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THE COHOMOLOGY OF THE SYMMETRIC GROUPS
BY

BENJAMIN MICHAEL MANN

Abstract. Let S„ be the symmetric group on n letters and SG the limit of
the sets of degree +1 homotopy equivalences of the n — 1 sphere. Let p be
an odd prime. The main results of this paper are the calculations of H*(ß„,
Z/p) and H*(SG, Z/p) as algebras, determination of the action of the
Steenrod algebra, #(/>), on H*(ß„, Z/p) and H*(SG, Z/p) and integral
analysis of H*(ß„, Z,p) and H*(SG, Z,p).

0. Introduction. Let K and L be discrete groups with L abelian. The groups
H"(K, L) have been of interest for years. [12] and [11] first considered these
cohomology groups algebraically and their relation with topological prob-
lems. The algebraic groups H"(K, L) are isomorphic to H"(BK, L) where BK
is the topological classifying space for the group K.

Suppose K is S„, the symmetric group on n letters. Then //*(§„, L) is
especially important. In the 1950's, work on cohomology operations, [29] and
[30], showed the necessity for knowledge of H*(Bpi, Z/p). The construction
of the mod/7 Steenrod operations depends on properties of Sp. Furthermore
the Adem relations were derived using the structure of H*(c>p2, Z/p).

If L is a ring then H*(K, L) is a graded ring. The homology of symmetric
products, [9], [17], [20], [21], and [28], computed the groups //'(§„, Z/p) as
Z/p vector spaces. The graded ring structure, which was not analyzed,
becomes important in later problems.

There is an interesting link that ties S„ to SG. Recall Q(S°) = dir Um QnS"
is the space of "infinite loops of S°°" and SG = dir lim SGn where SG„
is the space of degree +1 homotopy equivalences of S"~l. SG is homotopy
equivalent to the +1 component of Q(S°).

Theorem. (1) There is a canonical map w: B%a¡ = dir lim 2?§n -> Q(S\
inducing integral and modp homology isomorphisms.

(2) The inclusions S„ X Sm -» §n+m give H^ÇS^) the structure of an alge-
bra. Uf. is an algebra isomorphism and a Hopf algebra isomorphism mod p
where Hm(Q(S°)0) is an algebra under the loop sum product.
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158 B. M. MANN

The above theorem is contained in the work of many people including [10],
[16], [22], [24], [25].

Thus 5§œ properly interpreted is a model for SG.
In all that follows let p be an odd prime. We will write H*{K) for H*(K,

Z/p). H*(K, Z, p) is, by definition, [5], the ̂ -primary component of H*(K,
Z). In [4] the algebra structure of //*(cy) is computed but the arguments do
not generalize to §y; / > 3. The main results of this paper are the calcula-
tions of #*(§„) and H*(SG) as algebras, determination of the action of the
Steenrod algebra, &(p), on #*(§„) and H*(SG) and integral analysis of
#*(§„, Z,p) and H*(SG,Z,p).

This paper is essentially my Stanford University Ph. D. thesis written under
the direction of R. James Milgram, whom I would like to thank for his advice
and encouragement. I would also like to thank the referee for his numerous
helpful comments including shorter proofs for two of the propositions in §11.
In addition after submission of this paper I learned that Benjamin Cooper
[35] and Hùynh Mui [36] have also studied H*($p*).

I. Statement of results. It is well known that a /J-Sylow subgroup Kp of a
finite group K contains all the ^-primary homology information; more
precisely, H*(K) and H*(K, Z, p) are isomorphic to subrings of H*(Kp) and
H*(Kp, Z, p) respectively, which are invariant under the action of certain
automorphisms. It is also well known, [6], that a /»-Sylow subgroup of Spi is
isomorphic to v/fZ/p, the /-fold wreath product of Z/p. In the next section
we examine a specific embedding of wi'Z/p in Si and show the existence of
an H*( ) detecting family consisting of subgroups of the form X mZ/p. In
fact we have the following subgroups and natural inclusions: k¡/. Tj¡ -> Spi
for 1 < j < i and the map kf = II}.,A£: #*(§,<)->n%!#*(?;..),' where
Tu= X"'-\xJZ/p).

The first theorems compute the images of k*fs and the map kf. We show
that kf detects a set of multiplicative generators for H*(^>p¡) whose relations
are trivial to compute. Hence the map kf determines //*(Spi). Later for
simplicity we will want to identify u G H*(S>p,) with its natural image
kf¡(u) G H*(Tj¡) but we must wait until Theorems A-D have been stated to
avoid possible confusion.

Recall H*(XkZ/p) = £(<?„ . .., ek) ® P(bx, ...,bk) with degree (em) =
1, degree (bm) = 2 for all m. Furthermore ßp(em) = bm, where ßp is the
Bockstein operator associated with the exact coefficient sequence 0 -» Z/p -»
Z//>2-»Z//>-»0.

Consider the following classes in H*(X'Z/p): (a matrix cohomology class
will always mean the cohomology class given by the formal determinant of
that matrix)
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COHOMOLOGY OF SYMMETRIC GROUPS 159

L, =

b(

b(

bx

bf

bf

bt

i.e. the k,j entry of L¡

isbf(0< r <i- 1).

bC
Ls =

b\

b(

bf

bf'

bf

¿,

b(

bf
e¡

i.e. the b^ row of the
numerator is omitted
(Kj<i- 1).

i.e. L¡ is the L¡ determinant
with the 6, • • • b¡ row replaced
by the row ex • • • e¡.

M» =

b(

bf

h

bf

bf i.e. the 6^ row is
omitted (1 < j < i- 1).

Note, (i) If / = 1 then L, = bx and L, = ex are the only two classes defined.
(ii) [19] proved Qj¡ is integral, not merely rational, mod/?. See appendix for

proof.
Sp, can be thought of as the permutations of the point set Tl'Z/p. Let k¡¡:

T¡¡ = X' Z/p -> {permutations of WZ/p} be defined by: k¡¡(ax,..., a,)
sends (¿,,..., b¡) to (a, + bx,..., a¡ + b¡) where Z/p is written additively.
Then k¡¡ is seen to be equivalent to the adjoint representation (2.5) and
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160 B. M. MANN

includes T¡¡ in Sp¡. The normalizer N of k¡¡(T¡¡) in S^i maps onto GL(/, Z/p)
(2.10) and induces an action on H*{T¡¡) as follows. If \J x in GL(/, Z/p)
represents the coset xT¡¡ in N then the homomorphism ad.,.: H*(T¡¡)^
H*(T,J) operates as follows: adx(ej = \JX em, a.äx(bm) = \JX bm where em,
bm are treated as the vectors (0,..., e,..., 0) and (0,..., b,..., 0) in
H*(T¡¡) with nonzero entries in the mth place. Hence &dx operates on the
above determinant classes via the determinant function; that is, ad^L,) =
det(Ux L¡). By 2.13 image kf, is contained in H*(Ti4)aUf'z'p\

Let <¥, be the algebra E(LXL^2) ® P(Lf-1). For i greater than 1 let %
be the subalgebra of H*(T,J) generated by: 1, Lf~\ Q}i, LjLf'2, MjjLf'2,
MjiLiLf-3, MJtiMKiLf~3 with 1 < j, h < i - 1 and j < h. % is
contained in //*(7^,)GL(',z//') (2.12). Then % contains the polynomial algebra
P(Lf~\ Qx¡, Q2i,..., Qi-xJ) and all other generators of W, are exterior.
However the algebra they generate is not an exterior subalgebra as there are
zero products. The multiplication of these exterior products is determined by
the relations:

(\)L2 = M2i = 0,\ <j<i-l,
(2)L,MI,A/2,/...A/,_u^0.

For example {M2jM24Lf-*)(M2JM5jLf-'s) = 0.

Theorem A. image kf¡ = %,.

Examples, (i) If / = 1 then 0-* #*(S,)->**'#*(Z//>) where H\Z/p) s
E(LX) ® P(LX) and H*(%p) = E(LXLPX~2) ® P(Lf_1).

