurable with the Bianchi
groups SL(2,O). Let a ⊆ O be a nonzero ideal. The
subgroup

Γ(a) =
{ (

a b
c d

) ∈ SL(2,O) | a− 1, b, c, d− 1 ∈ a
}

⊆ SL(2,O)

is called the full congruence subgroup of level a. It clearly
has finite index in SL(2,O). A subgroup Γ ⊆ SL(2,K)
is called a congruence subgroup if Γ ∩ SL(2,O) has finite
index in both Γ and SL(2,O), and if Γ contains a full
congruence subgroup Γ(a) for a nonzero ideal a of O.

Let a ⊂ K now be a fractional ideal of O, that is, a

is a nonzero finitely generated O-submodule of K. We
define

SL(2, a) =
{ (

a b
c d

) ∈ SL(2,K) | a, d ∈ O, c ∈ a, b ∈ a−1
}
.

Notice that SL(2, a) is a congruence subgroup of
SL(2,K). It is equal to the stabilizer in SL(2,K) of
the O-submodule O ⊕ a of K2. We write PSL(2,O) or
PSL(2, a) for the images of the corresponding subgroups
of SL(2,K) in PSL(2,C).
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We write AK for the ring of adeles of K and AK,f for
the ring of finite adeles. We view AK,f as the subring
of AK consisting of those elements that are 0 at the in-
finite place of K. The adele rings AK , AK,f and their
unit groups A∗

K , A∗
K,f are equipped with their standard

topologies (see [Lang 94]). We also consider the profinite
completion of the ring O, which we denote by Ô, to be
embedded as a compact and open subring of AK,f in the
usual way.

Recall the standard description of the adelic coset
space GL(2,K) \ GL(2,AK) in terms of the coset spaces
Γ \ GL(2,C) for congruence subgroups Γ of GL(2,K).
By the strong approximation theorem, for any compact
open subgroup K of GL(2,AK,f ), the determinant map
identifies the space of connected components of

GL(2,K) \ GL(2,AK)/K

with the finite set A∗
K,f/K

∗ det(K), and for a set S ⊂
GL(2,AK,f ) with the property that det(S) forms a sys-
tem of representatives for A∗

K,f/K
∗ det(K) we have

GL(2,K) \ GL(2,AK)/K =
⋃
s∈S

Γs \ GL(2,C), (2–1)

where Γs = GL(2,K) ∩ sKs−1.
To obtain the special case of the groups SL(2, a), let

K0 = GL(2, Ô) be the standard maximal compact sub-
group of GL(2,AK,f), and for each finite-index subgroup
Δ of Ô∗ set

K(Δ) = {g ∈ K0 | det g ∈ Δ}. (2–2)

If Δ∩O∗ = {1}, the groups Γs in (2–1) can be identified
with the groups SL(2, a), where a runs over a system of
representatives for the ideal classes of K and each group
appears with multiplicity [Ô∗ : ΔO∗].

Denote by X(Δ) the set of all characters of
A∗

K,f/ΔK
∗. It evidently has cardinality |X(Δ)| =

hK [Ô∗ : ΔO∗], where hK is the class number of K.

2.2 Presentations

This subsection contains explicit finite presentations for
some of the Bianchi groups. We include them here,
because some of them have not yet appeared in print.
The presentations are taken from [Flöge 83, Schnei-
der 85, Swan 71]. We use the standard notation for
presentations of groups: G = 〈 g1, . . . , gn | R1, . . . , Rl 〉
means that the group G is generated by g1, . . . , gn and
presented by the words R1, . . . , Rl.

The following three matrices are in the set of genera-
tors in almost all cases:

A =
(

1 1
0 1

)
, B =

(
0 1
−1 0

)
, U = Ud =

(
1 ωd

0 1

)
.

First, we give the results for the cases d = −1,−2,
−3,−7,−11, which are exactly the cases in which the
ring of integers Od is Euclidean:

PSL(2,O−1) (2–3)

=
〈
A,B,U | B2, (AB)3, (BUBU−1)3, AUA−1U−1,

(BU2BU−1)2, (AUBAU−1B)2
〉
,

PSL(2,O−2)

=
〈
A,B,U | B2, (AB)3, AUA−1U−1, (BU−1BU)2

〉
,

PSL(2,O−3)

= 〈A,B,U | B2, (AB)3, AUA−1U−1, (UBA2U−2B)2,

(UBAU−1B)3, AUBAU−1BA−1UBA−1UBAU−1B〉,
PSL(2,O−7)

= 〈A,B,U | B2, (BA)3, AUA−1U−1, (BAU−1BU)2〉,
PSL(2,O−11)

= 〈A,B,U | B2, (BA)3, AUA−1U−1, (BAU−1BU)3〉.

Next we consider the case d = −19. In this case Od is
a non-Euclidean principal ideal ring. We have

PSL(2,O−19)

=
〈
A,B,U,C | B2, (AB)3, AUA−1U−1, C3, (CA−1)3,

(BC)2, (BA−1UCU−1)2
〉

with the matrix

C =
(

1 − ω−19 2
2 ω−19

)
.

In the cases d = −5,−6,−10, the class number of Od

is equal to 2. We give presentations of both PSL(2,Od)
and PSL(2, a) for a nonprincipal ideal a. For d = −5 we
have

PSL(2,O−5)

=
〈
A,B,U,C,D | B2, (AB)3, AUA−1U−1, D2, (BD)2,

(BUDU−1)2, AC−1A−1BCB,

AC−1A−1UDU−1CD
〉

with matrices

C =
(−4 − ω−5 −2ω−5

2ω−5 −4 + ω−5

)
, D =

(−ω−5 2
2 ω−5

)
,
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and

PSL(2, a−5)

=
〈
A, V,C,D | AV A−1V −1, CDC−1D−1, (AC−1)2,

(DV −1)3, (CD−1V A−1)3
〉

with the ideal a−5 = 〈2, 1 − √−5〉 of O−5 and with the
matrices

V =
(

1 1+
√−5
2

0 1

)
, C =

(
1 0
2 1

)
,

D =
(

1 0
1 −√−5 1

)
.

For d = −6, we have

PSL(2,O−6)

=
〈
A,B,U,C,D | B2, (AB)3, AUA−1U−1, D2,

BCBC−1, (BAUDU−1)3,

A−1CAUDU−1C−1D−1, (BAD)3
〉

with the matrices

C =
(

5 −2ω−6

2ω−6 5

)
, D =

(−1 − ω−6 2 − w−6

2 1 + ω−6

)
and

PSL(2, a−6)

=
〈
A, V,C,D,E | E2, (CA−1)2, (DV −1)3, (DEV −1)2,

(CEA−1)2, CDC−1D−1, AV A−1V −1,

(CDEV −1A−1)2
〉

with the ideal a−6 = 〈2,√−6〉 of O−6 and with the ma-
trices

V =
(

1 ω
2

0 1

)
, C =

(
1 0
2 1

)
,

D =
(

1 0
−w 1

)
, E =

( −2 −1 − ω
2

2 − w 2

)
.

For d = −10, we have

PSL(2,O−10)

=
〈
A,B,U,C,D,E, F | B2, (AB)3, AUA−1U−1, C2,

E2, (BC)2, (BE)2, C−1AD−1BEBAD,

U−1E−1UFCF−1, D−1E−1B−1DU−1DBCD−1U,

D−1B−1ADC−1U−1EDA−1BD−1U,

U−1DA−1B−1D−1UFD−1BADF−1
〉

with the matrices

C =
(−ω 3

3 ω

)
, D =

(
ω − 1 −4

3 ω + 1

)
,

E =
(
ω 3
3 −ω

)
, F =

(
11 5ω
2ω −9

)

and

PSL(2, a−10)

=
〈
A, V,C,D,E, F | E2, (CA−1)2, (FE)2, (DEV −1)2,

(DF−1V −1)3, CDC−1D−1, AV A−1V −1,

(FC−1EA)2, F 3, (CF−1A−1)3, (CDF−1A−1V −1)3
〉

with the ideal a−10 = 〈2,√−10〉 of O−10 and with the
matrices

C =
(

1 0
2 1

)
, D =

(
1 0
−ω 1

)
, E =

(−2 −ω
2−ω 2

)
,

F =
( −3 −1 − ω

2
2 − ω 2

)
, V =

(
1 ω

2
0 1

)
.

The ideal class group of O−14 is cyclic of order 4. The
ideal a−14 = 〈3, 1 +

√−14〉 is not a square in the ideal
class group:

PSL(2,O−14)

=
〈
A,B,U,C,D,E, F | B2, (AB)3,

(A−1C−1BDBAD−1C)2, AUA−1U−1,

(A−1CD−1ABDBC−1)2, D−1CE−1A−3DC−1A3E,

CB−1C−1FC−1BCF−1,

C−1DA−1B−1D−1B−1CA

− E−1A−2CBD−1BA−1DC−1A3E,

ACB−1D−1B−1A−1DC−1

−AFA−1C−1BDBAD−1CA−1F−1
〉

with the matrices

C =
(
ω −5
3 ω

)
, D =

(
4 1 + ω

1 − w 4

)
,

E =
(−5 + 4ω −23

4 − ω 7 + ω

)
, F =

(
13 6ω
−2ω 13

)
,

and

PSL(2, a−14)

=
〈
A,U,C,D,E, F,G | G2, CDC−1D−1, AUA−1U−1,

(CA−1)3, (DGU−1)2, F−1AE−1A−1UFEU−1,

(CGE−1A−1UGU−1AEA−1)3,

(AEU−1DGE−1A−1UGD−1)2,

DC−1GU−1AEGD−1UE−1F−1

− CGE−1A−1UGU−1AEA−1F
〉
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with the matrices

U =
(

1 1−ω
3

0 1

)
, C =

(
1 0
3 1

)
, D =

(
1 0

1 + ω 1

)
,

E =
(−3 − ω −4

6 3 − ω

)
, F =

(−3 + ω −3
2 + 2ω −3 + ω

)
,

G =
( −2 ω−1

3
1 + ω 2

)
.

3. GROUP COHOMOLOGY

In this section we report basic definitions from the co-
homology of groups. Section 3.1 reports a method to
compute the first cohomology group for finitely presented
groups. Our basic reference here is [Brown 82].

Let Γ be a group and M an RΓ-module for a com-
mutative ring R. A derivation from Γ to M is a map
f : Γ →M that satisfies

f(gh) = g · f(h) + f(g)

for all g, h ∈ Γ. For m ∈M the map

fm : Γ →M, fm(g) = g ·m−m,

is a derivation and is called the inner derivation corre-
sponding to m. We write Der(Γ,M) for the space of all
derivations and IDer(Γ,M) for its subspace consisting of
inner derivations. If H1(Γ,M) is the first cohomology
group of Γ with coefficients in M , we have

H1(Γ,M) = Der(Γ,M)/ IDer(Γ,M). (3–1)

Here we are interested in the case Γ ⊆ SL(2, L) ⊆
SL(2,C), where L ⊂ C is a number field. The modules
we consider are derived from the symmetric powers of the
standard representation of SL(2,C). So let V be a two-
dimensional L1-vector space with basis x, y, where L1 is
a field between L and C invariant under complex conju-
gation. Let n be a nonnegative integer. The symmetric
power Symn(L1) has the L1-basis xn−iyi, 0 ≤ i ≤ n. The
action of g ∈ SL(2, L1) is given by

g · xn−iyi =
(
a b
c d

)
· xn−iyi = (ax + cy)n−i(bx+ dy)i,

g =
(
a b
c d

)
. (3–2)

The module Symn(L1) is equal to Symn(L1) as an L1-
vector space, and the action is given by replacing g in
(3–2) by its complex conjugate.

We often use the following simple facts from group co-
homology without further notice. First of all, the spaces

H1(Γ, Symn(L1)⊗Symm(L1))⊗C and H1(Γ, Symn(C)⊗
Symm(C))) are isomorphic for all n,m ≥ 0. Sec-
ond, if m + n is even, the action of Γ on Symn(L1) ⊗
Symm(L1) factors through an action of the image Γ̃ of Γ
in PSL(2,C), and H1(Γ, Symn(L1) ⊗ Symm(L1)) is iso-
morphic to H1(Γ̃, Symn(L1) ⊗ Symm(L1)).

3.1 H1(Γ, M) for Finitely Presented Groups

Here we explain how information about H1(Γ,M) can
be computed from equation (3–1). We assume here that
R is a Euclidean ring and M is a free R-module of finite
rank in which a basis has been chosen. Let Γ be a finitely
presented group given explicitly in the form

Γ = 〈g1, . . . , gs | R1, . . . , Rt〉.
Here we consider the relations R1, . . . , Rt to be explicitly
given words in the generators g1, . . . , gs of Γ and their
inverses. Assume also that the matrices for the action of
g1, . . . , gs on M are explicitly given.

Consider now the R-linear map

Φ : Der(Γ,M) →M s, Φ(f) = (f(g1), . . . , f(gs)).

The image of Φ lies in the kernel of the linear map
Λ : M s → M t, which is obtained by formally expand-
ing the image of each of the relators R1, . . . , Rt un-
der a derivation f : Γ → M in terms of the values
f(g1), . . . , f(gs). It is easily seen that Φ maps Der(Γ,M)
isomorphically to the kernel ker(Λ) of Λ.

Since M s is a free R-module, a basis for the free mod-
ule ker(Λ) can be computed. Consider now the linear
map

μ : M → ker(Λ), μ(m) = ((g1 − 1)m, . . . , (gs − 1)m).

