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Abstract: We introduce the notion of the Color Glass Condensate (CGC) density matrix

ρ̂. This generalizes the concept of probability density for the distribution of the color

charges in the hadronic wave function and is consistent with understanding the CGC as an

effective theory after integration of part of the hadronic degrees of freedom. We derive the

evolution equations for the density matrix and show that the JIMWLK evolution equation

arises here as the evolution of diagonal matrix elements of ρ̂ in the color charge density

basis. We analyze the behavior of this density matrix under high energy evolution and

show that its purity decreases with energy. We show that the evolution equation for the

density matrix has the celebrated Kossakowsky-Lindblad form describing the non-unitary

evolution of the density matrix of an open system. Additionally, we consider the dilute

limit and demonstrate that, at large rapidity, the entanglement entropy of the density

matrix grows linearly with rapidity according to d
dySe = γ, where γ is the leading BFKL

eigenvalue. We also discuss the evolution of ρ̂ in the saturated regime and relate it to

the Levin-Tuchin law and find that the entropy again grows linearly with rapidity, but

at a slower rate. By analyzing the dense and dilute regimes of the full density matrix
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we are able to establish a duality between the regimes. Finally we introduce the Wigner

functional derived from this density matrix and discuss how it can be used to determine

the distribution of color currents, which may be instrumental in understanding dynamical

features of QCD at high energy.
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1 Introduction

High-energy hadronic collisions at RHIC and the LHC have demonstrated an unexpected

collective behavior in particle production. In particular, multiple observations of the struc-

ture of final states in p-p and p-Pb collisions at the LHC, see e.g. [1–5], indicate a very

nontrivial dynamics that leads to a correlated structure between produced particles.

The current understanding of the origin of these correlations is based on two concur-

rent pictures: the dominance of the collisions — final state interactions, which in today’s

most popular incarnation is described in terms of transport and hydrodynamics, and the

dominance of the correlations in the wave functions at the initial state and very early stage

of the collision. The latter option is most commonly analyzed in the framework of the

Color Glass Condensate (CGC), for a review see e.g. refs. [6–9].

The CGC approach as applied to date has one unappealing feature. It can accommo-

date correlations between partons either in coordinate space, or in momentum space, but

it does not give one a handle to explore the correlations between the two. On the other

hand, one can expect such correlations on general grounds.

The present work is motivated by the idea that one should be able to get some sense

about the correlation between the profile of the charge density and the current density
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in the hadronic wave function at high energy. One may expect, for example, that if the

scattering catches a configuration in the projectile wave function with large density or large

density gradient, this configuration will naturally also have a large current, since it does

not want to stay static for a long time. The large current then may translate into relatively

high momenta of the particles in the wave function. That way we may be able to relate on

the level of the initial hadronic state the density (number) fluctuation in the configuration

space and momentum distribution of particles.

To achieve this goal we have to expand the usual CGC vocabulary and introduce a novel

concept in this field of studies — the CGC density matrix. In the standard CGC approach

one is only interested in the diagonal matrix elements of the density matrix ρ̂ (usually

denoted by W ), which is sufficient for the calculation of a large number of observables.

However, in order to study the properties we alluded to before, the off-diagonal elements

of the density matrix are required. We note that a very similar problem arose in two and

many gluon production at different rapidities [10] (see also [11]); in part, our current work

will rely on intuition gained and guidance obtained from ref. [10].

The plan of this paper is the following. In section 2 we define the concept of the CGC

density matrix ρ̂. We stress that this is a completely different object than the one used

to calculate the entropy of soft gluons for example in [12, 13]. In section 3 we derive the

evolution of this object with rapidity. The evolution equation turns out to be a natural

generalization of the JIMWLK equation, and is of the Kossakowski-Lindblad form as could

have been expected on general grounds. In section 4 we consider the evolution of ρ̂ in

the weak and strong field regime in turn. We take a reasonable Gaussian ansatz for ρ̂

and calculate the evolution of the parameters. We also calculate the entanglement entropy

associated with ρ̂ and show that is grows linearly with rapidity. The rate of growth is given

by the leading BFKL exponent in the weak field case, and half of that in the saturation

regime. In section 5 we define the Wigner functional associated with ρ̂. Finally we close

in section 6 with a short discussion.

2 The CGC density matrix

Recall that the CGC is an “effective field theory” of high energy scattering. This is a

somewhat loose term, but it does in fact have a fairly precise meaning given our standard

CGC calculations. The standard practice in deriving the CGC wave function and the

corresponding evolution equation is to integrate out all degrees of freedom in the hadronic

wave function except for the integrated color charge density ja(x⊥) =
∫
ja(x⊥, x

−)dx−.

(Note that here and below we use j = jata to denote the color charge densities instead

of commonly used ρ. This change of notation is implemented to differentiate the color

charge density and the density matrix.) Thus CGC is in fact the effective field theory on

the Hilbert space spanned by j. There is one subtlety here: in general, the components

ja are not independent degrees of freedom, as they do not commute with each other. In

the dense limit however the commutator between j’s can be neglected and they can be

treated as independent. We will follow this approach in the present paper and will treat

ja as commuting.
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Put in this way, our ambient CGC calculations are equivalent to simply integrating

out a subset of quantum degrees of freedom in the hadronic wave function. Then it is

natural to ask what is the reduced density matrix on the subspace of the Hilbert space

spanned by the remaining quantum degrees of freedom. In particular one can ask what is

the entanglement entropy of this reduced density matrix, and how it evolves with energy

(for indirectly related calculations of the entanglement entropy in high energy collisions see

refs. [14–23]). These are the questions we will be gearing to ask in the present work.

One may wonder why it is that in all the CGC calculations to date1 there was no

apparent need to define the full density matrix. The answer is that the knowledge of the

full density matrix is not always necessary. In particular, if one considers the calculation

of observables which are functions of j only, and not of their canonical conjugates, it is

sufficient to know the diagonal matrix elements of ρ̂ in the basis of charge density j. Most

of the observables considered so far, like observables involving only the softest gluons in

the CGC wave function, are of this type.

To elaborate on this further, suppose the density matrix of the valence gluons in this

particular basis is known and can be written as (we suppress the color and coordinate

indexes for simplicity)

〈j|ρ̂|j′〉 ≡ ρ[j, j′] . (2.1)

Now to include the soft gluons into consideration we find the soft gluon vacuum in the

presence of the valence color charge, |s[j]〉. The density matrix on the full (valence plus

soft) Hilbert space is

ρ̂v+s = |s[ĵ]〉ρ̂〈s[ĵ]| , (2.2)

where ĵ is the color charge density operator.

Now suppose we need to calculate a matrix element of some operator which involves

only the soft(est) gluon operators Ô(a, a†).

Tr[Ôρ̂v+s] = Tr
[
Ô|s[ĵ]〉ρ̂〈s[ĵ]|

]
= Tr

[
〈s[ĵ]|Ô|s[ĵ]〉ρ̂

]
=

∫
Dj〈s[j]|Ô|s[j]〉ρ[j, j] , (2.3)

where the last equality follows since the matrix element 〈s[ĵ]|Ô|s[ĵ]〉 involves only the

operator ĵ, and so in the eigenbasis j, we only require diagonal matrix elements of ρ̂. As

we alluded to before, we assume here that j is large enough so that we can treat different

color components of the charge density as mutually commuting.

Equation (2.3) reduces to the formulae which were used in the CGC EFT for averaging

over the valence space with the weight functional

W [j] ≡ ρ[j, j] . (2.4)

We thus conclude that indeed for the operators of this type we only need to know the diag-

onal matrix elements of ρ̂. These diagonal matrix elements are encoded in the probability

density functional W [j] routinely used in the CGC approach.

1Or at least in most calculations, with the exception of refs. [10, 11, 24, 25]. Although the full importance

of the density matrix was not recognized in these papers at the time, the relation to the current work is

actually very direct and will be discussed below.
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However, this is not the only set of operators that are of interest in high energy

scattering. One stark example of an operator of a different kind is the S matrix for dense-

dense scattering. The eikonal Ŝ-matrix for scattering on a strong color field acts on the

color charge density operators by rotating them by the eikonal phase

Ŝ†ĵ(x⊥)Ŝ = V (x⊥)ĵ(x⊥) , (2.5)

where V (x⊥) is a unitary matrix. For strong fields V (x⊥) is an arbitrary element of the

SU(N) group and may be arbitrarily far away from the unit matrix. It is therefore obvious

that the Ŝ-matrix is not a diagonal operator in the j basis, and so non-diagonal matrix

elements of the density matrix must be important in its evaluation.

Another example of this type of observable is the multi-gluon production probability

where gluons are produced at different rapidities. Indeed, when calculating multiple gluon

production where the rapidities of gluons were significantly different [10], see also ref. [11],

from the target perspective it was necessary to introduce novel weight functionals that

depended on two different j’s (or related to them by eikonal factors S, see below).2

It is obvious that the knowledge of W [j] is not sufficient to determine the complete

density matrix. In particular, in the MV model [26, 27], W [j] = exp(−4j2

µ2 ) (in this paper,

in order to simplify equations, we deviate from the conventional normalization of µ2); this

weight functional could correspond to a variety of different density matrices with very

contrasting properties. One example would be

ρ[j, j′] = exp

(
−2j2

µ2
− 2j′2

µ2

)
. (2.6)

This density matrix has a factorized form, and evidently corresponds to a pure state on

the reduced Hilbert space. Obviously, this is not the only possibility. A priori any density

matrix of the form

ρ[j,j′] =N exp

{∫
d2x⊥d

2y⊥trc

[
−µ−2(x⊥,y⊥)(j(x⊥)+j′(x⊥))(j(y⊥)+j′(y⊥))

−λ−2(x⊥,y⊥)(j(x⊥)−j′(x⊥))(j(y⊥)−j′(y⊥))

+iA(x⊥,y⊥)(j(x⊥)+j′(x⊥))(j(y⊥)−j′(y⊥))
]}

(2.7)

with real functions µ, λ,A of variables x⊥ and y⊥ is an allowed density matrix inasmuch

as it reduces to the MV model for diagonal elements and is Hermitian. There is only

one restriction. The parameters µ, λ,A have to satisfy additional constraints in order for

ρ̂ to have probabilistic interpretation, i.e. all eigenvalues have to be positive (the overall

normalization can always be adjusted). This is equivalent to the requirement that for any

positive integer n

Tr ρ̂n ≥ Tr ρ̂n+1 . (2.8)

2We note that the calculations in refs. [10] and [11] were performed assuming that the density matrix

can be taken to be diagonal when evolved to the rapidity of the first observed gluon. The off-diagonal

elements then are only important for the rapidities in the interval in which the gluons are being measured.

