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Abstract. We provide the first proof of security for MDC-2, the most
well-known construction for turning an n-bit blockcipher into a 2n-bit
cryptographic hash function. Our result, which is in the ideal-cipher
model, shows that MDC-2, when built from a blockcipher having block-
length and keylength n, has security much better than that delivered by
any hash function that has an n-bit output. When the blocklength and
keylength are n = 128 bits, as with MDC-2 based on AES-128, an ad-
versary that asks fewer than 274.9 queries usually cannot find a collision.

Keywords: Collision-resistant hashing, cryptographic hash functions,
ideal-cipher model, MDC-2.

1 Introduction

Overview. A double block length hash-function uses an n-bit blockcipher as
the building block by which it maps (possibly long) strings to 2n-bit ones. The
classical double block length hash-function is MDC-2, illustrated in Figure 1.
This nearly 20-year-old technique [5, 22] is specified in the ANSI X9.31 and
ISO/IEC 10118-2 standards [1, 13], and it is implemented in popular libraries
and toolkits, such as OpenSSL.

This paper gives the first proof of security for MDC-2. Our result establishes
that when MDC-2 is based on an ideal blockcipher with keylength and block-
length of n bits, the adversary must ask well over 2n/2 queries to find a collision.
In particular, for n = 128, no adversry can find a collision with so much as a
50% chance if it asks fewer than 274.9 forward-or-backward queries of a 128-bit
blackbox-modeled blockcipher.

Getting a collision-resistance bound of 274.9 queries when n = 128 is still far
from the optimum one might hope for, which is a bound of 2128 queries for an
output of 2n = 256 bits (the birthday bound). But obtaining any bound above
264 (a trivial lower bound) has proved elusive to researchers thus far, given the
combinatorial complexity of the problem.

What is MDC-2? Traditionally, MDC-2 was instantiated using DES, and some
people may understand MDC-2 to mean MDC-2 based on DES. This is not our
meaning. Indeed this paper assumes a common keylength and blocklength n
bits, and so our results don’t directly apply to MDC-2 based on DES. (We as-
sume that, with signficant work, one could extend our analysis to handle the
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Fig. 1. Left: Definition of the MDC-2 algorithm based on a blockcipher E with key
length and block length n. The message being acted on is X = X1 · · · Xm where m ≥ 1
and |Xi| = n. Strings A1 and B1 are distinct n-bit constants. For an even-length sting
S we let SL and SR be its left and right half. Right: Illustration of the algorithm
acting on a three-block messsage X = X1X2X3. The resulting hash is H(X) = V3 W3.
The darkened edge of the box representing the blockcipher indicates the input that is
the key.

DES parameters of 56-bit keys and 64-bit blocks, but we haven’t done this.) In
this paper we consider MDC-2 using a blockcipher E: {0, 1}n ×{0, 1}n → {0, 1}n

with equal-length blocks and keys. We make this assumption for simplicity, while
preserving contemporary applicability: eliminating “bit-dropping” makes the al-
gorithm cleaner, while the usage of MDC-2 that people nowadays envisage is
with the blockcipher AES-128 [30]. All future mention of MDC-2 in this paper
assumes equal blocklength and keylength.

The MDC-2 algorithm is simple and elegant: building on the usual Merkle-
Damg̊ard approach [6, 21], the compression function uses two parallel invocations
of the Matyas-Meyer-Oseas compression function [20] and then swaps the right
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halves of the outputs. It is defined and illustrated in Figure 1. It is easy to
see that the algorithm doesn’t work (that is, it admits efficient attacks) if it is
“over-simplified” by dropping the left/right swapping, the feed-forward XOR, or
both.

The version of MDC-2 that we consider does not incorporate a “bit fixing”
step like replacing the leftmost bit of each left-column blockcipher key in Figure 1
with a 0-bit and replacing the leftmost bit of each right-column blockcipher key
with a 1-bit. Such bit-fixing was employed in MDC2-DES [1, 13] to overcome
the key-complementation property of the primitive and also, conceivably, as a
security measure.

We also comment that in the version of MDC-2 that we consider, no length-
annotation or padding is used, and the domain is correspondingly restricted
to ({0, 1}n)+. It is easy and customary to use padding and length-annotation
to extend MDC-2 to handle a domain of any string of less than 2n bits. Provable-
security results immediately extend: a collision-intractability result for the
({0, 1}n)+ domain version of a hash function will always lift to give essentially
the same bound for the {0, 1}<n domain version one gets after padding and
length annotation.

