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Abstract: Using the extended Poincaré–Lighthill–Kuo (EPLK) method, the interaction between two ion acoustic soli-

tary waves (IASWs) in a multicomponent magnetized plasma (including Tsallis nonextensive electrons) has

been theoretically investigated. The analytical phase shifts of the two solitary waves after interaction are es-

timated. The proposed model leads to rarefactive solitons only. The effects of colliding angle, ratio of num-

ber densities of (positive/negative) ions species to the density of nonextensive electrons, ion-to-electron

temperature ratio, mass ratio of the negative-to-positive ions and the electron nonextensive parameter on

the phase shifts are investigated numerically. The present results show that these parameters have strong

effects on the phase shifts and trajectories of the two IASWs after collision. Evidently, this model is helpful

for interpreting the propagation and the oblique collision of IASWs in magnetized multicomponent plasma

experiments and space observations.
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1. Introduction

Ion acoustic solitary waves (IASWs) have been studied

for several decades both theoretically and experimen-

tally. They have been first considered in [1] where their

∗E-mail: emadel_shamy@hotmail.com (Corresponding author)
† E-mail: mtribeche@usthb.dz
‡ E-mail: eltaibany@hotmail.com; eltaibany@du.edu.eg

fully nonlinear features were studied using a mechani-

cal analogy. Later on, these nonlinear waves have re-

ceived considerable attention both theoretically and ex-

perimentally [2]. It has been reported that only compres-

sive IASWs involving density humps exist in unmagnetized

two-component plasmas. Plasmas containing an appre-

ciable amount of negative ions (the so- called multicompo-

nent plasmas) have been the subject of intense investiga-

tions [3–13]. This interest is mainly due to their wide tech-

nological applications [14–17] and role in astrophysical
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plasmas. Negative ions have been detected in the Earth’s

ionosphere [18], cometary comae [19], and the upper re-

gions of Titan [20]. Moreover, multicomponent plasmas,

such as Ar/SF6 and K/SF6 plasmas, are generally used to

perform basic research on IASWs in dc discharge devices

and Q-machines [21–28]. Since the early space obser-

vations [29], it has been admitted that the Maxwellian

distribution is not always a realistic distribution [30–32].

Due to a variety of different process, a plasma may de-

viate from its thermodynamic equilibrium state to evolve

into a nonequilibrium stationary state. For instance, a

background turbulence may contribute to the appearance

of new distribution functions that deviate noticeably from

Maxwellian [33]. Most of the natural space plasma distri-

bution functions exhibit non-Maxwellian high-energy tails

or flat tops with pronounced shoulders. Recently, a great

deal of attention has been devoted to an appropriate gen-

eralization of the Boltzmann–Gibbs–Shannon (BGS) en-

tropy [34]. The later is considered valid universally for

macroscopic ergodic equilibrium systems. It also seems

to be inadequate to describe systems with long-range

oblique collisions, such as plasma and gravitational sys-

tems . A nonextensive generalization of the BGS entropy

for statistical mechanics was first proposed by Rényi [35]

and, later on, constructed by Tsallis [36]. This extends

the standard additivity of the entropies to the nonlinear,

nonextensive case where one particular parameter, the en-

tropic index q, characterizes the strength of nonextensiv-

ity. This new nonadditive entropy has been successfully

applied to a wide range of phenomena (self-gravitating

systems, some kinds of plasma turbulence etc.) [37, 38].

Recent evidences suggest that q-entropy would be used

to establish a suitable frame for investigating many astro-

physical phenomena; in stellar polytropes, solar neutrino

problem, and peculiar velocity distribution of galaxy clus-

ters. In addition, the experimental results of electrostatic

plane-wave propagation in a collisionless thermal plasma

yield to a class of Tsallis’s velocity distribution described

by a nonextensive q parameter less than unity [37–48].

Additionally, the excitation, propagation, stability and

oblique collision of solitary waves in plasmas still de-

serve to be carefully perused and examined. The inter-

esting features of the collision between solitary waves

are now well known: when two solitary waves approach

closely, they interact, exchange their energies and po-

sitions with each other and then scatter, regaining their

original wave forms [50, 51]. During the oblique collision

process, the solitary waves are remarkably stable enti-

ties, preserving their identities; the collision changes the

phase shift only. We will focus our attention studying the

oblique collision of two IASWs based on evaluating their

phase shifts and trajectories after an oblique collision oc-

curs. It may be worth mentioning that in one-dimensional

systems there are two distinct types of the solitary wave

collisions; overtaking and head-on [49–51]. The overtak-

ing collision of solitary waves (where the angle between

the two solitary waves propagation directions δ, vanishes)

can be studied by the inverse scattering transformation

method [52]. In the head-on collision, this angle δ is π.

