
Nodinearity 6 (1993) 843-067. Printed in the UK 
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Abstract. An ax-symmetric and swirling vortex sheet is investigated as the simplest flow 
in which there is non-trivial vortex stretching and as a possible setting for studying vortex 
cancellation and singularity formation. Rayleigh's criterion indicates linear stabiliry of a single 
sheet but instability for other configurations of sheets. Due to the simplicity of vortex sheet 
problems, the linear modes and growth rates (or frequencies) can be explicitly expressed. 
Subsequent nonlinear evolution is numerically simulated using a vortex method. The numerical 
results for an ai-symmetric swirling sheet with a vortex line along the axis of symmetry show 
detlchment of a vortex ring from the sheet into the outer fluid, and Follapse of the sheet onto t2?c 
vortex line at some points. Vortex cancellation, which in the presence of viscosity would likely 
lead to vortex line reconnection. seems to occur in both of these phenomena. The evolution of 
two co-axial, axi-symmetric, swirling vortex sheets is similar. 

PACS numbers: 0340G. 4720,4730 

1. Introduction 

Axi-symmetric flow with swirl for an inviscid incompressible fluid is the simplest flow that 
allows non-trivial vortex stretching. The flow description is further simplified if the voaicity 
is concentrated on an mi-symmetric surface; oat is, a flow induced by a vortex sheet (or 
more than one sheet). 

The restriction to axi-symmetry and.to vortex sheets provides the simplest setting in 
which to examine nonlinear processes such as vortex cancellation and singularity formation. 
For similar reasons, there have been a number of recent computational studies of smooth 
axi-symmetric flow with swirl [3,11,16,22]. Furthermore in the present study, a new 
phenomenon, the pinchins and collapse of a vortex sheet, is exhibited. 

These flows represent a significant idealization, since the restriction to axi-symmetry 
for a swirling vortex sheet suppresses the dominant Kelvin-Helmholtz instability, which is 
not axi-symmetric. The resulting flows, however, are quite similar in appearance to those 
generated by the, impulsive rotation of a cylinder [7,12,31]. This gives us some confidence 
that the phenomena studied here are ,of physical significance, in addition to their basic 
mathematical importance. 
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An ai-symmetric swirling vortex sheet with circulation r can be represented by the 
cylindrical coordinates (z(o1, t ) .  r(o1, t ) .  $(a, t ) )  of a vortex line on the sheet, in which a 
is a 'Lagrangian' parameter along the vortex line. The full sheet is formed by rotating this 
curve around the axis of s y m e h y  r = 0. The evolution of the sheet is governed by the 
following integro-differential equations [5]: 

Z~(r,r',z-z',+')da' (1.1) 

I&, r', z - z', $3 da' (1.2) 

&+(U, t )  = r (4nr3-I  (1.3) 

(sign errors in the r, z equations in (5.11) have been corrected) in which 

In these equations r' and +' denote r(a') and +(a'), etc. and E = E(m) and K = K ( m )  
are the elliptic integrals of the first kind evaluated at 

4rr' 
m =  Az2 + (r + (1.5) 

They account for the integration of the vortex interaction around a circle of symmetry. The 
integrals in (1.1) and (1.2) have singular integrands at a' = a and are interpreted in the 
Cauchy principal value sense. The simplicity of the angular velocity equation is because 
the circulation rug is constant in each irrotational region of an mi-symmetric flow, i.e. 
rug = 0 inside the sheet and rug = r/2n outside the sheet, and because the velocity U 
of the sheet (at fixed a )  is the average U = ;(U+ + U-) of the limiting velocities U+ 
and U- on either side of the sheet. The system (1.1)<1.3) is analogous to the Lagrangian 
description of two-dimensional vortex sheet dynamics through the Birkhoff-Rott integral. 
The generalization of (l.lp(l.3) to configurations of more than one sheet is straightforward. 
For the case of an ai-symmetric vortex sheet without swirl, these equations were derived 
earlier by de Bernardinis and Moore [9] and used in [S, 19-21]. 

The steady-flow solution (z, r, p) = (a, R, t r / ( 4 n R 2 ) )  for (1.1)-(1.3) is linearly stable 
to axi-symmetric disturbances, but flows with multiple vortex sheets can be linearly unstable, 
as described in section 2. In order to investigate the subsequent nonlinear evolution, 
a numerical method for solving the vortex sheet equations (l.lH1.3) is formulated in 
section 3. 

The numerical methoa is applied l i ts t  to the (linearly) stable configuration of a single 
axi-symmetric swirling vortex sheet in section 4. For small amplitude perturbations, the 
oscillation of the sheet agrees with the linear theory; while for larger amplitude the resulting 
outward flow leads to a curvature singularity and rollup of the sheet, which cannot be 
reversed, so that the flow loses its temporal periodicity. 
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The simplest linearly unstable configuration consists of an axi-symmetric vortex sheet 
combined with a vortex line on the axis of symmetry. According to Rayleigh’s criterion 
(re-derived through a kinematic argument at the end of section 2) this flow is unstable if 

in which rl is the circulation inside the sheet and r2 is the circulation outside the sheet; i.e. 
r, is the strength of the vortex line and r, - rI is the strength of the sheet. The numerical 
computations presented in section 5 for the resulting nonlinear evolution show formation of 
outward and inward jets along the sheet, detachment of a vortex ring from the sheet into 
the outer fluid, and collapse of the sheet onto the vortex l i e  at some points. The intense 
winding-up of the sheet as it collapses prevents accurate computation past a certain time 
before the sheet hits r = 0. Extrapolation of the results, however, seems to indicate that 
in a finite time there is a collision and cancellation between the sheet and the vortex line, 
as well as a collision between the sheet and itself during the detachment of the outer ring. 
In the presence of viscosity, this would lead to the breaking and reconnection of vortex 
lines (see [26] for example). Rayleigh [23] also noted the analogy between the stability of 
axisymmehic flows and the stability of density stratified two-dimensional flows. However, 
while some of the strnctures observed here are very similar to those seen in simulations of 
the Rayleigh-Taylor instability (see [30] for example), very nonlinear phenomena such as 
collapse of the sheet onto the axis of symmetry are quite specific to axisymmetric flows. 