The image of μ may then be described as the linear span
of the images of the basis elements of M . If we express
these in terms of the previously computed basis of ker(Λ),
we see that the effective version of the elementary divisor
theorem can be used to compute the structure of

H1(Γ,M) = Der(Γ,M)/ IDer(Γ,M) = ker(Λ)/Im(μ).
(3–3)

If R is a field, the dimension of H1(Γ,M) can be com-
puted by this method.

Apart from being important for the computation of
cohomology spaces, (3–3) leads to the following (trivial)
estimate.

Lemma 3.1. Let Γ be a group generated by s elements
and M a finite-dimensional RΓ-module for some field R.
Then dimH1(Γ,M) ≤ s dimM.



40 Experimental Mathematics, Vol. 19 (2010), No. 1

A typical problem encountered in our computations
is that the module M can be a vector space of big di-
mension (up to around 50,000) over an algebraic number
field, and that the direct computation of the dimension
of H1(Γ,M) from (3–3) is infeasible.

All discrete subgroups Γ ⊆ SL(2,C) considered in
this paper have the property that they are contained in
SL(2, R) for a finitely generated ring R inside an alge-
braic number field. Let OΓ be a ring containing R and
its complex conjugate.

Suppose p is a prime and OΓ → Fp is a surjective ring
homomorphism. Then En(Fp) inherits the structure of a
Γ-module. By the usual universal coefficient theorem we
have

dimFp H
1(Γ, En(Fp)) ≥ dimC H

1(Γ, En).

A standard argument using Čebotarev’s density theorem
shows that dimC H

1(Γ, En) is equal to the minimum of
the dimensions dimFp H

1(Γ, En(Fp)), where p ranges over
all primes with the above compatibility property. For all
real numbers x we define

dim≤x H
1(Γ, En) = inf

p≤x
{ dimFp H

1(Γ, En(Fp)) },

where p ranges over all primes with p ≤ x that admit
a surjective ring homomorphism OΓ → Fp. The num-
bers dim≤x H

1(Γ, En) are much cheaper to compute than
the actual dimensions dimC H

1(Γ, En). Of course, in the
computations below we hope to have chosen the bound x
large enough to capture dimC H

1(Γ, En). Also, if a lower
bound for this dimension is known beforehand, we can
by this method verify that the actual dimension is equal
to the bound.

3.2 Hecke Operators

In this section we introduce the Hecke operators on co-
homology spaces in a way suitable for explicit compu-
tations. We chose a treatment similar to [Shimura 71,
Section 8.5]; see also [Grunewald et al.7̃8].

If H is a subgroup of a group Γ, and M is a Γ-module,
the inclusion H ↪→ Γ induces a restriction map resΓH :
H∗(Γ,M) −→ H∗(H,M). When [Γ : H ] < ∞, there is
also a map tr : H∗(H,M) −→ H∗(Γ,M) in the oppo-
site direction, called the transfer map (cf. [Brown 82]).
The composition tr ◦ resΓH is multiplication by [Γ : H ] on
H∗(Γ,M).

Now let Γ be a congruence subgroup of SL(2,O),
where O is the ring of integers in an imaginary quad-
ratic number field K, and let M be one of the GL(2,C)-
modules En,m. The groups Γ and δΓδ−1 are easily seen

to be commensurable for every δ ∈ GL(2,K). Define
the Hecke operator Tδ : H1(Γ,M) → H1(Γ,M) by the
diagram

H1(Γ,M) Tδ−−−−→ H1(Γ,M)

res

⏐⏐� �⏐⏐tr

H1(Γ ∩ δΓδ−1,M) δ̃−−−−→ H1(δ−1Γδ ∩ Γ,M)

where δ̃ is the isomorphism in cohomology induced by
conjugation with δ. For a nonzero element a ∈ O we
define

Ta = Tδa with δa =
(

1 0
0 a

)
. (3–4)

The following properties of the linear maps Tδ :
H1(Γ,M) → H1(Γ,M), δ ∈ GL(2,K), are well known
(cf. [Shimura 71, Section 8.5], [Grunewald et al.7̃8]):

• Each Tδ is diagonalizable.

• The characteristic polynomial of Tδ has integral co-
efficients and its zeros are real numbers.

• Tδ depends only on the double coset ΓδΓ.

• If Γ = SL(2,O), then all operators Tδ commute with
each other.

3.3 The Eichler–Shimura Isomorphism

In this subsection we briefly recall the generalized
Eichler–Shimura isomorphism sketched already in the in-
troduction, which will give us the possibility of using re-
sults from the theory of automorphic forms in our study
of cohomology spaces. See also [Harder 87] and [Urban
95, Théorème 3.2] for the case of congruence subgroups
of GL(2,K), K an imaginary quadratic field.

From [Borel and Wallach 80, Chapter II] we know
that for any integer n ≥ 0, and any unitary represen-
tation π of G = SL(2,C), the (g,K)-cohomology space
H1(g,K;H∞

π ⊗ En) is nontrivial if and only if π is the
principal series representation π2n+2,0 (the representa-
tion unitarily induced from the character z → (z/|z|)2n+2

of the maximal torus T 
 C×; cf. Section 5), and one-
dimensional in this case. Therefore, we can deduce from
(1–3) the more explicit isomorphism

Hom(π2n+2,0, L
2
cusp(Γ \ SL(2,C)) 
 H1

cusp(Γ, En)

for any lattice Γ of G.
For use in Section 4, we quickly rewrite this isomor-

phism in a form involving GL(2,C). Define a unitary
character of C∗ by χ∞(x) = x/|x|, and for each inte-
ger n ≥ 0 consider the principal series representation
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ρn
∞ = PS(χn+1

∞ , χ−n−1
∞ ) of GL(2,C). Let Z∞ ⊂ GL(2,C)

be the center of GL(2,C). Then we have an isomorphism

Hom(ρ∞n , L
2
cusp(Γ \ GL(2,C)/Z∞)) 
 H1

cusp(Γ, En).

4. BASE CHANGE

This section contains our results on the construction of
cohomology classes for the Bianchi groups by base change
from classical modular forms for congruence subgroups
of SL(2,Z) and automorphic induction from Hecke char-
acters of quadratic extensions. In particular, we derive
explicit dimension formulas for the corresponding sub-
spaces of the cohomology. For this we fix an imaginary
quadratic number field K = Q(

√
d) and use the notation

of Section 2.1.

4.1 General Results on the Base-Change Construction

Here we present the consequences of the theory of base
change and automorphic induction for the cohomology
of the groups SL(2, a). We give a precise description of
the base-change process and the relevant spaces of holo-
morphic elliptic modular forms. The notation and con-
cepts from the theory of automorphic forms are taken
from [Borel and Wallach 80]. For a quadratic extension
L of Q denote by ωL the associated quadratic character
of A∗

Q/Q
∗.

Let AK be the set of all cuspidal automorphic repre-
sentations of GL(2,AK). See [Langlands 80] for informa-
tion on the base-change map π → πK from GL(2,AQ) to
GL(2,AK). We shall be interested in the following subset
of AK .

Definition 4.1. The set Abc
K of (twisted) base-change rep-

resentations is the set of all Π ∈ AK such that Π 
 πK⊗χ
for an automorphic representation π of GL(2,AQ) and an
idele class character χ of K.

Recall from Section 3.3 the definition of the represen-
tations ρn

∞ of GL(2,C). For an integer n ≥ 0 and a
finite-index subgroup Δ of Ô∗ consider

A1
K(n,Δ) = {Π ∈ AK | Π∞ 
 ρn

∞,Π
K(Δ)
f �= 0},

(where K(Δ) was defined in Section 2.1) and set

A1
K(n) =

⋃
Δ

A1
K(n,Δ).

Furthermore, let

A1,bc
K (n,Δ) = A1

K(n,Δ) ∩ Abc
K

and
A1,bc

K (n) = A1
K(n) ∩Abc

K .

Recall that each representation in AK occurs with multi-
plicity one in L2

cusp(GL(2,K)\GL(2,AK)). Furthermore,
Π ∈ A1

K(n) is equivalent to the conditions that Π∞ 
 ρn
∞

and that the local components Πp at the finite places p

be twists of unramified principal series representations
by characters. Therefore, for Π ∈ A1

K(n,Δ) the space
ΠK(Δ)

f is actually one-dimensional.
If we take a subgroup Δ of Ô∗ with the property Δ ∩

O∗ = {1}, we have by (2–1) an isomorphism

(⊕
a

Hom(ρ∞n , L
2
cusp(SL(2, a) \ GL(2,C)/Z∞))

)[Ô∗:ΔO∗]


 Hom(ρ∞n , L
2
cusp(GL(2,K) \ GL(2,AK)/Z∞K(Δ))),

where a ranges over a system of representatives for the
ideal classes of K. Combining the Eichler–Shimura iso-
morphism from Section 3.3 with multiplicity one and the
fact that dim ΠK(Δ)

f = 1 for Π ∈ A1
K(n,Δ), we obtain

the relation

∑
a

dimH1
cusp(SL(2, a), En) =

∣∣A1
K(n,Δ)

∣∣
[Ô∗ : ΔO∗]

.

It is not difficult to obtain also a finer description
that distinguishes the individual cohomology spaces
dimH1

cusp(SL(2, a), En) for representatives a of different
ideal classes.

For this, consider the action of the abelian groupX(Δ)
(see Section 2.1) on the space

Hom(ρ∞n , L
2
cusp(GL(2,K) \ GL(2,AK)/Z∞K(Δ)))

given by letting ξ ∈ X(Δ) act as multiplication of func-
tions on

GL(2,K) \ GL(2,AK)/Z∞K(Δ)

by ξ ◦ det.
Considering a basis of

Hom(ρ∞n , L
2
cusp(GL(2,K) \ GL(2,AK)/Z∞K(Δ)))

consisting of normalized (cf. [Urban 95, Section 5]) eigen-
functions for the Hecke algebra of K(Δ) (which corre-
spond to the representations in A1

K(n,Δ)), one sees that
the action of X(Δ) induces a permutation of this ba-
sis, and therefore the trace of the action of a nontrivial
element ξ ∈ X(Δ) is equal to the number of elements
Π ∈ A1

K(n,Δ) with Π ⊗ ξ 
 Π.
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It is clear that this number can be nonzero only if ξ is
quadratic, and indeed unramified quadratic, i.e., neces-
sarily of the form ωL ◦ NK/Q for an imaginary quadratic
field L �= K such that LK/K is unramified (see Propo-
sition 4.5 below).

Therefore, we get

dimH1
cusp(SL(2, a), En)

=
1

|X(Δ)|
(∣∣A1

K(n,Δ)
∣∣

+
∑

L∈L(K)

ωL(NK/Q(a))

× ∣∣{Π ∈ A1
K(n,Δ) | Π ⊗ ωL ◦ NK/Q 
 Π}∣∣),

where L(K) denotes the set of all imaginary quadratic
fields L �= K with LK/K unramified.

Furthermore, if A ⊆ A1
K(n,Δ) is any subset invariant

under twisting by characters inX(Δ), we can consider in-
side the space L2

cusp(GL2(K) \ GL(2,AK)/Z∞K(Δ)) the
subspace spanned by representations in A and apply the
same arguments to see that it splits as a direct sum of
spaces of functions supported on a single connected com-
ponent. This implies that it makes sense to speak of
the contribution of representations in A to each space
H1

cusp(SL(2, a), En) and that the dimension of the corre-
sponding subspace is given by

dimH1
cusp,A(SL(2, a), En) (4–1)

=
1

|X(Δ)|
(
|A| +

∑
L∈L(K)

ωL(NK/Q(a))

× ∣∣{Π ∈ A | Π ⊗ ωL ◦ NK/Q 
 Π}∣∣).
In particular, this dimension depends only on the genus of
a and it assumes its maximum on the principal genus. We
are especially interested in evaluating the contribution of
twisted base-change forms to the cohomology, i.e., in the
case A = A1,bc

K (n,Δ).

Definition 4.2. For the set Abc = A1,bc
K (n,Δ) define

H1
bc(SL(2, a), En) := H1

cusp,Abc
(SL(2, a), En)

⊆ H1
cusp(SL(2, a), En).

Note that this definition makes sense, since the right-
hand side is indeed independent of the subgroup Δ with
Δ ∩O∗ = {1}.

Our first goal is to describe the set A1,bc
K (n,Δ) in terms

of holomorphic automorphic forms for GL(2,AQ) satisfy-
ing explicit local conditions. We also need to distinguish

the automorphic representations of CM type. Recall
that for any quadratic extension E/F of number fields
there is a canonical map from Hecke characters of E to
automorphic representations of GL(2,AF ) [Jacquet and
Langlands 70], called automorphic induction (notation:
AIE/F ).

The map is characterized by AIE/F (θ χ ◦ NE/F ) =
AIE/F (θ) ⊗ χ for Hecke characters χ of F and the L-
function identity L(s,AIE/F (θ)) = L(s, θ). The auto-
morphically induced representation is cuspidal if and only
if θτ �= θ, where τ is the automorphism of E/F , and the
fibers of the automorphic induction map are precisely the
orbits {θ, θτ} of τ . There are compatible local induction
maps, which we also denote by AI.