Our results. We work in the ideal-cipher model, as in [4, 8, 15]. This is the
customary model for proving the security of a blockcipher-based hash function.
In the ideal-cipher model the underlying primitive, a blockcipher E, is modeled
as a family of random permutations {EK} with a random permutation chosen
independently for each key K. The adversary may make a query EK(X) to
discover the corresponding value Y = EK(X), or the adversary may make a
query E−1

K (Y ) so as to learn the corresponding value X = E−1
K (Y ) for which

EK(X) = Y . We are interested in the chance that an adversary can find a colli-
sion, namely a pair of distinct messages that collide under MDC2E , by asking q
queries. More formal definitions will be given below.

It is easy to show that finding a collision for MDC2 implies finding K, X, K ′, X ′

with (K, X) �= (K ′, X ′) such that EK(X)⊕X = EK(X ′)⊕X ′. From this it eas-
ily follows (see [4]) that an adversary’s chance of finding a collision in q queries
is at most q(q + 1)/2n ≈ q2/2n where n = |X | = |K| is the block size. This is a
trivial upper bound, only as good as the conventional bound one expects for a
hash function with n-bit output.

Ideally one would like to prove a bound of q2/22n for MDC-2, the bound
corresponding to the birthday attack, since the output length of MDC-2 is 2n.
However, despite the lack of known attacks on MDC-2, no one has even been
able to exhibit an improvement on the trivial bound of q2/2n. In this paper we
give the first improvement by showing that an adversary has chance O(q5/23n)
of finding an attack and therefore needs at least q ≈ 23n/5 queries to have an
even chance of finding a collision. For example when n = 128 (the main case
of interest) we show that an adversary needs q = 274.9 queries to have an even
chance of obtaining a collision, which is over 210 greater than the trivial bound
of 263.5. Figure 2 shows our upper bound as function of q for the case n = 128.
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Fig. 2. Our upper bound on AdvMDC2
128 (q) as a function of q (solid line) compared to

the previous best upper bound of q(q + 1)/2128 (dotted line)

2 Preliminaries

Let Bloc(n) be the set of functions E: {0, 1}n × {0, 1}n → {0, 1}n such that
E(K, ·) = EK(·) is a permutation on {0, 1}n. Given a blockcipher E ∈ Bloc(n)
we define MDC2E : ({0, 1}n)+ → {0, 1}2n by the algorithm of Fig. 1. The hash
of a word X where |X | is a multiple of n by MDC2E is denoted by MDC2E(X).

An adversary is a computationally unbounded but always-halting algorithm
A with access to an oracle E ∈ Bloc(n). We can assume (by standard argu-
ments) that A is deterministic. The adversary can make either a “forward”
query (Ki, Xi)fwd to its oracle E or a “backward” query (Ki, Yi)bwd. The for-
ward query is answered by Yi = EKi(Xi) and the backward query is answered by
Xi = E−1

Ki
(Yi). Either way the result of the query is stored in a triple (Xi, Ki, Yi)

and the query history of AE , denoted Q = Q(AE), is the tuple (Q1, . . . , Qq)
where Qi = (Xi, Ki, Yi) is the result of the i-th query made by the adversary,
and where q is the total number of queries made by the adversary. If (Xi, Ki, Yi)
is an element of the query history then we refer to Xi as the “word input” of the
query, to Ki as the “key” of the query, and to Yi as the “output” of the query.
The quantity Xi ⊕ Yi is called the “XOR output” of the query.

The adversary’s goal is to output a pair of nonempty strings X , X ′ such that
X �= X ′ and MDC2E(X) = MDC2E(X ′). Moreover we impose the condition
that the adversary must have made all queries necessary to compute MDC2E(X)
and MDC2E(X ′). This restriction is reasonable since otherwise the adversary
can output very long words X , X ′ where MDC2E(X) = MDC2E(X ′) with
good probability but where computing MDC2E(X), MDC2E(X ′) is infeasible.
(For example, without making any queries, the adversary could simply output
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0Kn and 02Kn where K is the lcm of all numbers between 1 and 2n and have
probability 1 of obtaining a collision, but this isn’t a reasonable type of attack.)

Since we may tell simply from the adversary’s query history Q whether it is
possible for the adversary to output words X �= X ′ such that MDC2E(X) =
MDC2E(X ′) and such that Q contains all the queries necessary for the com-
putation of MDC2E(X), MDC2E(X ′), we will in fact dispense the adversary
from having to output X , X ′ and simply determine whether the adversary has
been successful or not by examining its query history Q. Formally, we say that
CollE(Q) holds if there are two distinct nonempty words X , X ′ of lengths di-
visible by n such that MDC2E(X) = MDC2E(X ′) and such that Q contains all
the queries necessary to compute MDC2E(X), MDC2E(X ′) as defined by the
algorithm of Fig. 1. The goal of the adversary A is thus to make some sequence
of queries Q = Q(A) such that CollE(Q). We define the adversary’s ability to
break MDC-2 by

AdvMDC2
n (A) = Pr[E $← Bloc(n); Q ← AE : CollE(Q)].