For two co-axial axi-symmetric vortex sheets with swirl, the instability criterion is the 
same as (1.6) and the subsequent nonlinear evolution is also similar if the inner radius is 
not too large, as shown in section 6. As before the outer sheet collapses onto the inner 
sheet at some points. Unlike the previous case no collapse onto the axis is observed. 

Conclusions from this investigation are presented in section I .  

2. Linear stability analysis for axi-symmetric vortex sheets 

On a cylindrical vortex sheet with pure swirling flow, the vortex lines are straight lines in 
the 2 direction. The Kelvin-Helmholtz instability for this steady flow is then in the x-y 
plane, and so it is not excited by perturbations that are ax-symmetric. In this section a 
linearized stability analysis is presented for ax-symmetric perturbations of cylindrical sheets 
in several configurations. 

Rayleigh‘s criterion [lo] provides a necessary and sufficient criterion for linear stability 
of a steady swirling flow to mi-symmetric Perturbations; namely the flow is stable if and 
only if the square of the circulation is a non-decreasing function of the radius. The results 
of this section are of c o m e  consistent with Rayleigh’s criterion, but for these vortex sheet 
problems, explicit expressions are found for the linear modes and for the dispersion relation. 
At the end of this section, a kinematic argument for stability or instability of a vortex sheet 
is presented, as an alternative to the usual dynamic argument in the derivation of Rayleigh’s 
criterion. 

Two vortex sheet configurations are considered. First is the case of a single, axi- 
symmetric vortex sheet with a vortex line along the axis. Second, to give the inner flow 
more degrees of freedom, the vortex line is replaced by an inner vortex sheet. The linearized 
analysis is performed in the Eulerian variables and follows that of Rotunno [24] for a single 
axi-symmetric sheet. A related stability analysis for a swirling vortex sheet within an 
annulus is given in [3]. 
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2.1. Cylindrical vortex sheet and a vortex line 

Consider a vortex line of circulation i?l on the axis of symmetry, contained inside a 
cylindrical vortex sheet so that combination has circulation rz. Axi-symmetric perturbations 
will not alter the position of the vortex line. The velocity potential in Eulerian variables for 
this flow will be 

@ I  ( z ,  K, t )  + /zir inside the sheet 
&(z, r, t )  + 6Tz/27r (2.1) outside @ = [  

and the sheet position is 

r = Ro + t ( z ,  t).  (2.2) 

These satisfy the Eulerian fluid equations 

V*@, = 0 VZ@, = 0 (2.3) 

inside and outside the sheet, with jump conditions that the normal velocity and pressure are 
continuous, i.e., 

The linearized free boundary equations are then 

h r  = cr 
$2 = i!* 

The kth mode for (2.3) is 

in which IO and KO are the modified Bessel functions [I] and bl, 62 and U will be determined 
from the linearized free boundary conditions (2.7). Since I; = I1 and Kh = -K,, these 
equations become 

bl IklIlO = U 

- bzlklKlo = U  (2.9) 

UbiIoo - Rr3(r1/27r)2 = ubzKoo - Ro3(r2/2rr)*. 
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in which 100 = 10(lklR0), 110 = I ~ ( l k l R o ) ,  etc. Since 1 0 ( x ) K 1 ( x )  + I l (x)Ko(x)  = :, it 
follows that 

(2.10) 

(2.11) 

This shows that the configuration of a vortex line inside a cylindrical vortex sheet is 

U = f(2n)-'(r7 - r , 2 ) 1 / 2 1 k l R ; 1 m  

bl = &(2n)-'(r; - r : ) l / z R ; l m  

bz = 7(2n)-'(r': - r z ) 1 1 2 R ; 1 a .  

unstable if and only if 

r: =. r: (2.12) 

in agreement with Rayleigh's criterion. For large wavenumber k ,  the growth (or decay) rate 
is approximately 

The linear growth rate U as a function of 4 is plotted in figure 2.l(a), for the unstable 
configuration of a vortex sheet and line vortex with rl = 6.0, rz = 2rr - 6 and Ro = 1 .O. 
This is the same configuration for which the nonlinear evolution is computed in section 5. 

Figure 2.1. The linear growth rate a as a function of f i  for two unstable vortex sheet 
configurations: (a) a cylindrical vortex sheet and line vortex with r'1 = 6.0, r2 = 21r - 6 and 
RO = 1.0; (b) Two concentrjc cylindrical vortex sheets with r1 = - 2 ~ ~  = 0.0, RI = 0.1 
and R2 = 1.0. Note that the growth rate is nearly a constant times A. These are the same 
Configurations for which the nonlinear evolutions are computed in figures 5.1-5.10 and 6.16.10 
respectively. 

2.2. Concentric, cylindrical vortex sheets 

Consider two cylindrical vortex sheets of radius RI and Rz with zero circulation inside the 
inner sheet, circulation rl in the region between the sheets and r2 outside the outer sheet. 
The potential is then 

(2.14) 



(2.15) 

(2.16) 

(2.17) 

(2. IS) 

After substitution in (2.16) and (2.17) and some manipulation, the dispersion relation is 
found to be 

(2.19) u4 + ( I I IKIIGI + IizKizGz)k2u2 + %iGz111Kiz(I1zKii - 11iKiz)k' = 0 

in which 

GI  = (ri/kRd2 Gz = (r: - r:)/(2irR2)' (2.20) 

and 111 = I~(lklRi), Ilz = Il(lklRz), etc. As in Rayleigh's criterion, the dispersion relation 
(2.19) has a root U with Re@) z 0, corresponding to instability, if and only if I': > P;, 
i.e. Gz c 0. 