In the following, we fix once and for all for each p ∈ R a
character θp of K∗

p with θp/θ
c
p unramified quadratic. For

characters α and β of Q∗
p let PS(α, β) be the principal

series representation of GL(2,Qp) unitarily induced from
α and β (cf. [Bushnell and Henniart 06, Section 9.11]).

Definition 4.3. For each n ≥ 0 let A1
Q(n) be the set of

all cuspidal automorphic representations π of GL(2,AQ)
such that π∞ is the holomorphic discrete series represen-
tation of weight n+2 and πp is unramified for p /∈ R and
is of one of the following three types for p ∈ R:

1. unramified principal series,

2. PS(α, ωK,pβ) with α, β unramified characters of Q∗
p,

3. AIKp/Qp
(θp) ⊗ γ with an unramified character γ

of Q∗
p.

For any (necessarily imaginary) quadratic extension L
of Q let A1

Q(n;L) be the subset of A1
Q(n) consisting of

representations automorphically induced from L. Recall
that π ∈ A1

Q(n;L) if and only if π ⊗ ωL 
 π [Labesse
and Langlands 79]. We will see that the set of possible
extensions L is precisely L(K).

The basic classification statement is the following
proposition. It shows that we obtain the representations
in A1,bc

K (n,Δ) by base change and character twists from
the elliptic modular forms satisfying the local conditions
of Definition 4.3. Of course, the description depends on
the choice of the local characters θp for p ∈ R.

Proposition 4.4.

(1) If Π ∈ A1,bc
K (n), one can find π ∈ A1

Q(n) \ A1
Q(n;K)

such that Π 
 πK⊗χ for some finite-order idele class
character χ of K.
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(2) If Δ∩O×
K = {1}, then for any π ∈ A1

Q(n)\A1
Q(n;K)

there exists a finite-order idele class character χ of
K with πK ⊗χ ∈ A1

K(n,Δ). The set of all such char-
acters χ is a principal homogeneous space for X(Δ).

Proof: For an automorphic representation π of GL(2,AQ)
we have πK ∈ A1

K(n) if and only if π is not automor-
phically induced from K, π∞ is up to a character twist
the holomorphic or antiholomorphic discrete series rep-
resentation of weight n + 2, and each πp satisfies up to
a character twist the local condition of Definition 4.3. It
is not difficult to deduce from this the assertions of the
proposition.

We can also classify the CM representations of interest
to us as follows.

Proposition 4.5.

1. If A1
Q(n;L) is nonempty, then L is an imaginary

quadratic extension of Q such that for all primes p
the character ωL,p is either unramified or the product
of ωK,p and an unramified character.

2. If for Π ∈ A1
K(n) there exists a character γ �= 1 with

Π ⊗ γ 
 Π, then the character γ is necessarily of
the form ωKL/K = ωL ◦ NK/Q for some quadratic
extension L/Q as above.

The set of all imaginary quadratic number fields differ-
ent from K and satisfying the conditions of assertion (1)
of Proposition 4.5 is precisely the set L(K) of imaginary
quadratic fields different from K for which LK/K is un-
ramified. Equivalently, it is the set of all imaginary quad-
ratic fields L for which the discriminant dL is a proper
divisor of the discriminant of K and the two factors dL

and dK/dL are coprime.
Consider now for each π ∈ A1

Q(n) \ A1
Q(n;K) the set

A1
K(n,Δ;π) := {Π = πK ⊗ χ|Π ∈ A1

K(n,Δ)}.

Clearly, the sets A1
K(n,Δ;π) form a partition of

A1,bc
K (n,Δ). Assuming Δ ∩ O∗

K = {1}, the
set A1

K(n,Δ;π) has cardinality |X(Δ)| if π is not
automorphically induced from any quadratic field L,
and |X(Δ)|/2 otherwise. It remains to count for any
π ∈ A1

Q(n) the number of π′ with A1
K(n,Δ;π′) =

A1
K(n,Δ;π). We first consider the non-CM representa-

tions.

Proposition 4.6. For π ∈ A1
Q(n) \⋃L∈L(K)∪{K}A1

Q(n;L)
the set

{π′ ∈ A1
Q(n)|A1

K(n,Δ;π′) = A1
K(n,Δ;π)}

consists of the twists π⊗ γ for all characters γ such that
γp is unramified for all p where πp is unramified, and γp

is unramified or the product of ωK,p and an unramified
character at the primes p where πp is ramified. In partic-
ular, it has cardinality 2|R(π)|, where R(π) ⊆ R denotes
the set of all primes p where πp is ramified.

Therefore, if we want to write the cardinality of
A1,bc

K (n,Δ) as a sum over all representations

π ∈ A1
Q(n) \ A1

Q(n;K),

each non-CM representation

π ∈ A1
Q(n) \

⋃
L

A1
Q(n;L)

has to be weighted by the factor |X(Δ)|2−|R(π)|.

Example 4.7. Consider the case in which a single prime
p is ramified in K. In this case, the set A1

Q(n) consists
of the automorphic representations associated to classical
modular forms of weight n+2 for SL(2,Z), for Γ0(p) with
character ωK , or of p-power level with πp 
 AI(θp)⊗ γp,
γp unramified. The CM forms for K have to be omitted.
In this case, there are no other fields L to be consid-
ered. To obtain the dimension of H1

bc(SL(2,O), En), the
dimension of the corresponding spaces of modular forms
has to be weighted by a factor 1

2 except in the SL(2,Z)
case.

In the count for the representations in
A1,bc

K (n,Δ), the main term is therefore given by
|X(Δ)|∑π∈A1

Q
(n) 2−|R(π)|. The contributions from

CM representations have to be modified by omitting
the representations automorphically induced from the
field K and weighting the contribution of the repre-
sentations induced from quadratic fields L ∈ L(K)
by an additional factor 1

2 . The reason for this is that
for these representations there are more equivalences
A1

K(n,Δ;π′) = A1
K(n,Δ;π) than in the non-CM case.

To give some more details, we first explicate the local
conditions on CM representations in A1

Q(n). Recall the
definition of the local character at infinity χ∞ in Sec-
tion 3.3.
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Lemma 4.8. Let L ∈ L(K) be an imaginary quadratic
field. Write AIKp/Qp

(θp) = AILp/Qp
(θp,Lp) with a char-

acter θp,Lp of L∗
p for all p ∈ R, where p is nonsplit in L

(note that this is possible). For an idele class character
ψ of L with ψ∞ = χ

−(n+1)
∞ and unramified at primes not

above primes in R we have AIL/Q(ψ) ∈ A1
Q(n) if and

only if the following local conditions are satisfied:

(1) If p ∈ R splits in L, ψp is either unramified or of
the form (αp, ωK,pβp) or (ωK,pαp, βp) for unramified
characters αp and βp of Q∗

p.

(2) If p ∈ R is inert in L, ψp is either unramified or the
product of θp,Lp or θc

p,Lp
and an unramified charac-

ter.

(3) If p ∈ R ramifies in L, ψp is either unramified or the
product of θp,Lp and an unramified character.

We can also explicate the equivalence relation
A1

K(n,Δ;π′) = A1
K(n,Δ;π) for these representations.

Lemma 4.9. If A1
K(n,Δ;π′) = A1

K(n,Δ;π) for π, π′ ∈
A1

Q(n) that are automorphically induced from quadratic
extensions, they are necessarily induced from the same
quadratic extension L. Furthermore, for π = AIL/Q(ψ)
and π′ = AIL/Q(ψ′) with ψ and ψ′ as above, the equiv-
alence A1

K(n,Δ;π′) = A1
K(n,Δ;π) is true if and only if

either δ = ψ′/ψ = γ◦NL/Q for some idele class character
γ of Q or δ = ψ′/ψ satisfies δ/δc = ωK ◦ NL/Q.

With these descriptions in hand, one can obtain a pre-
liminary formula for the cardinality of A1,bc

K (n,Δ), which
will in a second step be refined to a completely explicit ex-
pression. Using (4–1) we can then compute the contribu-
tion to the cohomology of each individual group SL(2, a).

To simplify the notation, we need the following defi-
nition: for an integer n and an imaginary quadratic field
L define νL,n ∈ {0, 1} as follows:

1. If L is the field Q(
√−3), set

νL,n =

{
1, if n ≡ 2 (mod 3),
0, otherwise.

2. If L = Q(i), set

νL,n =

{
1, if n ≡ 1 (mod 2),
0, otherwise.

3. If L is not one of the two exceptional fields, we sim-
ply set νL,n = 1 for all n.

Proposition 4.10.

(1) The cardinality of the set A1,bc
K (n,Δ) is given by∣∣∣A1,bc

K (n,Δ)
∣∣∣

|X(Δ)| =
∑

π∈A1
Q
(n)

2−|R(π)| − νK,n
hK

2

−
∑

L∈L(K)

νL,n2|R|−|RL|−2hL.

(2) For L ∈ L(K) we have∣∣∣{Π ∈ A1,bc
K (n,Δ)|Π ⊗ ωL ◦ NK/Q 
 Π}

∣∣∣
|X(Δ)|

= νL,n2|R|−|RL|−2hL.

Combining this proposition with (4–1) and the fact
that

∣∣A1
Q(n;K)

∣∣ = νK,n2|R|−1hK , we can immediately
deduce the following:

Proposition 4.11. The dimension of the base-change part
of the cohomology of the group SL(2, a) is given by

dimH1
bc(SL(2, a), En)

=
∑

π∈A1
Q
(n)

2−|R(π)| − νK,n
hK

2

−
∑

L∈L(K),ωL(N(a))=−1

νL,n2|R|−|RL|−1hL.

4.2 CM Classes

As a consequence we also obtain the following results on
cohomology spaces associated to CM automorphic forms.
We introduce the following notation.

Definition 4.12. If ACM ⊆ A1
K(n,Δ) is the subset of

all automorphic representations automorphically induced
from quadratic extensions of K, define

H1
CM(SL(2, a), En) := H1

cusp,ACM
(SL(2, a), En)

⊆ H1
cusp(SL(2, a), En).

Note that the corresponding space is again indepen-
dent of the choice of Δ with Δ ∩ O∗ = {1}.

First consider the intersection of this space with H1
bc.

The following proposition follows immediately from (4–1)
and statement (2) of Proposition 4.10.
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Proposition 4.13. For L ∈ L(K), the representations in
A1,bc

K (n,Δ) automorphically induced from KL contribute
to H1

bc(SL(2, a), En) a space of dimension{
νL,n2|R|−|RL|−1hL, if ωL(N(a)) = 1,
0, otherwise.

We can also consider all representations in A1
K(n,Δ)

automorphically induced from a fixed quadratic exten-
sion of K, necessarily of the form KL for an imaginary
quadratic extension L as above. For this, let L′ be the
real quadratic subfield of LK and h+

L′ its narrow ideal
class number. The total number of such representations
is then equal to

|X(Δ)|
2

νL,nhLh
+
L′ . (4–2)

Consequently, we obtain the following result.

Proposition 4.14. For L ∈ L(K), the contribution
of representations automorphically induced from KL to
H1

cusp(SL(2, a), En) has dimension{
νL,nh

+
L′hL, if ωL(N(a)) = 1,

0, otherwise.

Note that this is precisely the contribution of twisted
base-change representations of the corresponding type
times a factor of h+

L′/2|R|−|RL|−1, which is the number
of narrow ideal classes in a narrow genus of L′.

The following relation between the dimension of the
cohomology spaces for SL(2, a) and SL(2,O) follows im-
mediately from (4–2) and (4–1), this time applied with
A = A1

K(n,Δ).

Proposition 4.15. For any fractional ideal a of K we have

dimH1
cusp(SL(2, a), En)

= dimH1
cusp(SL(2,O), En)

−
∑

L∈L(K)
ωL(N(a))=−1

νL,nh
+
L′hL.

Corollary 4.16. For L ∈ L(K) there exist representa-
tions in A1(n,Δ) automorphically induced from KL that
are not twisted base changes from Q if and only if the
narrow ideal class number h+

L′ of the real quadratic sub-
field L′ of KL is greater than the corresponding num-
ber g+

L′ = 2|R(L′)|−1 of genera. In this case, the con-
tribution of these representations to the dimension of

H1
cusp(SL(2, a), En) is independent of n if L is not one

of the two exceptional fields Q(
√−3) and Q(i) and in

the two exceptional cases is constant on residue classes
modulo 3 and 2, respectively,.

The existence of such representations (i.e., the failure
of the relation H1

CM ⊆ H1
bc for the field K) is equivalent

to the existence of a real quadratic field L′ with h+
L′ >

g+
L′ and KL′/K unramified (equivalently, dL′ divides the

discriminant dK , and dL′ and dK/dL′ are coprime).

In the following table we give the real quadratic fields
L′ = Q(

√
D) with the five smallest discriminants for

which the criterion of Corollary 4.16 is satisfied:

D = dL′ g+ h+

136 = 8 · 17 2 4
145 = 5 · 29 2 4
205 = 5 · 41 2 4
221 = 13 · 17 2 8
229 1 3

4.3 Dimension Formulas

We now deduce from the preliminary formula of Propo-
sition 4.11 a completely explicit dimension formula for
H1

bc. For p ∈ R let νp be the exact power of p dividing
the discriminant of K. We have νp = 1 for p �= 2 and
ν2 = 2 or 3.

For any integer n set

εn =

{
(−1)n/2

4 , if n ≡ 0 (mod 2),
0, otherwise,

and

μn =

⎧⎪⎨
⎪⎩

0, if n ≡ 1 (mod 3),
− 1

3 , if n ≡ 2 (mod 3),
1
3 , if n ≡ 0 (mod 3).