We let AdvMDC2
n (q) be the max over all adversaries A making at most q queries

of AdvMDC2
n (A). Our goal is thus to upper bound AdvMDC2

n (q). We can assume
without loss of generality that A always asks exactly q queries and thus that
|Q(AE)| = q.

Say that numbers n and q have been fixed as well as an adversary A such
that |Q(AE)| = q for all E ∈ Bloc(n). If P is any predicate that can be true or
false for a sequence of queries Q (such as CollE(Q)) then we write Pr[P(Q)] as
a shorthand for Pr[E $← Bloc(n); Q ← AE : P(Q)]. With this notation we have
AdvMDC2

n (A) = Pr[CollE(Q)]. We will often use this simpler notation to avoid
over-complicating our formulas.

3 Our Security Bound

Our upper bound can be stated in varying degrees of generality and compre-
hensibility. The most general and least comprehensible statement of our upper
bound is the following:

Theorem 1. Let n, q be natural numbers with q < 2n. Let N = 2n, N ′ = N − q
and let ma, mb, mc be any positive numbers with eqN

1
2 /N ′ ≤ mb ≤ N

1
2 , eq/N ′ ≤

mc. Finally let Mb = mbN
′/qN

1
2 , Mc = mcN

′/q and N ′′ = N ′(N
1
2 − mb)/N

1
2 .

Then

AdvMDC2
n (q) ≤

q2/maN ′ + 2qN
1
2 eqN

1
2 Mb(1−ln(Mb))/N ′

+ qNeqMc(1−ln(Mc))/N ′
+ (1)

q(m2
a + mam2

b + m4
b)/N

′ + (2)
q(4mamb)/N ′ + q(2mamb)/N ′′ + (3)
q(m2

bmc + 5m2
b + mamc + 6ma)/N ′ + q(4ma + 8m2

b)/N
′′ + (4)

q(4 + 10mb + 2mbmc)/N ′′ + 3q/N ′ + 4q/N ′′ + q2/N ′2 (5)
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q AdvMDC2
128 (q) ≤ ma mb mc

264 7.57 × 10−7 2.64 × 106 44.01 3.7147
268.22 10−4 7.01 × 106 128.09 3.9448
272.19 1/100 1.75 × 107 898.95 4.1899
274.00 1/10 2.66 × 107 2902.32 4.3082
274.72 1/3 3.14 × 107 4687.89 4.3523
274.91 1/2 3.29 × 107 5355.49 4.3640
275.21 1 – – –

Fig. 3. Upper bounds on AdvMDC2
128 (q) given by Theorem 1. The right three columns

specify the values ma, mb, and mc used to obtain the bound of the second column.

For Theorem 1 to give a good bound one must choose suitable values for the
constants ma, mb, mc. Choosing large values of ma, mb, mc reduces the terms of
line (1) but increases the terms of lines (2)-(5). Unfortunately there is no good
closed form for the optimal values of ma, mb, mc (these will change with every
q), hence the complex-looking form of Theorem 1. The meaning of the constants
ma, mb, mc is explained in the proof.

What Theorem 1 concretely means for n = 128 is shown in Figs. 2–3. Fig. 3
shows specific numerical upper bounds for AdvMDC2

128 (q) for various values of q.
The threshold value where Theorem 1 gives an upper bound of 1/2 is q = 274.91

(to be compared with the previous best threshold of q = 263.5). For each value
of q we also show the values of ma, mb, mc which yield the stated upper bound.
Fig. 2 plots our upper bounds on AdvMDC2

128 (q) as a function of q, compared to the
previous upper bound of q(q +1)/N . The method for optimizing ma, mb, mc for
given values of n, q in order to obtain the best bound on AdvMDC2

n (q) is discussed
in the full version of this paper [29]. There we also show (via straightforward
calculus) that Theorem 1 implies the following:

Theorem 2. Let q = 2
3
5 n−ε where ε > 0. Then AdvMDC2

n (q) → 0 as n → ∞.

Asymptotically as n → ∞, thus, our bound for AdvMDC2
n (q) behaves like the

function min(1, q5/23n), though the two functions still look significantly different
for n = 128 (e.g. q5/23n has a threshold of 276.6 for n = 128 whereas our bound
on AdvMDC2

128 (q) has a threshold of 274.9). Though the two functions converge
asymptotically there does not seem to be any good closed form relating our
bound on AdvMDC2

n (q) to the function q5/23n.