The coefficients for the linear mode are 

bi = (c/lklIii)bs 

62 = -(lkl/~)GzK12 

b4 = -(g/lklKiz) 
(2.21) 

The linear growth rate U as a function of fi  is plotted in figure Z.l(b), for the unstable 
configuration of two concentric cylindrical vortex sheets with rl = -271, r2 = 0.0, 
R1 = 0.1 and Rz = 1.0. This is the same configuration for which the nonlinear evolution 
is computed in section 6. 
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2.3. Lagrangian modes 

As detailed above, the Eulerian description of a vortex sheet consists of a radius r = 
R ( z ,  f) and a potential @ = @(z, r, 8 ,  t ) .  On the other hand the Lagrangian description 
used in the Birkhoff-Rott equation in section 1, consists of cylind.ncal coordinates 
(z(01, t ) ,  r ( a ,  t ) ,  +(a, t ) )  for a vortex filament on the sheet. The linearization of the intego- 
differential equation for the Lagrangian description of the sheet is much more difficult than 
the linearization of the Eulerian description. These Eulerian results will now be translated 
into Lagrangian form. 

The relation between these descriptions is that the Lagrangian position moves at the 
average of the velocities on either side of the sheet, i.e. 

(2.22) (zt, r,, r q d  = $(@:, 9, I r +@ ) + ( 4 ~ ~  #;, r- l&))  
+ -1 + 

in which @+ and @- are the potentials evaluated at the vortex sheet point (z, r, +) from 
either side. 

For each of the vortex sheet flows above, we will now determine the'lagrangian 
description for both the steady state and a linearized mode. Set the potential to be 

@=4+@ (2.23) 

in which 6 is the basic steady flow and @ is a perturbation. Similarly set the Lagrangian 
coordinates to be 

(z, R. \~r) = (i, i ,  +) + (z, r ,  +). (2.24) 

Since & = 4, = 0 in all of the flows above, the steady solution satisfies 

(2.25) (90 + 4;)) 
The linearized terms in (2.22) come from two sources, the perturbation @ of the potential 
and the perturbation of the interface. Since $0, = 40 = 0, then the perturbation velocity 
is 

1 -2 -+ 
(Zr, Fr, +t) = (030, 3R 

(2.26) 

2.3.1. Lagrangian modesfor a sheet and line. The steady fluid flow corresponds to a vortex 
filament on the sheet with 

( E ,  r ,  $) = (01, R ~ ,  tRr2(rl + r 2 ) i 4 a ) .  (2.27) 

The equations for the linearized mode ( 2 ,  r, +) are 

(2.28) 
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which has solution 

K E Cagisch et al 

with i, i, $ given by 

(2.29) 

(2.30) 

in which 110 = Z I ( I ~ ~ R ~ ) ,  etc, and bl ,  bz are defined in (2.11). 
Note that the period of the swirling flow is found *om (2.27) to be To = 8x2Rg/(rl + 

rz) whereas the period of the oscillation for the linearized mode (in the stable problem) is 
TI = 2n/lul. Since these will differ in general, a vortex line will not return to its original 
position after one oscillation but will be shifted by a finite angle. 

2.3.2. Lagrang& mode for TWO sheets. Now there are two vortex sheets with two filaments 
(ZI, r l ,  +I)(cY, t )  and (22. rz, @z)(or, t).  In the steady flow these are 

The linearized mode is 

in which 

(2.31) 

(2.32) 

(2.33) 

2.4. Kinematic argument for, linearized stability 

The motion of vortex filaments is best described through a kinematic, rather than a dynamic, 
description. Here we present a kinematic derivation of the stability or instability for the 
vortex sheet configurations described  above.^ 
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Figure 22. Oscillation of a single perturbed cylindrical vo&x sheet with positive swirl. The 
broken curve is a vortex line on the sheet. A vortex line with constant angle 8 in the initial 
data ( U )  will be wrapped around the sheet in the positive 8 direction as in (b), due to increased 
angular velocity in a pinched region. The azimuthal vorticity generated by this stretching causes 
the vortex sheet to bulge out and the vortex lines to then wrap around the sheet in the opposite 
direction. 

Consider first a single cylindrical vortex sheet with vorticity in the 2 direction and 
perturb its shape by a small sinusoidal perturbation, as drawn in figure 2.2(u). 

Since the circulation rz$rr is constant, then the angular velocity is larger where the sheet 
is pinched. This differential rotation rate can also he thought of as a result of vorticity in the 
7' direction. It stretches out the vortex lines in the positive 6 direction in pinched regions, 

,as indicated in figure 2.2(b). The resulting angular vorticity is in the 6 direction below 
the centre of the pinch and in the -6 direction above the centre. This angular vorticity 
produces an axial flow into the pinched region from below and from above. This inward 
flow continues until the pinched region bulges out, which causes the vortex lines to wrap up 
in the -6 direction as in figure 2.2(c). The resulting angular vorticity then produces axial 
flow out of the pinched region. This eventually causes the bulged region to become pinched 
again, and the sheet returns to the state in figure 2.2(b). In this process there will he a phase 
lag between the bulging and pinching of the sheet and the wrapping and unwrapping of the 
vortex lines. This argument shows that a single vortex sheet is stable. 

The same reasoning can be applied to the vortex sheet with a vortex line as section 2.2 
and drawn in figure 2.3(u). The angular velocity of the sheet is $r, '= RWZ(r l  + rz)/2. 
If rt > r;, then the circulation rl of the line is of opposite sign to the circulation of 
the sheet, since r, = r, - r,. Moreover the vortex lines will now wrap up the opposite 
direction to those for a single sheet, since sign (rl + rz) = -sgn(r,). As shown in 
figure 2.3(b), this produces an outward flow away from the pinched region on the sheet, 
causing it to pinch further. Therefore the sheet is unstable in this flow. 

3. Numerical methods 

In this section we discuss the numerical methods used to evolve the vortex sheet whose 
motion is given by (1.1)-(1.3). Numerical issues that must be carefully addressed include the 
implementation of axial psriodicity, the evaluation of singular integrals, the consequences 
and treatment of singularity formation. and the resolution of vortex line complexity. 