We currently believe that this assumption may have to be revised.
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For n = 1 this yields

det[λ2] ≤ det[µ2]. (2.9)

Here the determinants are in the transverse position space.3 We also will often use the

inverse functions, e.g. µ−2(x⊥, y⊥), defined as∫
d2z µ−2(x⊥, z⊥)µ2(z⊥, y⊥) = δ(2)(x⊥ − y⊥) . (2.10)

Equation (2.7) should be read following the definition in eq. (2.10).

3 High energy evolution of the CGC density matrix

Given that ρ̂ contains more information than W [j], the natural first question is how does

it evolve to high energy? To start answering this question, we first point out that previ-

ously, in ref. [25], the evolution of the density functional for two gluon production at two

significantly different rapidities was derived. The problem at hand is very similar to that

discussed in ref. [25]. Although at the time of writing of ref. [25] the newly introduced

weight functional was not interpreted as a density matrix, we will show below that the evo-

lution derived in ref. [25] can indeed be mapped on to the evolution of the density matrix.

The evolution in question is

d

dy
ρ[j, j′] =

∫
d2z⊥
2π

[
Qai [z⊥, j] +Qai [z⊥, j

′]
]2
ρ[j, j′] , (3.1)

where Q is defined by

Qai [z⊥, j] =
g

2π

∫
d2x⊥

(x⊥ − z⊥)i
(x⊥ − z⊥)2

[
Sab(z⊥)− Sab(x⊥)

]
JbR(x⊥)

=
g

2π

∫
d2x⊥

(x⊥ − z⊥)i
(x⊥ − z⊥)2

JcL(x⊥)
[
Scb(x⊥)S† ba(z⊥)− δca

]
(3.2)

and

JaR(x⊥) = −trc

{
S(x⊥)T a

δ

δS†(x⊥)

}
, JaL(x⊥) = −trc

{
T aS(x⊥)

δ

δS†(x⊥)

}
, (3.3)

where trc denotes the trace over color indexes. Here, as usual, S is the eikonal phase matrix

for scattering of a probe gluon on the wavefunction.4 The matrix S is determined by the

color charge density via
i

g
∂i[S

†∂iS] = j. (3.4)

In the dilute limit (small color charge density) we explicitly have

S(x⊥) = P exp

[
i

∫
dx−gα(x⊥, x

−)

]
(3.5)

3There are no constraints on function A. This is not surprising; as we will demonstrate later, function A

can be always rotated away from the definition of the density matrix by performing a unitary transformation.

Thus, A never contributes to the operators of the form Tr ρ̂n.
4Notice that S differs from V introduced earlier: while one stands for a scattering matrix of a probe

gluon on a target, another one denotes the scattering matrix of a target gluon on the projectile.
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with

α(x⊥) = −
∫
y⊥

1

∂2
(x⊥, y⊥)j(y⊥) ≡

∫
d2y⊥
4π

ln
1

Λ2|x⊥ − y⊥|2
j(y⊥) . (3.6)

In the following we allow ourselves to denote the argument of the density matrix intermit-

tently by either j, α or S, as all these objects are algebraically related to each other.

Recall that the standard JIMWLK Hamiltonian is given in terms of Q’s as

HJIMWLK =

∫
d2z⊥
2π

Qai [z⊥, j]Q
a
i [z⊥, j]. (3.7)

Thus, eq. (3.1) generalizes JIMWLK evolution equation [28–34] to the full density matrix.

3.1 Derivation of high energy evolution

In order to derive this equation, we will follow the same main steps as in ref. [10]. Our

discussion will be in the framework of scattering of some dilute projectile on a dense target.

Consider an observable Ô which depends only on the projectile degrees of freedom.

The projectile scatters on the target, and the observable is measured in the asymptotic

state long time after the scattering has taken place. The total rapidity interval in the

collision is Y . We assume that the target has been boosted to rapidity Y0 and that the

operator Ô depends on degrees of freedom between the rapidity Y0 and Y . In other words,

the operator Ô itself does not depend on the target degrees of freedom. It is an operator

in the projectile Hilbert space and as such defines an observable measured in the direction

of the projectile.

Let us define the following object

O[S, S̄] = 〈PY−Y0 | (1− Ŝ†) Ô (1− ˆ̄S)|PY−Y0 〉 , (3.8)

where |PY−Y0〉 is the wave function of the projectile. This object is related to the actual

observable in the scattering process via

〈Ô〉 =

∫
S,S̄
〈S|ρ̂Y0 |S̄〉O[S, S̄] , (3.9)

where ρ̂Y0 is the target density matrix we are interested in. Note that although the operator

Ô itself does not depend on the target degrees of freedom, the S-matrix factors do, so that

the matrix element over the projectile wave function becomes an operator on the target

Hilbert space. Also, it depends only on the integrated target degrees of freedom — as

required for our definition of the density matrix. The variables S and S̄ in eq. (3.9) are

the analogs of j and j′ in eq. (2.1).

We now want to trace the evolution by an additional rapidity ∆y so that the extra

rapidity moves the observable away from the target. This can be achieved by boosting the

target by an additional rapidity ∆y relative to the lab frame, or, alternatively, boosting

the projectile together with the observable Ô by the same rapidity, so that Ô remains at

the fixed rapidity from the projectile. It is straightforward to do the latter. After boosting

the projectile we have

O∆y[S, S̄] = 〈PY−Y0 |C†∆y (1− Ŝ†)C∆y Ô C†∆y (1− ˆ̄S)C∆y |PY−Y0 〉 , (3.10)

– 6 –
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where for small ∆y the coherent operator C∆y for dilute projectile (see for example ref. [35]

for the complete definition of the operator Cy) can be expanded into a power series

C∆y = 1 + i

∫
d2x⊥ b

a
i (x⊥)

∫ e∆y Λ

Λ

dk+

π1/2|k+|1/2
[
aai (k

+, x⊥) + a†ai (k+, x⊥))
]
− (3.11)

−
(∫

d2x⊥ b
a
i (x⊥)

∫ ey Λ

Λ

dk+

π1/2|k+|1/2
[
aai (k

+, x⊥) + a†ai (k+, x⊥))
])2

+O(b3i ) .

Here bai (x⊥) is the Weizsacker-Williams field of the projectile,

bai (x⊥) = g

∫
d2z⊥

(x⊥ − z⊥)i
(x⊥ − z⊥)2

jaP (z⊥) (3.12)

and jaP is the color charge density of the dilute projectile (not to be confused with j defined

above which in the present context is the color charge density of the target).

The evolution equation for the operator is obtained from

dO[S, S̄]

dy
= lim

∆y→0

O∆y[S, S̄]−O[S, S̄]

∆y
. (3.13)

We remind the reader the following key identities valid for any multigluon state in the

projectile Hilbert space (see ref. [36]):

jaP
ˆ̄S |P 〉 = JaR[S̄] ˆ̄S |P 〉 ; ˆ̄S jaP |P 〉 = JaL[S̄] ˆ̄S |P 〉 ;

〈P | jaP Ŝ† = JaL[S] 〈P | Ŝ† ; 〈P | Ŝ† jaP = JaR[S] 〈P | Ŝ† . (3.14)

By construction, the operator Ô commutes with the soft gluon operators a and a†,

since it only involves degrees of freedom at rapidities between Y0 + ∆y and Y + ∆y.

We can thus take the averages of all the soft gluon operators in the soft gluon vacuum,

since the projectile state before boost was the vacuum for these modes. Combining the

expansion (3.11) and the identities (3.14) we obtain

d

dy
O[S, S̄] = −H3[S, S̄] O[S, S̄] (3.15)

with

H3[S, S̄] ≡ d2z⊥
2π

[
Qai [z⊥, S] +Qai [z⊥, S̄]

]2
. (3.16)

Now recalling eq. (3.9) we see that we can integrate the evolution kernel “by parts”,

so that the derivatives in the operators Q act on the target density matrix. This results in

the evolution equation for matrix elements of the density matrix

d

dY
〈S|ρ̂Y |S̄〉 = −H3[S, S̄] 〈S|ρ̂Y |S̄〉 . (3.17)

Note that we can rewrite this in the operator form by “integrating by parts” Q[j′] so

that it does not act on ρ[j, j′] but acts on the operator whose expectation value we are

calculating. Indeed let us consider the evolution of an arbitrary observable O(j, j′),

d

dy
〈O〉 =

∫
DjDj′O(j, j′)

∫
d2z⊥
2π

[
Qai [z⊥, j] +Qai [z⊥, j

′]
]2
ρ[j, j′] . (3.18)

– 7 –
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Integrating by parts in the functional integral j′, we arrive at

d

dy
〈O〉 =

∫
DjDj′

∫
d2z⊥
2π

{
O(j, j′)Qai [z⊥, j]Q

a
i [z⊥, j]− 2

(
Qai [z⊥, j

′]O(j, j′)
)
Qai [z⊥, j]

+
(
Qai [z⊥, j

′]Qai [z⊥, j
′]O(j, j′)

)}
ρ[j, j′] . (3.19)

Since the operator O is arbitrary, this is equivalent to the evolution of the density matrix

operator in the form
d

dy
ρ̂ =

∫
d2z⊥
2π

[
Q̂ai [z⊥],

[
Q̂ai [z⊥], ρ̂

]]
, (3.20)

where the operator Q̂ai [z⊥] is defined in such a way that for an arbitrary ket |ψ〉

〈j|Q̂ai [z⊥]|ψ〉 = Qai [z⊥, j]〈j|ψ〉 . (3.21)

The evolution equation for the density matrix has the celebrated Kossakowsky-Lindblad

form (see the original papers in refs. [37, 38]) with
∫
d2z⊥

[
Q̂ai [z⊥],

[
Q̂ai [z⊥], ρ̂

]]
being the

Lindbladian of the system with the so-called jump or Lindblad operator Q̂ai [z⊥]. The fact

that the evolution has this form is not surprising. The Lindblad master equation (here

without the unitary part of the evolution) is the most general form of the Markovian

evolution preserving the trace and the positivity of the reduced density matrix. This

equation is ubiquitous in various fields of physics whenever a description of an open system

is attempted, see e.g. ref. [39]. The meaning of the jump operator in this context is the

amplitude of the process in which the “environment” experiences a quantum jump to a

different level. This is very natural in the context of the high energy evolution, as Qai [z⊥, j]

is precisely an amplitude of emission of a soft gluon. Such emission process does indeed

change the quantum state of the soft “environment”.