4 Analysis

Overview. Rather than analyzing the probability that the queries Q made
by the adversary contain the means of constructing a collision we simplify the
problem by analyzing the probability that the queries Q contain the means of
constructing the last two rounds of a collision. Effectively we look to see whether
there exist keys K0, K1, K ′

0, K ′
1 and n-bit words X1, X2, X ′

1, X ′
2 such that the
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MDC-2 hash of X1X2 using the incoming keys K0, K1 (rather than A1, B1)
equals the MDC-2 hash of X ′

1X
′
2 using the incoming keys K ′

0, K ′
1, and such that

Q contains all the queries necessary to make both hashes. Naturally a collision
does not necessarily involve two words of at least two blocks each, as either or
both words may consist of a single block, and our analysis also allows for this
contingency.

To upper bound the probability of the adversary obtaining queries that can
be used to construct the last two rounds (or fewer) of a collision we upper bound
the probability of the adversary making a query that can be used as the final
query to complete such last two rounds. Namely for each i, 1 ≤ i ≤ q, we upper
bound the probability that the answer to the adversary’s i-th query (Ki, Xi)fwd
or (Ki, Yi)bwd (depending) will allow the adversary to use the i-th query to
complete (what looks like) the last two rounds of a collision. In the latter case
we say the i-th query is “successful”, and we give the attack to the adversary.

Naturally this probability will depend on the adversary’s first i − 1 queries.
In particular we need to make sure that the adversary hasn’t already been too
“lucky” with its first i− 1 queries, or else the probability of the i-th query being
successful will be hard to upper bound. An example of being “lucky” would be
if there exists a large subset of the first i − 1 queries that all have the same
XOR output (there are two more ways of being lucky defined below). Our upper
bound thus breaks down into two pieces: an upper bound for the probability of
the adversary getting lucky in one of three specific ways defined below, and the
probability of the adversary ever making a successful i-th query, conditioned on
the fact that the adversary has not yet become lucky by its (i − 1)-th query.

Details. Fix numbers n, q and an adversary A asking q queries to its oracle. We
upper bound Pr[CollE(Q)] by exhibiting predicates Win0(Q), . . ., Win8(Q) such
that CollE(Q) =⇒ Win0(Q)∨ . . . ∨Win8(Q) and then by upper bounding sepa-
rately the probabilities Pr[Win0(Q)], . . ., Pr[Win8(Q)]. Obviously Pr[CollE(Q)] ≤
Pr[Win0(Q)] + · · · + Pr[Win8(Q)]. (The event Win0(Q) happens if the adversary
is lucky, whereas if the adversary is not lucky but makes a successful i-th query
then one of the predicates Win1(Q), . . ., Win8(Q) will hold.)

To state the predicates Win0(Q), . . . , Win8(Q) we need some extra definitions.
Define functions a, b, bL, bR and c on query sequences of length q as follows:

a(Q) = |{(i, j) ∈ [1 . . . q]2 : i �= j, Xi ⊕ Yi = Xj ⊕ Yj}| is the number of
ordered pairs of distinct queries in Q with same XOR outputs

bL(Q) = maxY ∈{0,1}n/2 |{i : (Xi ⊕ Yi)L = Y }| is the maximum size of a set
of queries in Q whose XOR outputs all have the same left n/2 bits

bR(Q) = maxY ∈{0,1}n/2 |{i : (Xi ⊕Yi)R = Y }| is the maximum size of a set
of queries in Q whose XOR outputs all have the same right n/2
bits

b(Q) = max(bL(Q), bR(Q))
c(Q) = maxY ∈{0,1}n |{i : Xi ⊕ Yi = Y }| is the maximum size of a set of

queries in Q whose XOR outputs are all the same
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The event Win0(Q) is simply defined by

Win0(Q) = (a(Q) ≥ ma) ∨ (b(Q) ≥ mb) ∨ (c(Q) ≥ mc)

where ma, mb, mc are the constants from Theorem 1. Thus as ma, mb, mc are
chosen larger Pr[Win0(Q)] diminishes.