Theorem 4.17. Let K = Q(
√
d) be an imaginary quad-

ratic number field with ring of integers O and let n be a
nonnegative integer. We have

dimH1
bc(SL(2,O), En)

=

⎛
⎝ 1

24

∏
p∈R

(pνp + 1) + c2(−1)n+1

⎞
⎠ (n+ 1)

− νK,n
hK

2
− 2|R|−2 + c4εn+2 + c3μn+2 + δn,0,

where δn,0 stands for the Kronecker delta. The constant
c2 is given by

c2 =

{
2|R|−4, if p ≡ 1 (mod 4) for all p ∈ R, p �= 2,
0, otherwise.
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The constants c4 and c3 are given by

c4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2|R|, if p ≡ 1 or 3 (mod 8) for all p ∈ R,
2|R|−1, if 2 ∈ R and p ≡ 1 or 3 (mod 8)

for all p ∈ R, p �= 2,
0, otherwise,

and

c3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2|R|−1, if pνp ≡ 1 (mod 3) for all p ∈ R,
2|R|−2, if 3 ∈ R and pνp ≡ 1 (mod 3)

for all p ∈ R, p �= 3,
0, otherwise.

Furthermore, for any fractional ideal a of K we have

dimH1
bc(SL(2, a), En)

= dimH1
bc(SL(2,O), En)

−
∑
L �=K

ωL(N(a))=−1

νL,k2|R|−|RL|−1hL.

It is interesting to compare the resulting lower
bound for the dimension of the cohomology group
H1

cusp(SL(2,O),C) with the lower bound obtained in
[Rohlfs 85]. In [Krämer 85], a lower bound for the di-
mension of H1

cusp(SL(2,O),C) agreeing with the bound
for dimH1

bc(SL(2,O),C) given in the above theorem is
derived by a different method.

Given Proposition 4.11, the proof of Theorem 4.17
rests on the dimension computations for spaces of holo-
morphic elliptic modular forms with fixed local compo-
nents. We summarize the ingredients necessary to carry
out this task in the remaining part of this subsection,
while omitting some elementary computations. The pos-
sible local components are given in Definition 4.3. The
dimension computation is based on the following proposi-
tion. Here, we denote by Sk(Γ(N)) the space of weight k
elliptic modular forms for the principal congruence sub-
group Γ(N) ⊆ SL(2,Z) of level N .

Proposition 4.18. Let N ≥ 1 and k ≥ 2 be integers
and σ a representation of GN = SL(2,Z/NZ) such that
σ(−Id2) is the scalar (−1)k. Let UN ⊆ GN be the sub-
group of all upper triangular unipotent elements and S3

and S4 the images in GN of elements of SL(2,Z) of order
3 and 4, respectively. Then

dim HomGN (σ, Sk(Γ(N)))

=
k − 1
12

dim σ − 1
2

dimσUN + εk tr σ(S4)

+ ρk tr σ(S3) + δk,2 dimσGN .

It is not difficult to prove this proposition using the
description of SL(2,Z) as an amalgamated product of
〈−S3〉 and 〈S4〉 and the Eichler–Shimura isomorphism.
Of course, it is also a consequence of the trace formula.
By taking for σ a representation induced from the Borel
subgroup, one recovers the classical dimension formu-
las for the group Γ0(N) with nebentype (cf. [Cohen and
Oesterlé 77]).

It remains to make explicit the representations of
SL(2,Z/NZ) corresponding to the local conditions of
Definition 4.3 and to compute the terms appearing in
Proposition 4.18. In fact, we will consider irreducible
representations σ of GL(2,Z/NZ) occurring in the auto-
morphic representations π in question with multiplicity
one and use their restrictions to SL(2,Z/NZ).

The representations σ can be written as tensor prod-
ucts of representations σp of GL(2,Z/pνpZ) for p ∈ R(π).
For the principal series representations of Definition 4.3
the necessary computation of dimensions and charac-
ter values is standard, and we refer to [Cohen and
Oesterlé 77]. For the convenience of the reader we re-
peat the results here.

The dimension of the corresponding representation σp

is pνp−1(p + 1). The dimension of the space of Upνp -
invariants is 2. The character values are given by

tr σp(S3) =

⎧⎪⎨
⎪⎩

0, if p ≡ 2 (mod 3),
1, if p = 3,
2, if p ≡ 1 (mod 3),

and

tr σp(S4) =

{
2(−1)(p−1)/4, if p ≡ 1 (mod 4),
0, otherwise.

The parity of σp is equal to ωK,p(−1).
For the supercuspidal components we can use the con-

structions of [Bushnell and Henniart 06].

Lemma 4.19. Let p ∈ R and let Qp2 be the unramified
quadratic extension of Qp. We can write the represen-
tation πp = AIKp/Qp

(θp) as AIQp2/Qp
(θ′p) with a charac-

ter θ′p of Q∗
p2 satisfying θ′p/(θ′p)τ = ωK,p ◦NQp2/Qp

. The
minimal conductor of such a character is pνp . Assume in
the following that θ′p has this minimal conductor. Then
πp contains (with multiplicity one) a unique represen-
tation of GL(2,Zp) that factors through GL(2,Z/pνpZ).
Let σp be the representation of GL(2,Z/pνpZ) thus ob-
tained. The dimension of σp is pνp−1(p− 1). If p is odd,
σp is the cuspidal representation of GL(2,Fp) associated
to the character of F∗

p2 obtained by restricting θ′p.
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Furthermore, we have the following values for the
traces at the torsion elements of SL(2,Z):

tr σp(S3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if p ≡ 1 (mod 3),
−2, if p ≡ 2 (mod 3), p > 2,

or p = 2, νp = 3,
−1, if p = 3,
2, if p = 2, νp = 2,

and

trσp(S4) =

{
2(−1)(p−3)/4, if p ≡ 3 (mod 4),
0, otherwise.

The parity of σp is −ωK,p(−1) except in the case p = 2,
νp = 2, where it is −1, while ωK,p(−1) = −1.

Proof: We briefly sketch the ingredients of the proof. Ev-
erything is based on the tame parametrization theorem
of [Bushnell and Henniart 06, Theorem 20.2] and the ex-
plicit constructions in its proof. The case of odd p is
covered by [Bushnell and Henniart 06, Proposition 19.1].
Dimensions and character values can then be read off
from the standard description of cuspidal representa-
tions over finite fields in [Bushnell and Henniart 06, The-
orem 6.4]. For p = 2 we need the constructions of
[Bushnell and Henniart 06, Sections 19.3 and 19.4] to-
gether with [Bushnell and Henniart 06, Section 15.8] to
describe the representations of GL(2,Z2) and to com-
pute the character values. The dimension statement can
be found in [Bushnell and Henniart 06, Lemma 27.6].

We can now finish the proof of Theorem 4.17. For
any tensor product of local representations σp the dimen-
sions and character values are obtained by multiplication.
The space of UN -invariants is nontrivial only if all local
components are principal series representations. The last
term in Proposition 4.18 appears only for representations
of level one (i.e., for σ the trivial representation). It re-
mains to compute for each n the sum of the contributions
in Proposition 4.11 for all possible combinations of local
components with total parity (−1)n. This is a tedious
but elementary computation, which we omit here.

4.4 Bounds for the Cohomology of Bianchi Groups

In this subsection we use the results of Section 4.3 to
give some bounds for the dimension of the cohomology
spaces H1(SL(2,Od), En) as |d| or n goes to infinity.
The first result is a more or less obvious consequence of
Theorem 4.17.

Corollary 4.20. Let K be an imaginary quadratic number
field with ring of integers OK . There is a bound C1 > 0
such that

dimH1(SL(2,OK), En) ≥ C1n (as n→ ∞).

For the proof we have only to show that the coefficient
of n+ 1 in the formula of Theorem 4.17 is nonnegative.

The second result we see as a complement
to the following theorem, which is proved in
[Belilopetsky et al. 10].

Theorem 4.21. Let G be a simple Lie group with Haar
measure μ. There is a constant C2 > 0 such that d(Γ) is
at most C2vol(G/Γ) for every lattice Γ in G, where d(Γ)
is the minimal number of generators of Γ.

To use this theorem, note that

vol (SL(2,C)/ SL(2,Od)) =
|d|3/2

4π2
ζK(2),

where ζK(s) is the Dedekind zeta function of K; see
[Elstrodt et al. 98, Section 7]. It is easy to see that
ζK(2) is bounded between two positive real numbers for
all imaginary quadratic fields K. In view of Lemma 3.1,
we obtain the following corollary.

Corollary 4.22. Let n be a (fixed) nonnegative integer.
There is a constant C3 > 0 such that

dimH1(SL(2,Od), En) ≤ C3|d|3/2 as |d| → ∞.

We remark that this result also follows from the trace-
formula methods of Section 5 below.

Theorem 4.17 implies the following result.

Proposition 4.23. Let n be a (fixed) nonnegative integer.
There is a constant C4 > 0 such that

dimH1(SL(2,Od), En) ≥ C4|d| as |d| → ∞.

4.5 Base Change and Cocompact Arithmetic Groups

By [Labesse and Schwermer 86] and [Rajan 04], it is pos-
sible to use base change and the Jacquet–Langlands cor-
respondence to study the cohomology of the cocompact
arithmetic groups Γ associated with quaternion algebras
defined over fields L such that the extension L/Ltr, where
Ltr is the maximal totally real subfield of L, is solvable.
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If L/Ltr is quadratic, one can obtain for all n ≥ 0 a lower
bound for dimH1(Γ, En) by this method. The resulting
bound is determined by the dimension of certain spaces
of Hilbert modular forms of weight (n + 2, 2, . . . , 2) for
Ltr, and will again be linear on congruence classes. We do
not go into the details here. Note that in contrast to the
case of the Bianchi groups, for a particular group Γ the
resulting bound will often be trivial. However, if we con-
sider the collection of all congruence subgroups, we can
easily obtain the following qualitative result concerning
Question 1.15.

Proposition 4.24. Let Γ be an arithmetic subgroup of
SL(2,C) such that the field of definition L of the cor-
responding quaternion algebra is a quadratic extension of
its maximal totally real subfield Ltr. Then for every c > 0
there exists a finite-index subgroup Δ of Γ such that

dimH1(Δ, En) > cn

for all n ≥ 0.

Proof: By [Labesse and Schwermer 86], for a suitable Δ
a lower bound for the dimension of the cohomology is
given by the dimension of the space of Hilbert modular
newforms of weight (n + 2, 2, . . . , 2) for certain congru-
ence subgroups of GL(2, Ltr). By adding additional local
conditions, it is easily seen that it is possible to assume
that the subgroups in question are torsion-free. Further-
more, their covolume can be made arbitrarily large by
changing Δ. Shimizu’s dimension formula [Shimizu 63]
implies then that for any c > 0 we can find a subgroup
Δ such that the dimension of the corresponding space of
Hilbert modular forms is greater than or equal to c(n+1)
for all n ≥ 0.

Note that the conjecture of Waldhausen and Thurston
has been verified in [Rajan 04] for all groups Γ with L/Ltr

solvable. Under this assumption, his method also yields
a generalization of Proposition 4.24, in which the repre-
sentations En are replaced by certain twisted variants. If
base change for SL(2) for arbitrary extensions of number
fields were available, one could prove these statements
for all arithmetic lattices.

5. UPPER BOUNDS FOR THE DIMENSION OF H1

In this section we derive upper bounds for the dimen-
sion of the cohomology spaces H1(Γ, En) using the gen-
eralized Eichler–Shimura isomorphism to transform the

problem into a question on multiplicities of representa-
tions in L2(SL(2,C)/Γ) and then using the trace formula
to obtain information on these multiplicities. We first
set up the form of the trace formula we need by special-
izing the work of W. Hoffmann to our situation [Hoff-
mann 97, Hoffmann 99]. Then we consider the behavior
of the dimension of H1(Γ, En) as a function of n and its
behavior for fixed n as Γ varies over the standard con-
gruence subgroups Γ0(a) of a Bianchi group (our result
is in fact slightly more general; cf. Theorem 5.5 below).

5.1 Review of the Invariant Trace Formula
for SL(2, C)

Let Γ be a general discrete subgroup ofG = SL(2,C) of fi-
nite covolume and consider the discrete part of L2(G/Γ),
which is a Hilbert space direct sum of irreducible unitary
representations π of G, each one occurring with a finite
multiplicity m(π,Γ).

The irreducible unitary representations of G most im-
portant to us are the principal series representations
πm,iν for integers m and real parameters ν, which are
obtained by unitary induction from the characters

σm,iν(eu+iθ) = ei(νu+mθ)

of the maximal torus T 
 C× of G. The representations
πm,iν and π−m,−iν are equivalent.

We are interested in bounding the multiplicities
m(πm,0) from above. As explicated above, the dimen-
sion of H1

cusp(Γ, En) is the same as the multiplicity
m(π2n+2,0).