We note one interesting feature of eqs. (3.20), (3.17). Specifically concentrating on

eq. (3.17) we see that diagonal matrix elements of ρ̂ evolve independently of the nondiagonal

ones. This is due to the property of the operator H3 discussed in detail in ref. [10],

H3[S, S̄]F [S, S̄]|S̄=S = HJIMWLK[S]F [S, S] , (3.22)

valid for an arbitrary function F . Thus the diagonal matrix elements of ρ̂ indeed evolve

according to the standard JIMWLK equation.

3.2 Entropy growth

The Lindbladian does not have the form of the Hamiltonian evolution in quantum me-

chanics, since the time derivative of ρ̂ is not given by a commutator with an Hermitian

operator. Thus, the entropy of ρ̂ increases in the course of the evolution, as well known,

for the Lindblad master equation.

Here, for completeness of the discussion, we demonstrate this explicitly in the following

simple way. Let us examine the effect of the evolution on a pure state and consider the

evolution of ρ̂2. To reduce the notational clutter, in this section we will use the shorthand
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notation ρjj′ = ρ[j, j′] and
(
~Qaj

)
i

= Qai [z⊥, j]. We get

d

dy
(ρ̂2)jj′ =

∫
Dk

(
dρjk
dy

ρkj′ + ρjk
dρkj′

dy

)
=

∫
Dk

∫
d2z⊥
2π

{[
( ~Qaj + ~Qak)

2ρjk

]
ρkj′ + ρjk

[
( ~Qak + ~Qaj′)

2ρkj′
]}

=

∫
Dk

∫
d2z⊥
2π

{
( ~Qaj + ~Qaj′)

2ρjkρkj′ − 2 ~Qaj
~Qaj′ρjkρkj′

+
[
(2 ~Qaj ~Q

a
k + ~Qa2

k )ρjk

]
ρkj′ + ρjk

[
( ~Qa2

k + 2 ~Qak
~Qaj′)ρkj′

]}
. (3.23)

In the first term of the equality (3.23) the k integration is trivial. Using the pure state

condition ρ̂2 = ρ̂ one recognizes in this term the derivative of ρ̂. The rest of the terms can

be rearranged after using integration by parts on the jump operators ~Qak:

d

dy
(ρ̂2)jj′ =

d

dy
ρjj′ − 2

∫
Dk

∫
d2z⊥
2π

[
( ~Qaj + ~Qak)ρjk

] [
( ~Qak + ~Qaj′)ρkj′

]
. (3.24)

It is clear that the evolution of ρ̂ and ρ̂2 differs by a non-trivial term, indicating that a

pure state becomes mixed after evolution. One can go one step further and take the trace

of eq. (3.24). Taking into account that the trace of ρ̂ is always 1, we get

d

dy
Tr ρ̂2 = −2

∫
Dj Dk

∫
d2z⊥
2π

[
( ~Qaj + ~Qak)ρjk

] [
( ~Qak + ~Qaj )ρkj

]
. (3.25)

Given that ρ̂ is Hermitian and Q is real, the integrand is clearly positive definite. Therefore

we conclude that
d

dy
Tr ρ̂2 < 0 . (3.26)

Thus the evolution changes the density matrix ρ̂ such that it does not correspond to a

pure state anymore. In particular, by using the standard definition of the Renyi entropy

SR = − ln Trρ̂2, we find
d

dy
SR > 0, (3.27)

showing that the entropy of the density matrix increases due to evolution. We will return

to an explicit calculation of the Renyi entropy in the following section. The property of

decoherence and (3.26) are well-known in the context of the Lindblad master equation, but

has been derived in the CGC framework for the first time here.

4 Evolution in Gaussian approximation

In the previous section we derived the evolution of the density matrix. It is highly nonlinear

and non-local due to the complexity of the jump operator Q. To get some idea on how the

evolution affects the off diagonal matrix elements of ρ̂, we will follow the ideas introduced

before for the diagonal components of the density matrix in the context of the JIMWLK

evolution equation, see e.g. refs. [40, 41]. We thus will consider a Gaussian approximation
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for the density matrix, and will derive the evolution equations for the effective parameters.

The success of this approximation was demonstrated numerically in ref. [42]. We use the

following approximation for ρ̂:

ρ[α,α′] =N exp

{∫
d2x⊥d

2y⊥trc

[
−(α(x⊥)+α′(x⊥))µ−2

y (x⊥,y⊥)(α(y⊥)+α′(y⊥)) (4.1)

−(α(x⊥)−α′(x⊥))λ−2
y (x⊥,y⊥)(α(y⊥)−α′(y⊥))

+i(α(x⊥)+α′(x⊥))Ay(x⊥,y⊥)(α(y⊥)−α′(y⊥))
]}

.

Here, to simplify the derivation, we introduced the field α instead of the color charge

density. We anticipate that the rapidity evolution of the density matrix will be encoded in

the rapidity dependence of parameters µ2
y, λy and Ay. In principle µ2

y, λy and Ay can be

taken as arbitrary matrices in color space, and the form eq. (4.1) can accommodate such a

general choice. However, color neutrality requires all these matrices to be proportional to

identity, and we will restrict the general ansatz correspondingly.

We start by deriving the evolution of these parameters in the dilute regime; we then

also consider the approach to the saturated regime.

4.1 Gaussian approximation for density matrix evolution in the dilute regime

To derive the evolution for the three parameters in eq. (4.1) we have to consider three dif-

ferent averages 〈Ôi〉 and require that their evolution is reproduced by the Gaussian ansatz.

The natural choice is to take the averages of the three simple linearly independent opera-

tors:

Ôi =

{
αa(x1⊥)

δ

δαa(x2⊥)
, αa(x1⊥)αa(x2⊥) ,

δ

δαa(x1⊥)

δ

δαa(x2⊥)

}
. (4.2)

For each operator in this set we first calculate the corresponding expectation value

〈Ôi〉(µy ,λy ,Ay) ≡ Tr[Ôiρ̂] (4.3)

and then take its derivative with respect to rapidity

d

dy
〈Ôi〉 =

∂〈Ôi〉
∂µy

dµy
dy

+
∂〈Ôi〉
∂λy

dλy
dy

+
∂〈Ôi〉
∂Ay

dAy
dy

. (4.4)

Since the evolution of each expectation value is dictated by eq. (3.1), eq. (4.4) has to be

equated to

Tr

[
Ôi

d

dy
ρ̂

]
=

∫
DαDα′

{
Oi
(
α′, α

) ∫
d2z⊥

[
Qak (z⊥, α) +Qak

(
z⊥, α

′)]2 ρ (α, α′)}
=

∫
d2z⊥Tr

{
Ôi

[
Q̂ai (z⊥), [Q̂ai (z⊥), ρ̂]

]}
, (4.5)

where in the first line we used a matrix elements for the operators Ôi:

O(α′, α) =

{
αa(x1⊥)

δ

δαa(x2⊥)
, αa(x1⊥)αa(x2⊥) ,

δ

δαa(x1⊥)

δ

δαa(x2⊥)

}
δ(α− α′) . (4.6)
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In fact, for the problem in hand it is easier to evaluate the second line of eq. (4.5). Given

our choice of operators Ôi it is convenient to rewrite the last expression using the cyclic

property of the trace as

Tr

[
Ôi

d

dy
ρ̂

]
=

∫
d2z⊥
2π

Tr
{
ρ̂
[
Q̂ai (z⊥) ,

[
Q̂ai (z⊥), Ôi

]]}
. (4.7)

Proceeding with the plan outlined above, we calculate the averages in the Gaussian

state density matrix:

〈αa(x1⊥)αa(x2⊥)〉 =
(N2

c − 1)

8
µ2
y(x1⊥, x2⊥) , (4.8)〈

δ

δαa(x1⊥)

δ

δαa(x2⊥)

〉
= −2(N2

c − 1) (4.9)

×
[
λ−2
y (x1⊥, x2⊥)− 1

4

∫
d2y⊥d

2y′⊥A(x1⊥, y⊥)µ2
y(y⊥, y1⊥)Ay(y

′, x2⊥)

]
,〈

δ

δαa(x1⊥)
αa(x2⊥)

〉
=

(N2
c − 1)

4
i

∫
d2y⊥Ay(x1⊥, y⊥)µ2

y(y⊥, x2⊥) , (4.10)

where we have explicitly assumed that x1⊥ 6= x2⊥. One has to be more careful with the

derivation for x1⊥ = x2⊥.