(ii) If i = 2 the results of [4] are obtained.
(iii) Let p = 3, /' = 3 then £3*3: i/*(S27) -> H*(Z/3 X Z/3 X Z/3) and

image k*3 is generated by:
(1) polynomial generators

bf    bf   bf
b\     b\     b\
b\     b2     b3

bf bf b\
b\ b\ b\
bx      b2     b3

ti-

lt    b¡
b¡    b\

b\
b]

(2) exterior generators
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COHOMOLOGY OF SYMMETRIC GROUPS 161

M1,3M2,3 -
6? b\ b\ b\ b\ H

^1.3¿3. MX¿LZ, ^2,3^3' ^2,3¿3> ^3^3-
(3) the relations that any product of exterior generators is zero except

(a) (MI)3M2,3)(L3L3) = - (Mli3L3)(M2>3L3) = (M2,3L3)(MI)3L3),
(b) (MX¡3L3)(L3L3) = (Mli3L3)Lf,
(c) (M2>3L3)(L3L3) - (M2t3L3)Lj,
(d) (M1>3L3)(M2>3L3) - (M1>3M2i3)L32.

The proof of Theorem A depends, in part, on [17] and a counting
argument. As noted above the classes in image kf¡ are GL(/, Z/p) invariant.
A calculation and [8] show P{bx,..., b¡)GUJ'z^p) is isomorphic to the poly-
nomial subalgebra of image kf¡. For i — 2, [4] shows

(E(ex, e2) ® P(bx, b2))GU2-z/p) s H*(Z/p X Z/p)cu*z/p) * image *&.

If /> > 5, i > 3 then (£(e„ ..., e,) ® P(6„ ..., b¡))G^¡-z/p) properly con-
tains image kf/, for example, Mx¡M2lL¡Lf~4 is not in image &?-. For/J = 3,
i > 3, it is unknown if image kf¡ equals the ring of invariants.

)m permutes the
^-Li-

Consider the inclusion Xpm=x(s>pi-\)m -+r'->Spi where (S^-
'). Then let k¡_x<i;mp Spl be

Spi be
/j'-1 letters ((m - l)/»'-1 + 1,.
the composition J/_i(X*„,(*>_i,/_i)m). More generally let &,-,-: 3},/->
the composition Ij(X£Jx(kjj)m) where 7, is the inclusion X''.V^V )#i
given by letting (S^)m permute the with block ofpJ letters.

Let 1 < j < i, then Sy-; operates on 7},- and on the algebra ®m~-\^j)m
contained in H*(Tj¡) = <g> pJ,~Jx(H*(XJZ/p))m by permuting the/>'""■' copies
of X'Z//>.

Theorem B. For I < j < i image fc,* is isomorphic to the algebra of Spi-j
invariant classes of ®£,'..''i(<ílf/)»r

Notation. Let um G (%)„, then S <«,, u2,..., up,-iy is the Sy-y invariant
class generated by uxu2 • • • up,-j (
is odd dimensional then S <m„ ux,

Examples, (i) image kfx is generated by:

is allowed to be 1 G H\XjZ/p)). If ux
up-j} = 0.

a« = s (¿1¿r2)+*°'-i))„
m=l

= S<(L,LrD-2)+^-,)) ,!,...,!>,   for 0 < k < p'~l - 1,

and

Äw-2(^r,W^r,k-"(^"%
where 1 < A: < p'~x and the sum runs over all sequences 1 < mx < m2
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162 B. M. MANN

< • • • < mk < p'-\  Thus BkJ = S<Lf_1,  Lp~\ ..., Lf_I,   1.1>
where Lf-1 appears k times.

(ii) Let/? = 3, then k23: #*(S27) -> H*(T23) and image ££3 is generated
by:

S <ext, 1,1> S <poly, 1,1> S <ext, poly, 1>
S (MxaL2, MXt2L2, Af 12L2> S <ext, poly, poly>
S <poly, poly, 1> S (poly, poly, poly)    S <ext, ext, poly)

where
(a) ext runs through MX2L2, MX2L2, and L2L2.
(b) poly runs through L2 and Qx¿.
(c) As MX2L2 and L2L2 are odd dimensional neither can appear twice in

any S< —, -, -). For example %(L2L2, L2L2, 1) = 0. Note that S<M,2L2,
1, 1) has height 3 while S <M, 2L2, 1, 1) is exterior.

(iii) In image k2i the classes

S <Mlj2L2Z,rM> ••..!>

and

S <(M1)2L2Lf-3),,..., (MuL2Lf-3),, 1,..., 1)

have height p while S<Af12L2Lf~3,..., MXt2L2LÇ~3} is exterior. This
pattern generalizes to image kf¡, 3 < j < i — I, in the obvious way.

/Votó. Example (iii) shows how all even dimension exterior generators in %j
build classes in 7/*(7},) which are the images under kf¡ of classes u G
H*(Sp¡) where each u generates a truncated polynomial algebra of height/? in
H*(Bn). These are the truncated polynomial algebras described in [22].

Let u G H*(ë>pl) then kf(u) = (/:*,(«),..., &,*(«)) and the algebra struc-
ture restricted to these detecting groups is compatible with component-wise
projection. Clearly to calculate H*(Spi) we must know when a class u G
H*(c>p¡) has nontrivial image under more than one kf¡.

Definition, u G H*(ßp,) is a multiple image class if and only if k*¡(u) ¥= 0
for at least two different values off.

Given w„ u2 G H*(è>pi) with «, detected only by kfj and u2 detected only
by kf2¡ withy, ¥=j2 then «, + u2 is a multiple image class. However this type
of multiple image class is decomposable as a sum of classes and thus is a
"trivial" multiple image class. The next three definitions and following
theorem give all "nontrivial"; i.e., indecomposable, multiple image classes.

Definition. 91L( is the subalgebra contained in eZliJ- generated by 1,
MgtiMKiLf-\ QhJ, K g, h < i - l,g < h.

Definition. Given xmJ G 91t, we define xmJ_x G %j-X as follows:
(¿)VxmJ = lthenxmJ_x = 1.
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COHOMOLOGY OF SYMMETRIC GROUPS 163

(b) IfxmJ = QhJ then xmJ_x = Qh_XJ_X, for 2 < j < i and K h < j - I
with the convention Q0j-\ = •£/-",'.

(c) IfxmJ = MgJMhJLf-3 then xmJ_x-Mg_XJ_xMh_XJ_xLfZx\for 3 <
j < i, 0 < g,h <j and g < h with the convention M0j_x = Lj_x.

(a) If xmJ = xmJxmj then xm_XJ_x = xm_Xj_xxm_Xj_x.
Note, (a) through (d) define a unique class xmJ_x for every xmJ G 9ît,-.
Definition, m G H*(Sn) is sum indecomposable if and only if u = ux + u2

for ux, u2 G //*(§„) implies «, or u2 is zero.

Theorem C. Suppose u G H*(Spi) is both sum indecomposable and a multi-
ple image class. Further suppose j is the largest integer such that kf¡(ü) =£ 0.
Then

kft(u) = S (x,^,..., xp,-jj)

with xmJ G 'Dïljfor 1 < m < px~J, and

k*-lAu) = § (,X\j-v • • • > JCy-i. • • • » Xpi-Jj-Xt • • • > Xpi-jj-i)

where each xmJ_x is as defined above and appears p times in kf_Xi(u). If
j - 1 > 2 and each xmJ_x G 9Hy_, (not just %_,) then kf_2i(u) J- 0 and
may be obtained from kf_Xi(u) precisely as k*_Xi(u) was obtained from kf¡(u).
In fact this iteration continues r times until either j — r = 2 or xmj_r $. ?SKy^r
when kf_(r+,y(u) — 0 for all t > 0. Thus u has r + 1 nontrivial images in the
detecting groups: kf_sifor 0 < s < r.