We first recall the trace formula for L2(G/Γ) in the
form in which it has been explicitly worked out by Hoff-
mann for lattices of rank one [Hoffmann 99]. We special-
ize his results to the simpler case of G = SL(2,C) and the
trivial Hecke operator. As preparation, we need to recall
the basic relations between orbital integrals and principal
series characters and the explicit form of the Plancherel
formula, for which we use [Knapp 86, Chapter XI] as a
reference. We normalize measures as in that work, i.e.,
we use the Haar measure on G given by the product mea-
sure dk dn da associated with the Iwasawa decomposition
G = KNA, where dk givesK = SU(2) total measure one;
dn is the standard measure on N 
 C, the upper trian-
gular unipotent subgroup; and the measure da on the
subgroup A 
 R>0 of positive real diagonal matrices in
G is du in the parameterization u → diag(eu, e−u). We
consider compactly supported functions f ∈ C∞

c (G). To
such a function is associated the function FT

f ∈ C∞
c (T )



Finis et al.: The Cohomology of Lattices in SL(2, C) 49

defined by

FT
f (t) = e2u

∫
K×N

f(ktnk−1) dk dn.

For g ∈ G set

DG(g) = det
g/gg

(1 − ad(g)).

Then |DG(g)|1/2 = |t − t−1|2 for a regular semisimple
element g with eigenvalues t and t−1, and DG(g) = 1
otherwise. For g ∈ G define the orbital integral

JG(g, f) = |DG(g)|1/2

∫
G/Gg

f(xgx−1)dx.

Then JG(t, f) = FT
f (t) for all regular elements t ∈ T

[Knapp 86, (11.13), (11.14)]. From this, one sees imme-
diately that FT

f (t) = FT
f (t−1). It is also easy to see that

FT
f (±1) = 8πJG(±n1, f) for n1 = ( 1 1

0 1 ).
The Fourier transform of FT

f yields the characters of
the principal series representations:

Θm,iν(f) =
1
2π

∫
T

FT
f (eu+iθ)ei(νu+mθ) du dθ

and

FT
f (eu+iθ) =

1
2π

∑
m∈Z

∫ ∞

−∞
Θm,iν(f)e−i(νu+mθ) dν.

The Plancherel formula for G is given by [Knapp 86, The-
orem 11.2] (up to a minor correction):

f(1) =
1

16π2

∑
m∈Z

∫ ∞

−∞
Θm,iν(f)(m2 + ν2) dν.

For a discrete subgroup Γ of G of finite covolume let C
be the set of all cuspidal parabolic subgroups of G, i.e.,
of all parabolic subgroups fixing a cusp of Γ. Let Γ(∗) be
the set of all semisimple elements of Γ that do not fix a
cusp together with the elements of Γ∩ {±1}, and on the
other hand, let Γce be the set of semisimple elements of
Γ different from ±1 and stabilizing a cusp. For ξ ∈ Γce

let A(ξ) be the unique conjugate of the subgroup A con-
tained in the centralizer of ξ. For the definition of the
weight factor vξ for ξ ∈ Γce we refer to [Hoffmann 99,
p. 105]. For each P ∈ C let ΓM (P ) be the set of pro-
jections to a Levi component L of P of the elements of
Γ ∩ P . For η ∈ ΓM (P ) we define constants C(P, η,Γ)
(called CP (ηn1, χΓ) in [Hoffmann 99, p. 106]) in terms
of Epstein zeta functions associated to ηΓ ∩N . Namely,
C(P, η,Γ) is the constant term in the Laurent expansion
at z = 1 of the meromorphic function

C(P, η,Γ; z) =
2vol(N/Γ ∩N)

|ΓM (P )|
∑

ξ∈ηΓ∩N,ξ �=1

1
|u(ξ)|2z

,

where we choose kP ∈ K such that k−1
P PkP is the stan-

dard upper triangular Borel subgroup P0 and write

ξ = kP

(
1 u(ξ)
0 1

)
k−1

P , ξ ∈ N.

The absolute value of u(ξ) does not depend on the
choice of kP . For η = 1 we can write C(P, 1,Γ) =
2πκΛ(P )/|ΓM (P )| for the lattice Λ(P ) = u(Γ ∩ N) in
C, where κΛ denotes the constant term in the expan-
sion of |Λ|

π

∑
λ∈Λ\{0} |λ|−2z at z = 1 (this notation agrees

with [Hoffmann 99, Lemma 6.5.2]). We also need dis-
tributions IL(η), which are Arthur’s invariant modifica-
tions of weighted orbital integrals (cf. [Hoffmann 99, Sec-
tion 5]). Finally, let Φ(σm,s) be the scattering matrix of
Γ defined in [Elstrodt et al. 98, p. 122] (and denoted by
S(χΓ, w̃, σΛ) there) and φ = detΦ its determinant (with
respect to a suitable identification of the vector spaces in
question, the choice of which is unimportant for our pur-
poses). We can now quote [Hoffmann 99, Theorem 6.4],
specialized to our situation.

Theorem 5.1. For f ∈ C∞
c (G) the trace of the correspond-

ing convolution operator on the discrete part of L2(G/Γ)
is given by

tr πdisc
Γ (f) =

∑
{ξ}Γ⊂Γ(∗)

vol(Gξ/Γξ)|DG(ξ)|−1/2JG(ξ, f)

+
∑

{ξ}Γ⊂Γce

vol(Gξ/ΓξA(ξ))vξ |DG(ξ)|−1/2JG(ξ, f)

+
∑

P∈C,η∈ΓM(P )∩{±1}
C(P, η,Γ)JG(η ( 1 1

0 1 ) , f)

+
1
2

∑
P∈C,η∈ΓM (P )

|ΓM (P )|−1IL(η, f)

+
1
4π

∑
m∈Z

∫ ∞

−∞

φ′(σm,iν)
φ(σm,iν)

Θm,iν(f) dν

− 1
4

tr Φ(σ0,0)Θ0,0(f).

The distributions IL(η) can be explicitly described
in terms of the character values Θm,iν(f). We need
here only the limiting case η = 1. Denote by ψ(s) =
Γ′(s)/Γ(s) the logarithmic derivative of the gamma func-
tion. The following proposition follows easily from Hoff-
mann’s work in [Hoffmann 97].
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Proposition 5.2. For the trivial element of G the distri-
bution IL(1) is given by

IL(1, f) =
1
2π

∑
m∈Z

∫ ∞

−∞
ΩL(1, σm,iν)Θm,iν(f) dν

+
1
2
Θ0,0(f)

with the function

ΩL(1, σm,iν) = ψ(1) − Reψ
(
m+ iν

2

)
.

Note that although the function ψ has a simple pole
at s = 0, the real part of ψ(iν/2) is continuous at ν = 0,
and in fact Reψ(iν/2) = Reψ(1 + iν/2).

Proof: Hoffmann considers invariant distributions IP
closely related to IL; cf. [Hoffmann 97, p. 58 bottom]
for their precise relation. The normalization factor
rP̄ P (σm,iν) there is up to a constant equal to 1/(|m|+iν)
(cf. [Knapp and Stein 71]). The distributions IP (1) are
explicitly given by [Hoffmann 97, Corollary, p. 96]. Note
that we have only two roots α and ᾱ and have to insert
λ(Hα) = (m+ iν)/2 and λ(Hᾱ) = (−m+ iν)/2 into the
expression given there. Putting everything together and
using the well-known relation Γ(s)Γ(1 − s) = π/ sinπs,
one obtains the formula above.

The reader may compare the resulting explicit trace
formula, which involves only the function FT

f on T

and its Fourier transform, with the trace formula for
K-bi-invariant functions f given in [Elstrodt et al. 98,
Theorem 6.5.1].

5.2 The Dimension of H1: Behavior with n

We now turn to the behavior of the multiplicities
m(πm,0,Γ) as m → ∞ for a fixed group Γ. The method
extends to cohomological representations of groups of real
rank one without discrete series. It is an adaption of the
method of [Duistermaat et al. 79, Section 9] for bound-
ing the remainder term in Weyl’s law. Our result is the
following.

Theorem 5.3. For any discrete subgroup Γ ⊆ G of finite
covolume one has

m(πm,0) = O(m2/ logm), m→ ∞.

As an immediate consequence we have the following
corollary.

Corollary 5.4. For any discrete subgroup Γ ⊆ G of finite
covolume one has

dimH1(Γ, En) = O(n2/ logn), n→ ∞.

Proof of Theorem 5.3: By passing to a finite-index sub-
group, we can assume that Γ is torsion-free and ΓM (P ) =
{1} for all P .

Let m ≥ 1 and let g0 be an even C∞ function with
support contained in [−1, 1], nonnegative Fourier trans-
form h0, and h0(0) > 0. Consider the functions

g(eu+iθ) = 2εg0(εu) cosmθ

on T , with ε > 0 being specified later. For f ∈ C∞
c (G)

with FT
f = g we have

Θ±m,iν(f) = h0(ε−1ν),

and Θn,iν(f) = 0 for |n| �= m. Insert f into the trace
formula of Theorem 5.1 and note that because of our
assumption on Γ, the sum in the second line is empty,
while the sums in the third and fourth lines involve only
η = 1. Also, the expression in the last line vanishes.
Moving the integral involving the scattering matrix to
the other side, we obtain an expression for

2
∑

ν

m(πm,iν)h0(ε−1ν) − 1
2π

∫ ∞

−∞

φ′(σm,iν)
φ(σm,iν )

h0(ε−1ν) dν

(5–1)
as the sum of the remaining terms on the right-hand side
(i.e., the sum of the first, third, and fourth lines). As
usual, we split the sum in the first line as

vol(G/Γ)f(1)

+
∑

{ξ}Γ⊂Γ(∗),ξ �=1

vol(Gξ/Γξ)|DG(ξ)|−1/2JG(ξ, f).

By the Plancherel formula, we can express the first term
as

vol(G/Γ)
8π2

∫ ∞

−∞
h0(ε−1ν)(m2 + ν2)dν = C1εm

2 + C2ε
3

with constants C1 and C2 depending only on Γ and h0.
By [Duistermaat et al. 79, pp. 90–91], since the abso-

lute values of the orbital integrals JG(ξ, f) are bounded
independently of m, the second term can be estimated by
C3e

C4/ε. The third line of the trace formula is a constant
multiple of FT

f (1), and therefore of the form C5ε. To esti-
mate the weighted orbital integrals, we use the standard
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approximation ψ(s) = log s + O(1) for Re s ≥ δ > 0 to
get

|ΩL(1, σm,iν)| ≤ 1
2

log(m2+ν2)+C6 ≤ logm+
ν2

2m2
+C6.

From this one obtains

|IL(1, f)| ≤ (C7 + C8 logm)ε+ C9
ε3

m2
.

Taking ε = c/ logm with a suitable constant c, one may
conclude that with this choice, the expression (5–1) is
O(m2/ logm) as m → ∞. Now for each m the deter-
minant of the scattering matrix may be written as a
Hadamard product

φ(σm,s) = φ(σm,0)qs
m

∏
η∈Pm

s+ η̄

s− η

with positive real constants qm bounded from above,
where the product runs over the set Pm of poles of
φ(σm, s), which all have negative real part. Note that
for m ≥ 1 the Eisenstein series and the scattering deter-
minant cannot have a pole on the real axis, since the cor-
responding induced representations do not have any uni-
tarizable subquotients. Taking logarithmic derivatives,
one sees that log qm − φ′(σm,iν)/φ(σm,iν ) is positive real
for all ν. Since h0 was assumed to be nonnegative, (5–1)
is therefore up to a term going to zero with m an upper
bound for m(πm,0)h0(0). The theorem follows.

We remark that for congruence subgroups of the
Bianchi groups SL(2,OK), K imaginary quadratic, stan-
dard estimates for the logarithmic derivatives of Hecke
L-functions imply that the contribution from the contin-
uous spectrum in (5–1) is O(ε logm) as ε goes to zero
for m → ∞, and that it is therefore bounded with our
choice of ε.

5.3 The Dimension of H1: Congruence Subgroups of
Bianchi Groups

We now consider finite-index subgroups of the Bianchi
groups SL(2,OK). For any nonzero ideal a of OK we
have the classical congruence subgroup

Γ0(a) =
{(

a b
c d

) ∈ SL(2,OK) | c ∈ a
}
.

The index of Γ0(a) in SL(2,OK) is given by the multi-
plicative function

ι(a) = N(a)
∏
p|a

(
1 +

1
N(p)

)
.

We also need the following subgroups closely related to
the principal congruence subgroups:

Γ̃(a) =
{(

a b
c d

) ∈ SL(2,OK) | a ≡ d mod a, b, c ∈ a
}
.

The following theorem gives a bound for the multiplicity
of a representation πm,0 in L2(G/Γ∩Γ0(a)), Γ a subgroup
of finite index in SL(2,OK), which improves the trivial
bound O(ι(a)) by a logarithm.

Theorem 5.5. Let Γ be a subgroup of finite index in
SL(2,OK), K imaginary quadratic. Then for any fixed
m ≥ 1 we have

m(πm,0,Γ ∩ Γ0(a)) = O

(
ι(a)

log N(a)

)
, N(a) → ∞.

This theorem can be regarded as a quantitative vari-
ant of the limit multiplicity results of [de George and
Wallach 78, Lott and Lück 95, Savin 89] (which, how-
ever, concern towers of normal subgroups). There is
an analogous bound for the dimension of the space of
Maass forms of eigenvalue 1

4 for a congruence subgroup
of SL(2,Z) [Iwaniec 84, p. 173, (3.5)]. See also [Cale-
gari and Emerton 09] for quite strong bounds obtained
by p-adic methods in restricted cases. Note also that for
a = aOK , a a positive integer, we can get by base-change
arguments a lower bound of the form Ca = CN(a)1/2. If
a and its conjugate are relatively prime, there is no non-
trivial lower bound known, and in general one does not
expect one to exist (see Section 6.3 below and [Boston
and Ellenberg 06, Calegari and Dunfield 06]).