The events Win1(Q), . . . , Win8(Q) are different in nature from the event
Win0(Q); they concern the feasibility of fitting certain subconfigurations of
MDC-2 using queries from Q = (X1, K1, Y1), . . ., (Xq, Kq, Yq). Take for example
the configuration 1a of Fig. 5. In this configuration, the two strings marked A are
equal and the queries marked i, !i are different. These are the only constraints;
unmarked strings may or may not be equal, and other queries in the diagram
may or may not be equal. Since the bottom left and bottom right queries are
distinct fitting the diagram means using two distinct queries Qi = (Xi, Ki, Yi)
and Qi′ = (Xi′ , Ki′ , Yi′) from Q for these two positions. We say that four queries
Qi = (Xi, Ki, Yi), Qi′ = (Xi′ , Yi′ , Yi′), Qj = (Xj , Kj , Yj), Qk = (Xk, Kk, Yk) in
Q “fit” configuration 1a if i �= i′ and if Qi, Qi′ , Qj, Qk can be placed in re-
spectively the bottom left, bottom right, top left and top right positions of
configuration 1a such that the wiring constraints of the diagram are respected
and such that the two strings marked A are equal. Formally, the four queries Qi,
Qi′ , Qj , Qk fit configuration 1a if and only if

(i �= i′) ∧ (Xi = Xi′) ∧ (Xj = Xk) ∧ (Xi ⊕ Yi = Xi′ ⊕ Yi′) ∧
((Xj ⊕ Yj)L = KL

i ) ∧ ((Xj ⊕ Yj)R = KR
i′ ) ∧

((Xk ⊕ Yk)L = KL
i′ ) ∧ ((Xk ⊕ Yk)R = KR

i ).

Moreover we say that ExistsFit1a(Q) holds if there exist i, i′, j, k ∈ [1 .. q] such
that queries Qi, Qi′ , Qj , Qk fit configuration 1a. The predicates ExistsFit1b,
ExistsFit2, ExistsFit3, ExistsFit4a, ExistsFit4b, ExistsFit6a, ExistsFit6b, ExistsFit6c,
ExistsFit6d, ExistsFit7a, ExistsFit7b, whose configurations are shown in Figs. 5–6,
are likewise defined. In these configurations strings marked by the same letter
must be equal but strings marked with different letters may or may not be equal;
likewise queries marked i, !i or j, !j are different but two queries marked with
different letters may be the same. We also let ExistsFit1 = ExistsFit1a∨ExistsFit1b,
ExistsFit4 = ExistsFit4a∨ExistsFit4b, and so on. Note that ExistsFit6a = ExistsFit6b

and that ExistsFit6c = ExistsFit6d, thus ExistsFit6 = ExistsFit6a ∨ExistsFit6c (con-
figurations 6b, 6d are only provided to facilitate referencing).

Some additional notation is required to indicate inequality between queries in
configurations 5 and 8. In these configurations, pairs of queries from the bottom
row that do not both contain a ‘1’ or both contain a ‘0’ (namely, queries with
different labels) are presumed different; there are no constraints relating top
row to bottom row queries, and queries with the same label are not presumed
equal (see Fig. 4 for an explanation of “top row”, “bottom row”). The predicates
ExistsFit5(Q), ExistsFit8(Q) then denote the existence of a set of queries in Q
fitting respectively configurations 5 and 8 under these constraints.
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Fig. 4. The query labels

Let NotWin j = Win0(Q) ∨ · · · ∨ Win j(Q) for 1 ≤ j < 8. We now define:

Win1(Q) = NotWin0(Q) ∧ ExistsFit1(Q)
Win2(Q) = NotWin1(Q) ∧ ExistsFit2(Q)

...

and so forth. Thus Win4(Q), for example, is the predicate which is true if and
only if a(Q) < ma, b(Q) < mb, c(Q) < mc (these conditions being NotWin0(Q))
and Q contains queries that fit configurations 4a or 4b but Q does not contain
queries fitting configurations 1a, 1b, 2 or 3.

The reader will note that all configurations in Figs. 5–6 have at most two pieces
and each piece is a subportion of two rounds of MDC-2. If the configuration has
two pieces (such as configurations 2, 4a, 4b, 5, 6a, 6b, 6c, 6d, 7a, 7b, 8 as opposed
to configurations 1a, 1b, 3) then the left portion of the configuration is called
“Word 1” and the right portion of the configuration is called “Word 2” (Fig. 4).
Queries in the right-hand column of a two-round piece are called “right column”
queries and queries in the left-hand column of a two-block portion are called “left
column” queries. “Top row” and “bottom row” queries are defined the expected
way. A query in the configuration is given coordinates 1TR for “Word 1, Top
row, Right column” or 2BL for “Word 2, Bottom row, Left column”, etc. If the
configuration has only one piece then we drop the prefix “1” or “2” and simply
give coordinates TL, TR, etc. for the queries. The reader should refer to Fig. 4.

We now show that CollE(Q) =⇒ Win0(Q) ∨ · · · ∨ Win8(Q):

Lemma 1. CollE(Q) =⇒ Win0(Q) ∨ · · · ∨ Win8(Q).