Example. For i/*(S27, Z/3) the only sum-indecomposable multiple image
classes of kfi occurring as generators in the examples after Theorems A and B
are:

(*» (QlMQlMQlJ* ß2,3)>
(0,(L2)1(L2)2(L22)3,eii3),
(0, (MxaL2)x(Mx,2L2)2(M, 2^2)3, -M, 3Af2>3),
(53,S<2,,2,1,1>,0),
(56,S<Ö,>2,ß,j2,l>,0).
Consider uxu2 in H*(ë>pi) where &*(«,) = (S<Lf ', 1,..., 1>, 0, 0) and

^3*("2> = (°. S<L|-1, 1,..., 1>, 0). Then k^(uxu2) = 0 but in fact «,«2 =£ 0
in H*(i>p}) and uxu2 is detected by subgroups of the form Tx X T2 X • -X
Tp where Tn = TX2 or T22 and both Txl and T22 must occur at least once.
These detecting groups are included in §y through Xp(S>p2). More generally
a nonsymmetric detecting group, X^x(X'm-x(T ))„ of Sy is a product of
detecting groups of Sy-i included in Spi through X^S^.-i) where TrttS¡ ¥=
Tr. for some r,, r2, sx and s2. These nonsymmetric detecting groups detect all
classes u G H*(s>pi) not detected by the map kf as stated in Theorem D.
First we need
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164 B. M. MANN

Definition. Let u G H*(s> :) and n < p'. Then we have the natural inclu-
sion Ip,n: SjjC-» Spi. We say u restricts nonzero to S„ if and only if Ip¡n(u) ¥= 0.
For notational convenience we write u for both the class in H*(Sp¡) and the
restriction in H*(Sn).

Theorem D. (1) The classes in H*(Spi) not detected by kf are products of
classes that are detected by kf.

(2) Let um G H*(ßpl). Suppose kf(um) * 0, ITm_,*f(«J = 0 and let nm be
the smallest power of p such that um restricts nonzero to H*(S„m). Then
ITm=,«m ¥= 0 in H*(%pl) unless:

(a) um = um is an odd dimensional exterior class in H*(§>„ ), for some"m2

1 < m, < m2 < r.
(b)  "m, = umi = u     is an even dimensional exterior class in

H*(S„m )for some 1 < mx < m2 < • • • < nip < r or
(c) Sn  X • • • X S„ is not contained in $pt.

Note. The classes umt appearing in condition (b) are the generators for the
truncated polynomial algebras described in example (iii) after Theorem B.

Thus every u G /z**(S/,i) is expressible as a sum of monomials
2a(ux,..., ur)ux <8> • • • ® w, where a(ux,..., ur) G Z/p, ut G H*($p,)
with k\(ut) ¥= 0 for all t.

Definition, m G H*(Sp¡) is proper if and only if u = 2a(w,,..., ur)ux
® • • • ® ur with kf{ux ® • • • ® ur) ¥= Ofor each monomial in the sum.

Thus Theorems A through D compute H*(%p,) and from this point on we
will identify elements of H*(Spi) with their image under kf. That is Lf~iQÁ¡
G H*(ßpl) is the unique proper class u G H*(ê>pi) such that kf(u) =
(0,..., 0, Lf~xQjf). Care must be taken with multiple image classes under
this identification. Notice, by Theorem C, that QXi G H*0¡>p¡) is the unique
proper class u G H*(ß>pl) such that kf(u) = (0,..., 0, S<L/T11,..., L/l-,1),

Since

V      if y = 0,
W')- \b>M    iîj=pk,

.0 otherwise,
it is easy to determine the action of the Steenrod algebra (£(/>) on H*(&pi).
Consider MX3L3 ini/47(S27, Z/3). Then

«3" b\ b\ b\ b\
b\

b\
bl

b\
bl b\

b\    b\
b\ bl

b\    b2

bl2
6,    b2

bl
bl — L3L3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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This computation involved use of the Cartan formula; however, all terms
except the first are zero. The next theorem describes the &(p) action on ^15",-.
Note the polynomial subalgebra of 6W/ is closed under the &(p) action while
a class in the ideal generated by the exterior generators of %¡ may be
"bocksteined" into the polynomial algebra; e.g., ß^x(MhiLf~2) = Lpx~x for
/ > 1. Using the Cartan formula and the following theorem it is trivial to
compute the &(p) action on all the detecting groups.

Theorem E. The following relations and the Cartan formula describe the
&(p) action on %.

(1) W-'iMjjM^LP-3) = MuMh_XtiL?-\ j>h and M0J = L,,
(2) <$pJ-\MJtiMhJLr3) = Mj_XJMKiLr\ j>h and MQJ = L,,
(3)ß(L,) = Li,
(4) ̂ "(fly) = Qh_u, with o,,, = Lf~\
(5) V'-'iLf-1) = - ß-uV for i > 1 while
<!?J(Lp-x) = (p-jX)L\p-W+»f0rj < p - 1.
(6) ̂ -'(M^L^r3) = (P- 2XM,._,,L,Xr3)(Ô,-u),
^-(M,.,,,!/-2) - (P - 2)(M,._1,L/'-2)(Ö,._1,).

The following diagram is conceptually helpful.

MM.V

LL'-2 —

>

MtLL"-3 -£*    MtL"-2

]<?" Iii"
3 -2-» M,LV-3 -^     »"-2

iff'

¿í,¿p-

,£P-i

I"
e.

c2

M.M.AP- .»«Ü
„,-« k

^1- 2«i- 3¿" " 3 ;^-» «i- J^l- ^P "

y'3 í^'-3 I-i''"'
2-» M,^LW-3 -2* M¡_1V-'1        ß,_2

Lp'-> U'"1 Up'"2 Up'-j       L/>'-2
Ml_lMl_1V'-3--► Mi_iM,_iL<'-31-►M,_,JI//_4¿P-3--►  ••• 3-* M,_ ¡LI?-3 -*► ̂ .¿P"1        ß,_,

THE ACTION OF &(p) ON THE GENERATORS OF W¡

Examples, (i) Consider A = (0, S (MX¿L2, MX2L2, MxaL2}, — M2¿MX3) in
#30(S27, Z/3). Then

tf'jS (A) = (0, - S <L2L2, M,>2L2, M,,2L2>, 0)
while

ß$\A) = (0,0, M2<3L3).
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166 B. M. MANN

(Ü)
Vo'-'Vo'-'iM^LP-2) - <$p"\{p - 2)(M,._,,Lr2)ô,-i,,)

- (p - 2)[(M(._2,Lr2)ô,-i,/ + (M,.-,,Lr2)Ô,-2,,]-
Let n be an arbitrary integer. Then n may be written uniquely as follows:

n = Sy-o^y with 0 < Oj < p - l, a¡ ¥= 0. A p-Sylow subgroup Kp of S„ is
isomorphic to

a¡ o,-i      ._. ax

Kp = X (wr Z/p) XX  ('wr Z/p) X • • • X X (Z//?).
To compute H*(%„) consider the following diagram of inclusions

/

KP=X(S ,)x--x X(8P)

Theorem F. (1) Ip¡*\„ is surjective.
(2) Jf is infective.
(3) v G Image Jf if and only if there exists au G H*(&pi+i) such that

(Ipl+Kn°Jn)*(u) = v

= S S<«u> • • •, «U> ® • • • ® S<«M • • • «,a|> G H*(Kp)
with uir G H*(Sp,)for each r.

Important example. Let n = 2pl. We have

§2p< §Pi+1

p' P'

wr Z/p x wr Z/p ■
f+j

-> wr Z/p

Recall the definition of Aki and Bki (see example (i) after Theorem B). Then
#*«>'(4m+D = AKi ® 1 + 1 ® 4y = S<4y, 1> for 1< * < />', while for
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cohomology of symmetric groups 167

p' < k < pi+x, Ip*+\2pi(Aki+x) = A'ki ® 1 + 1 ® A'ki where A'Ki is expressible
in terms of Ar_,• and Bri for r < />'.

p'
Ip*<+i>,2p{Bk,i+l) =       2        Bn,i® Bm,i=   ̂     §<5n„52i,/_ni(>,

n+m=k n=0

where 0 < «, /w < p', 0 < & < 2p', and 50, = 1. Similar restrictions occur
on the other detecting groups. Thus the natural inclusions S„-»Sn+,
-»•••-» dir lim S„ are easily analyzed. Clearly

Sp/ -» Sp/+i —>•••—> dir lim % ¡
is a cofinal direct limit and we have //*(dir lim S„) = //*(dir lim Sp<) = inv
lim H*(§pi). Notice Theorem F implies inv lim H'(Sp¡) is attained for each t
at a finite stage.