Corollary 5.6. Let Γ be a subgroup of finite index in
SL(2,OK). Then for any fixed n ≥ 0 we have

dimH1(Γ ∩ Γ0(a), En) = O

(
ι(a)

log N(a)

)
, N(a) → ∞.

Proof: The corresponding assertion for the cuspidal part
is an immediate consequence of Theorem 5.5. To bound
the dimension of the noncuspidal part use Lemma 5.7
below.

The proof of Theorem 5.5 is again based on the trace
formula. By passing to a finite-index subgroup, we can
assume that Γ is torsion-free and ΓM (P ) = {1} for all
P . Let Δ ⊆ Γ be a subgroup of finite index. We may
then write (cf. [Corwin 77]) for every f ∈ C∞

c (G) the
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spectral side

tr πdisc
Δ (f) − 1

4π

∑
m∈Z

∫ ∞

−∞

φ′Δ(σm,iν)
φΔ(σm,iν)

Θm,iν(f) dν

+
1
4

tr ΦΔ(σ0,0)Θ0,0(f)

as the sum

[Γ : Δ]vol(G/Γ)f(1)

+
∑

{ξ}Γ⊂Γ(∗)
ξ �=1

cΔ(ξ)vol(Gξ/Γξ)|DG(ξ)|−1/2JG(ξ, f)

+
∑

P∈CΔ

C(P, 1,Δ)JG(( 1 1
0 1 ) , f)

+
1
2
|CΔ|IL(1, f),

where we set

cΔ(ξ) =
∣∣{γ ∈ Δ \ Γ|γξγ−1 ∈ Δ}∣∣ .

We now need a sequence of elementary lemmas to deal
with the parabolic and hyperbolic contributions. The fol-
lowing well-known lemma is used to bound the parabolic
contribution.

Lemma 5.7. Let κ be the multiplicative function defined
by

κ(pk) =

{
N(p)k/2 + N(p)k/2−1, k ≡ 0 (mod 2),
2N(p)(k−1)/2, k ≡ 1 (mod 2).

Then we have

|CΓ∩Γ0(a)| ≤ κ(a)|CΓ| ≤ ι(a)√
N(a)

|CΓ|,

and the first inequality is an equality for Γ = SL(2,OK).

To deal with the hyperbolic contribution, we need to
consider first the numbers cΓ∩Γ0(a)(ξ). The following
lemma follows easily from the definitions.

Lemma 5.8. Let ξ ∈ Γ and let b be the largest divisor of
a such that ξ ∈ Γ̃(b). Then

cΓ∩Γ0(a)(ξ) ≤ c(a, b) ≤ 2ν(a)N(b),

where ν(a) denotes the number of prime divisors of a,
and c is defined by extending multiplicatively

c(pk, pr) =

{
N(p)r, r < k,

N(p)k + N(p)k−1, r ≥ k.

For any semisimple element γ ∈ G let its norm
N(γ) ≥ 1 be the maximum value of |t|2 for the two eigen-
values t of γ. We need to estimate the number of Γ-
conjugacy classes of bounded norm that are contained in
Γ̃(b). Such an estimate can be deduced from the follow-
ing well-known lemma.

Lemma 5.9. There is a constant B depending only on
Γ such that every semisimple conjugacy class {γ}Γ in Γ
with N(γ) ≤ T contains a representative γ =

(
a b
c d

)
with

|a|2, |b|2, |c|2, |d|2 ≤ BT .

The crude estimate of the next lemma is an easy con-
sequence. The reader may verify that a better estimate
would not change the final result (apart from the con-
stant implicit in the O).

Lemma 5.10. For every δ > 0 there is a constant C
depending on Γ and δ such that for all nonzero ideals b of
OK , the number of Γ-conjugacy classes in Γ(∗) with norm
≤ T that are contained in the normal subgroup Γ ∩ Γ̃(b)
of Γ is bounded by CT 2+δN(b)−2.

Proof: Apply Lemma 5.9 to see that each such con-
jugacy class has a representative γ =

(
a b
c d

)
with

|a|2, |b|2, |c|2, |d|2 ≤ BT . Furthermore, bc �= 0, since the
conjugacy class was assumed to lie in Γ(∗). The number
of possible pairs (b, c) corresponding to elements of Γ̃(b)
is therefore bounded by C′T 2N(b)−2 with C′ depending
only on K. For each such pair the number of possible en-
tries a and d with ad = 1 + bc �= 0 is clearly bounded by
O(T δ) with a constant depending only on δ. This proves
the assertion.

Proof of Theorem 5.5: We take a test function f ∈
C∞

c (G) depending on m ≥ 1 and ε as above. We fix
m and assume at first only that ε is bounded. The iden-
tity contribution to the trace formula for Δ = Γ∩Γ0(a) is
bounded by C1ι(a)ε. The lattices Λ(P ) = u(Δ ∩N) ap-
pearing in the definition of C(P, 1,Δ) = 2πκΛ(P ) are all
invariant under a fixed order of the field K, and belong
therefore to finitely many classes up to multiplication by
elements of K∗. Using that κΛ+log |Λ| is invariant under
such homotheties, this implies that the constants κΛ(P )

are bounded by C+logN(a) for a constant C. By Lemma
5.7 the parabolic contribution is therefore bounded by
C2ι(a)(log N(a))N(a)−1/2ε.

As for the contribution of classes in Γ(∗), the estimates
of Lemma 5.8 and Lemma 5.10 show that it is bounded
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by (
2ν(a)

∑
b|a

1
N(b)

)
C3e

C4/ε ≤ C5(μ)N(a)μeC4/ε

for any μ > 0. Taking ε = c/ logN(a) with a suitable
constant c, we see that the geometric side of the trace
formula is indeed O(ι(a)/ log N(a)). A positivity argu-
ment as in the proof of Theorem 5.3 yields the result.

6. COMPUTATIONAL RESULTS FOR
BIANCHI GROUPS

This section contains computational results on the di-
mensions of the cohomology groups H1(Γ, En), where
Γ = SL(2, a) is one of the Bianchi groups of Section 2.2
and n a nonnegative integer. We also consider certain
congruence subgroups of SL(2,O−1). The method of
computation is explained in Section 3.1.

Often the resulting systems of linear equations turned
out to be far to big to do computations over the rational
numbers. In these cases we were able to use the lower
estimates of Section 4.3 to deduce the dimension of the
solution space over the complex numbers from the di-
mension over various finite fields.

6.1 Dimensions of H1(SL(2, O), En)

Let us start with a little table. In Table 1 we
have listed the dimension of the cohomology spaces
H1(SL(2,Od), En) for d = −1,−2,−3,−7,−11 and 0 ≤
n ≤ 15. To compare these values with the dimensions of
the spaces of lifted forms given in Proposition 1.3 or more
generally in Theorem 4.17, it is important to know the
codimension of the cuspidal cohomology. Using [Serre 70,
Théorème 8, Corollaire 1] (and further information con-
tained there), it can be easily checked that

dimH1(SL(2,OK), En) − dimH1
cusp(SL(2,OK), En)

= νK,nhK

for all imaginary quadratic fields K, using the notation
introduced in Section 4.1.

We see that the cuspidal cohomology consists only of
lifted forms except in the two cases marked in boldface.
These two cases will be analyzed more closely below. As a
result of some heavy computer calculations we can report
the following results.

Proposition 6.1. For d = −1,−2,−3,−7,−11 and rd
equal respectively to 104, 141, 116, 132, 153, we have

H1
cusp(SL(2,Od), En) = H1

bc(SL(2,Od), En)

n d = −1 −2 −3 −7 −11

0 0 1 0 1 1
1 1 1 0 1 1
2 0 1 1 1 2
3 1 2 0 1 2
4 0 1 0 2 2
5 2 3 1 2 3

6 0 2 1 2 4
7 3 4 1 3 4
8 0 2 1 3 4
9 3 5 1 3 5
10 1 3 2 4 8

11 4 6 2 4 6
12 0 3 1 6 6
13 5 7 2 5 7
14 1 4 3 5 8
15 5 8 2 5 8

TABLE 1. Dimensions of H1(SL(2,Od), En).

in the range 0 ≤ n ≤ rd, except in the cases d = −7 and
n = 12, d = −11 and n = 10, where H1

bc has codimension
two in H1

cusp.

It remains to report the results of the computations in
the non-Euclidean cases. We have found the following.

Proposition 6.2. Let Γ be one of the groups SL(2,Od) with
d = −19,−5,−6,−10, −14 or SL(2, a−5), SL(2, a−6),
SL(2, a−10), SL(2, a−14), where the ideals a are as in Sec-
tion 2.2, and let the nonnegative integer n be in the range
0 ≤ n ≤ 60. Then H1

cusp(Γ, En) = H1
bc(Γ, En).

6.2 Hecke Operators on Nonlifted
Cohomology Classes

In this subsection we give the numerical values of some
of the Hecke operators on the two spaces of nonlifted
cohomology classes exhibited in Section 6.1.

6.2.1 Hecke Operators on H1(SL(2,O−7), E12). We
consider the prime element π11 = 2+

√−7 of O−7, which
has degree one and norm 11. By the methods described
in Section 3.2, the characteristic polynomial of the cor-
responding Hecke operator

Tπ11 : H1(SL(2,O−7), E12) → H1(SL(2,O−7), E12)

can easily be computed to be

Pπ11(X) = (X − 9951764)

× (X2 + 1877432X − 54779120751344)

× (X3 − 2226532X2 − 7410075237136X

− 1678794474022559168).
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We know that there is a unique two-dimensional com-
plement of the space of base-change classes in the co-
homology space H1

cusp(SL(2,O−7), E12) invariant under
the Hecke operators. Identifying the Hecke operators on
lifted classes (see Section 3.2), we infer that the kernel

NL(−7, 12) = ker(T 2
π11

+1877432Tπ11−54779120751344)

is this space of nonlifted classes. We write Lπ for the
restriction of the Hecke operators Tπ, π a prime element
of O−7, to the space NL(−7, 12).

The following properties of the linear maps Lπ hold
for all prime elements π of O−7:

P7.1 L−π = −Lπ.

P7.2 Lπ̄ = −Ladj
π .

P7.3 If π = p is a prime of degree two, then Lπ is an
integer scalar denoted by λp.

P7.4 After a suitable choice of basis for NL(−7, 12), the
matrices giving the action of the Hecke operators Lπ

have integral entries.

P7.5 The simultaneous splitting field for the Hecke oper-
ators Lπ is Q(

√
7 · 239).

Here Aadj stands for the adjugate of a linear map A. If
A is given by a 2 × 2 matrix, we have(

a b
c d

)adj

=
(
d −b
−c a

)
.

Property P7.2 follows by comparing the actions of the
Hecke operator Tπ on the two cohomology spaces

H1
(
SL(2,O−7), Sym12 ⊗ Sym

12
)

and
H1
(
SL(2,O−7), Sym

12 ⊗ Sym12
)
.

Property P7.1 is proved by computing the automorphism
ε induced by a matrix E ∈ GL(2,O−7) of determinant
−1 on H1(PSL(2,O−7), E12). This property implies that
no nonzero class in NL(−7, 12) is the restriction of a
cohomology class in H1(GL(2,O−7), E12). The rest of
the above properties are clear.

Examples of the scalars λp for primes of degree two
are contained in Table 2. Examples of the integral ma-
trices corresponding to the linear maps Lπ for primes π
of degree one are contained in Tables 3, 4, and 5.

The Ramanujan conjecture for SL(2,OK) is the asser-
tion that all eigenvalues λπ of the Hecke operator Tπ on
H1

cusp(SL(2,OK), En) satisfy the inequality

|λπ | ≤ 2N(π)
n+1

2 .

p λp

3 −1939626
5 −747491750

13 −252803502896086
17 4756247617499746
19 5094169624293878
31 −30279773153264109058
41 −948454707467278569518
47 −9168990821180522751074
59 123833654051598471764998
61 −105716258627702854298998
73 −707186203752039245531566
83 −5005894274852029376014346
89 −980936263375178621227022
97 84206314563458516168628866

TABLE 2. Scalars λp for Lp on NL(−7, 12).

p π Aπ

2 ω

(
0 1

14432 −50

)

23 3 + 2ω

(−257854600 4457728
64333930496 −480741000

)

7 −1 + 2ω

(
44800 1792

25862144 −44800

)

11 1 + 2ω

(
581284 60800

877465600 −2458716

)
TABLE 3. Hecke operators Lπ on NL(−7, 12).