The latter type have been investigated using the extended

Poincaré- Lighthill–Kuo (EPLK) method [50, 51, 53–56].

Indeed, what cannot be ignored is, the one-dimensional

geometry may not be the realistic situation in laboratory

devices and/or in space. However, the oblique collision

(i.e., 0 < δ < π) of solitary waves in a three-dimensional

geometry is more realistic in magnetized multicomponent

plasma. Therefore, the main purpose of this manuscript

is to investigate the oblique collision of two IASWs in

a three-dimensional magnetized multicomponent plasma

using the EPLK method. Recently, some authors [57–

61] have focused on the interaction of two solitary waves

taking into account arbitrary collision angles in differ-

ent plasma models. Xue [57] discussed how the magnetic

field significantly modifies the solitons collision proper-

ties. The influence of the colliding angle for two dust

acoustic waves oblique collision has been investigated in

a three-dimensional magnetized plasma model, Liang et

al. [58]. Accordingly, we are interested in investigating

the effects of the external magnetic field, colliding an-

gle, number densities of (positive/negative) ions species,

temperature ratio of the plasma species and the electron

nonextensive parameter on the main characteristics of the

two IASWs oblique collision in a multicomponent mag-

netized plasma including Tsallis nonextensive distributed

electrons.

2. Governing equations and oblique
collision of two IASWs

We consider a multicomponent magnetized plasma model

whose constituents are singly charged cold positive ions

(subscript i), singly charged hot negative ions (subscript

n), and nonextensive electrons (subscript e). The dy-

namics of nonlinear IASWs in this proposed plasma sys-

tem is governed by the following normalized equations

[11, 12, 48],
∂nn

∂t
+

−→∇ · (nn~u) = 0, (1)

∂~u

∂t
+

(

~u · −→∇
)

~u+µ

(

− −→∇φ +
5

3

θn

n1/3
n

−→∇nn

)

+Ω ~u×ẑ = 0,

(2)

the nonextensive electron number density is

ne = [1 + (q− 1)φ]
(q+1)/[2(q−1)]

, (3)
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the ions are assumed to be Boltzmann species

ni = β exp (−θi φ) , (4)

the system is closed by Poisson equation which is,

∇2φ = ne − ni + nn. (5)

In Eqs. (1)-(5), nj is the j− species number density (j = n

for negative ion, i for positive ion, and e for electrons),

~u is the negative ion fluid velocity with the components

(v, w, ψ), and φ is the electrostatic wave potential. The

system is exposed to an external magnetic field, ~B = Boẑ.

The variables appearing in Eqs. (1)-(4) have been scaled

by appropriate quantities. Thus, nj is normalized by the

unperturbed electron number density neo, ~u is scaled by

the ion sound speed Cs = (kBTe/mi)
1/2 and the poten-

tial φ by (kBTe/e). The time by the ion plasma period

ω−1
pi = (4πe2neo/mi)

−1/2, and the space variables (x, y, z)

are in units of the Debye radius λD = (kBTe/4πe
2neo)

1/2,

where Te is the electron temperature and kB is the Boltz-

mann constant. We have defined β = nio/neo, θi = Te/Ti,

µ = mi /mn and θn = Tn/Te where mj

(

Tj
)

is the j-species

mass (temperature) and Ω = (eBo/mnc) /ωpi. Note, we re-

strict the study for µ < 1, i.e. heavy negative ion fluid.

Therefore, it is reasonable to consider Boltzmann posi-

tive ion species due to (positive/negative) mass order. The

neutrality condition implies β = 1+α , where α = nno/neo.

In Eq. (3), the parameter q is the strength of nonexten-

sivity. For q < −1, the nonextensive electron distribution

(not given here) is unnormalizable. In the extensive limit-

ing case q → 1, the electron density, (3), reduces to the

well-known Maxwell–Boltzmann counterpart.