Proof. First note that ExistsFit1(Q) ∨ · · · ∨ ExistsFit8(Q) =⇒ Win0(Q) ∨ · · · ∨
Win8(Q), so it is sufficient to show that CollE(Q) =⇒ ExistsFit1(Q) ∨ · · · ∨
ExistsFit8(Q).

Say CollE(Q). Then a collision can be constructed from the queries Q. We can
assume that the collision is earliest possible in the sense that one cannot truncate
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Fig. 5.
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Fig. 6.



The Collision Intractability of MDC-2 in the Ideal-Cipher Model 45

either one or both words involved to form a collision from the leftover prefixes
(otherwise, take this smaller pair of words). By definition collisions involve words
with at least one block, so the collision must either (i) use two words that are
one block long each (ii) use one word of at least two blocks and one word of
one block or (iii) use two words of at least two blocks each. If the collision uses
two words that are one block long each then obviously ExistsFit2(Q) (if query i
where equal to !i, the two words would be the same), so we can assume either
(ii) or (iii).

Say first the collision is of type (ii), namely that the collision has one word
with m ≥ 2 blocks, which is wlog word 1, and one word of with one block,
which is word 2. Note first that when word 1 is hashed via MDC-2 there can
never be a round where the same query appears both on the left and right-hand
sides unless ExistsFit1(Q) holds (to see this, take the earliest such round; since
the constant keys A1, B1 are different this is not the first round and the two
queries from the round before are different but have the same XOR output, so
ExistsFit1(Q)). Therefore we can assume that at every round in the hashing of
word 1, different queries appear on the left and right-hand sides. Naturally the
same query may appear both in the left and right columns in different rounds.

We now examine the last two rounds of the hashing of word 1. The four (not
necessarily distinct) queries comprising these two rounds are labeled 1TL, 1TR,
etc. as in Fig. 4 and as per our convention described above. The two queries
making up the unique round for the hashing of word 2 are simply labeled 2L
and 2R, where 2L is the query with key input A1 and 2R is the query with key
input B1. By our previous remark, queries 1TL and 1TR are distinct as well
as queries 1BL and 1BR. If query 1BL equals query 2L and query 1BR equals
query 2R then ExistsFit3(Q). On the other hand if query 1BL is not equal to
query 2L and query 2BR is not equal to query 2R then ExistsFit5(Q). Therefore
we can assume (by symmetry) that query 1BL is not equal to query 2L but that
query 1BR equals query 2R. But then ExistsFit4a(Q). This concludes the case
when the adversary’s collision is of type (ii).

We now assume that both of the words involved in the collision have at least
two rounds. We examine the last two rounds of the hashing of each word; the
queries for these last two rounds are labeled as in Fig. 4. By the same remark
as above, the same query cannot appear in both left and right positions at the
same round of the same word, so the top row constraints of configuration 8 are
satisfied. If query 1BL equals 2BL and query 1BR equals query 2BR then the
collision is not earliest possible, a contradiction, so we can assume (by symmetry)
that query 1BL is not equal to query 2BL. If queries 1BR and 2BR are equal
then ExistsFit7a(Q) so they too must be unequal. But then ExistsFit8(Q) so we
are done. ��

The reader may have noted that ExistsFit6(Q) does not actually appear in the
proof of Lemma 1. However Win6(Q) will be used to upper bound Pr[Win7(Q)]
(as Pr[Win7(Q)] ≤ Pr[Win6(Q)] + Pr[NotWin6(Q) ∧ Win7(Q)]).

Let WinFit(Q) = Win1(Q) ∨ . . . ∨ Win8(Q), so Pr[CollE(Q)] ≤ Pr[Win0(Q)] +
Pr[WinFit(Q)]. We show:
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Lemma 2. Let N , N ′, N ′′, ma, mb, Mb, mc, Mc be as in Theorem 1. Then
Pr[Win0(Q)] ≤ q2/maN ′+2qN

1
2 eqN

1
2 Mb(1−ln(Mb))/N ′

+qNeqMc(1−ln(Mc))/N ′
.

and:

Lemma 3. Let N , N ′, N ′′, ma, mb, mc be as in Theorem 1. Then:

Pr[WinFit(Q)] ≤ q(m2
a + mam2

b + m4
b)/N

′ +
q(4mamb)/N ′ + q(2mamb)/N ′′ +
q(m2

bmc + 5m2
b + mamc + 6ma)/N ′ + q(4ma + 8m2

b)/N
′′ +

q(4 + 10mb + 2mbmc)/N ′′ + 3q/N ′ + 4q/N ′′ + q2/N ′2.