It is true for the subspace H1
bc as a consequence of

Deligne’s proof of the corresponding statement for con-
gruence subgroups of SL(2,Z). The truth of the Ramanu-
jan conjecture is a necessary condition for the existence of
a motive associated to a Hecke eigenclass. As expected,
the eigenvalues of the matrices Lπ satisfy the Ramanujan
bound |λπ | ≤ 2N(π)13/2 within the range of our compu-
tations.

p π Aπ

29 −1 + 4ω

( −114226222 −627200
−9051750400 −82866222

)

37 1 + 4ω

(
8869653750 −61610496

−889162678272 11950178550

)

43 5 + 2ω

(
42167274700 293147008

4230697619456 27509924300

)

53 3 + 4ω

( −229421381350 −843922944
−12179495927808 −187225234150

)

67 −1 + 6ω

(
914163852100 −1805341824

−26054693203968 1004430943300

)

71 7 + 2ω

( −600257601424 −5497094400
−79334066380800 −325402881424

)
TABLE 4. Hecke operators Lπ on NL(−7, 12).
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p π Aπ

79 1 + 6ω

( −775382036248 −11236492800
−162165064089600 −213557396248

)

107 9 + 2ω

(
11411424109300 66437695872
958828826824704 8089539315700

)

109 7 + 4ω

(
8058528373122 78253401600

1129353091891200 4145858293122

)

113 3 − 8ω

(
4624127056750 42202431488

609065491234816 2514005482350

)

127 5 + 6ω

(
4687450108000 367392485376

5302208348946432 −13682174160800

)

137 1 + 8ω

(
79180120345450 −113527447552

−1638428123070464 84856492723050

)

149 9 + 4ω

(−71276735378522 562548416000
8118698739712000 −99404156178522

)

TABLE 5. Hecke operators Lπ on NL(−7, 12).

6.2.2 Hecke Operators on H1(SL(2,O−11), E10). We
consider the prime element π3 = (1 +

√−11)/2 of O−11,
which has degree one and norm 3. By the methods de-
scribed in Section 3.2, the characteristic polynomial of
the corresponding Hecke operator

Tπ3 : H1(SL(2,O−11), E10) → H1(SL(2,O−11), E10)

can easily be computed to be

Pπ3(X)

= (X − 252)(X − 67)(X2 + 700X + 40671)

× (X4 + 403X3 − 439713X2 − 113276475X

+ 1097145000).

We know that there is a unique two-dimensional com-
plement of the space of base-change classes in the co-
homology space H1

cusp(SL(2,O−11), E10) invariant under
the Hecke operators. We infer that the kernel

NL(−11, 10) = ker(T 2
π3

+ 700Tπ3 + 40671)

is equal to this space of nonlifted classes. We write Lπ

for the restriction of the Hecke operator Tπ, π a prime
element of O−11, to the space NL(−11, 10). The follow-
ing properties of the linear maps Lπ hold for all prime
elements π of O−11:

P11.1 L−π = Lπ.

P11.2 Lπ̄ = −Ladj
π .

P11.3 If π = p is a prime of degree two, then Lπ is an
integer scalar denoted by μp.

p μp

2 −80
7 −818885550

13 1235127129530
17 45387811032610
19 −95158947964038
29 −8701360899198758
41 −429545462511285518
43 638559982027780650
61 10654154103002912922
73 34915634850910529970
79 −688424011186184859358
83 33668143605728046010

101 15523742571431406528202

TABLE 6. Scalars μp for Lp on NL(−11, 10).

P11.4 After a suitable choice of basis for NL(−11, 10),
the matrices giving the action of the Hecke operators
Lπ have integral entries.

P11.5 The simultaneous splitting field for the Hecke op-
erators Lπ is Q(

√
11 · 43 · 173).

P11.6 The space NL(−11, 10) is the restriction of a sub-
space of H1(GL(2,O−11), E10).

The case d = −11, n = 10, differs from the case d =
−7, n = 12, since we have L−π = Lπ for d = −11 and
L−π = −Lπ for d = −7. In the case d = −11, this leads
directly to property P11.6.

Examples of the scalars μp for primes of degree two
are contained in Table 6. Examples of the integral ma-
trices corresponding to the linear maps Lπ for primes π of
degree one are contained in Tables 7, 8, 9. As expected,
the eigenvalues of the matrices Lπ satisfy the Ramanujan
bound |λπ | ≤ 2N(π)11/2 within the range of our compu-
tations.

p π Aπ

3 ω

(
0 1

−40671 −700

)

5 −2 + ω

(−14203 −26
1057446 3997

)

11 −1 + 2ω

(−117612 0
0 −117612

)

23 −5 + ω

(
44565050 22561

−917578431 28772350

)

31 −4 + 3ω

(−124944582 −577125
23472250875 279042918

)

37 −5 + 3ω

(
351981325 819882

−33345420822 −221936075

)
TABLE 7. Hecke operators Lπ on NL(−11, 10).
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p π Aπ

47 −7 + 2ω

(
2959574800 5646848

−229662955008 −993218800

)

53 −5 + 4ω

(−3591316050 −868224
35311538304 −2983559250

)

59 −8 + ω

(
2044859460 10611525

−431581333275 −5383208040

)

67 −8 + 3ω

(
5506303200 −13041567

530413571457 14635400100

)

71 −4 + 5ω

(−20524885978 −34309625
1395406758375 3491851522

)

89 −7 + 5ω

(
19167086435 60342700

−2454197951700 −23072803565

)
TABLE 8. Hecke operators Lπ on NL(−11, 10).

p π Aπ

97 −10 + 3ω

(
33903167375 94396752

−3839210300592 −32174559025

)

103 −5 + 6ω

(−127510128200 −435253824
17702208275904 177167548600

)

113 −11 + ω

(−257969686425 −640536456
26051258201976 190405832775

)

137 −5 + 7ω

(
500270562475 −968684668

39397374132228 1178349830075

)

157 −13 + 3ω

(−2300340926975 −6625408122
269461973729862 2337444758425

)

163 −11 + 6ω

( −174488742500 315270144
−12822352026624 −395177843300

)

179 −13 + 5ω

( −933096107380 −5594462825
227532397555575 2983027870120

)

TABLE 9. Hecke operators Lπ on NL(−11, 10).

6.3 Cohomology of Congruence Subgroups

In this subsection we give some computational results
concerning the dimensions of the cohomology groups
H1(Γ, En), where Γ ⊆ SL(2,O−1) is a congruence sub-
group.

6.3.1 The Case of Trivial Coefficients. Here we con-
sider the congruence subgroups

Γ0(p) =
{(

a b
c d

) ∈ SL(2,O−1) | b ∈ p
}

of SL(2,O−1), where p is a prime ideal of O = O−1 of
degree one. Note that Γ0(p) is conjugate in SL(2,O) to
the congruence subgroup Γ0(p) considered in Section 5.3.
The norm of p is either 2 or a rational prime p congru-
ent to 1 modulo 4. The index of Γ0(p) in SL(2,O−1) is
p + 1. The cohomology groups H1(Γ0(p),C) are partic-
ularly interesting for number theory, since their nonvan-
ishing is conjectured to be related to the existence of cer-

tain elliptic curves (or more generally abelian varieties)
defined over K = Q(i) (cf. [Cremona 84, Grunewald et
al.7̃8, Grunewald and Mennicke 78]).

We shall report here on extensive computations of the
dimensions of the spaces H1(Γ0(p),C). Note that we
have

H1(Γ0(p),C) = H1
cusp(Γ

0(p),C)

and
H1(SL(2,O),C) = 0,

and that H1(Γ0(p),C) consists therefore entirely of new
classes (cf. Section 6.3.2).

The elements Ai, 0 ≤ i ≤ p − 1, and B (cf. Section
2.2) form a system of coset representatives for Γ0(p) in
SL(2,O−1). From this we obtain the following generating
system for Γ0(p):

Ap, BAB, BUB, UAρ, Ai′BAi,

1 ≤ i, i′ ≤ p− 1, ii′ ≡ 1 (mod p),

where ρ2 + 1 = 0 in the field Fp.
From the presentation (2–3) we may compute a pre-

sentation of the finitely generated abelian group Γ0(p)ab

and in particular the dimension of Γ0(p)ab ⊗C (which is
the same as the dimension ofH1(Γ0(p),C)). This compu-
tation may be speeded up in the following way, i.e., the
presentation of Γ0(p) obtained from the Reidemeister–
Schreier method can be simplified considerably. We shall
describe a result contained in [Grunewald et al.7̃8] that
gives such a simplification.

Let R be a commutative ring and let P1(R, p) be a
(p+ 1)-dimensional free R-module with basis ux indexed
by the projective line P1(Fp). This module has rank p+1
and is a PGL(2,Fp)-module by the natural permutation
action on the basis elements. Let U(R, p) be the sub-
module of P1(R, p) generated by u0 and the elements

ux+uBx, ux+uWx, ux+uSx+uS2x, ux+uY x+uY 2x,

x ∈ P1(Fp), with the matrices

B =
(

0 1
−1 0

)
, W =

(
0 1
1 0

)
,

S =
(

1 −1
1 0

)
, Y =

(−ρ 1
1 0

)
.

Define Φp : P1(R, p) → Γ0(p)ab ⊗R by setting Φp(ui) =
Ai′BAi for i ∈ Fp with i �= 0 and Φp(u0) = Φp(u∞) = 0.
The results of [Grunewald et al.7̃8, Section 3] imply that
the map Φp is a surjective group homomorphism with
kernel equal to U(R, p) if R is a field of characteristic 0.
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137 233 257 277 509 569 733 977
1009 1013 1021 1049 1153 1277 1373 1489
1493 1753 1997 2053 2081 2377 2441 2521
2609 2729 2917 3109 3361 3929 4013 4177
4289 4421 4597 4621 4721 5021 5237 5741
5749 5801 6029 6361 6701 6781 6793 6857
6949 7001 7069 7121 7793 7937 8297 8377
8461 8513 8537 8753 9041 9413 10357 10369
10477 10657 10729 10861 10937 11701 11953 12253
12553 13381 13457 13633 15161 15497 15569 15629
15749 16097 16349 16649 16673 17209 17921 18289
18553 18701 18869 18913 19213 19417 19841 19997

TABLE 10. Norms of degree-one primes p in O−1 with
dim≤500 H1(Γ0(p), C) = 1.

To avoid heavy integer computations, we take R = Fq

for various (small) primes q, compute the dimension of
P1(R, p)/U(R, p), and set

dim≤x H
1(Γ0(p),C) = inf{dimFq P1(Fq, p)/U(Fq, p)},

where q ranges over all primes below x. Of course, if this
number is zero for some x ≥ 5, then also H1(Γ0(p),C) =
0, and if x is sufficiently large, then dim≤x H

1(Γ0(p),C)
will be equal to the dimension of H1(Γ0(p),C).

In Table 10 we give the norms of the degree-
one primes p in O−1 with N(p) ≤ 20000 and
dim≤500H

1(Γ0(p), C = 1. Table 11 covers the same
range and gives the norms of the degree-one primes p with
dim≤500H

1(Γ0(p),C) = 2. The norms of the primes with
dim≤500H

1(Γ0(p),C) = 3 are 941, 1777, 5113. Those
with dim≤500 = 4 are 8893, 17021. The values 5 and 6 are
attained for 4517, 5309 respectively. There is no prime p

with N(p) ≤ 20000 and dim≤500 ≥ 7.
In an even more extensive search we have gone through

the degree-one primes p in O−1 with N(p) ≤ 60000
and have computed dim≤500H

1(Γ0(p),C). There are
altogether 3018 primes below 60,000 that are congruent
to 1 modulo 4. We give the number N(r, 60000) of such
primes with dim≤500H

1(Γ0(p),C) = r in Table 12.
The value 8 is attained for the prime 58313.

433 709 757 853 953 1321 1549 1901
1973 2657 2753 3313 3469 3529 3637 3877
5849 5857 6689 7577 8081 9349 9629 11437
12269 12953 13093 13477 15761 16921 17033 18757
19237 19937

TABLE 11. Norms of degree-one primes p in O−1 with
dim≤500 H1(Γ0(p), C) = 2.

r 0 1 2 3 4 5 6 7 8 ≥ 9

N (r, 60000) 2728 198 73 11 4 1 1 1 1 0

TABLE 12. The number N(r, 60000) of primes
below 60,000 congruent to 1 modulo 4 with
dim≤500 H1(Γ0(p), C) = r.

Let us now define for real numbers x the function

S(x) = x
1
6

∑
p, N(p)≤x dimH1(Γ0(p),C)

|{p N(p) ≤ x}| ,

where the sum is extended over all degree-one prime ide-
als of O−1. A positive answer to Question 1.14 of the
introduction is clearly equivalent to S(x) tending to a
limit for x→ ∞. The function S(x) can be tabulated in
the range x ≤ 60000 as follows:

x/1000 6 12 18 24 30 36 42 48 54 60

S(x) 3.21 3.39 3.62 3.99 4.15 4.18 4.24 4.31 4.37 4.52

6.3.2 The Case of Nontrivial Coefficients. We now re-
port on some computational results on the cohomology
spacesH1(Γ0(p), En), where p is a prime of O−1 of degree
one and n ≥ 1.

Let π be a generator of p and let δπ ∈ GL(2,Q(
√−1))

be defined as in (3–4). The two injective homomorphisms

ι1 : Γ0(p) → SL(2,O−1), ι2 : Γ0(p) → SL(2,O−1),

where ι1 is just the injection and ι2 is induced by conju-
gation with the element δπ, give rise to an injection

ι : H1(SL(2,O−1), En) ⊕H1(SL(2,O−1), En)

↪→ H1(Γ0(p), En).

The image of ι is traditionally called the space of old
classes. It is invariant under the Hecke operators and
has an invariant complement H1

new(Γ0(p), En).
We have found the following:

• H1
new(Γ0(p), E1) = 0 for all prime ideals p with

N(p) ≤ 1000 except for the case N(p) = 41, where
H1

new(Γ0(p), E1) has dimension 2.

• H1
new(Γ0(p), E2) = 0 for all prime ideals p with

N(p) ≤ 600.