In the dilute limit, operator Q̂ can be expanded to leading order in α:

Qai [z⊥, α] ≈ − g2

2π

∫
d2x⊥

(x⊥ − z⊥)i
(x⊥ − z⊥)2T

d
ab

(
αd(z⊥)− αd(x⊥)

)
δ

δαb(x⊥)
, (4.11)

with corrections of order α2. In this limit, we also find[
Q̂ai (z⊥) ,

[
Q̂ai (z⊥), αf (x1⊥)αf (x2⊥)

]]
≈ Nc

(
g2

2π

)2 ∫
d2z⊥

{
− (x1⊥ − x2⊥)2

(x1⊥ − z⊥)2(x2⊥ − z⊥)2

(
αd(z⊥)− αd(x2⊥)

)(
αd(z⊥)− αd(x1⊥)

)
− 1

(x2⊥ − z⊥)2α
a(z⊥)αa(x2⊥)− 1

(x1⊥ − z⊥)2α
a(z⊥)αa(x1⊥)

+
[

1

(x2⊥ − z⊥)2 +
1

(x1⊥ − z⊥)2

]
αa(z⊥)αa(z⊥)

}
, (4.12)[[

δ

δαf (x1⊥)

δ

δαf (x2⊥)
,

∫
d2z⊥ Q̂

a
i (z⊥)

]
, Q̂ai (z⊥)

]
≈ Nc

g4

4π2

{
δ(2)(x1⊥ − x2⊥)

∫
d2x⊥d

2y⊥

×
[

1

(x⊥ − x1⊥)2 +
1

(y − x1⊥)2 −
(x⊥ − y⊥)2

(x⊥ − x1⊥)2(y − x1⊥)2

]
δ

δαa(x⊥)

δ

δαa(y⊥)

−
∫
d2z⊥

(x2⊥ − x1⊥)2

(x2⊥ − z⊥)2(x1⊥ − z⊥)2

δ

δαa(x1⊥)

δ

δαa(x2⊥)

+

∫
d2z⊥

[
(z⊥ − x1⊥)2

(z⊥ − x2⊥)2(x1⊥ − x2⊥)2 −
1

(x1⊥ − x2⊥)2

]
δ

δαa(z⊥)

δ

δαa(x1⊥)
(4.13)

+

∫
d2z⊥

[
(z⊥ − x2⊥)2

(z⊥ − x1⊥)2(x2⊥ − x1⊥)2 −
1

(x1⊥ − x2⊥)2

]
δ

δαa(z⊥)

δ

δαa(x2⊥)

}
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and, finally,[[
δ

δαf (x1⊥)
αf (x2⊥),

∫
d2z⊥ Q̂

a
i (z⊥)

]
, Q̂ai (z⊥)

]
≈ Nc

g2

4π2

{∫
d2x⊥ 2

(x⊥ − x1⊥) · (x2⊥ − x1⊥)

(x⊥ − x1⊥)2(x2⊥ − x1⊥)2

δ

δαa(x⊥)
αa(x1⊥) (4.14)

+

∫
d2x⊥

[
−2

(x⊥ − x1⊥) · (x2⊥ − x1⊥)

(x⊥ − x1⊥)2(x2⊥ − x1⊥)2
+

1

(x⊥ − x1⊥)2

]
δ

δαa(x⊥)
αa(x2⊥)

+

∫
d2z⊥

[
−2

(x2⊥ − z⊥) · (x1⊥ − z⊥)

(x2⊥ − z⊥)2(x1⊥ − z⊥)2
+

1

(x2⊥ − z⊥)2

]
δ

δαa(x1⊥)
αa(z⊥)

+

∫
d2z⊥

[
2

(x2⊥ − z⊥) · (x1⊥ − z⊥)

(x2⊥ − z⊥)2(x1⊥ − z⊥)2
− 1

(x2⊥ − z⊥)2
− 1

(x1⊥ − z⊥)2

]
δ

δαa(x1⊥)
αa(x2⊥)

}
.

In what follows, in order to simplify the derivation, we set A = 0. As an initial condition,

A = 0 is preserved by the evolution and is thus setting A = 0 at any rapidity is compatible

with eq. (4.14). As we will discuss in the next subsection, the function A in general does

not affect the eigenvalues of the density matrix and thus can be set equal to zero for the

purpose of evaluating the entanglement entropy. For a general operator, the evolution of

the function A, however, can be important and should not be omitted.

Note that the evolution for µ2
y and λ2

y decouple in the Gaussian approximation with

A = 0, and the evolution equations become:

∂

∂y
µ2
y(x1⊥, x2⊥) =

Nc

2π

(
g2

2π

)2 ∫
d2z⊥

{
− (x1⊥ − x2⊥)2

(x1⊥ − z⊥)2(x2⊥ − z⊥)2
(4.15)

×
(
µ2
y(x1⊥, x2⊥) + µ2

y(z⊥, z⊥)− µ2
y(z⊥, x2⊥)− µ2

y(x1⊥, z⊥)
)

− 1

(x2⊥ − z⊥)2
µ2
y(z⊥, x2⊥)− 1

(x1⊥ − z⊥)2
µ2
y(x1⊥, z⊥)

+

[
1

(x2⊥ − z⊥)2
+

1

(x1⊥ − z⊥)2

]
µ2
y(z⊥, z⊥)

}
and

∂

∂y
λ−2
y (x1⊥,x2⊥) =

Nc

2π

g4

4π2

{
−δ(2)(x1⊥−x2⊥)

×
∫
d2x⊥d

2y⊥
(x⊥−y⊥)2

(x⊥−x1⊥)2(y−x1⊥)2
λ−2
y (x⊥,y⊥)

+

∫
d2z⊥

[
(z⊥−x1⊥)2

(z⊥−x2⊥)2(x1⊥−x2⊥)2
λ−2
y (z⊥,x1⊥)+

(z⊥−x2⊥)2

(z⊥−x1⊥)2(x2⊥−x1⊥)2
λ−2
y (z⊥,x2⊥)

− (x2⊥−x1⊥)2

(x2⊥−z⊥)2(x1⊥−z⊥)2
λ−2
y (x1⊥,x2⊥)

]
−
∫
d2z⊥

[
1

(x1⊥−x2⊥)2
λ−2
y (z⊥,x1⊥)+

1

(x1⊥−x2⊥)2

]
λ−2
y (z⊥,x2⊥)

+δ(2)(x1⊥−x2⊥)

∫
d2x⊥d

2y⊥

[
1

(x⊥−x1⊥)2
+

1

(y−x1⊥)2

]
λ−2
y (x⊥,y⊥)

}
. (4.16)
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These equations can be further simplified. Concentrating first on eq. (4.15), we note

that it is convenient to define

µ̄2
y(x⊥, y⊥) ≡ µ2

y(x⊥, y⊥)− 1

2
µ2
y(x⊥, x⊥)− 1

2
µ2
y(y⊥, y⊥) . (4.17)

The evolution equation for this quantity becomes

∂

∂y
µ̄2
y(x1⊥, x2⊥) =

Nc

2π

(
g2

2π

)2 ∫
d2z⊥

{
− (x1⊥ − x2⊥)2

(x1⊥ − z⊥)2(x2⊥ − z⊥)2

×
[
µ̄2
y(x1⊥, x2⊥) + µ̄2

y(z⊥, z⊥)− µ̄2
y(z⊥, x2⊥)− µ̄2

y(x1⊥, z⊥)
]}

. (4.18)

Physically µ̄2 differs from µ2 only by terms that do not depend on one of the coordinates.

In momentum space µ̄2
y and µ2

y are therefore identical except possibly for zero momentum

modes. For this reason we will not distinguish between µ̄2
y and µ2

y in the following.

As for eq. (4.16) we note that the last two terms in this equation are proportional

to zero momentum modes of λ−2
y . Thus if

∫
d2x⊥λ

−2
y (x⊥, y⊥) = 0 these terms drop

out. It is also easily verified that this condition is preserved by eq. (4.16), i.e. assum-

ing
∫
d2x⊥λ

−2
y0

(x⊥, y⊥) = 0 at initial rapidity y0 one has
∫
d2x⊥λ

−2
y (x⊥, y⊥) = 0 at any

rapidity y. We will thus drop these terms and simplify eq. (4.16) to

∂

∂y
λ−2
y (x1⊥,x2⊥) = (4.19)

Nc

2π

(
g2

2π

)2
{
−δ(2)(x1⊥−x2⊥)

∫
d2x⊥d

2y⊥
(x⊥−y⊥)2

(x⊥−x1⊥)2(y−x1⊥)2
λ−2
y (x⊥,y⊥)

+

∫
d2z⊥

[
(z⊥−x1⊥)2

(z⊥−x2⊥)2(x1⊥−x2⊥)2
λ−2
y (z⊥,x1⊥)+

(z⊥−x2⊥)2

(z⊥−x1⊥)2(x2⊥−x1⊥)2
λ−2
y (z⊥,x2⊥)

− (x2⊥−x1⊥)2

(x2⊥−z⊥)2(x1⊥−z⊥)2
λ−2
y (x1⊥,x2⊥)

]}
.

We observe that both eq. (4.18) and eq. (4.19) are equivalent to different forms of

the celebrated BFKL equation [43, 44]. Eq. (4.18) is identical to the BFKL equation for

scattering amplitudes while eq. (4.19) is the BFKL equation for the correlator of the color

charge density in the hadronic wave function. Thus, at high energy both µ2
y and λ−2

y grow

with the same leading BFKL exponential and we have

µ2
y ∝ exp(γy), λ2

y ∝ exp(−γy), (4.20)

where

γ =
4αsNc

π
ln 2 . (4.21)
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4.2 High energy evolution, von Neumann entropy and decoherence in the

dilute regime

We already showed that the density matrix describing a pure initial state decoheres with

evolution. Now our goal is to understand how this decoherence happens at high ener-

gies. The measure of such decoherence is the entanglement entropy. For the Gaussian

density matrix, it can be calculated. Here we use the method of ref. [12]. Similar general

considerations for a Gaussian density matrix were presented in ref. [19].