Lemmas 2 and 3 imply Theorem 1 (by Lemma 1). The proof of Lemma 2 uses
straightforward balls-in-bins probability and can be found in the full version
of our paper [29]. The proof of Lemma 3 is more involved and in some sense
constitutes the heart of our paper. Here we only give a grief glimpse of the
type of analysis involved by showing how to upper bound Pr[NotWin0(Q) ∧
ExistsFit1a(Q)], which establishes “half” of the upper bound for Pr[Win1(Q) =
NotWin0(Q)∧(ExistsFit1a(Q)∨ExistsFit1b(Q))]. (Again, the full proof of Lemma 3
is found in the full version.)

For the next proof we use the notational convention that (Ki, Xi) denotes a
forward query (Ki, Xi)fwd and that (Ki, Yi) denotes a backward query
(Ki, Yi)bwd. The constants N , N ′, N ′′ will remain throughout as defined in
Theorem 1, namely N = 2n, N ′ = N − q, N ′′ = N ′(N

1
2 − mb)/N

1
2 .

Proposition 1. Pr[NotWin0(Q)∧ExistsFit1a(Q)] ≤ q(ma+m2
b)/N

′+2qmb/N
′′.

Proof. Let Qi denote the first i queries made by the adversary. The term “last
query” means the latest query made by the adversary (we examine the adver-
sary’s queries (Ki, Xi) or (Ki, Yi) one at a time, in succession as they come in).
The last query is always given index i. We say the last query is “successful” if
the output Yi or Xi for the last query is such that a(Qi) < ma, b(Qi) < mb,
c(Qi) < mc and such that the adversary can use the query (Xi, Ki, Yi) to fit
configuration 1a using only queries in Qi (in particular, the last query must be
used in the fitting for that query to count as successful). The goal is thus to
upper bound the adversary’s chance of ever making a successful last query.

The strategy for upper bounding the probability of the last query being suc-
cessful is to consider separately the different ways in which the last query can
be used to fit the configuration and to upper bound the probability of success
in each case, and finally to sum the various upper bounds. For example, the
adversary may use the last query only once in the configuration or otherwise in
several different positions of the configuration (such as, say, TL and BL). The
basic setup for upper bounding the probability of success in a given case is to
upper bound the maximum number of different outputs Yi or Xi (depending on
whether the last query is a forward or backward query) that would allow the
query (Xi, Ki, Yi) to be used to fit the configuration, and then to divide this
number by N ′ = N − q (since either Yi or Xi, depending, is chosen randomly
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among a set of at least N ′ different values). That ratio is then multiplied by q,
since the adversary makes q queries in all, each of which could become a suc-
cessful last query.

Case 1: The last query is used exactly once in the configuration. We can assume
wlog that it is used in the left column.

Subcase 1.1: The last query is used in position BL. Say first that the last
query is a forward query (Ki, Xi). Since the last query cannot be successful if
b(Qi−1) ≥ mb (by definition) we can assume that b(Qi−1) < mb. Then since the
left half of the XOR output of the query used in position TL must be equal to the
left half of Ki there are at most mb different queries in Qi−1 that could be used
in position TL, for the given inputs (Ki, Xi) of the last query. Likewise because
the right half of the XOR output of the query used in position TR must be equal
to the right half of Ki there are at most mb different queries in Qi−1 that could
be used in position TR. Since Xi together with the outputs of the queries used
in positions TL, TR completely determine the query used in position BR, there
are therefore at most m2

b different queries in Qi−1 which can be used in position
BR for the given inputs (Ki, Xi). Therefore there are at most m2

b outputs Yi

which would enable the last query be used to fit the configuration at position BL
(namely which would enable the XOR output Xi ⊕ Yi of query BL to be equal
to the XOR output of query BR), so the chance of success of the last query if it
is forward is ≤ m2

b/N
′.

Now say the last query is a backward query (Ki, Yi). We cannot reason like
for the forward query case that there are only m2

b queries in Qi−1 that that
can appear in position BR since we do not know the word input Xi anymore.
However because the query used in position BR has same XOR output and same
word input as the query in position BL it must also have the same output as the
query in position BL, which means the output of the query in position BR is
actually Yi. Now because E is a blockcipher, there is exactly at most one possible
query for position BR in Qi−1 for any given value of the key of the query in
position BR, and since the key can take at most m2

b different values (as in the
forward case) there are again at most m2

b different queries that can be used in
position BR. Therefore there are at most m2

b different values for Xi which would
make the backwards query (Ki, Yi) successful, so the last query again has chance
of success ≤ m2

b/N
′.

Thus the last query has chance of success ≤ m2
b/N

′ whether it is a forward
or backward query. Multiplying by q, we obtain that the chance of ever making
a successful last query of this type is ≤ qm2

b/N
′. This concludes the analysis of

Subcase 1.1.