To investigate the oblique collision of two IASWs, we fol-

low the procedures presented in Refs. [50, 51]. Let us

study the effects of quasielastic oblique collision of two

solitons S1 and S2 in the present multicomponent magne-

tized plasma. We also assume that they are, asymptoti-

cally, far apart in the initial state and travel toward each

other. After some time they interact, and the amplitude of

the overlapping waves is greater than the algebraic sum

of the individual solitons before collision. Furthermore,

the amplitude slightly dips immediately after the collision

and returns to its value before next collision occurring at a

later time. In order to analyze the effects of this collision,

we employ an EPLK method. According to this method,

the dependent variables are expanded in power of ε as,

nn = α + ε2nn1 + ε3nn2 + ε4nn3 + ...,

v = ε3v1 + ε4v2 + ε5v3 + ...,

w = ε3w1 + ε4w2 + ε5w3 + ...,

ψ = ε2ψ1 + ε3ψ2 + ε4ψ3 + ...,

φ = ε2φ1 + ε3φ2 + ε4φ3 + ....



























(6)

However, the independent variables are presented as [55,

59],

ξ = ε(κ1x + ℓ1y+ χ1z − c1t) + ε2Po (η, τ) + ε3P1 (ξ, η, τ) + ...,

η = ε(κ2x + ℓ2y+ χ2z + c2t) + ε2Qo (ξ, τ) + ε3Q1 (ξ, η, τ) + ...,

τ = ε3t.











(7)

where ξ [η] denotes the trajectory of two solitary

waves propagating respectively in different direc-

tions;
−→
R 1 = (κ1 + ℓ1 + χ1) [

−→
R 2 = (κ2 + ℓ2 + χ2)] at

Po(η, τ) = Qo(ξ, τ) = 0. Furthermore, if two waves

interact, their trajectories will change and accordingly

Po(η, τ) 6= 0 and Qo(ξ, τ) 6= 0. Here, c1 and c2 are

the unknown phase velocities of two IASWs (to be

determined later). Before going into details, let us

determine the angle δ between the two waves propa-

gation directions, which can be calculated from cos δ =

(κ1κ2 + ℓ1ℓ2 + χ1χ2) /
[

(κ2
1 + ℓ2

1 + χ2
1 )(κ2

2 + ℓ2
2 + χ2

2 )
]1/2

,

where κ1, ℓ1, χ1 (κ2, ℓ2, χ2) are the directional cosines of

the first (second) wave vector along the x−, y−, and

z−axes, respectively.

Substituting Eqs. (6) and (7) into the basic equations;

Eqs. (1)-(5) and collecting terms of the same powers of ε.

For the first-order perturbed quantities, we have
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(

−c1
∂
∂ξ

+ c2
∂
∂η

)

nn1 + α
(

−χ1
∂
∂ξ

+ χ2
∂
∂η

)

ψ1 = 0,

−µ
(

κ1
∂
∂ξ

+ κ2
∂
∂η

)

φ1 + γ
(

κ1
∂
∂ξ

+ κ2
∂
∂η

)

nn1 + Ωw1 = 0,

−µ
(

ℓ1
∂
∂ξ

+ ℓ2
∂
∂η

)

φ1 + γ
(

ℓ1
∂
∂ξ

+ ℓ2
∂
∂η

)

nn1 − Ωv1 = 0,
(

−c1
∂
∂ξ

+ c2
∂
∂η

)

ψ1 − µ
(

χ1
∂
∂ξ

+ χ2
∂
∂η

)

φ1 + γ
(

χ1
∂
∂ξ

+ χ2
∂
∂η

)

nn1 = 0,
[

1
2

(q1 + 1) + β θi
]

φ1 + nn1 = 0,







































(8)

where γ = 5
3
α−1/3µ θn. Solving Eq. (8), we obtain explicit

expressions for these first-order perturbed quantities as,

φ1 (ξ, η , τ) = φ11 (ξ, τ) + φ12 (η, τ) ,

nn1 (ξ, η , τ) = nn11 (ξ, τ) + nn12 (η, τ)

= αµ
(

χ2
1
T1
φ11 (ξ, τ) +

χ2
2
T2
φ12 (η, τ)

)

,

v1 (ξ, η , τ) = v11 (ξ, τ) + v12 (η, τ)