Recall the theorem stated in the introduction that ties dir lim /?<= to
Q (S^ = dir lim QnS".. Furthermore, if Gn is the set of homotopy equivalences
of S"~x then G = dir lim G„ is homotopy equivalent to the union of the +1
and —1 components of Q(S°). Thus dir lim 2?§ properly interpreted is a
model for G and we have:

inv lim #*(§,,) = H*(Q(S°)0) « H*(SG)
as algebras. Thus H*(SG) can be identified with "infinite symmetric sums" in
the 6bS¡ algebras with the proper identifications; i.e., $(Qjj, 1, ...)<-»
S<Ô7_M_„ ..., Qj-ij-u 1,... >. The &(p) action on H*(SG) restricts to
that on 5§ . for each / and there is a unique action which has this property.
Theorem E describes the restriction of this action. Recall, [22] and [24],
H*(dir lim Spl) is a Hopf algebra isomorphic to H*(Q(S\) with the
coalgebra product on H*(dk lim S^.) induced by the inclusions Sp¡ X Spi ->
S2pi. Thus Theorem F gives the loop sum coalgebra map on H*(Q (S\).

As Q(S°)0 is an //-space it is possible to obtain integral information about
H*(SG, Z,p) on H*(§pl, Z,p) (see [14]). [2] gives a Hopf algebra Bockstein
spectral sequence with

Ex s //*(dir lim S,,, Z/p),

E^ = H*(dir lim S^, Z,p)/Torsion.
Letx,y G % and let

L„j(x:yn+X,..., ym, 1, .. . ) = %{xLf~x,..., xLf~x,yn+x,. .., ym, 1, .. . >
and

LnJ(x:yn+l,...,ym,l,...)

= S (xLjLf-2, xLf~\ ..., xLf-x,yn+x,..., ym, 1,... >
where yr =?*= xL/-1 or xLjLf~2. Note a class in //*(dir lim Sy) may have
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more than one representation as Lnj( • • • ) or L„j( • • • ); for example,

SOI/"1, xLf-\yLf-x, 1,... > = L2J(x: y, 1,... ) - LXJ(y: x,\,...).
Theorem G. Let k^ = dir hm¡kf¡ and let u G //*(dir lim Spi) be a proper

class. Then there exists a smallest positive integer j such that kf^u) ^ 0. Then
^*oo(") " §<*i.xm,l,...}and

(1) If some xn contains an odd number of MgJ factors or if k*„(u) =
Lnj( • • ' ) or LnJ( • ' •) for n not divisible by p then u is in the image or
domain of ßp.

(2) Let r > 2. If dr_x(v) = u in Er_x of the Bockstein spectral sequence and
kj%(u) = S (xx,..., xm, 1,... > with no xn containing an odd number of Mgh
terms or the factor Lj then there exist v' and u' such that i/r(t/) = u' where
k,%(u') = S <x„ ...,xx.xm.xm, 1,... > + 2m". Each xh appears
p   times  in   S <x„ . . ., xx.xm, . . ., xm,   1, . . . >   and  each   u" =
S <x„ ..., x„ 1,... > with t < pm.

Corollary 1. Let r > 2 then
dr{Lp,-xÂx'- !» • • • )) " Lp-lAx: l> • • • )

where x satisfies the same conditions as the x„'s in (2) of Theorem G.

Let R¡ be the inclusion Sp, -» dir lim S^< then Rf gives the Bockstein
structure of H*(Spi, Z,p).

Corollary 2. QJ4 G H*(%p,, Z,p) has order pi*1.

Examples, (i) Lprj(MXJL¡Lj~3: 1,.".. ) is a class of orderp in H*(SG, Z,
p), while Lpr^M^M^Lf'3: 1,... ) is a class of orderpr+1.

(ii) (B6, S <ß,,2, Ö,,2, 1>, 0) G //24(S27, Z, 3) has order 9.
Finally the results of this paper have an application to cobordism theory.

Although [3], [13] and [18] completely compute the PL and TOP cobordism
ring at the prime 2, the odd case still has unanswered questions, notably the
odd torsion in ñPL. Using results of [3], [15], [26], [27], [32], [34], [37], [38], [39]
and this paper one may calculate the E2 term of the Adams spectral sequence
converging to ßPL ® Z(p). Current joint work with H. Ligaard, J. P. May and
R. J. Milgram computes this E2 term and gives infinite families of nontrivial
differentials of all orders in the spectral sequence.

II. The embedding and the detecting family.
2.1. Definition. Let K be a finite group and L a subgroup of S„ then AT wr L

is defined to be the group whose elements are

{(f g)-f is a mapping of (1,2,..., n) into K, g G L}
and whose multiplication is given by (/, g)(f, g') = (ffg, gg'), where fg(g(i)) =
f(i)andff'(i)=f(i)f'(i).
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2.2. Definition. Let X be a space and {A¡} a collection of subspaces of X.
{A¡) is a Z/p cohomology detecting family for X if the inclusion map H*(X) -»
Tm*(A¡) is an injection.

2.3. Lemma. Let Kp be a p-Sylow subgroup of K, then the transfer t(K, Kp):
H*(Kp) -» H*(K) is an epimorphism and the inclusion i(Kp, K): H*(K) ->
H*(Kp) is a monomorphism whose image consists of stable elements of H*(Kp).
Furthermore we have the direct sum decomposition H*(Kp) = Im i(Kp, K) ®
Ker t(K, Kp).

Proof. See [5, Chapter XII, p. 257] for the definition of stable and p. 259
for a proof of the lemma.

Recalling that ap-Sylow subgroup of Spi is isomorphic to wr'Z/p, [6] gives

2.4. Corollary. If {Ay} is a Z/p detecting family for v/fZ/p then it is one
for Spi also.

2.5. Definition. Let G be a finite group of order n. Then the adjoint
representation A: G-» S„ is defined as follows: Let A(g) be the permutation
{ S^SSi) where S„ is thought of as the permutations on the n elements of G.

The adjoint representation is obviously a monomorphism and includes G in
S„. Let G = X 'Z/p, then the adjoint representation of X'Z/p in Sp* is
clearly equivalent to the map k¡/. X 'Z/p -> % i defined in §1. (The two maps
differ by at most a reordering of the elements of X'Z/p; that is, an inner
automorphism of %pt.)

Again considering Spi as the permutations on the set II'Z/p the map /,_,:
X ^.^(Sy-i^-» Sy defined in the introduction is realized by letting
(c>pi-t)m permute the set IT-1Z/p X {m} contained in II'Z/p.

Note that under the specific embeddings k¡¡ and /,_, the subgroup
X'~xZ/p X {0}-» X'Z/p-»*'•'Sp/ is contained in the subgroup
XSI„,(Si,,-i)m-»/'-'S/,/. Anyp-Sylow subgroup of Xpm„x(Sp,->)m that con-
tains X'~xZ/p X {0} is isomorphic to X^=,(wr'-1Z/p)m. Then
XJ,_1(wr'""1Z/p)m and X'Z/p generate ap-Sylow subgroup of Spi which
must be isomorphic to wrZ/p. Thus we have the following commutative
diagram with the above mentioned inclusions:
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where k¡_x ¡ = X m-ii^t-u-unr Thß specific form of k¡¡ and k¡_Xi guaran-
tees XS,_,'(X'-,Z/p)m factors through Xpm.x(^-xZ/p)m.

More generally if Im.^: Sp™, X • • • X S,-, -> Sp, is defined by letting
Sp»,, permute thep^ letters (pm> + • • • + />"*•-' + 1,... ,pm' + • • • +pffV)
then the map Im.^ ° (nnr_,fcm^) includes H?.,( X*Z//0 in S,..

If wi, = ra2 = • • • = m^z-y = j then 11^11( XJZ/p) -+ §p< bas the form

*j4-h....j° n (yr: x  x z/pUSp,.

2.6. Definition. Let 7},- = X'"7 (XJZ/p). Let k¡/. TM¡-» Sp, be the above
inclusion. Then Tjt is called a totally symmetric detecting group.