Having extracted the evolution of the Gaussian parameters, we now proceed with

deriving the high energy evolution for the von Neumann entropy. We start with the N -th

Renyi entropy, which is somewhat easier to calculate than the von Neumann one.

As we alluded to before the parameter A does not enter to the expression for the

entropy. To prove this we note that in the definition of the density matrix it appears

as part of a unitary basis change. In particular the density matrix ρ̂ of eq. (4.1) can be

written as

ρ̂ = U ρ̂′ U † , (4.22)

where

ρ′[α,α′] =N exp

{∫
d2x⊥d

2y⊥trc

[
−(α(x⊥)+α′(x⊥))µ−2

y (x⊥,y⊥)(α(y⊥)+α′(y⊥))

−(α(x⊥)−α′(x⊥))λ−2
y (x⊥,y⊥)(α(y⊥)−α′(y⊥))

]}
(4.23)

and

U = exp

[
i trc

∫
d2x⊥d

2y⊥ α(x⊥)A(x⊥, y⊥)α(y⊥)

]
. (4.24)

Thus A does not affect the eigenvalues of ρ̂, and does not change the evolution of any

operator of the form trρ̂n. For that reason, in the following we will set A to zero.

Using the parametrization of the density matrix we can find the N -th Renyi entropy

SN =
1

1−N ln
[
Tr (ρ̂)N

]
(4.25)

following the same steps as in ref. [12]. The trace of the density matrix to the N -th power is

Tr(ρ̂)N =NN

∫ N∏
i=1

Dαi

exp

{
N∑
j=1

∫
d2x⊥d

2y⊥trc
[
−(αj(x⊥)+αj+1(x⊥))µ−2

y (x⊥,y⊥)(αj(y⊥)+αj+1(y⊥))

−(αj(x⊥)−αj+1(x⊥))λ−2
y (x⊥,y⊥)(αj(y⊥)−αj+1(y⊥))

]}
, (4.26)
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with periodic boundary conditions in the replica space αN+1 = α1. This integral is not

diagonal in α. The easiest way to proceed with integration over replicas is to transform the

expression in the exponential into the Fourier replica space. It is introduced according to

αj(x⊥) =

N∑
J=1

α̃J(x⊥)ei
2π
N
jJ . (4.27)

This transformation The reality of αj(x⊥) also leads to the relation

α̃∗J = α̃N−J . (4.28)

Let us consider two types of expressions that we encounter in the calculation:

N∑
j=1

αj(x⊥)αj(y⊥) = N
N∑
J=1

α̃J(x⊥)α̃∗J(y⊥) (4.29)

and
N∑
j=1

αj(x⊥)αj+1(y⊥) = N

N∑
J=1

α̃J(x⊥)α̃∗J(y⊥)e−i
2π
N
J . (4.30)

Using these we get

Tr (ρ̂)N = NN

∫ N∏
I=1

Dα̃i (4.31)

exp

{
N

N∑
J=1

∫
d2x⊥d

2y⊥trc
(
−2
[
λ−2
y (x⊥, y⊥) + µ−2

y (x⊥, y⊥)
]
α̃J(x⊥)α̃∗J(y⊥)

−2
[
−λ−2

y (x⊥, y⊥) + µ−2
y (x⊥, y⊥)

]
α̃J(x⊥)α̃∗J(y⊥) cos

(
2π

N
J

))}
.

The integration over α̃N does not involve any factors of λ. This is an integration with

respect to the center of mass in the replica space. This integral will be canceled by the

normalization of the density matrix. Thus we have

Tr (ρ̂)N = NN−1

∫ N−1∏
I=1

Dα̃i

exp

{
N

N−1∑
J=1

∫
d2x⊥d

2y⊥trc
(
−2
[
λ−2
y (x⊥, y⊥) + µ−2

y (x⊥, y⊥)
]
α̃J(x⊥)α̃∗J(y⊥)

−2
[
−λ−2

y (x⊥, y⊥) + µ−2
y (x⊥, y⊥)

]
α̃J(x⊥)α̃∗J(y⊥) cos

(
2π

N
J

))}

=

N−1∏
I=1

det

[
1

2

(
µ2
yλ
−2
y + 1

)
+

1

2

(
−µ2

yλ
−2
y + 1

)
cos

(
2π

N
I

)]−1/2

. (4.32)
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Using the identity

N−1∏
k=1

(
coshx− cos

2πk

N

)
=

1

2N−1

coshNx− 1

coshx− 1
, (4.33)

we obtain

Tr (ρ̂)N = det

[
1

22N−1

(
µ2
yλ
−2
y − 1

)N (
TN

(
µ2
yλ
−2
y + 1

µ2
yλ
−2
y − 1

)
− 1

)]−1/2

,

where TN are the Chebyshev polynomials

TN (x) = cosh (N acoshx) . (4.34)

Thus the N -th Renyi entropy is

SN =
1

2(N−1)
tr

{
−(2N−1) ln2+N ln

(
µ2
yλ
−2
y −1

)
+ln

(
TN

(
µ2
yλ
−2
y +1

µ2
yλ
−2
y −1

)
−1

)}
. (4.35)

Note that this expression gives zero in the limit λ2
y → µ2

y; this can be easily established

based on the property of the leading order coefficients of the Chebyshev polynomial of

order N : TN (x→∞) ≈ 2N−1xN −2N−3NxN−2. The second term in this expansion allows

to extract the first non-trivial contribution to SN close to the pure state limit λ2
y → µ2

y:

SN =
N

4(N − 1)
tr
(
µ2
yλ
−2
y − 1

)
+O

([
µ2
yλ
−2
y − 1

]2)
. (4.36)

In the opposite limit, in a strongly mixed state, λ2
y � µ2

y, we get

SN =
1

2
tr

[
2 lnN

N − 1
+ ln

(
µ2
yλ
−2
y

)]
+O

([
µ2
yλ
−2
y

]−1
)
, (4.37)

which is N -independent at leading order.

The usual Renyi entropy of the Gaussian density matrix for N = 2 can be computed

directly to yield

SR ≡ S2 = − ln[Trρ̂2] =
1

2
tr
[
ln
(
µ2
yλ
−2
y

)]
. (4.38)

The same result can be obtained from the general eq. (4.35) taking N = 2. Here, as before,

λ2 and µ2 are considered as operators on the transverse space.

It is clear from the above expressions that the increase of µ2 and/or decrease of λ2

increases the Renyi entropy and thus signals an increased mixing of the density matrix. As

we have seen in the previous subsection, this is indeed what happens in the dilute regime.

Using eq. (4.20) we find that, in the dilute regime,

d

dy
SR = γ . (4.39)

That is, the Renyi entropy grows linearly with rapidity.
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Figure 1. Illustration of the von Neumann entropy: the function Se(x = µ2
yλ

−2
y ), where we treat

µ2
y and λy as scalar numbers. The blue line is the exact result (4.42) and the orange line its strongly

mixed state limit λ2y � µ2
y.

Now consider the von Neumann entropy of the reduced density matrix; it is defined by

Se = −Tr (ρ̂ ln ρ̂) . (4.40)

Using the identity ln ρ̂ = limε→1
ρ̂ε−1−1
ε−1 we can reduce the evaluation of the von Neumann

entropy to the calculation of S1:

Se = − lim
ε→1

Tr

(
ρε − ρ
ε− 1

)
= − lim

ε→1

e(1−ε)Sε − 1

ε− 1
(4.41)

and, assuming that limε→1 Sε exists, we obtain

Se = S1 =
1

2
tr

[
ln

(
µ2
yλ
−2
y − 1

4

)
+
√
µ2
yλ
−2
y acosh

(
µ2
yλ
−2
y + 1

µ2
yλ
−2
y − 1

)]
. (4.42)

This is an exact expression for the von Neumann entropy of the reduced density matrix in

the Gaussian approximation. To demonstrate the behavior of the entropy, in figure 1, we

plotted the function Se(x = µ2
yλ
−2
y ), where we treat µ2

y and λy as scalar numbers.

For a strongly mixed state (i.e. |µ2λ−2| � 1), the evolution reads:

dSe
dy
≈ 1

2
tr

[
µ−2
y

∂µ2
y

∂y
− λ−2

y

∂λ2
y

∂y

]
. (4.43)

Thus, in the BFKL regime for large enough energy

dSe
dy
≈ γ . (4.44)

In full generality, the evolution of the von Neumann entropy reads

dSe
dy

=
1

4
tr

acosh

(
µ2
yλ
−2
y +1

µ2
yλ
−2
y −1

)
√
µ2
yλ
−2
y

∂

∂y

(
µ2
yλ
−2
y

) . (4.45)
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Close to the pure state limit this reduces to

dSe
dy
≈ −1

4
tr

[
ln

(
µ2
yλ
−2
y − 1

4

)
∂

∂y

(
µ2
yλ
−2
y

)]
. (4.46)

Therefore, the entropy deviates fast from the pure state regime due to the presence of the

logarithmic singularity in the derivative close to the pure state limit. This shows that, at

least in the Gaussian approximation, a pure state quickly morphs into a mixed state.

4.3 Approach to saturation and Levin-Tuchin law

We now wish to study the behavior of the entanglement entropy in the saturated regime.

We will again take a reasonable ansatz for the density matrix and will require that it

reproduces the evolution of two simple operators. The two operators that we choose are

the dipole amplitude in the fundamental representation

d (x1⊥, x2⊥) ≡ 1

Nc
trc

[
S† (x1⊥)S(x2⊥)

]
(4.47)

and the correlator

P †(x1⊥, x2⊥) = JaR(x1⊥)JaR(x2⊥). (4.48)

As explained in ref. [45], the operator P † (at least in the first approximation) plays

the role of the conjugate Pomeron within the Pomeron field theory approximation to

JIMWLK evolution.

Before restricting ourselves to a particular form of ρ̂, let us derive the operator evolution

of the two simple operators in question.