= µ
Ω

(

ℓ1c
2
1

T1

∂φ11(ξ,τ)
∂ξ

+
ℓ2c

2
2

T2

∂φ12(η,τ)
∂η

)

,

w1 (ξ, η , τ) = w11 (ξ, τ) + w12 (η, τ)

= − µ
Ω

(

κ1c
2
1

T1

∂φ11(ξ,τ)
∂ξ

+
κ2c

2
2

T2

∂φ12(η,τ)
∂η

)

,

ψ1 (ξ, η , τ) = ψ11 (ξ, τ) − ψ12 (η, τ)

= µ
(

c1χ1
T1
φ11 (ξ, τ) − c2χ2

T2
φ12 (η, τ)

)

,











































































(9)

with T1 = αγχ2
1 − c2

1 and T2 = αγχ2
2 − c2

2 . Moreover,

the phase velocities; c1 and c2 are determined to have the

forms,

c1 = χ1

√

α
(

γ + µ
1
2 (q+1)+βθi

)

,

c2 = χ2

√

α
(

γ + µ
1
2 (q+1)+βθi

)

,















(10)

It is remarked here that the unknown functions φ11 (ξ, τ)

and φ12 (η, τ) will be determined at higher orders of ε.

Therefore, at the next-order of ε, we have a system of

equations whose solutions are

φ2 (ξ, η , τ) = φ21 (ξ, τ) + φ22 (η, τ) ,

nn2 (ξ, η , τ) = nn21 (ξ, τ) + nn22 (η, τ) = αµ

(

χ2
1

T1

φ21 (ξ, τ) +
χ2

2

T2

φ22 (η, τ)

)

,

v2 (ξ, η , τ) = v21 (ξ, τ) + v22 (η, τ)

=
µ

Ω

[

1

Ω

(

κ1c
3
1

T1

∂2φ11 (ξ, τ)

∂ξ2
− κ2c

3
2

T2

∂2φ12 (η, τ)

∂η2

)

+
ℓ1c

2
1

T1

∂φ21 (ξ, τ)

∂ξ
+
ℓ2c

2
2

T2

∂φ22 (η, τ)

∂η

]

,

w2 (ξ, η , τ) = w11 (ξ, τ) + w12 (η, τ)

=
µ

Ω

[

1

Ω

(

ℓ1c
3
1

T1

∂2φ11 (ξ, τ)

∂ξ2
− ℓ2c

3
2

T2

∂2φ12 (η, τ)

∂η2

)

−
(

κ1c
2
1

T1

∂φ21 (ξ, τ)

∂ξ
+
κ2c

2
2

T2

∂φ22 (η, τ)

∂η

)]

,

ψ2 (ξ, η , τ) = ψ21 (ξ, τ) + ψ22 (η, τ) = µ

(

c1χ1

T1

φ21 (ξ, τ) +
c2χ2

T2

φ22 (η, τ)

)

,











































































(11)

Going further to the next higher-order in perturbation theory, we obtain

−2 (c1χ2 + c2χ1)ψ3 =
2c1µχ

2
1

T1

∫
[

∂φ11

∂τ
+ A1φ11

∂φ11

∂ξ
+ B1

∂3φ1

∂ξ3

]

dη +
2c2µχ

2
2

T2

∫
[

∂φ12

∂τ
− A2φ12

∂φ12

∂η
− B2

∂3φ12

∂η3

]

dξ

+

∫ ∫
[(

C1
∂Po

∂η
+D1φ12

)

∂2φ11

∂ξ2
+

(

C2
∂Qo

∂ξ
+D2φ11

)

∂2φ12

∂η2

]

dηdξ, (12)
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where

A1 = T1
2c1µ

[

2a+
(

µχ1
T1

)2
(

3c2
1 − 1

3
αγχ2

1

)

]

,

A2 = T2
2c2µ

[

2a+
(

µχ2
T2

)2
(

3c2
2 − 1

3
αγχ2

2

)

]

,

B1 = 1
2c1

[

− T1
1
2 (q+1)+βθi

+
(

c2
1

χ1Ω

)2
(

ℓ2
1 + κ2

1

)

]

,

B2 = 1
2c2

[

− T2
1
2 (q+1)+βθi

+
(

c2
2

χ2Ω

)2
(

ℓ2
2 + κ2

2

)