Denote z = 01 ti. If at t = 0 the data r(c), $(or), and ?(a) are 2sr-pericdic, then this 
axial periodicity will be preserved by the subsequent motion. For a two-dimensional planar 
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Fiure 2.3. For a perturbed vortex sheet with a strong negative vortex line (not drawn) on the 
axis of symhetry, an initial vortex line (a)  is stretched in the negative B direction along the 
pinched region of the sheet. The azimuthal vorticity generated by this Stretching causes the 
vortex sheet to pinch funher and thus the smtching to increase as in (b). 

vortex sheet with periodic data (sheet strength and displacement) the Birkhoff-Rott integral 
over R can be resumed to yield an integral over [0,2n] with a modified but explicitly 
given kernel [14]. An exact resummation is not known for the veIocity integrals in (1.1) 
and (1.2), and a velocity integral I(a) is instead approximated by the symmetric truncation 

f(a, a’) de’. (3.1) 

The range of integration is thus 2M + 1 periods of the data (r, i, @). By centring the 
range of integration at a, I.&) is a 2lr-periodic function, as is I @ ) ,  and the integral need 
only be evaluated for 0 < a < 2ir.,,,,Noreover, the convergence of I M ( ~ )  to I (a)  is rapid. 
Using the periodicity of the data, the symmetry of truncation, and the small m behaviour 
of E(m) and K(m), it can be shown,that 

@ + ( M + $ ) k  

n-(M++? s I&&) = PV 

for large M,’ where I ,  is a characteristic radius of the sheet, and Zz the periodicity length 
along z (here set to 2n). For the calculations presented here M = 4 (9 periods) was found 
to be sufficient. Further increases in M gave no significant changes in the results. 

From the initial instability of the sheet the first significant event is the formation 
of a singularity, which is apparently related to those seen in 2D vortex sheet motion 
[14,15,17,18,25]. We seek to compute the sheet motion accurately up to this first 
singularity time and then beyond it. One consideration must be the accurate quadrature 
of the singular velocity integrals. The limit a’ -+ a gives m 1-, for which both 
integrands are singular. For simplicity consider a = 0. Then either velocity integrand can 
be written in the form 

where the functions Hi(a’) are smooth if the data (r, 2 ,  @) are smooth. The pole singularity 
has a well defined principal value integral, while the remainder is absolutely integrable. Sidi 
and Israeli [28] have developed generalizations of the Euler-MacLaurin error expansion 
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for trapezoidal rule approximations to such singular integrals. Let xi)j, U& denote the 
‘trapezoidal rule’ sum in which the endpoints uj, and uj, &e both weighted by i. Let the 
a-interval [-x, a]  be discretized uniformly by Nf 1 points (including endpoints) where N 
is even. Then 2N = (2M + 1)N + 1 is the total number of quadrature points of 1-L, L] ,  
where L = ( M +  $)2n. Then the trapezoidal rule approximation to ZM(0) ,  which omits the 
singular point (at a = 0), has the leading order errors [28] 

L R 
= IM - Zh = P V  1, f(a’) dol’ - h ”f (kh)  

k-fi  
k#O 

= -~( f ’ (L)- f ‘ ( -L))hZ+H~(O)h-In(2n)H3(O)h+H~(O)hlogh+U(h3)  

(3.4) 

where h = 2 n / N .  The first term is usually associated with the Euler-MacLaurin expansion 
for smooth integrands (cf [29]), while the others are associated with the singularities of the 
integrand. The Richardson extrapolation fh = 2Ih - Z$ removes the U(h)  error terms, 
and the quadrature formula becomes an alternate point quadrature rule over odd indices, or 
equivalently the mid-point rule over cells of length 2h. That is 

-h  -h E = I M  - IM 
R 

f(a‘)da‘-2h f ( k h )  
k Z - 2  
t odd 

= i ( f ’ ( L )  - f ’ ( -L))hZ - 2H3(0) ln(2)h + U(h3).  (3.5) 

For the velocity integrands of (Ll), (1.2), H3(0) is easily calculated. For (l.l), we have 
ff3(0) =~-(r/2n2)(I)~(0)/4r(0)),  while &(O) = 0 for (1.2). Thus, the overall quadrature 
error is made U(h2) by the calculation of H3(0) and the explicit removal of the remaining 
U(h)  error term in (3.5). For 2D planar sheets the alternate point quadrature is of infinite 
order, and was used successfully by Shelley [25] in the study of singularity formation. 

The higher order of the alternate point quadrature given in (3.5) (together with the 
explicit error correction) depends upon the smoothness of (I; 2, I)) and requires uniform 
discretization in a. The initial discretization in a is thus chosen to be on a uniforni 
grid. Derivatives with respect to a are approximated to fourth order using splines, and 
the overall quadrature error is effectively of order U(h3)  since I f ( L )  - f’(-L)lhZ is small 
compared with U(h3).  Time integration is accomplished by Hamming’s method, a fourth- 
order predictor-corrector method which requires only two velocity evaluations (each of 
which is 6 ( N Z ) )  per time step. 

Another aspect of the evolution which must he dealt with is its linear ill posedness. The 
linear analysis of the previous section gives the growth rate 

U; - Ikl. (3.6) 

The unboundedness of this linear growth rate causes the rapid and spurious growth of 
round-off induced noise at the smallest scales, as they have the fastest growth rates. This 
phenomenon has been well studied for the motion of 2D planar sheets. Krasny 1141 controlled 
this spurious behaviour by using a nonlinear Fourier filter at every time step. It sets to zero 
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any Fourier coefficient of the data with magnitude less than some given filter level. For 
example for the function r(a),  the discrete Fouiier transform F, is modified at the beginning 
of every time step by the assignment 

R E Cafisch et a1 

In these calculations, E lies in the range 10-’z-lO-’’, i.e. near the level of the round-off 
error. In short, if the calculation is well resolved, so that the highest modes have amplitude 
near the round-off error, these amplitudes are set to zero at each time step. This filter 
prevents spurious growth of roundoff error in the high wavenumber modes, but it allows 
the correct growth of these modes due to nonlinearities. Convergence of such a method, 
when combined with the alternate point quadrature as used by Shelley 1251, has been proved 
by Caflisch et al [4] .  This concludes the discussion of the methods used before the first 
singularity time. 