• H1
new(Γ0(p), En) = 0 for all prime ideals p with

N(p) ≤ 90 and 3 ≤ n ≤ 10.

Table 13 contains some examples of the characteristic
polynomials of the Hecke operators on H1

new(Γ0(p), E1)
for N(p) = 41. The Hecke operators on H1

new(Γ0(p), E1)
satisfy Tiπ = −Tπ for all prime elements π of degree one.
There is no apparent connection between Tπ and Tπ̄. We
thank Haluk Sengun for help with this computation.



58 Experimental Mathematics, Vol. 19 (2010), No. 1

p π Aπ

2 1 + i x2 − x − 10
5 2 + i (x + 4)2

5 2 − i x2 + 6x − 32
13 3 + 2i x2 + 2x − 40
13 3 − 2i (x + 10)2

17 1 + 4i x2 − 22x + 80
17 1 − 4i x2 + 24x − 20
29 5 + 2i x2 + 48x − 80
29 5 − 2i x2 − 164
37 1 + 6i x2 + 4x − 160
37 1 − 6i x2 + 30x − 800
41 5 + 4i x2 + 48x + 412
41 5 − 4i −
61 6 + 5i x2 − 108 + 292
61 6 − 5i x2 − 12x − 620
73 8 + 3i x2 − 106x + 2440
73 8 − 3i x2 − 2x − 3320

TABLE 13. Characteristic polynomials of Hecke oper-
ators on H1

new(Γ0(p41), E1).

7. COHOMOLOGY OF NONARITHMETIC GROUPS

This section contains computational results on the coho-
mology of various geometrically constructed and mostly
nonarithmetic groups. The results are discussed in more
detail in the introduction. See Section 3.1 for remarks on
the method of computation and especially for the nota-
tion dim≤x used below.

7.1 Klimenko’s Examples

The discrete subgroups Γ ⊆ PSL(2,C) described here
arose in an important attempt to classify simultaneous
conjugacy classes of pairs of matrices generating discrete
subgroups of SL(2,C) (see [Klimenko and Sakuma 98,
Klimenko and Kopteva 02, Klimenko and Kopteva 05,
Klimenko and Kopteva 07, Klimenko and Kopteva 06]).
We follow the notation of [Klimenko and Kopteva 07,
Klimenko and Kopteva 06]; see also [Grunewald et al.
10].

7.1.1 Groups of Finite Covolume. Let k ≥ 8 be an
even integer. We set

t = tk = (exp(πi/k) + exp(−πi/k))2 (7–1)

= exp(2πi/k) + exp(−2πi/k) + 2

and define the matrices

f = fk =
(

exp(πi/k) 0
0 exp(−πi/k)

)
and

g = gk =

(
1
2

(√
t

(t−3)(4−t) +
√

3
t−3

)
1

t−3
4−t

1
2

(√
t

(t−3)(4−t) −
√

3
t−3

)
)
.

Let GTet1[k, 3, 3] be the image in PSL(2,C) of the group
generated by the matrices f and g. The following prop-
erties are known:

• GTet1[k, 3, 3] is a discrete subgroup of PSL(2,C)
of finite covolume with one cusp [Klimenko and
Kopteva 07, Klimenko and Kopteva 06].

• GTet1[k, 3, 3] is commensurable with a reflection
group [Klimenko and Kopteva 07, Klimenko and
Kopteva 06].

• GTet1[k, 3, 3] is nonarithmetic for all k ([Grunewald
et al. 10]).

• We have [Klimenko and Kopteva 07]

GTet1[k, 3, 3]

= 〈f, g | fk, (gfk/2zfk/2g−1z)3, z2, fzgf−1g−1z〉,

where z = fgfg−1f .

Using this explicit presentation, we obtain

dim≤1000H
1(GTet1[k, 3, 3], En)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(n− 1)/3 + 1, if n ≡ 1 (mod 6),
2(n− 2)/3 + 2, if n ≡ 2 (mod 6),
2(n− 3)/3 + 2, if n ≡ 3 (mod 6),
2(n− 4)/3 + 3, if n ≡ 4 (mod 6),
2(n− 5)/3 + 4, if n ≡ 5 (mod 6),
2(n− 6)/3 + 4, if n ≡ 6 (mod 6),

in the range 8 ≤ k ≤ 100 and 1 ≤ n ≤ 50. Note that these
groups Γ are invariant under the complex conjugation
automorphism of PSL(2,C).

This opens up the possibility to compute the trace
of this involution on H1

cusp(Γ, En) and to obtain a lower
bound for the dimension of this space, following the work
of Rohlfs and Krämer [Krämer 85, Rohlfs 85] on the
Bianchi groups. We hope to return to this question in
the future.

7.1.2 Cocompact Groups. As in the case considered
before, we take from [Klimenko and Kopteva 07] (see also
[Grunewald et al. 10]) a series of explicit pairs of matrices
generating a discrete subgroup Γ ⊆ PSL(2,C). In this
case the groups Γ act on three-dimensional hyperbolic
space with a compact quotient.

Let k ≥ 8 be an even integer. We define t = tk as in
(7–1) and set

f = fk =
(

exp(πi/k) 0
0 exp(−πi/k)

)
,
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and

g = gk

=

⎛
⎝ 1

2

(√
2(t−2)

(t−3)(4−t) +
√

2
t−3

)
1

t−3
4−t

1
2

(√
2(t−2)

(t−3)(4−t) −
√

2
t−3

)
⎞
⎠ .

Define GTet1[k, 3, 2] ⊆ PSL(2,C) to be the image in
PSL(2,C) of the group generated by f and g.

The following facts are known:

• GTet1[k, 3, 2] is a discrete and cocompact subgroup
of PSL(2,C) [Klimenko and Kopteva 07, Klimenko
and Kopteva 06].

• GTet1[k, 3, 2] is commensurable with a reflection
group [Klimenko and Kopteva 07, Klimenko and
Kopteva 06].

• GTet1[k, 3, 2] is nonarithmetic for all k ≥ 14
[Grunewald et al. 10].

• We have [Klimenko and Kopteva 07]

GTet1[k, 3, 2]

= 〈f, g | fk, (gfk/2zfk/2g−1z)2, z2, fzgf−1g−1z〉,

where z = fgfg−1f .

Again these results are sufficient to compute cohomology
spaces. We obtain

dim≤1000H
1(GTet1[k, 3, 2], En) (7–2)

=

⎧⎪⎨
⎪⎩
n/4, if n ≡ 0 (mod 4),
(n+ 1)/2, if n ≡ 1 (mod 2),
(n+ 2)/4, if n ≡ 2 (mod 4),

in the range 14 ≤ k ≤ 100 and 1 ≤ n ≤ 30. The
groups GTet1[8, 3, 2], GTet1[10, 3, 2] and GTet1[12, 3, 2]
are arithmetic. Compared to (7–2), the dimensions of
their cohomology groups show a similar but slightly more
complicated behavior. In particular, the dimensions of
the cohomology spaces H1(GTet1[10, 3, 2], En) are given
by linear functions on the residue classes modulo 20
within the range of our computations. Again all these
groups are invariant under the complex conjugation au-
tomorphism of PSL(2,C).

7.2 Helling’s Examples

Here we report on a series of two-generator discrete sub-
groups of SL(2,C) described in [Helling 99]. We shall
keep Helling’s terminology. The phenomena seen here
are new.

For a nonnegative integer k, let Tk and Uk be the stan-
dard Chebyshev polynomials [Erdélyi et al. 53]. They can
be defined by the relation

(
x+

√
x2 − 1

)k

= Tk(x) + Uk−1(x)
√
x2 − 1,

for example. For a nonnegative integer m we define poly-
nomials

p̃m(x) =

{
2Tk

(
x
2

)
, if m = 2k,

Uk

(
x
2

)− Uk−1

(
x
2

)
, if m = 2k + 1,

and

fm(x) =

{
p̃m+2(x)2 − x2 + 4, if m is even,
p̃m+2(x)2 − x+ 2, if m is odd.

Table 14 contains the first ten polynomials fm(x).
Helling shows that the polynomials fm have only non-

real zeros. For a zero z of fm define the matrices

Am =
(

0 1
−1 z

)
, Bm =

(
1 0

p̃m(z)
p̃m+2(z) 1

)
,

Cm =

(
1 p̃m(z)

p̃m+2(z)

0 1

)
.

An easy computation using properties of the Cheby-
shev polynomials confirms that these matrices satisfy the
relations

AmCmA
−1
m = B−1

m , CmBmC
−1
m B−1

m = Am
m. (7–3)

Define Θm to be the group generated by the above ma-
trices:

Θm = 〈Am, Bm, Cm〉 = 〈Am, Cm〉 ⊆ SL(2,C).

Helling shows that for every m ∈ N there is a zero z ∈
C of fm such that the matrix group Θm satisfies the
following:

m fm(x)
1 x2 − 3x + 3
2 x4 − 5x2 + 8
3 x4 − 2x3 − x2 + x + 3
4 x6 − 6x4 + 8x2 + 4
5 x6 − 2x5 − 3x4 + 6x3 + 2x2 − 5x + 3
6 x8 − 8x6 + 20x4 − 17x2 + 8
7 x8 − 2x7 − 5x6 + 10x5 + 7x4 − 14x3 − 2x2 + 3x + 3
8 x10 − 10x8 + 35x6 − 50x4 + 24x2 + 4
9 x10 − 2x9 − 7x8 + 14x7 + 16x6 − 32x5 − 13x4 + 26x3

+3x2 − 7x + 3
10 x12 − 12x10 + 54x8 − 112x6 + 105x4 − 37x2 + 8

TABLE 14. The first ten polynomials fm(x).
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• Θm is a discrete and torsion-free subgroup of
SL(2,C).

• Θm has finite covolume and exactly one cusp.

• Θm is defined by the relations (7–3).

• The groups Θ1, Θ2 are arithmetic groups, but all
the other Θm (m ≥ 3) are nonarithmetic.

The zero z in question is specified (up to complex conju-
gation) by the condition

|z − 2| < 4 sin2 π

2m

for m ≥ 3 odd and

Re(z) > 0, |z2 − 4| < 4 sin2 π

m

for m ≥ 4 even. For m = 1 or 2, z may be taken to
be any zero of fm. Concerning the cohomology of the
groups Θm, we can report the following computations:

m = 1: The group Θ1 is (up to conjugacy) the famous
figure-eight-knot group. It is conjugate to a congruence
subgroup of SL(2,O−3). For n ≤ 120 we have

dimH1(Θ1, En) =

⎧⎪⎨
⎪⎩
n/3, if n ≡ 0 (mod 3),
(n+ 2)/3, if n ≡ 1 (mod 3),
(n+ 1)/3 + 1, if n ≡ 2 (mod 3).

m = 2: The group Θ2 is isomorphic to the fundamen-
tal group of the lens space with fundamental group of
order 2 with a knot removed. It is conjugate to a group
commensurable with SL(2,O−7). For n ≤ 120 we have

dimH1(Θ2, En) =

⎧⎪⎨
⎪⎩
n/3, if n ≡ 0 (mod 3),
(n+ 2)/3, if n ≡ 1 (mod 3),
(n+ 1)/3, if n ≡ 2 (mod 3),

except in the case n = 12, where we have

dimH1(Θ2, E12) = 6.

m ≥ 3: Here we have

dimH1(Θm, En) = 1

for all 3 ≤ m ≤ 150 and 1 ≤ n ≤ 30. This means that in
this range we have H1

cusp(Θm, En) = 0.

7.3 A Cocompact Tetrahedral Group

Let CT(26) be the tetrahedral hyperbolic reflection
group constructed (for example) in [Elstrodt et al. 98,
Section 10] and let Γ26 ⊆ PSL(2,C) be its unique sub-
group of index 2. The quotient PSL(2,C)/Γ26 is com-
pact. The group Γ26 is nonarithmetic and has the pre-
sentation

Γ26 =
〈
a, b, c | a3, b2, c5, (ac−1)2, (bc−1)3, (ab)4

〉
.

Using the data from [Elstrodt et al. 98] we infer that Γ26

can be generated (up to conjugacy) by the matrices

a =

(
2t3+t2+t+2

5 1
−t3+t2−2

5
−t3−t2−t+3

5

)
,

b =

(
−3t3+t2−4t+2

5 b2
c2

3t3−t2+4t−2
5

)
,

c =
(
t−1 0
0 t

)
,

where t ∈ C is a primitive tenth root of unity and c2 is
one of the two complex roots of the polynomial

x4 +
−6t3 + 6t2 + 8

5
x3 +

−t3 + t2 − 3
5

x2

+
−4t3 + 4t2 + 2

25
x+

3t3 − 3t2 + 2
25

.

The entry b2 is determined by

b2 = (−20t3 + 20t2 + 35)c32 + (−50t3 + 50t2 + 80)c22
+ (9t3 − 9t2 − 17)c2 − 4t3 + 4t2 + 6.

We have found that H1(Γ26, En) = 0 for 0 ≤ n ≤ 90.
The group Γ26 has 222 conjugacy classes of subgroups of
index less than or equal to 24.

We have also determined the dimensions of some co-
homology spaces of these subgroups. Of the 222 sub-
groups, 191 satisfied H1(Γ, En) = 0 in the range 0 ≤
n ≤ 10, thirty subgroups had dim≤1000H

1(Γ, En) =
1 in the range 0 ≤ n ≤ 10. One of the 222 had
dim≤1000H

1(Γ, En) = 2, again in this range.
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