]

,

C1 =
4µχ1χ2c

2
1

T1
,

C2 = − 4µχ1χ2c
2
2

T2
,

D1 = χ2
1

[

2a+ µ2χ2
T1T2

(

χ2c
2
1 − χ1F

)

]

,

D2 = −χ2
2

[

2a+ µ2χ1
T1T2

(

χ1c
2
2 − χ2F

)

]

,

a = µ
4(q+1+2βθi)

[

(q+ 1) (3 − q) − 4β θ2
i

]

,

F = 2c1c2 + 1
3
αγχ1χ2.















































































































(13)

The first- (second-) term on the right hand side of Eq. (12)

is proportional to η (ξ) because the integrated function

is independent of η (ξ) . Thus, the first two terms of

Eq.(12) are secular terms, which must be eliminated to

avoid spurious resonances [50, 51]. Hence we have

∂φ11

∂τ
+ A1φ11

∂φ11

∂ξ
+ B1

∂3φ11

∂ξ3
= 0

∂φ12

∂τ
− A2φ12

∂φ12

∂ξ
− B2

∂3φ12

∂ξ3
= 0















(14)

Equation (14) represents two–side travelling Korteweg de

Vries (KdV) wave equations in the reference frames of ξ

and η, respectively, where their solutions are

φ11 (ξ, τ) = φA sech
2

[

√

A1φA

12B1

(

ξ − 1

3
A1φAτ

)

]

,

φ12 (η, τ) = φB sech
2

[

√

A2φB

12B2

(

η +
1

3
A2φBτ

)

]

,























(15)

φA = 3UA/A1 and φB = 3UB/A2 are the amplitudes of the

two solitons S1 and S2 in their initial positions. UA (UB)

is the initial velocity of soliton S1 (S2).

It is clear that the third-and fourth- terms in Eq. (12) are

not secular terms in this order, but they would generate

secular behaviours in the next orders [50, 51]. Therefore,

they must vanish to control the equations of the phase

shifts

∂Po

∂η
= −D1

C1

φ12,

∂Qo

∂ξ
= −D2

C2

φ11.











(16)

Hence, up to O
(

ε2
)

, the trajectories of the two IASWs,

for weak oblique collision, are,

ξ = ε (κ1x + ℓ1y+ χ1z − c1t) − ε2D1

C1

√

12B2φB

A2

{

tanh

[

√

A2φB

12B2

(

η +
1

3
A2φBτ

)

]

+ 1

}

+ ...,

η = ε(κ2x + ℓ2y+ χ2z − c2t) − ε2D2

C2

√

12B1φA

A1

{

tanh

[

√

A1φA

12B1

(

ξ − 1

3
A1φAτ

)

]

− 1

}

+ ...























(17)

Now, to obtain the actual phase shifts after the oblique

collision of the two solitons, we suppose that the two soli-

tons S1 and S2 are far from each other at an initial time

(τ = −∞), i.e., soliton S1 is at ξ = 0, η = −∞ and the

other soliton, S2 is at η = 0, ξ = +∞, respectively. After

a collision (τ = +∞), the soliton S1 is propagating to the

right of the second soliton S2 , i.e., soliton S1 becomes at

ξ = 0, η = +∞ and S2 is at η = 0, ξ = −∞. Using Eqs.

(15)-(17), we can calculate the phase shift changes; ∆Po
and ∆Qo, [50, 51] as,

∆Po = −2ε2D1

C1

√

12φBB2

A2

,

∆Qo =
2ε2D2

C2

√

12φAB1

A1

.























(18)

3. Discussions and conclusion

In this section, we present a number of numerical illus-

trations to show the dependence of the calculated colli-

sion phase shift on the plasma parameter variations. The

selected parameters values are inspired by the recorded

recent experimental data of multicomponent plasma ex-

periments [21–24, 28], though we focus on the case of

heavier negative ion magnetized multicomponent plasma

Ar+-SF−
6 and Xe+-SF−

6 (µ < 1). The selected physical

parameters are taken as ε = 0.1, µ = 0.1, θn = 0.02,

θi = 10, β = 1.5, Ω = 0.4 and δ = π/2.55 (with

κ1 = ℓ1 = χ1 = −κ2 = ℓ2 = χ2 = 1/
√

3). Any changes

in these parameters will be stated in the figure caption.