As is the case for 2D planar sheets, a regularization of vortex sheet motion is apparently 
necessary to investigate the behaviour of the sheet past the singularity time [13]. Different 
approaches can be taken 121, but the most convenient regularization, which preserves the 
sheet description of the flow, is to mollify the singularities in the integrands [13,27]. We 
introduce a smoothing parameter 8 and define 

4rr’ 
( Z  - z‘)’ + (r + r‘)Z + 62 

mb = 

which bounds m6 below by 1 + O(Sz). Thus, each calculation is stopped shortly before the 
first singularity begins to appear, and m is replaced by m6 in the equations of motion (LI), 
(1.2) for theremainder of the computation. As the integrands are now smoothed, special 
quadrature methods are unnecessary, and full trapezoidal rule is used. More importantly, 
the ‘&smoothing’ removes the unboundedness of the growth rates at large k. In the case 
of ZD planar sheets it has ,also been shown that an analogous regularization gives global 
analyticity of the sheet motion [6]. While smoother data, or the inclusion of viscosity, are 
more natural regularizations, it has been seen that ‘S-smoothing’ captures the qualitative 
features of smoother flows [13]. For the computations described below, the validity of the 
results with S-smoothing will be demonstrated by carefully assessing the effect of varying 
S. 

As shown in section 5, the arclength of the vortex sheet goes to infinity. Therefore, 
in addition to the parameters N, M, At, 8, a set of interpolation criterion tolerances qz, qr 
and qk are needed. In particular, we require that Izj+l - zjl < qr, Irj+l - rjl < q,, 
I@j+l.- @,I < q$ for every pair of neighbouring points (z,.rj, @I) and ( z j t , , r j t l ,  @j+,) 

at each time step. The typical values for (qc ,q r ,  qp) are (0.1,0.0375,0.1). If two 
points (zj, r j ,  @ j )  and (zj+l, rj+1, ej+l) fail the requirement, we insert a point in the 
middle by placing it on a cubic polynomial which is lit to the neighbouring four points 
{(zx, rk.  @dlk = i - 1, j ,  j + 1, i + 21. 

4. Computation of a single cylindrical swirling vortex sheet 

The first computations using the method of the previous section were performed on the 
linearly stable problem of a single cylindrical, swirling vortex sheet. The unperturbed vortex 
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sheet has radius RO = 1 and circulation r = -2z. An initial perturbation is added which 
is an exact eigenfunction corresponding to a standing wave. The evolution is governed by 
equations (1.1)-(1.3). 

From (2.30) with rl = 0 and r, = -2rr the linearized mode for a standing wave with 
k = 1 is (z', r', @') given by 

(z',r', @') = (a, sinorcoscrrt, a2cosorcoscrrt, a3cosasinot) (4.1) 

in which 

at = -0.770355 = 1.0 a3 = 1.714549 0 = 0.583244. (4.2) 

Thus the initial data €or this computation are 

z = a t  Eat  sinor r = RO + Ea~cosa  @ = 0 (4.3) 

in which the amplitude E is chosen to be E = IO-3, small enough that linea theory is valid. 
The resultin,. solution serves as a check on the analytical and numerical formulation and 
implementation. 

The computation IS performed in double precision using Krasny filtering at a level 
E/ = IO-", with no desingularization (8 = 0) since no singularities formed. The 
computation used N = 512 points, M = 4 (9 periods) and the time step AI = 0.010773. 
For this small amplitude, the computation works equally well without Krasny filtering. 

For z and r respectively, figures 4.l(a) and (b) show that the initial data (full curve) 
and the solution after one period T = 10.772828 are indistinguishable. The agreement of 
z and r at t = 0 and t = T shows that the solution is correctly simulated. 

Figure 4.1. Camparison of initial data and solution after one period, which are indistinguishable, 
for asingle cylindrical vortex sheet with small initialperturbation, with S = 0.0. The perturbation 
in height z - DL again* the Lagrangian parameter ar is ploned in (a), and the pethlrbation in 
&ius r - 1 is plotted in (b). 

The computational result for a perturbation of larger amplitude E = 0.6 is shown in 
figure 4.2. In this solution the outward jet has begun to significantly distort due to Kelvin- 
Helmholtz instability, destroying the periodicity of the solution. This phenomenon is also 
observed in the computations of the next section, where it will be discussed in detail. 
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Figure 42. Development of rolled-up jets for a single cylindrical vortex sheet with perturbation 
of large amplihlde. This profile is irreversible, so that the motion is not periodic. 

5. Computation of an axi-symmetric swirling vortex sheet with a line vortex on 
symmetry axis 

5.1. Evolution of a linearly unstable vortex sheet 

In this section, we will consider an axi-symmetric vortex sheet with a line vortex along the 
symmetry axis. Denote the circulation inside the.sheet and outside the sheet by I'1 and r,, 
respectively. Because of its symmetry the line vortex does not move. 

Since the circulation of the sheet is rs = r2 - rl, the Lagrangian equations of motion 
for the sheet are (with r replaced by r, in the r, z equations, and by rl + r 2  in the 9 
equation) 

P V  Il(r, r', z - z', 9') dol' s rz - rl 
Zt = 2x2 

r 2 - r 1 P V  12(rrr',z -z';@')dol' r, = 7 J 2ir 

For this problem, the sheet is linearly unstable if and only if r: r: according to 
Rayleigh's criterion. We choose a linear unstable Lagrangian mode as initial data, derived 
in section 2.5.2. In particular, let RO = 1, rl = 6, r2 = 6-27c, k = 1 in (2.27) and (2.30), 
and choose initial amplitude E = 0.1: 

Z ( t  = 0) = 01 +ECI sinol 
r = 1 + E cosa 
9 = &C*COSol 

in which CI = -0.77, c2 = -1.6. , , 

The equations (5.1) are solved by the methods described in section 3 with N = 512, 
M = 4, and time step At = 0.005. 