Notice Tjj and kj{ are defined for 1 < j < /. The following lemmas are
established in the proofs of Theorems A through D:

2.7. Lemma. The set {/„„....^ ° (Ir^,^)): IPr_, X *(Z//»)-» S,,}
/o/ras a Z/p detecting family for Spi.

2.8. Lemma. 77ze tota//y symmetric detecting groups T}i, 1 < y < i, detect a
set of multiplicative generators for H*(bpi). (This is the first part of Theorem
D.)

2.9. Lemma. In Z/p cohomology, Ker kf¿ n Ker If_x = 0.
These lemmas may be proved directly using [27], induction on /, and 3.1.
We now examine the normalizers of the detecting subgroups in Spi.

Consider k¡/. 7*w -> Sp,. Let ar G %p, generate ku(0 X 0 X • • • X (Z/p)r
X • • • X 0) and let N¡ be the normalizer of ku(T¡¡) in Spi. Define a
homomorphism \p: N¡^GL(i, Z/p) as follows: If x G N¡ then xarx~x =
ax,ra22r • • • a?r. Then let \p(x) be the matrix whose (m, «)th entry is jmn.
Clearly \p(x) is nonsingular.

2.10. Proposition. The sequence 1 ->Jfcw(rw)-*■ N,-**GL(/, Z/p)->l is
exact.

Proof. Preceding fc,, by any automorphism <p: 7),- -» T¡¡ is just a reorder-
ing of the underlying set of T¡¡. This reordering, considered as an element of
Spi, conjugates k¡¡ to k¡¡ ° <p. This implies i// is onto. The remainder of the
proposition follows trivially.

For x G Spi the homomorphism ad.,.: H*(T,J) -» H*(xTux~l) is induced
by the inner automorphism y^>xyx~x. Let E = 1!mw.xamem and 5 =
2m_,a^,6m in H*(T¡¡) then it follows directly from the definition of ty that

2.11. Proposition. For x G W„ ad^E) = \p(x)E and zdx(B) = ^(jc).B.

Since &dx is a ring homomorphism 2.11 determines adx on all of H*(T¡¡).
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Since thepth power homomorphism, a\-*ap, is the identity on Z/p we have
P(xf,..., xf) = (P(xx,..., x¡)f for all polynomials P. This fact and direct
computation yield

2.12. Proposition, ad^ operates on the classes L¡, Qj¡, MJt¡, L¡ via multiplica-
tion by the determinant function.

2.13. Corollary. The algebra % is contained in H*(Titi)GU-i<z/p\

2.14. Lemma. If G is a finite group, K a subgroup, and NKG the normalizer of
K in G then the image of H*(G) in H*(K) is contained in H*(K)N™.

Proof. Any inner automorphism of G induces the identity on H*(G).
Hence we have the following commutative diagram:

H*(G)       % H*(G)
i(K,G)i ii(xKx-\G)
H*(K)      a-Í      H*(xKx~x)

Allowing x to run through NKG gives the lemma.

2.15. Corollary. Let u E H*(Sp>) then kf¡(ü) G H*{kTtjfut*M.
Proof. Immediate from 2.10 and 2.14.
Let Njj be the normalizer of k,/. TJt¡ -» Spi in Sp,.

2.16. Proposition. The sequence
p'~J

1h> x  Nj-*Nji^±Spl-j-*l

is exact.

Proof. Both N,4 and XP'~JN- act on 7},- via conjugation. But x G Njt¡
permutes thep'~j orbits of Xp ~JNr This gives a homomorphism <p: -#,•,,->
%p,-j which is clearly onto and has an obvious section t//. Notice \p(y(x)~ ') • x
G X p"JNj as Wvix)'1) G Njj and »¿OK*)-1) • x G X '"'$,,. The proposi-
tion follows.

Let iV...* be the normalizer of /„,.„(ü?.,^)): ^„(X^Z/p)
-» Spi in Spi and let S(m.„^ be the subgroup of S„ generated by the
transpositions (a, c) where ma = mc. Minor modification of 2.16 yields the
following three propositions.

2.17. Proposition. The sequence 1-» X ?_i^-»iv*m.^«^^(m,.mj
-» 1 is exact.

2.18. Proposition. Let N be the normalizer of I/. Xp'~JSp¡ -* Sp¡ in Spi.
Then the sequence 1 -» X p JSpi -» Nj,+± Spi-j -» 1 « exacr.
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2.19. Proposition. Let Nm.^ be the normalizer of I„x.„/. X"_,S^
-> Sp, in Spl. Then the sequence 1 -> X ?_ ,S^_ -» Nm.^«± S(m,.^ ->
1 is exact.

2.20. Lemma. If G is a finite group and K a subgroup then i(K, G)*t(G,
K) = 2xeC/Ktxixadx where adx: H*(K)-»H*(xKx~x) is the homomorphism
induced by y\->xyx~x for y G K, ix is the inclusion map H*(xKx~x)->
H*(xKx~x n K) and tx is the transfer H*(xKx~x n K)-> H*(K).

Proof. [5, XII. 9.1, p. 257].

2.21. Proposition. If K is a proper subgroup of XmZ/p then the transfer t:
H*(K) -> //*( X mZ/p) is zero.

Proof. [4,1.2.1].

III. Some properties of &(p) and the proof of Theorem E. In this section we
state facts about the Steenrod algebra needed to prove Theorems A through
D and give a proof of Theorem E.

First recall the construction of the Steenrod pth powers ([31] gives the
complete treatment and we quote it frequently in what follows). Let AT be a
finite regular cell complex then we have the following spaces and maps:

Xp±> Wz/p Xz/p X" l¥ Wz/p Xz/pX = Bz/p X X
where j is the inclusion and A is the diagonal map. Given any u G H*(X)
there exists a unique natural class ^P(w) in H*(Wz/p Xz/p Xp) such that:

(l)y*(<3») = u ® • • • ® u = u®p.
(2) (1 X A)*(<3>(u)) in H*(Bz/p X X) can be expanded by the Runneth

theorem. (1 X A)*(é(u)) = 2wk ® Dk(u) where wk generates Hk(Z/p) and
Dk: Hq(X)^> Hpq~k(X) are homomorphisms which define the elements of
&(P)-

(3) ßD2k(u) = D2k_x(u), ßD2k_x(u) = 0 and ßD0(u) = 0.

3.1. Theorem [31]. If z G H*(Wz/p Xz/pXp), then z is of the form
z = tzx + z2- <$(z3) with zx G H*(X"), z2 G H*(Bz/p) and z3 G H*(X),
where t is the transfer. Furthermore the sequence

H*(X») Uh*(Wz/p Xz/p X»fX-?mH*(Bz/p X X)
is exact.

Proof. [31, VII. 4.1, p. 104 and VIII. 3.6, p. 126].
3.2. Definition [31]. Let u G Hq(X) then

W(u) = aMD{q-mp-X)(u),

W") = *7,A-î/>0>-i)-t(«)>
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where aJq is a nonzero constant in Z/p dependent onj and q. If k ^ (q — 2j)(p
— 1) or (q — 2j)(p — 1) — 1 for some j then Dk(u) = 0.

3.3. Proposition. Ifqis even, say q = 2n, then aj2n = (- \y+n.

Proof. Follows directly from [31, VII. 6.1 and VII. 6.3] (note correction of
the formula in VII. 6.1 on the first page of the appendix to [31]).

The following is well known:

3.4. Lemma. I. Let p be a prime and a = Hf^aj)1, c = 27= o^' (0 < a¡>
C; < p - 1). Then

(í)-n(J) o«*!».
II. 9>(e) -0 for all j>0.
III. <$j(bk) = ('j)bk+<-p-X)J.
IV. (Cartan formula) ^'(uv) = n2¡m+n=j^m(u)^n(v).
V.

nbpi = (pJ)DPm+(p-\y=
b'm      iff = 0,
£'m+'    ifj=Pm,

0 otherwise.
Proof. [31, see 1.2.6, V. 1, VII. 2.2 and VI. 2.3].
The proof of Theorem E follows from direct calculation and Lemma 3.4.