Note: we will not always give as many details as in Subcase 1.1. In particular, we
will not continue to remind that one can assume a(Qi−1) < ma, b(Qi−1) < mb,
c(Q)i−1 < mc (or else the last query is by definition not successful) and we will
often shorten phrases of the type “query used in position TL” to simply “query
TL”.
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Subcase 1.2: The last query is used in position TL. Because the queries use
in positions BL, BR are distinct but have the same XOR output there are at
most ma different ordered pairs of queries in Qi−1 that can be used for the pair
BL, BR. But the pair of queries for BL, BR completely determines what the
XOR output Xi ⊕ Yi of the last query should be. Therefore the last query has
chance at most ma/N ′ of success and the total probability of making this type
of successful last query is ≤ qma/N ′.

Note: Subcase 1.2 does not require a separate analysis for the forward and back-
ward case because we can upper bound the maximum number of successful XOR
outputs for the last query without looking at the inputs for the last query; by
contrast, in Subcase 1.1 we inspected Xi in the forward case and Yi in the back-
ward case in order to determine the maximum possible number of successful
XOR outputs. In general, whenever an upper bound on the total number of
successful XOR outputs for the last query can be found without inspecting any
inputs for the last query besides the key, the same analysis will work both for
the forward and backward cases.

Case 2: The last query is used twice or more in the configuration. Because
queries BR and BL are distinct the queries TR and TL are also distinct and
so the last query must in fact appear exactly twice in the configuration. We can
assume wlog that it is used in position TL.

The type of analysis we use for this case is slightly different than the analysis
for Subcases 1.1, 1.2. To estimate the probability of the last query succeeding
we will first look at the left n/2 bits of XOR output, estimate their probability
Pl of success (the left bits are “successful” if they do not preclude the last query
from being successful) and then we estimate the probability of success Pr|l of the
right n/2 bits of XOR output being successful, conditioned on the fact that the
left n/2 bits are successful (the right n/2 bits are “successful” if the last query
is successful). The probability of success of the last query is then PlPr|l. Note
that if the set of left half of XOR outputs which are successful has size T then
Pl ≤ TN

1
2 /N ′ since the return to any query has chance ≤ N

1
2 /N ′ of having its

left half of XOR output equal to any particular value (there are at most N
1
2

strings that have that left half, each of which is returned with chance at most
1/N ′). Then if the left half is successful and there are U different possible ways
of completing the left half into a successful string, namely U different successful
right halfs, the chance of the right half being successful given NotWin0(Qi−1)
is ≤ U/(N

1
2 − mb) since the XOR output could be any of at least N

1
2 − mb

values with equal probability (there are at most mb values which we know will
not appear because they have already appeared for this left half). So the total
chance of success of the last query in this case (assuming U was independent of
the left half, as it will be in our analysis) is ≤ TUN

1
2 /N ′(N

1
2 −mb) or ≤ TU/N ′′.

Subcase 2.1: The last query is used in positions TL, BL. Since the last query
appears in positions TL, BL the left half of the last query’s XOR output must
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be equal to the left half of its key input, so the left half of output has chance
Pl ≤ N

1
2 /N ′ chances of succeeding. If it succeeds, there are at most mb queries

for BR in Qi−1 with that left half of XOR output (which must be shared with
query BL), so the right half of XOR output has chance Pr|l ≤ mb/(N

1
2 − mb)

of succeeding if the the left half succeeds. Therefore the last query has chance
PlPr|l ≤ mbN

1
2 /N ′(N

1
2 − mb) = mb/N

′′ of succeeding and the adversary’s total
chance of making this kind of successful last query is ≤ qmb/N

′′.

Subcase 2.2: The last query is used in position TL and in position BR. One
can apply the same type of analysis as for Subcase 2.1, showing that the total
chance of a successful last query of this type is ≤ qmb/N

′′.

Subcase 2.2 concludes Case 2 and thus all possible cases of making a suc-
cessful query for configuration 1a. Summing up the probabilities we get that
Pr[NotWin0(Q) ∧ ExistsFit1a(Q)] ≤ q(ma + m2

b)/N
′ + 2qmb/N

′′. ��

5 Conclusion

We have proved the first nontrivial security bound for MDC-2. While such a
bound has been a long time coming, we expect that our result is only a first
foot in the door. In particular there remains a large gap between the best-known
collision-finding attack, which is the trivial attack that succeeds with chance
q2/22n, and the security bound of Theorem 1. Likely our security bound is far
from optimal, and it remains an interesting open question to find matching upper
and lower bounds.
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