The plots in figures 5.1-5.6 are vertical cross sections of two periods in z for the cylinder 
at successive times. As discussed in section 2.6, the unstable Lagrangian mode produces 
axial flows which send fluid into the regions where the cylinder bulges and out of those where 
it pinches (figures 5.1-5.3). This motion forms an incoming jet towards the symmetry axis 



An ai-symmetric swirling vortex sheet 857 

Figure 5.1. Profile L (height) against r (radius) at 
f = 0.0 for a perturbed, cylindrical vomx sheet with 
a vomx line on he axis of symmetry (r = 0). The 
perturbation of the initial data shown here is chosen to 
be a linearly unstable mode. The horizontal scale is 
quite exaggerated in figures 5.1-5.6. 

Figure 5.2. Same as figure 5.1 but at f = I .26. 6 = 0.0. 
Note the formation of inward and ouovard jets. 

Figure 53. Same as figure 5.1 but at f = 2.7, showing 
broadening of the inward jet. S 

Figure 5.4. Same as figure 5.1 but at f = 4.05, showing 
splitting of the inward jet and the beginning of roll-up 
on the outward jet. S = 0.1. 

0.0. 

and an outgoing jet away from the axis in each axial period. Simultaneously, this collapse 
causes the vortex lines to be pulled around the axis more rapidly where the cylinder is 
narrower (i.e. z = K), and there is substantial stretching and realignment of vorticity into 
the azimuthal direction. This is vorticity for which the Kelvin-Helmholtz instability is 
operative, and at t w 2.7 (figure 5.3), we observe a curvature singularity presumably related 
to that seen in ?D vortex sheet motion [14,15, 17,18,73]. This curvature singularity for 
an axi-symmetric vortex sheet has been studied in detail by Pugh and Cowley [Zl]. As 
described in section 3, for f > 2.7, the &regularization is introduced together with the usual 
trapezoidal quadrature. 

Proceeding on, figure 5.4 shows splitting of the tip of the incoming jet and roll-up on 
the neck of the outgoing jet for 8 = 0.1. The roll-up is a result of the Kelvin-Helmholtz 
instability in the z-r plane induced by angular vorticity on the sheet. In figure 5.5, 
the stem of the outgoing jet sheet pinches further together, the tips of the incoming jet 
continue to move towards the axis, and the roll-up proceeds smoothly. Figure 5.6 shows 
the configuration of the vortex sheet at the end of the computation. The sheet is further 
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Figure 5.5. Same as figure 5.1 but at f = 4.65. Note 
the narrowing of the stem to the outward jet and the 
further roll-up. 6 = 0.1. 

Figure 5.6. Same as figure 5.1 but at f = 4.74. 6 = 0.1. 
The inward jet has split B second time md nearly hit 
the vortex line on r = 0. The stem of the outward jet 
has nearly collapsed. 

pinched together at the stem of the outgoing jet, the tips of the incoming jet are yet closer 
to the axis, and each tip has split a second time. 

The computation stops at this time because the sheet configuration has become 
complicated and difficult to accurately represent. Since the minimum radius of the sheet is 
nearly zero, the angular velocity et is very large, and the vortex lines on the sheet are tightly 
wound up. Moreover, since the vorticity density is r-'(r: + z:)-i (r.,/b)(zi, re. rdi=) in 
cylindrical coordinate ( z ,  r, B ) ,  the vorticity density blows up when the radius goes to zero. 
This collapse and'singularity formation is caused by vortex stretching that produces angular 
vorticity and radial jets. 

The collapse of the vortex sheet onto r = 0 could also be interpreted as (partial) 
vortex cancellation between vortex lines on the sheet and the central vortex line. Since the 
computations stop slightly before this collapse occurs, further details of the cancellation are 
not discernible. 

A second cancellation occurs as the vortex sheet hits itself along the stem of the outward 
jet. Note that the vortex sheet stays symmetric with respect to planes z = 2n (or.any 
periodic image of 2rr) where this collision occurs. At points (zl ,rl ,  @ I )  and (zz,rz, @*) 
that are symmetric about the plane z = 2j7, Le. z2 = 2x - ZI, r2 = rl, @z = $1. the 
derivatives are (zlur ria, @la) = -(z&, r b ,  @b). Thus the vorticity vectors are equal and 
opposite at these points; so that during this event the vorticity cancels along the pinching 
stem of the outgoing jet. Therefore the outgoing jet forms a vortex ring that is detached 
from the rest of the sheet. 

Note that the vortex blob method could be interpreted as a vortex sheet with 'thickness' 
6. Therefore, it desingularizes the collision of the sheet with itself and the collision does 
not actually appear in the computation. Finally, figure 5.7 shows that the arclength of the 
vortex line goes to CO as the sheet evolves in time. This requires addition of new points on 
a vortex line after a certain time using the tolerances q, as described in section 3. 

5.2. Sensitivity to numerical parameters 

For fixed 8 = 0.1, the graphs presented in section 5.1 are not significantly altered if At 
is decreased or M is increased. Variation in the number of points N is slightly more 
subtle since points will be automatically inserted, as described in section 3. Consider two 
computations with initial values of N = 512 and N = 1024, and with values of the insertion 
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Figure 5.7. Inverse of the arclength for a vortex line 
against time in the computation of figures 5.1-5.6. 
Rapid growth of the arclength requires addition of new 
computational points. 

Figure 5.8. Comparison of the computation of 
figures 5.1-5.6 (full curve), in which the initial number 
of points is N = 512. with a refined computation 
(broken curve) for which N = 1024. S = 0.1. 

parameters q for the 1024 computation equal to half their values for the 512 computation. 
The sheet positions are detectably different only for t > 4.5. Figure 5.8 at t = 4.71 shows 
slight differences in the region where many points have been inserted. 

Figures 5.9(a) shows that the minimum radius r i n  of the sheet goes to zero at a rate that 
is similar for different 6 values. Figure 5.9(b) shows the minimum distance din between 
the two sides of the stem of the outer jet, which also goes to zero at a rate that is similar 
for different S values. Since the speed of vortex sheet motion increases as the blob size S 
is decreased, the collapse of r i n  and d,. occurs earlier for smaller S. We also found that 
the horizontal velocities inside the stem became very large as it pinched. It was, however, 
difficult to quantify whether these velocities or their associated mass fluxes were actually, 
diverging as the blob size was decreased. 