4.3.1 Evolution

It is straightforward to derive the evolution for operators without making simplifying as-

sumptions about the strength of the gluon fields but instead using the full expression for

the jump operator Q̂a(z⊥). It is in fact obvious that the dipole evolves according to the

BK equation [46, 47]

d

dy
d(x1⊥,x2⊥) =

αsNc

π

∫
d2z⊥
2π

(x1⊥−z⊥)·(x2⊥−z⊥)

(x1⊥−z⊥)2(x2⊥−z⊥)2
[d(x1⊥,z⊥)d(z⊥,x2⊥)−d(x1⊥,x2⊥)] .

(4.49)

The reason is that the operator d depends only on the eikonal matrices S, and thus its av-

erage and evolution is governed entirely by the diagonal elements of ρ̂ in the S-basis. Since

these elements evolve according to the original JIMWLK equation, so does the operator d.
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The explicit calculation for P † yields∫
d2z⊥

[[
JbR(x2⊥)JbR(x1⊥), Q̂ai (z⊥)

]
, Q̂ai (z⊥)

]
=

g2

(2π)2
(4.50)[∫

d2x⊥
(x⊥−x1⊥)·(x2⊥−x1⊥)

(x⊥−x1⊥)2(x2⊥−x1⊥)2
JdL(x2⊥)[S(x2⊥)T bST (x1⊥)]daJcR(x⊥)[T bST (x1⊥)]ca

+δ(2)(x1⊥−x2⊥)

∫
d2x⊥d

2y⊥
(x⊥−x1⊥)·(y−x2⊥)

(x⊥−x1⊥)2(y−x2⊥)2

JdL(y⊥)[S(y⊥)T bST (x2⊥)]daJcR(x⊥)[T bST (x2⊥)]ca

−
∫
d2z⊥

(x1⊥−z⊥)·(x2⊥−z⊥)

(x1⊥−z⊥)2(x2⊥−z⊥)2
JdL(x2⊥)[S(x2⊥)T bST (z⊥)]daJcR(x1⊥)[T bST (z⊥)]ca

−
∫
d2y⊥

(x1⊥−x2⊥)·(y−x2⊥)

(x1⊥−x2⊥)2(y−x2⊥)2
JdL(y⊥)[S(y⊥)T bST (x2⊥)]daJcR(x1⊥)[T bST (x2⊥)]ca

+

∫
d2x⊥

1

(x⊥−x1⊥)2
JbR(x2⊥)JdL(x⊥)[S(x⊥)T cST (x1⊥)]da[T bST (x1⊥)]ca

−
∫
d2z⊥

1

(x1⊥−z⊥)2
JbR(x2⊥)JdL(x1⊥)[S(x⊥)T cST (z⊥)]da[T bST (z⊥)]ca

]
+(x2⊥↔x1⊥).

To simplify this, we use STS = 1, (T a)T = −T a, JLS = JR and T aT a = Nc, getting

d

dy
P †(x1⊥, x2⊥) =

∫
d2z⊥
2π

[[
P †(x1⊥, x2⊥), Q̂ai (z⊥)

]
, Q̂ai (z⊥)

]
(4.51)

= − g
2Nc

(2π)3

[
δ(x1⊥ − x2⊥)

∫
d2x⊥d

2y⊥
(x⊥ − x1⊥) · (y − x2⊥)

(x⊥ − x1⊥)2(y − x2⊥)2
P †(x⊥, y⊥)

+

∫
d2x⊥

[
(x⊥ − x1⊥) · (x2⊥ − x1⊥)

(x⊥ − x1⊥)2(x2⊥ − x1⊥)2
− 1

(x⊥ − x1⊥)2

]
P †(x, x2⊥)

−
∫
d2z⊥

[
(x1⊥ − z⊥) · (x2⊥ − z⊥)

(x1⊥ − z⊥)2(x2⊥ − z⊥)2
− 1

(x1⊥ − z⊥)2

]
P †(x1⊥, x2⊥)

−
∫
d2x⊥

(x1⊥ − x2⊥) · (x⊥ − x2⊥)

(x1⊥ − x2⊥)2(x⊥ − x2⊥)2
P †(x1⊥, x⊥)

]
+ (x1⊥ ↔ x2⊥) .

Interestingly we find that even in the saturated regime the charge density correlator

evolves according to the BFKL equation. This is perhaps not completely surprising for the

following reason. As discussed in the literature, e.g. ref. [48], high energy evolution has a

self dual structure. As a result of this dense-dilute duality, the operators that depend on

the eikonal matrix S probe the structure of the target state, while those that depend on the

charge operators J effectively probe the structure of the projectile state. The JIMWLK

evolution describes a situation where the target is dense, but the projectile is dilute. Thus

the rapidity evolution of the charge correlators reflects the rapidity evolution of charge

densities in the dilute projectile, which have to evolve according to the BFKL equation.
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This indeed is what we find. Note, however, that even though this result is natural, it by

no means trivial, as we were only able to obtain it explicitly by using the density matrix

formulation of high energy evolution, as the knowledge of the diagonal matrix elements of

ρ̂ alone is not sufficient to calculate the evolution of any function of J ’s.

4.4 The ansatz for ρ̂ in the saturated regime and the operator averages

To study the density matrix close to the saturated regime we will take a natural generaliza-

tion of the Gaussian ansatz (S and S̄ below are matrices in the fundamental representation),

ρ̂(S, S̄) = N exp

{
− trc

∫
d2x⊥d

2y⊥

[
µ̄−2
y (x⊥, y⊥)

4
[S†(x⊥) + S̄†(x⊥)][S(y⊥) + S̄(y⊥)]

+ λ̄−2
y (x⊥, y⊥)[S†(x⊥)− S̄†(x⊥)][S(y⊥)− S̄(y⊥)]

]}
, (4.52)

and repeat the procedure that we performed in the dilute regime. Note that we already

made the unitary transformation to rotate out the function A, as in the dilute case. Thus,

similarly to the dilute regime, we have to consider only two operators in order to derive

the evolution of parameters λ̄ and µ̄.

For simplicity, we will adopt the following natural assumptions µ̄2
y(x⊥,y⊥) = µ̄2

y(y⊥,x⊥)

and λ̄2
y(x⊥,y⊥) = λ̄2

y(y⊥,x⊥). This prevents the appearance of the odderon which is not crit-

ical for our consideration relevant for high energy. In general, one can lift this assumption

and repeat the derivation; for the purpose of this paper it is not necessary.

Our goal is now to calculate the averages of d and P † in this density matrix. This is

not an easy task and we do not know how to perform this calculation in full generality.

However, since we are interested in the behavior close to the saturation limit, we can invoke

the factorized approximation used in refs. [49–51]. This amounts to forgetting about the

complicated group measure while integrating over S, and using the standard measure on

complex numbers C for each matrix element of S. In this approximation, the averages

of products of S matrices factorize into products of color singlet pairs, see refs. [49–51]

for details. This approximation is justified in particular when one is interested in leading

powers of the area of the projectile as explained in the above references. We will not

further justify this approximation here, but will instead hope that it gives qualitatively

correct answers to the questions that we are asking.

Our normalization of µ̄2 is such that

d(x1⊥, x2⊥) ≡
〈

1

Nc
trc [S†(x1⊥)S(x2⊥)]

〉
= Ncµ̄

2(x1⊥, x2⊥) . (4.53)

This means that the natural magnitude is µ̄2 ∼ 1/Nc.

To calculate 〈P †〉 we will use the identities

JaR(x⊥)S(y⊥) = δ(2)(x⊥ − y⊥)S(x⊥)T a , JaR(x⊥)S†(y⊥) = −δ(2)(x⊥ − y⊥)T aS†(x⊥),

(4.54)
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which can be trivially proven based on the definition of JaR(x⊥), see eq. (3.3). Using these

identities we obtain

JaR(x1⊥)ρ̂(S, S̄) = −
[ ∫

d2x⊥
µ̄−2
y (x, x1⊥)

4
trc[S

†(x⊥) + S̄†(x⊥)][S(x1⊥)T a]

− µ̄−2(x1⊥, x⊥)

4
[T aS†(x1⊥)][S(x⊥) + S̄(x⊥)]

+ λ̄−2(x, x1⊥)trc[S
†(x⊥)− S̄†(x⊥)][S(x1⊥)T a]

− λ̄−2(x1⊥, x⊥)[T aS†(x1⊥)][S(x⊥)− S̄(x⊥)]

]
ρ̂(S, S̄). (4.55)

Before acting with the second operator JaR, we note that to calculate the average we will

have to set S̄ = S after the differentiation. We will therefore only keep terms that do not

vanish for S̄ = S:

JaR(x2⊥)JaR(x1⊥)ρ̂(S, S̄)|S̄=S = ρ̂(S, S)

{
CF

(
µ̄−2(x2⊥, x1⊥)

4
+ λ̄−2

y (x2⊥, x1⊥)

)
× trc[S

†(x2⊥)S(x1⊥) + S†(x1⊥)S(x2⊥)]

− CF δ(2)(x1⊥ − x2⊥)

∫
d2x⊥

µ̄−2(x, x1⊥)

2
trc[S

†(x⊥)S(x1⊥) + S†(x1⊥)S(x⊥)]

}
(4.56)

+

∫
d2x⊥d

2y⊥
µ̄−2(x, x1⊥)

2

µ̄−2(y⊥, x2⊥)

2

[
trc[S

†(x⊥)S(x1⊥)T a − S†(x1⊥)S(x⊥)T a
]

×
[
trc[S

†(y⊥)S(x2⊥)T a − S†(x2⊥)S(y⊥)T a
]

= ρ̂(S, S)
{
CF

(
µ̄−2(x2⊥, x1⊥)

4
+ λ̄−2(x2⊥, x1⊥)

)
trc[S

†(x2⊥)S(x1⊥) + S†(x1⊥)S(x2⊥)]

− CF δ(x1⊥ − x2⊥)

∫
d2x⊥

µ̄−2(x, x1⊥)

2
trc[S

†(x⊥)S(x1⊥) + S†(x1⊥)S(x⊥)]
}

+

∫
d2x⊥d

2y⊥
µ̄−2(x, x1⊥)

2

µ̄−2(y⊥, x2⊥)

2

{
trc[(S

†(x⊥)S(x1⊥)− S†(x1⊥)S(x⊥))

× (S†(y⊥)S(x2⊥)− S†(x2⊥)S(y⊥))]

− 1

Nc
trc[S

†(x⊥)S(x1⊥)− S†(x1⊥)S(x⊥)]trc[S
†(y⊥)S(x2⊥)− S†(x2⊥)S(y⊥)]

}
.