Note: To prove relation (4) of Theorem E, just expand ty* ~'(QkiLf~x).

IV. Symmetric products and image kf¡. In this chapter we summarize results
of [17] which give H*(S„) as Z/p vector spaces and give an upper bound on
the size of image kf¡.

Recall the monomial <$' = ße"^s" • • • ß''®*' G &(p) is called admissible
if s¡ > ps¡_x + e,_, for each / > 1, and the excess of ty1 = 2sk + ek —
^jZx(2sj(p —' 1) + Ej). The excess of any admissible monomial is nonnega-
tive. Let &(p)„ be the subvector space of &(p) spanned by those monomials
of excess < n.

Let SP*(S2") be the k symmetric product of S2" (see [17] for the definition
and properties of the symmetric products of a space).

4.1. Theorem [17]. (1) H^(S?k(S2")) = ^km=xH^(SF"(S2n), SP"-1^2")).
(2) <3l(S2n, Z/p)-=Il^xH„(SFn(S2n), SP""-1^2")) is isomorphic to

H¿K(Z, 2/0).
There is a bigrading of <3l (S2n, Z/p) given by

%,m(S2"> Z/P) - -tf,(SPm(S2n), SPm-1(52")).

(3) For <3l(S2n, Z/p) the generators q¡ in homology are in 1-1 correspondence
with admissible monomials ^' - ß^5' • • • ß'^> in &(p)2n and the bidegree
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of this generator is (\^'\ + 2«, p'). Moreover (jq¡, ^'(i)} = 1 under the
isomorphism in (2).

Proof. [17].
Remarks. (1) is due to N. E. Steenrod. [8] and [21] also studied (1) and (2).
The next theorem follows from the fact that the singular locus of (S2"Y'

under Sp> has dimension 2«(p' - 1).

4.2. Theorem [17]. For k<2n-\, Hk(Sp,) s HMpl)_k(S?"'(S2n)).

Since Hj(SPp'(S2")) s Hj(S?pl (S2n), S?P'-X(S2")) for y > 2n(p' - 1) + 1
we may identify Hk(Sp<) with elements in ^(S2", Z/p) of bidegree (2«(p')
— k,p'). Thus for k < 2« — 1 classes in Hk(Spi) correspond to classes 2a;
with each a G %(S2n, Z/p) having bidegree (-, p'). This gives Hk(Sp¡) as
Z/p vector spaces. Recall there are two types of classes in 6l(S2", Z/p)
having bidegree (-,p'):

(1) a corresponds to ty1' of bidegree (|97i| + 2n,p'),
(2) a = ][bk where bk has bidegree (-, pJ), for some j < i and occurs in

H^(S?pJ(S2n), SP^-'iS2")).
On the other hand the multiplication map M: S?p''\S2n) X • • • X

SP''~'(S2n) -> SP"'(S2") and 4.2 give a map m: ®pH*(Spl->) -► //*(Spi).

4.3. Lemma [21]. m is the transfer map induced by the inclusion
p

/,_,: X Spi-\ -» Spi.
Proof. [21].

4.4. Lemma. Letu G H*(Spi) correspond to a G 91 (S2", Z/p). //"aw o/Zype
2 /Äe/j ife¿(«) = 0.

Proof. Suppose a is of type 2 then a is in the image of M+. By 4.3, « is in
the image of the transfer t: H*(XpSpl->) -> H*(Sp>). But 3.1 implies kf¡t = 0.
Hence kf¡(u) = 0.

Let 4'n(P')-^'(52"' zfP) be the subspace of ^^-^(S2", Z/p)
spanned by elements of type 1. Then 4.4 yields:

4.5. Theorem [17]. As Z/p vector spaces

dim((image^)A) < dim^',,^^ (S2n, Z/p)).

V. The proof of Theorem A. We now proceed with the proof of Theorem A.

5.1. Lemma. Gl£t is contained in image kf¡.

Proof. By induction on /. The lemma is classically true for / = 1 and [4]
proves the lemma for /' = 2. Assume 6ÜS¡-X is contained in image kf_Xi_x. The
next four lemmas establish 5.1.
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5.2. Lemma. There exists u G H*(Spi) such that

kf-W) - (Mi_2J.xMi_y_xLf_-x3fpE H\Tt_u).
Proof. Recall the following commutative diagram containing the construc-

tion of the Steenrod powers on Spi-r.

BN,
'(S ,-_,),s ■•.   p        p

BrxV-> WZ/p  XZ/p BP
= B

/-i
S  ¡_,wrZ/p

5,
'i-l,i

xsp
1 x A

Wz/p *z/p *§,-_,    =^xSSM
p' p

Of course the composition BT/_ti->Bs is Bk¡_x¡ and the composition
5r„ ^/>§,, is M,,,..

Let w' G H*(Spl-,) be such that /cf_,,_,(«') = A//_2>/_,A/;_3,._,JLf_3 then
3V) = u" G H*(Sp,-,wrZ/p). Let v4 = Sy-. wr Z//»'. Then 2.20 gives

i(A,Sp)*t(Sp„A)=    2     ',/,ad,
xE.hpi/A

and we have the following commutative diagram:

H*(A)-—>• H*(xAx~x)-—► H*(xAx~ ' n ^)-2 H*(A)

Sad Sí- Sí.
s^ír')-z+ -lh*(xt'x-1) —2-* zh*(xt'x- 'nr^ ,)     * > //*(r,_,,)

where 7" runs through all inclusions XmZ/p in /I. (The last square com-
mutes by 2.21 and [31, V. 7.2], as xT¡_x¡x~x c A implies x G A.)

Thus 2.16, 2.18 and 2.21 show

kf_ut(A, Sp)(u") = 2 (M-v-.^,,-,!/--,3)0'

where the sum runs over a coset representation JV,_, = NXPS    <%  mod A. As
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A contains a p-Sylow subgroup of Spt, [N¡_x: A] = c ^ 0 (mod p). Let
u = t(A, Sp,)(c-lu"); then*f_M(«) = (M/_2,_,M,._3,_,L/L-13)07'.

5.3. Lemma. There exists u G H*(Spi) such that

kf-x,lu) = (Q¡-V-i)®PeH*(Ti_x>i).
Proof. Identical to that of 5.2.

5.4. Lemma. There exists u G H*(Sp,) such that kf¡(u) = M,-1(M/_2>,L/'"3.

Proof. Let u' G H*(Sp,-¡) be such that kf_,,._,(«') =
A//_2>i_,3/(_3>/_1L/C3 and u <E H*(Sp,) be such that £,*_,,(«) =
(M¡J2tl_lM¡_3\l_xLfSl3)9p G //*(7^._1(.). Recall 3.1 implies image ftg is
contained in the H*(Z/p) module generated by image(l X A)*1?. A simple
dimension check shows that the only classes in H*(Spi-\ wr Z/p) that could
project to kf_Xi(u) are <$(u') and bx + <dP(w'), where x = \ dimension(w). By
2.15, kfi(u) is' GL(/, Z/p) invariant. As (u'Y = 0 in H*(Spi~,) the class
6,* + ^(w') is not GL(i, Z/p) invariant (there cannot be a pure bf term in
(1 X A)*(öp(i/)) for r > 1). Hence kf¡(u) = (1 X A)*(<3>(u')). It is easy to see
that dimension«) = 2(p'-1 - p'~2 '- p'~3) = 2«. Thus

k*(u) = (1 X A)*(3V)) = 2 h>, ® ^(M/_2,_1M_3>í-i¿/'--13)

2  "(2*-2/)(„-l) ® (-lWM-2,/-lM-3,í-I¿r.3)

+ 2 w^.^.,)., ® (-îy^^M^^^M,.,,.,^-,3)

Í:

J

Consider M¡_ XjMi_2>iLf 3. Expanding along the ex, bx columns we have

M-.,,M,-2,Lf-3 = 2 (-\yb[(ABCx • ■ • Cp_3)
A
B
Ck

+ '2(-l)'Pexb*x(DECx---Cp_3)
D
E
Ck

where A runs over all i — 1 X / — 1 minors of M¡_x¡ eliminating the bpx
(0 < u < i — 2) row and column, B runs over all i — 1 X i — 1 minors of
A/,_2, eliminating the bf (0 < v < i — 3, or v = i — 1) row and column, Ck
(k = 1,... ,p — 3) is any i — 1 X i — 1 minor of L, eliminating the bp'k
(0 < zk < j* — 1) row and column, r satisfies the relation
dim(M,._1,Jl/,_2>/L/'-3) = 2r + dim(^) + dim(B) + 2^3, dim(q), and <p =
u + v + ipk~\z'k (mod 2) if v ^ i - 1, and = (/ - w) + I,pk~3xzk (mod 2) if
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v = i — 1. D and E are / — 1 X / — 1 minors of M,_,,- and M¡_2¡ respec-
tively with exactly one minor eliminating the ex row and column, the other
eliminating a bf row and column.