Figure 53. Dependence on the value of the desingularization parameter S for (a) IAe minimum 
radius rm,” of the sheer, and (b) the minimum distance dmi. between the sides of the stem for 
the outgoing jet. The values of S are 0.1 (01, 0.075 (+), and 0.05 (*). Note that the collapse 
of both ‘min and hi. o&m emlier for smaller S. 

Finally, the vortex sheet profiles are compared for two different values of S. Since the 
velocity is large for r near 0, which is the most interesting region in thii comparison, small 
differences between the solutions can easily be amplified. In order to show a meaningful 
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Figure 5.10. Dependence of the vortex sheet profile on S at (a) an early time and (b) a later 
time. The values of S are 0.1 (full curve) and 0.05 (broken curve). The Limes for the two 
computations are chosen so that "in is the same: t = 4.35 for 6 = 0.1 and f = 4.26 for 
S = 0.05 in (a); L = 4.71 for S = 0.1 and f = 4.52 for S = 0.05 in (b). 

agreement between the two computations for 6 = 0.1 and 6 = 0.05, we compare the two 
solutions at times for which the values of rolin are the same. Figures 5.10(n) and (b) show 
this comparison at two values of r,,,in. The shape of the vortex sheet is seen to be roughly 
independent of 6. 

Together with the comparison of r,,,in and d ~ "  at different values of 6 in figures 5.9(a) 
and (b), this shows that the qualitative features of the flow, including collapse and pinchoff, 
are independent of 6. 

6. Computation of two axi-symmetric swirling vortex sheets 

If the vortex line in the computations of section 5 is replaced by an axi-symmetric vortex 
sheet of small radius and with the same circulation, then the initial motion of the outer 
vortex sheet will be nearly unchanged. As the radius outer vortex sheet collapses, however, 
the two sheets will start to interact in a non-trivial way. 

In these computations the background steady flow is that due to an inner cylindrical 
vortex sheet of radius 0.1 with circulation rl = -2l1 and an outer cylindrical vortex sheet 
of radius 1.0 with circulation r = rz - rl = 2n. The circulation outside the outer sheet 
is thus rz = 0, so that the configuration is unstable according to Rayleigh's criterion. 
Following the linear stability analysis of section 2, an unstable mode of amplitude 0.1 on 
the outer sheet is added to this steady state. The initial data are thus 

ZI = a  -0.090868sina rl ~ ~ 0 . 1  +0.000061cosa 1cr, =0.104298cosa (6.1) 

zo =a-O0.O7783sinor ' ro =-l.O+O.lcosa @o =0.171917cosa. (6.2) 

The evolution equations for 'these two sheets are generalized from (1.1)-(1.3) as 
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Figure 6.1. Profile L (height) against I (radius) at 
I = 0.0 for a configuration of two co-axial, perturbed 
cylindrical vortex sheets. In this computation the initial 
ndii of the two sheets are very different. 

Figure6.2. Sameasfipre6.l butatr = 4.0. S = 0.05. 
The outer sheet has formed jcts and roll-up as in the 
computation of section 5. 

Equations (6.3)-(6.8) with initial data (6.1)-(6.2) were numerically solved using the 
method described in section 3 with N = 512 numerical points, M = 3, desingularization 
parameter 6 = 0.05, time step Af = 0.01, and point insertion parameters (q2f ,  qrf)  = 
(0.03,O.OOl) for the inner sheet and (qzo, qro) = (0.06.0.038) for the inner sheet. No 
point insertion parameter q~ was needed. Desingularization was used throughout the 
computation. For consistency and simplicity, all of the integrals in equations (6.3H6.7) 
were desingularized throughout the computation. 

The numerical results of this computation are displayed in figures 6.1-6.6. In the 
first two figures 6.1 and 6.2, the initial unstable amplification and the formation of an 
outward jet with Kelvin-Helmholtz rolls are displayed and are almost exactly the same as 
the corresponding results for a vortex sheet and a line vortex in figures 5.1 and 5.2. Note 
that since the external flow fields for a line vortex and an unperturbed cylindrical sheet 
are identical, the difference in the behaviour of the outer sheet in the two cases is initially 
proportional to the deformation of the inner sheet. 

When the outer sheet approaches the inner sheet, as portrayed in figure 6.3 and continued 
in figures 6.4 and 6.5, a strong interaction develops between them. In figures 6 .345 ,  the 
first figure (a) shows the overall shape of the two. sheets and the second figure (b) is a 
magnification of the interaction region. At first, the inner sheet is pushed inward by the 
inward radial jet of the outer sheet, as in figure 6.3 at I = 4.5. Then rolls in the outer sheet 
begin to form on the sides of the inward jet and the inner sheet gets entrained into these 
rolls, as in figure 6.4 at t = 4.55. The last figure 6.5 at t = 4.6, shows the two vortex sheets 
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Figure 6.3. Same as figure 6.1 but at t = 4.5. 6 = 0.05 The inner sheet has begun to deform as 
it is hit by the inner jets of the outer sheet. A detailed view of the region of interaction between 
the sheets is provided in (b). 

Figure 6.4. Same as figure 6.1 but at t = 4.55. 6 = 0.05 

...... 
.... : ...... ..,.r..... .. . .,,,;::,.: .. . . . . . . .  ............ 

E.* ! ...... 1: ,,/ , .: : .::::: . :::::::: :il ..!$::::::: ... ::; : 6 2 .  t "  ...... Ill;,  , ,  , ;::::: L.. .... , , ,  , 1 
............. 

I 8  .,:, . :.::. ... ...... . ....?,... 
, .  . . . . . . . .  . . . . . . . .  . . . . . .  16 

0 0 1  a4 a6 0.8 I I f  I* 16 

Figure 6.5. Same as figure 6.4 but at f = 4.6. 6 = 0.05. 