Now recall that the factorization rules dictate

〈trc[S†(x1⊥)S(x2⊥)S†(x3)S(x4)]〉 ≈ 1

Nc

{
trc〈[S†(x1⊥)S(x2⊥)]〉trc[〈S†(x3)S(x4)〉]

+ trc[〈S†(x1⊥)S(x4)〉]trc[〈S†(x3)S(x2⊥)]〉
}
.

(4.57)

For simplicity we calculate the averages to leading order in 1/Nc. We then find

〈JaR(x2⊥)JaR(x1⊥)〉 = 2N3
c λ̄
−2
y (x1⊥, x2⊥)µ̄2

y(x1⊥, x2⊥), (4.58)

which suggests that λ̄−2
y is of order 1.
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In order to restore the natural Nc power counting, we rescale µ̄2 → µ̄2

Nc
and obtain

d(x1⊥, x2⊥) = µ̄2
y(x1⊥, x2⊥),

1

N2
c

〈JaR(x2⊥)JaR(x1⊥)〉 = 2λ̄−2(x1⊥, x2⊥)µ̄2
y(x1⊥, x2⊥) .

(4.59)

Recall that in the saturation regime the behavior of the dipole is governed by the

Levin-Tuchin (LT) formula [52]

d(x1⊥, x2⊥) = exp{−ξ ln2[(x1⊥ − x2⊥)2Q2
s]} , (4.60)

where ξ is a constant of order unity, and Qs is the saturation momentum. We thus conclude

that in this regime

µ̄2
y(x1⊥, x2⊥) = exp{−ξ ln2[(x1⊥ − x2⊥)2Q2

s]} . (4.61)

Given that the color density correlator satisfies the BFKL equation, we find

λ̄−2
y (x1⊥, x2⊥)µ̄2

y(x1⊥, x2⊥) ≈ λ̄0 exp(γy) (4.62)

or

λ̄−2
y (x1⊥, x2⊥) = λ̄0 exp

{
γy + ξ ln2[(x1⊥ − x2⊥)2Q2

s(y⊥)]
}
, (4.63)

where λ̄0 is determined by the initial condition. The dependence of Q2
s on y is well known,

with leading exponential behavior being

Q2
s(y⊥) = Q2

se
βy, β =

αsNc

π

χ(γc)

γc
, (4.64)

where χ is the BFKL kernel, χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ), and γc is the solution of

equation χ(γc) = γcχ
′(γc), which numerically is γc ≈ .628. Numerically β ≈ 4.88αsNcπ [40].

Note that the density matrix is normalizable within our approximation only as long

as |λ̄−2| > Nc
4 |µ̄−2|. Thus the calculation can only be valid for large rapidities, i.e.

eγy >
Nc

λ̄0
. (4.65)

This is quite reasonable. Recall that the saturation regime sets in parametrically when

eγyαs ∼ 1. (4.66)

Since at large Nc we have αs ∼ 1/Nc, parametrically this is the same as eq. (4.65) if the

initial condition λ̄0 is of the order of the ’t Hooft coupling, λ̄0 ∼ αsNc.

4.5 Entropy in the saturated regime

The next natural question is how does entropy evolve in the LT regime. We can in fact

adopt the results of the previous section to calculate entropy. Our approximation of cal-

culating the functional integral corresponds simply to treating the matrix elements of S

as independent degrees of freedom. The density matrix therefore behaves as a Gaussian
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in these degrees of freedom and the entropy is simply the entropy of a Gaussian density

matrix. We therefore can directly write

Se =
1

2
Tr

[
ln

(
4µ̄2

yλ̄
−2
y /Nc − 1

4

)
+
√

4µ̄2
yλ̄
−2
y /Nc acosh

(
4µ̄2

yλ̄
−2
y /Nc + 1

4µ̄2
yλ̄
−2
y /Nc − 1

)]
. (4.67)

Here the matrices µ̄2 and λ̄2 are Hermitian N2
c by N2

c matrices.

To estimate this we need to calculate the operator

M(y⊥, z⊥) =

∫
d2x⊥µ̄

2(y⊥, x⊥)λ̄−2(x⊥, z⊥) = eγy
∫
d2x⊥e

−β[ln2(x⊥−y⊥)2−ln2(x⊥−z⊥)2] .

(4.68)

For very large target area A the integral is obviously dominated by the values of x⊥ very

far from y⊥ and z⊥, and we obtain

M(y⊥, z⊥) ≈ Aeγy. (4.69)

We can now recast eq. (4.44) in the form

dSe
dy
≈ 1

2
γ . (4.70)

Thus, interestingly the entropy grows slower in the saturated regime. This is natural since

due to saturation effects the emission of soft gluons is suppressed and, thus, one expects

the rate of decoherence of the density matrix to slow down.

5 Wigner functional

Let us now return to our original motivation for introducing the density matrix: can

we get information on the distribution of currents in the hadronic state at high energy

and, more interestingly, on correlations between currents and color charge densities? This

type of question is particularly pertinent as we are interested in rare configurations in the

wave function, e.g. such that produce higher than average multiplicity final states in p-p

collisions. Such configurations are quite likely to also harbor large currents and therefore

momentum distributions that significantly differ from the average.

A similar question in a single particle quantum mechanics is answered, at least par-

tially, by the Wigner function, which can be approximately interpreted as giving the joint

probability for the distribution of position and momentum of the particle,

W(x, p) =

∫
dyeiyp

〈
x+

y

2

∣∣∣ρ̂∣∣∣x− y

2

〉
. (5.1)

The momentum is proportional to the velocity of the particle, and thus the Wigner function

carries information not just about the distribution of position but also about its time

derivative. This joint distribution is a very interesting quantity since it can, among other

things, tell us how fast the particle escapes from a given point in space.
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One can define an analog of the Wigner function for a field theory [53–55]. Formally

let us define the Wigner functional as

W[j,Φ] =

∫
Dj′ exp

[
i

∫
d2x⊥Φ(x⊥)j′(x⊥)

]
ρ

[
j +

j′

2
, j − j′

2

]
. (5.2)

The high energy evolution of this functional can be readily derived from the evolution of

ρ̂. We will not pursue this trivial derivation here but instead concentrate on a possible

phenomenological application of the functional.

Does this functional give us any information about the distribution of color current

densities, as opposed to just the distribution of color charge densities? The color current

density operator is not directly present in the effective description furnished by ρ̂ or W in

eq. (5.2). However, as it is usually the case with effective theories, certain fundamental

operators can be related to objects appearing in the effective description. The only object

independent of j that appears in eq. (5.2) is the phase Φ. Thus we need to understand if

Φ is related to the current density.

Eq. (5.2) defines Φ as the canonical conjugate of j, i.e.

Φ = −i δ
δj
. (5.3)

Let us calculate the commutation relations between the color current and the color

charge density in the fundamental description. Recall that on the “microscopic” level we

have the color current density5

jai (x⊥) =
1

2
fabc

[
a†bl (x⊥)∂ia

c
l (x⊥)− ∂ia†bl (x⊥)acl (x⊥)

]
. (5.4)

Commuting this with the color charge density

ja(x⊥) = ifabca†bl (x⊥)acl (x⊥), (5.5)

we get[
ja(y⊥), jbi (x⊥)

]
= ifabcjci (x⊥)δ(2)(x⊥ − y⊥) + ifabcjc(x⊥)∂yi δ

(2)(x⊥ − y⊥) , (5.6)

where we used the canonical commutation relations[
aai (x⊥), abj(y⊥)

]
= δijδ

abδ(2)(x⊥ − y⊥) (5.7)

and the Jacobi identity for the structure constants.

Given this commutation relation and eq. (5.3), we can construct operators in the

effective theory which satisfy the same algebra. In particular, to reproduce eq. (5.6) we

can adopt the following representation for the current density in the “effective” description:

jai (x⊥) = fabcjb(x⊥)∂iΦ
c(x⊥) . (5.8)

5We omit for simplicity the longitudinal coordinate label of the creation and annihilation operator. It

can be checked trivially that reinstating it does not change our results.
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In other words, indeed if we have a joint probability distribution of j and Φ, we also

know the joint probability distribution of j and ji.

The color charge satisfies a covariant conservation equation. Disregarding for the

moment the word “covariant”, this amounts to

p+∂−j = ∂iji . (5.9)

This equation, in principle, tells us how fast the charge density “runs away” from any given

configuration. This runaway speed is of course proportional to 1/p+, which is small. But

this overall scaling is simply the consequence of Lorentz time dilation in the boosted frame.

As a simple example of possible utility of the Wigner functional let us do the following

simple exercise. We take a Gaussian ansatz for the density matrix eq. (2.7), and calculate

the correlation between the color charge and the color current densities. We take A = 0

for now, and obtain the Wigner functional:

WG[j,Φ] = N exp

[
−
∫
d2x⊥d

2y⊥4µ−2(x⊥, y⊥)j(x⊥)j(y⊥)

−1

4

∫
d2x⊥d

2y⊥λ
2(x⊥, y⊥)Φ(x⊥)Φ(y⊥)

]
. (5.10)

The normalization constant N can be obtained from the condition∫
DjDΦWG[j,Φ] = 1. (5.11)

As one could have expected, the Wigner functional is Gaussian for the Gaussian density

matrix. Using this result we can study different correlators between color currents and

color densities. Below we will consider two examples. First, we start from correlators of

the currents at two different positions,

〈jai (x⊥)jbj (y⊥)〉 ≡
∫
DjDΦWG[j,Φ]jai (x⊥)jbj (y⊥) = Ncδa,b µ

2(x⊥, y⊥)∂x⊥i ∂y⊥j λ−2(x⊥, y⊥) .