First, let us examine the polarity of the IASWs. Since
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Figure 1. The colliding process of two IASWs. The solitons have
negative polarity and are rarefactive in negative ion num-
ber density, nn.

Figure 2. Space-time plots of two colliding IASWs for (a) δ = π/2.55

(with κ1 = ℓ1 = χ1 = −κ2 = ℓ2 = χ2 = 1/
√

3) (b) δ = π/2
(with κ1 = −κ2 = 1, ℓ1 = χ1 = ℓ2 = χ2 = 1/

√
2), and (d)

δ = π (with κ1 = ℓ1 = χ1 = −κ2 = −ℓ2 = −χ2 = 1/
√

3).

B1and B2 are always positive, the IASWs are compres-

sive if A1 and A2 > 0 and rarefactive if A1 and A2 < 0.

For the case at hand, it is found that both A1 and A2 are

always negative. Therefore, in the system under consid-

eration, there are only rarefactive IASWs. Figure 1 shows

the oblique collision of two nonlinear IASWs which results

as rarefaction of negative ion number density. It is shown

that when two IASWs obliquely collide, a new nonlin-

ear wave is formed during their collision (i.e., blue region)

which moves ahead of the colliding IASWs; both its ampli-

tude and width are larger than those of colliding IASWs,

as depicted in Fig. 1. Owing to the formation of this new

nonlinear wave, the IASWs after the oblique collision are

delayed. Thus, the phase shift depends directly on a new

formed nonlinear wave structure. It is remarked that the

phase shifts within the range 0 < δ < π/2 are larger and

noticeable than that of π/2 < δ < π. Space-time contour

plots of two colliding IASWs are presented in Fig 2 for

different angles δ . They show that increasing δ results in

increasing the width of the produced IASW at the point

of collision for 0 < δ < π/2. However, the opposite re-

sponse is occurred against increasing δ for π/2 < δ < π.

These features can be recognized by comparing the blue

region in the center of each panel (the region where col-

lision occurs; a new wave is created) with other panels.

We note that, during the oblique collision an essentially

motionless composite structure is created for some time.

Figure 3 show contour plots of ∆Qo variations in µ − β

plan in panel (a), in q−θn plan in panel (b) and in panel

(c) in Ω − α plan. It reveals that ∆Qo increases as ei-

ther µ, β or q increases, though it decreases as θn, α or

Ω increases. In other words, introducing either heavier

or hotter negative ions results in a smaller phase shift.

Moreover, increasing the number density of negative ion

species results in a decline of phase shifts. The influence

of stronger magnetic field is to reduce the phase shift. On

contrary, including more nonextensive electrons increases

the collision phase shifts.

To conclude, we have presented a study of the oblique col-

lision of two nonlinear IASWs in a hot magnetized multi-

component plasma consisting of heavy negative ions fluid,

positive ions and nonextensive electrons. The present

model supports rarefactive solitons only. The phase shifts

and the trajectories describing the collision of two IASWs

are calculated using the EPLK method. The analytical

findings are numerically investigated revealing that the

magnitude of the phase shift depends directly on the elec-

tron nonextensive parameter. However, it is revisal propor-

tional to their number density and mass and the strength

of the applied magnetic field.

Finally, it may be pointed out that the present results are

very useful in explaining the oblique collision of IASWs

waves in multicomponent plasma experiments with nonex-

tensive electrons. The proposed theoretical model would

be applied to other astrophysical situations where nonex-

tensive electrons are present by appropriate choices of the

physical parameter numerical values.

Acknowledgements

The authors would like to express their gratitude to the

referees for a number of valuable criticisms and comments

that have led to improvement of the original manuscript.

The authors also thank the editor and his staff for their

kind cooperation.

810



Emad F. El-Shamy, Mouloud Tribeche, Wael F. El-Taibany

 

 

 

(a) 

(b) 

(c) 

Figure 3. The variation of ∆Qo are plotted for δ = π/2.55 (with

κ1 = ℓ1 = χ1 = −κ2 = ℓ2 = χ2 = 1/
√

3) and for dif-
ferent plans; in (a) for µ − β plan, with q = 2, in (b) in the
q − θn plan, and in (c) in the Ω − α plan. The number
appeared besides each contour indicates the value of the
corresponding phase shift ∆Q.
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