If Ck is the minor eliminating the bfk row and column then Ck —
9*MA-i) where mZi = pz" + p** + 1 + • • • +pi_2(= Oif zk = i - 1).

Case 1. Suppose t> = / - 1. Then the minor of M¡_2i eliminating the bf
row and column is M¡_2i_x. If A is an i — 1 X i — 1 minor of M¡_x¡
eliminating the bf row and column and AM¡_2¡_X *£■ 0 then u ^ i — 2. Thus
A « ^''(JW;..^.,) where y, = />" +p"+I + • •' • +p'-4 (if « = / - 3 then
y, = 0). Thus if v = i — 1 we have

¿*C, • • • Cp_3

Case 2. Suppose 0 < v < i - 3. Then ^ = ^'(M-v-i) where y, = p" +
pu+I + • • • +p'~3 unless « = / — 2 in which case jx = 0 and £ =
^2(M-3,,-i) wherey2 =p" + pv+l + ■ • • + p'~4 +p'~2 unless o - i - 3
in which casey2 = p'~2. Then we have

¿*c, • • • cp_3 = ^'(M-2,,-,)^2(M-3,,-.)^'(A-i) • • • S-WA-i).
Note. In Case 1 we have terms involving (-l)/>0(Af,._2)_1)5>-/l(A/;_3>,_,)

and in Case 2 if w = / — 2 we have terms involving P°(M¡_2,¡-i)<3>h(Mi_3¡_x)
but it is clear thaty, can never equal y2 in these cases.

Thus if ABCX • ■ ■ Cp_3 i=- 0 we have written ABCX • • • Cp_3 uniquely as
^'M-V-iW^i-V-i^'Cit-i) ' • • *%-»(!,_,) for certain y„ y2,
mZi,..., m.   . 3.4 clearly shows if

lr-^'(M/_2>/_1)^(M-3,/-i)^"(A-i)- • • 9V»(A-i)*0
then y = y!5C, • • • Cp_3 for a suitable choice of A, B,CX,..., Cp_3 and is
thus analyzed in Case 1 or Case 2 above.

Let y = y, +y2 + ~2pkz]mZk. For both o = i — 3 and v < i — 3 it is trivial
to see that <p = y (mod 2). Hence the Cartan formula and the above facts
yield the following decomposition of M¡_XiM¡_2¡Lf~3 where the first sum
runs over all integersy.

Mt-yM^Lf-3  =2    ôM0-»® (-íy^.y.^.y.,!/;,3)

+ 2 (-lr^®/^.---^.
Z)

Q
Let í/= kf¡(u) - (-l)n(A/,-IifM,._2/Lf-3). £/ is clearly GL(/, Z/p) in-

variant. Any monomial term in U must contain the factor exej (j =£ 1) but as
there is no monomial in U with an e2e3 factor symmetry implies U = 0. As
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«=p'  x — p' 2 - p' 3 we have

kfJiu)~-Mt_uM,_uL!-\
This proves 5.4.

Note. By keeping careful track of D, E, and ß(^J'(Mi_2j_x)(3'j2(Mi_3>i_x))
it is possible to see directly that

^(-\)\b\®DECx---Cp_3
D
E

= -2 exb[n-^-x)-x® (-\)jß<$J(MMLp~3)
j

where MMLP~3 = M(_2j(_,JW;._3jl._1L/r,3-

5.5. Lemma. There exists u G H*(Sp¡) such that kf¡(u) = ß,_M.

Proof. The proof is similar to that of 5.4. We let u' G H*(Spi-i) be such
that kf.,,,_,(«') = Qi-xi-x and u G H*(Sp,) be such that kf_,,(") =
(Qi-2,i-ifp G-H*(Ti_xj). Then kf¡(u) is the GL(/, Z/p) invariant class
containing (1 X à)*(^(u')). But [8] proved Q¡_u is the only GL(/', Z/p)
invariant polynomial in this dimension. Thus kf¡(u) «■ cg,_,„ where c is a
constant. Note (1 X A)*(9(«')) contains the term w0® D0(Q¡_2Í_X) ■
(Ô,-2,,-iy 7e 0. Hence c ^ 0.

The naturality of the Steenrod algebra implies image kf¡ contains
&(p)(M¡_x¡M¡_2iLf~3, Qi-iJ). By Theorem E any generator % is contained
in (î(p)(AfJ_,/A/1_2(.L/'_3, Qi-u) (see the diagram after Theorem E). This
completes the proof of Lemma 5.1.

By 4.5, to complete the proof of Theorem A it suffices to construct a 1-1
correspondence between nonzero monomials in G!£¡ and admissible monomi-
als in &(p).

5.6. Lemma. M¡_XiM¡_Xi • • • MUL¡ ^ 0.

Proof. The term exe2 • • • e/(6i'~')'~ WY-1 ■ • ■ (*>,)'"' appears with
coefficient 1 in the term-by-term expansion of A/)_, ,M,_2i • • • MX¡L¡.

The only admissible monomials of length 1 in &(p)2n are <3"'~j(u2n) and
ß^"-j(uln) which correspond to (Lf1)7 and (LxL{-2)(Lpx~xy-x in %. Thus
we may assume, by induction, that an i — 1 length admissible monomial in
&(p)2„ starting with ^"l_j'(w2n) corresponds to ay-fold product monomial in
%_, (y < n). Let A be an admissible monomial in 6E(p)2n.

Case 1. e, = 0; that is, A = ße>^s> • • • ße2<$S2<3"'-j(u2n). The dimension of
<$"~J(u2n) is 2p(n -y) + 2y and hence s2 = p(n - j) + k, 0 < k < j, if
A (u2n) is nonzero and admissible. Consider
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A' = ß*W • • • ß^iu2{p{„_j)+j))   where ü2{p{n_ß+j) = <íf^(u2n).

A' is an admissible monomial of length / — 1 and s2 = (p(n — j) + j) — (J' —
k). Thus A' corresponds to a (j — A:)-fold product monomial in cHf,_1, call it
Uj_k. Identify A with Üj_k(Qi_x>¡)k in %. Uj_k comes from Uj_k by
changing the detecting index from i — 1 to /; i.e., £?„,,,_, -* Qm>¡.

Case 2. ex = 1; that is, A = ße'^s> • • • ße2<3'S2ß<3"'-J(u2n).'Then consider
that part of A until a second Bockstein occurs.

A _ ßeiSpsi . . .  fí6j>sk6p¡k_, . . .  6pp(p(n-j) + m,) + m26fp(n-j)+m, oepn-j/u   \

withm, > 1.
Further suppose k < i. Then

% =p(p(p( ' * • (p(" ~j) + mx) + m2) + • ■ • + mk_2) + mk_x

and 9* • • • ß^"~J(u2n) has dimension 2p*(« -y) + 2pk~xmx + 2pk~2m2
+ • • • + 2pmk_x + 2(y — m, — m2 — • • • — mt_,) + 1. For .4 to be
admissible and nonzero we must also have y — mx — m2 — • • • — mk_x > 0
and y - mx — m2 — • • • — mk_x + 1 > 0. Then
A' = ße<<3>s< • • • ^'(ß®** • • • ßt3>n~j(u2n)) = A"(ß^k • • • ß^n~J(u2n))

and A" corresponds to ay — mx — m2 — • • • — mk + 1 fold product mono-
mial in %¡-k, call it C^.. Identify A with the monomial

^-(^-*,M-.,^r3)(ô,-*.ir-,~,(ô,-*-.,ir-2- • • (ô,-2,,r(a-urrl

where UA. comes from l^» by changing the detecting index from i — k to «;
i.e., QmJ-k -» QmJ. If k = i or no second Bockstein occurs assign to A the
monomial

(M._I,L,.Lr3)(^-3)m'(ôur- • • • (o,-2(ir(ß,-.„)m'-1 or

(M-.^r2)(^-3r(ewr-' • • • (a^ria-wr-1  respectively
where w, =y — w, — w2 — • • • — m,_j.