(5.12)

This correlator in a way is a proxy for two gluon azimuthal anisotropy harmonics v2n in

the CGC wave function. Since it is proportional to λ−2, this demonstrates the importance

of the off-diagonal components of the full density matrix in relation to the momentum

distribution of particles.

Note that this correlator is not suppressed. Recall that µ2 and λ2 are constrained to

satisfy µ2λ−2 ≥ 1 with the lower limit attained in a pure state. Thus, even at lower energies

where the density matrix can be close to pure, this correlator is order one. Further, as

we demonstrated earlier, in the BFKL regime both λ−2 and µ2 grow exponentially with

y. Therefore, at high energies the above correlator grows with twice the BFKL exponent.

This rate of growth is similar to that of the diffractive cross section which is dominated by

the double Pomeron contribution.

Another illuminating example potentially pertinent to phenomenology is the correlator

〈ja(x⊥)ja(y⊥)jbi (z⊥)jbi (w⊥)〉 − 〈ja(x⊥)ja(y⊥)〉〈jbi (z⊥)jbi (w⊥)〉 (5.13)

=
Nc(N

2
c − 1)

4

[
µ2(x⊥, z⊥)µ2(y⊥, w⊥) + µ2(x⊥, w⊥)µ2(y⊥, z⊥)

]
∂z⊥i ∂w⊥i λ−2(z⊥, w⊥) .

– 25 –



J
H
E
P
0
5
(
2
0
1
9
)
0
2
5

Eq. (5.13) demonstrates the presence of a nontrivial correlation between a proxy for the

gluon multiplicity and the azimuthal anisotropy even in a simple density matrix. Again,

to establish this correlation the computation of the full density matrix and not just its

diagonal part was required.

One feature of eq. (5.13) is particularly interesting. Note that the correlated (con-

nected) part of the correlator has the same energy dependence as the disconnected piece.

Thus this type of correlation, if present in the wave function at initial energy, is not washed

away by energy evolution.

Another interesting point is the role of the parameter A. If we reinstate it in the

general Gaussian ansatz, we obtain for the Wigner functional

WG[j,Φ] = N exp

[
−
∫
d2x⊥d

2y⊥4µ−2(x⊥, y⊥)j(x⊥)j(y⊥)

−1

4

∫
d2x⊥d

2y⊥λ
2(x⊥, y⊥)Φ′(x⊥)Φ′(y⊥)

]
, (5.14)

where we introduced

Φ′(x⊥) = Φ(x⊥) + 2

∫
d2y⊥j(y⊥)A(y⊥, x⊥). (5.15)

Although the presence of A has no effect on the correlators involving only j, it does affect

ji. This is entirely analogous to how a coordinate dependent phase of a wave function

does not affect the probability distribution of coordinates, but has a strong effect on the

distribution of momenta (velocities) of a particle. Whether this effect is significant at high

energy is an interesting question worth exploring.

The upshot of this short discussion is that the Wigner functional does have a potential

of being a useful tool in understanding the dynamical structure of the hadronic wave func-

tion. The quantitative study of the properties and the evolution of the Wigner functional

deserves a serious effort, and is left for future work.

6 Discussion

In this paper we have introduced the notion of the CGC density matrix ρ̂. This is the

reduced density matrix in the CGC effective theory obtained by tracing over all the degrees

of freedom in the QCD Hilbert space except the rapidity integrated color charge density.

We stress again that this is not the same density matrix as considered in refs. [12, 13],

where the valence degrees of freedom were integrated out to obtain the reduced density

matrix on the soft gluon Hilbert space.

We have derived the evolution equation for the density matrix ρ̂ and have shown that

it is of the Kossakowsky-Lindblad form with the jump operator being equal to the single

soft gluon production amplitude. This is intuitively quite agreeable, since in general the

meaning of the jump operator is to introduce a jump to a different quantum state of the

“environment”, which in our case contains soft gluon degrees of freedom.

The Kossakowski-Lindblad form is the most general form of Markovian evolution al-

lowed by a probabilistic interpretation of the density matrix, i.e. overall normalization and
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positivity of all eigenvalues. This suggests that the general form of the evolution equation

should persist beyond leading order. It is thus possible that one can simplify the deriva-

tion of the NLO JIMWLK [56–59] by directly calculating corrections to the jump operator,

rather than to the JIMWLK Hamiltonian, which is a more complicated object. One may

hope that the same framework can also accommodate improved leading order JIMWLK

versions which resum large transverse logarithms. Physically one expects that since the

evolution in energy is aligned with the evolution in the frequency of produced gluons, the

typical time scale of the evolution will remain always larger than the time scale of the soft

gluon fluctuations. If this is the case, the Markovian nature of the evolution should be pre-

served beyond the leading order. Although physically reasonable, a better understanding

of possible sources for non-Markovian effects in the evolution is necessary.

The Kossakowski-Lindblad evolution is known to lead to increasing entanglement en-

tropy with the evolution “time”. We have indeed calculated the evolution of entanglement

entropy in a Gaussian approximation, both in the dilute regime and close to saturation.

We found that in both cases the entanglement entropy increases linearly with rapidity. In

the dilute regime the rate of increase coincides with the leading BFKL eigenvalue, while in

the dense (Levin-Tuchin) regime it is half of that value. The slower growth of entropy in

the saturated regime is likely caused by the suppressed emission probability of soft gluons

close to saturation.

The linear growth of entropy with rapidity is a rather interesting result. One may

naively expect that the entropy associated with ρ̂ is proportional to the total gluon number

ny — at least as long as ny is not too large. However this is not the case. The total number

of gluons in the dilute regime grows with rapidity exponentially, while the entropy eq. (4.44)

only grows linearly and thus much more slowly. The same type of behavior persists in the

dense regime.

A similar behavior of the entanglement entropy of the proton in the context of DIS

was proposed in ref. [60]. The picture of ref. [60] is very simple. It assumes that all

partonic states in the proton wave function at high energy completely decohere from each

other and all accessible states become equally probable. Thus the density matrix becomes

proportional to the unit matrix on the subspace of the Hilbert space which is “populated”

at a given energy. The dimension of this subspace is proportional to the mean number

of gluons in the wave function, which grows with the BFKL exponential, d ∝ eγy. The

normalization of ρ̂ means that it has eγy equal eigenvalues, each one approximately ρi ∝
d−1. For such a density matrix we know that the entropy Se ≈ − ln ρi = γy. The growth

of this entropy with energy is slow because ρ̂ is already maximally mixed on the subspace

of dimension d, and the growth is only due to the increase of this dimension with energy.

Although we do not know how closely the density matrix introduced in the present

paper is related to the object considered in ref. [60], it is instructive to examine our formulae

and understand whether the behavior we find indeed conforms with this simple argument.

Consider for simplicity the density matrix eq. (4.23). Although above we have used

this Gaussian ansatz only in the dilute regime, the following qualitative discussion should

apply to both regimes. At very high energy, i.e. close to saturation, λ−2
y is very large

and the density matrix eq. (4.1) indeed becomes very close diagonal ρ(α, α′) ∝ δ(α− α′).
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Let us for the moment assume that we indeed can neglect the nondiagonal matrix ele-

ments of ρ̂.

Then since µ2
y is also very large, for values of the field α such that α2 < µ2

y the matrix

elements of ρ̂ do not depend on α. Thus, in the high energy regime ρ̂ in effect is proportional

to a unit matrix of dimension d ∝ |αmax| ∝ e
γ
2
y. The entropy associated with such a density

matrix should be given by ln d = γ
2y. Although qualitatively correct, we are missing here

a factor of 1/2 relative to our result eq. (4.44). A closer look at our derivation indeed

reveals the origin of the missing factor 1/2. As is obvious from eq. (4.43), only half of the

entropy growth comes from the growth of µ2 and therefore of the dimension d. The other

half is contributed by the increase of λ−2, which controls the extent to which off diagonal

elements of ρ̂ are negligible. Therefore, in the dilute regime (but at high enough energy

where eγy � 1) the entropy grows due to two distinct effects: growth of the dimension

d of the subspace on which ρ̂ is nonvanishing, as well as further decoherence of ρ̂ on this

subspace. The two effects contribute equally to the entropy.

We note that we did obtain Se ≈ γ
2y in the LT regime, and one might think that in this

saturated regime the previous argument holds. However, a closer inspection shows that

this is not the case. In the saturation regime, just like before the dimension of the relevant

Hilbert space on which the density matrix is close to unity is controlled by the parameter

µ2. However µ2 now grows with energy much slower than exponentially, i.e. eq. (4.61).

Thus, the “expansion” of the populated subspace of the Hilbert space does not contribute

any linear in rapidity term to the entropy. On the other hand, the growth of λ−2 is still

exponential just like in the BFKL regime, eq. (4.63). All the entropy evolution in eq. (4.70)

therefore originates from further decoherence on the Hilbert space of approximately fixed

dimension. Therefore, neither in the dilute nor in the dense regime, the linear growth of

entropy discussed in the present paper seems to originate entirely from a picture proposed

in ref. [60], although this conclusion could be basis dependent.

As the last point in this paper, we have also defined the Wigner functional associated

with the density matrix ρ̂. We have argued that it can give access to understanding the joint

probability distribution in the space of color charge density and color current density. We

hope that such a distribution can teach us about the momentum distribution of produced

gluons in events with high multiplicity, which should be instrumental in understanding

the correlated behavior of produced hadrons. We have shown that even within the simple

Gaussian ansatz, the distributions of color charges and color currents do not factorize, and

that this non factorization feature is not eliminated by high energy evolution.

We hope that further work on these subjects will lead to a better, and more complete

understanding of hadronic physics at high energies.
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