-to be almost exactly aligned (i.e. ro = rr .  zo = z j )  in their interaction region. Unlike the 
previous case of a single sheet interacting with the line vortex, no collapse onto the axis is 
observed. Although the computation presented here is for equal and opposite values of the 
circulation on the two sheets, this alignment of the sheets (but not of the vorticity vectors) 
still occurs if the circulation values are not equal. 
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Figure 6.6. Same as figure 6.4 but with 6 = 0.1 and at t = 4.8, 

Although the configuration at these late times is quite complicated, the voItex sheet 
curves are well resolved, as seen in figures 6.3(6), 6.4(b) and 6.5(6). Moreover the results 
for 6 = 0.1 presented in figure 6.6 are very close qualitatively to the results for 8 = 0.05. 
The main difference for two different values of 8 is a time delay for larger 8, as discussed 
in detail in section 5 .  

As the two sheets align there is cancellation of their r a id  z vorticity, but not their 0 
vorticity, as shown in figure 6.7. The values of the z-component a,' for the inner sheet and 
the negative of the z-component for the outer sheet are plotted against z in figure 6.7(a). 
The analogous plot for the r-components U,! and U," is in  figure 6.7(b). Figure 6.7(c) shows 
that there is no relation between ai and U:. 

This cancellation is expected according to the following argument: For the z-component, 
consider the circulation re around a circular loop outside the two sheets. Since the net 
circulation vanishes, re = 0. On the other hand, Stokes theorem says that re is equal to 
the integral of 0, over the horizontal disc bound by their loop. Since the surface area of 
the sheet per unit height in z is 2irr,/-, this integral is 

re = ai2xr1 4- 1 + rI,/zlu + az R ,  2xr0 $-- I + rRmjzR,. 

When the two sheets are aligned then rl = rg and (TIa /z1,)' = (ro,/zoa)' so that 

(6.9) 

(6.10) 0: =-a, 0 . 
~ 

For the r-components suppose that the two sheets are nearly aligned and not vertical. 
Consider two loops of the same radius, one inside the inner sheet and the other outside 
the outer sheet, both~of which have zero circulation so that the total circulation is rc = 0. 
Apply Stokes theorem using the cylindrical  section^ bound by these two loops. As in (6.9) 
the integral of w, over this section is . .  ~~ , .  , 

re = a ~ 2 i r r r , / ~ + a ~ 2 r r o  Jm. (6.11) 

As before this implies 

(6.12) 

if the two sheets are aligned. This anti-alignment of the vorticity vectors can only occur if 
the circulation values of the two sheets are equal and opposite. 

U I =-a0 
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Figure 6.7. Comparison of ( U )  thc r-components, ( b )  the r-components and (e) the 8- 
components of the vorticity vector on the inner sheet (*) and the outer sheet (full curve) at 
t = 4.55 as a function of z. Note that in regions where the two sheets align, the z- and 
r-components z e  equal. 

A very different evolution occurs if the radius of the inner sheet is not small. Consider 
a steady configuration with inner.radius 1 and outer radius 1.5 and perturb with the unstable 
mode to get initial data 

z~ =a-O.l19007sina r ,  = 1.+0.015975cosa $rr =O.O51564cosa 

2 0  =ciu0.077275sina r o =  1.5fO.lcosa $ro =O.O95639cosa. 

The solution of equations (6.3X6.8) is presented in figures 6.8-6.10 for these initial data. 
The first figure 6.8 shows the linear growth of inward and outward jets on the two 

sheets, as expected. Because the radius of the inner sheet is relatively large compared to 
that in the previous computation, the amplitude of the perturbation is also much larger. As 
the outward jet on the outer sheet starts to pull away and roll-up, the inner sheet is entrained 
into the stem of the outward jet on the outer sheet, as seen in figure 6.9. The inner sheet 
then begins to roll-up inside of this stem and the main~interaction of the two sheets occurs 
along this stem, as seen in figure 6.10, in contrast to &e earlier computation. 

7. Conclusion 

Axi-symmehic vortex sheets are a special class of solutions that may be studied to gain 
insight into three-dimensional fluid flow. Our investigation demonstrates that analysis and 
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Figure 6.8. Profile z (height) against r (radius) at 
f = 0.0 for a configuration of WO co-axial, perturbed 
cylindrical vortex sheets. In this computation the initial 
radii of the WO sheets are not very different. 

Figure 6.9. Same as in figure 6.8 but at f = 8.0. Note 
that the inner sheet is enmined into the outgoing jet of 
the outer j e r  in contmt to the bohaviour of the sheets 
in computation of figu&% 6.1-6.6. 

Figure 6.10. Same as in figure 6.8 but at t = 8.25. A detailed view of the region of interaction 
between the sheets is provided in (b). 

computation for such flows can be performed in a relatively straightforward manner. A 
number of phenomena emerge from this study: 

Instability occurs for a system of axi-symmetric vortex sheets if Rayleighs criterion is 
met. Due to the simplicity of these flows, explicit,expressions are found for the unstable 
growth rate (or the frequency in the stable case) and for the linear modes. 

Although there are singularities and numerical difficulties in the vortex sheet 
formulation, an effective numerical method has been developed for this problem. The 
method is stabilized through use of fiasny filtering before the'first roll-up singularity and 
6-desingularization afterwards. Although it is not possible to make 6 smaller than 0.01, the 
main features of the flow are seen to he independent of 6. 

The numerical results show the formation of inward and outward jets, along with 
winding up and stretching of the vortex lines, as predicted by linear theory. Further 
computation shows a number of nonlinear effects in the unstable cases. The tip of the 
inward jet splits into two. Furthermore, in the case of a vortex sheet and an axial vortex 
line, the inward jet drives the vortex sheet to collapse onto the vortex line at some points; 
while for two vortex sheets, the outer sheet is driven into the inner one. This process may 
be interpreted as vortex cancellation, and in the case of the collapse anta the axis it is 
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accompanied by blow-up of the vorticity density. 
A second collision take place between the vortex sheet and itself along the stem of the 

outward jet. Due to the symmetry in these problems, the vorticity exactly cancels where it 
hits. The result is detachment of an outer vortex ring. 
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