Let {^(„jj be the above constructed monomial in %¡ corresponding to
A(u2n). It is routine to verify that for UA- in %¡-k and UA- in % constructed
above we have dxsxi(UA») + 2j(p' — p'~k) = dim(UA(Ui)). This fact and in-
duction on i show that if A(u2n) has dimension 2n(p') — k then UA(M2j has
dimension k. Lemma 5.6 shows UA(tl2¿ =£ 0. Hence, by Theorem 4.5, (%¡)k
must fill out (image kfj)k for & « n. This finishes the proof of Theorem A

VI. Proof of Theorems B, C, D, and F. Consider the following commutative
diagram:
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#*(XS f_,)p

//*(§ i_,wrZ/p)'

incl*
//*(§ ,_, xZ/p)

p

(1 x A)*

i—> #*(Spi) —^~+ #*(§pí-1 wr Z/p)

where A = /(S^-i wr Z/p, Sp¡).

6.1. Proposition. Let u G H*(Spi). If kf¡(u) = 0 then there exists z G
H*(XpSp,->) such that t(z) = u.

Proof. By 4.4 and Theorem A, kf¡(u) = 0 implies kf¡(u) = 0. Hence
(1 X A)*A*(u) = 0 and h*(u) G ker(lX A)*. By 3.1 there exists z G
H*(Xp(Spl-,)) such-that t"(z) = h*(u). Then t(z) = t't"(u) = *'(/»*(«)) =
[Sp/: Sp<-i wr Z/p]u = « (modp).

Let M,,-, G //*(Spi-i), then, by induction, usi_x pulls back to a Sp/-i
detecting subgroup n?=,7,,-> Sp/-i (recall §11 gives these subgroups and
their inclusions into Sp/->). Thus to complete the computation of H*(Spi) it
suffices to compute the map If.xt. First consider the maps $m,      ^ =
(4,.m, • (n;.,(^,mr)))*iM|.m„:    H*(X",_xSpm,)-* H*'(Í'p,)-+
<S>%xH*(Tmrym) for all (mx,..., mr) such that S^p"'' = p', with n > 2 and
'm.^, the'transfer //*(X J_,S,-)-> #*(§,,)•

6.2. Lemma. Le/ « = uXm ®
= ür. Then

® «      G //♦(X^.S^^^OW

$ • >»».(«)- *>«(1> ® ® »W(")•
o£ï ("i.<"«)

Proof. As in the proof of 5.2, 2.16 through 2.21 and the following
commutative diagram give the proposition:

adv
H*(A)-

•£,H*(T')

-* H*(xAx~x) > H*(xAx~l f)A)

Sad,

H*(A)

-* HH*(xT'x-x)
Hi                *                   Sr

—*-*■ XH*(xT'x~l n T)-Z-+ H*(T)

where A = X "=x(Spmr), V runs through all inclusions of XmZ/p in A and

The only S(mi.„g invariant classes not in image $„
u = u ®

m. are classes
containing (u     )®p G ®PH*(T      ) as a factor.

Recall w®' «-^ 9(h) -»<1xA>* (1 x A)*(<$(u)). Thus u' is in the
"W
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imaged.^ - ( fi k^Jjj :/**(§,.)-> J> H*^).
Hence we have

6.3. Lemma. Image(/mi.^ ° (11% ,/c^ „))* s S(m¡.„^ invariant classes
of ®UxH*(Tmr<m).

This proves Theorems B and D. A trivial modification of 6.2 and 6.3 proves
Theorem F. As 3.1 shows the only multiple image classes are generated by the
£P ( )'s, Theorem C follows, up to constants. Using the notation of Theorem C
if *m,<-i - Mi_2ii_xMi_3ti_xLfZx3 then 5.4 gives xm>, =
— l(Afl_1(M,_2/L/'-3). If xmi_x = Q¡-2,i-i then direct computation shows
the constant c in 5.5 is 1 hence xmi = <2,_,,,. It is easy to see that application
of the Steenrod pth powers or direct computation yield that the constant is
+1 for multiple image polynomial generators and -1 for even dimensional
multiple image exterior generators.

VII. Proof of Theorem G.
Proof of (1). Let kfœ(u) = S <x„ ..., xm, 1,... >. As j is the smallest

integer such that kfx(u) =£ 0 it follows that at least one xh contains a factor
equal to Lf~x, Ljíf'2, MgJLjLf-3, or MgJLf-2. If kfju) has at least one
representative of the form L„j( • • • ) withp not dividing n then ßp(k*a0(u)) =
"2nLnj( • • • ) + 2? té 0 (where B cannot contain terms in the first sum).
Similarly if some x„ = MgJLjLf-3Y and no xh. = MgJLf~2Y then ßp(k?Ju))
=5*= 0. Suppose every time the term MgJLjLf~3Y appears the term MgJLf~2Y
also appears; then if kfœ(u) ¥= LnJ( • • • ) Y must be a product of Qh/s. It is
then easy to construct a class u' such that ßp(u') = u (just replace one
MgjLf~2Y by MgJLjLf-3Y). If ßp(u) = 0 and MgJLf-2Y appears a similar
construction yields «' such that ßp(u') = u. The only possibility left is
ßp(u) - 0, and k*x(u) = LnJ( • • • )• Then ßp(u') = u where kfju') = LnJ.

Proof of (2). We need the following

Theorem [2]. Let r > 2. In homology with the loop sum multiplication if
dr-\a) = b then dr(a") = ap~xb.

Proof. Theorem 5.4 of [2].
The homology and cohomology Bockstein spectral sequences are Hopf

algebra duals and Theorem F gives the loop sum coalgebra map in cohomol-
ogy. If a, b in Hf(Q(S\) are dual to u, v respectively then Theorem F gives
<«', apy = 1. Now «' is not dual to ap on the Ex level; in fact («')* = ap +
2a,. It is easy to see however that the a¡ are all dual to classes u" where
kf„(u") = S <x„ ..., x„ 1,... > with t < pm.
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Many times it is easy to see that the a¡ classes do not live to Er. Such is the
case with Corollary 1 as induction on r and the fact that {Lpmj(x:
1,... )Y~1X generate the subalgebra {LnJ(x: 1,... )} (where n = 1,...,
pr — 1) prove the corollary.

Proof of Corollary 2. The reduction homomorphism y,: //*( , Z/p,)->
E, is onto and if kf4(u) = Qjj then kj%u) = Rf(Lpjj(\: 1,... )).

Appendix. We give a proof that the quotient determinants, Qj4 G ^lf,- are
integral mod p. L¡ has an explicit factorization first discovered by E. H.
Moore in 1896

Lemma [19]. L¡ = ü(m.m,)(m\b\ + • • • + m¡b¡) where (mx,..., m¡) runs
over all elements of T¡¡ with first nonzero coefficient equal to one.

Proof. (Compare with [8, p. 76].) L¡ is invariant under the special linear
group SL(/, Z/p) which acts transitively on the nonzero elements of T,ti.
Since 6, is a factor of L, it follows that a(bx) = mxbx + • • • + m¡b¡ is a
factor as well. Hence the product above divides L¡ (the factors are all
relatively prime). But both sides have the same degree, hence they differ only
up a constant factor. But the diagonal term bf'bf' • • • b¡ occurs in both
sides only once and each time with coefficient 1.

More generally bx is a factor of the numerator of QJt for every y, so L, is
also a factor of the numerator of Qj, by the above argument. This gives:

Lemma. Qjti is a nontrivial polynomial invariant under GL(/, Z/p).
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