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Abstract—Bounding each task’s worst-case execution time
(WCET) accurately is essential for real-time systems to determine
if all deadlines can be met. Yet, access latencies to Dynamic
Random Access Memory (DRAM) vary significantly due to
DRAM refresh, which blocks access to memory cells. Variations
further increase as DRAM density grows.

This work contributes the “Colored Refresh Server” (CRS), a
uniprocessor scheduling paradigm that partitions DRAM in two
distinctly colored groups such that refreshes of one color occur
in parallel to the execution of real-time tasks of the other color.
By executing tasks in phase with periodic DRAM refreshes with
opposing colors, memory requests no longer suffer from refresh
interference. Experimental results confirm that refresh overhead
is completely hidden and memory throughput enhanced.

I. INTRODUCTION

Dynamic Random Access Memory (DRAM) has been the

memory of choice in embedded systems for many years due

low cost combined with large capacity, albeit at the expense

of volatility. As specified by the DRAM standards [1], [2],

each DRAM cell must be refreshed periodically within a

given refresh interval. The refresh commands are issued by

the DRAM controller via the command bus. This mode, called

auto-refresh, recharges all memory cells within the “retention

time”, which is typically 64ms for commodity DRAMs under

85◦C [1], [2]. While DRAM is being refreshed, a memory

space (i.e., a DRAM rank) becomes unavailable to memory

requests so that any such memory reference blocks the CPU

pipeline until the refresh completes. Furthermore, a DRAM

refresh command closes a previously open row and opens a

new row subject to refresh [3], even though data of the old

row may be reused (referenced) before and after the refresh.

Hence, the delay suffered by the processor due to DRAM

refresh includes two aspects: (1) the cost (blocking) of the

refresh operation itself, and (2) reloads of the row buffer for

data displaced by refreshes. As a result, the response time of

a DRAM access depends on its point in time during execution

relative to DRAM refresh operations.

Prior work indicated that system performance is signif-

icantly degraded by refresh overhead [4], [5], [6], [7], a

problem that is becoming more prevalent as DRAMs are

increasing in density. With growing density, more DRAM

cells are required per chip, which must be refreshed within

the same retention time, i.e., more rows need to be refreshed

within the same refresh interval. This increases the cost of a

refresh operation and thus reduces memory throughput. Even

with conservative estimates of DRAM growth in density for

future DRAM technology, the cost of one refresh operation,
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tRFC, exceeds 1 micro-second at 32 Gb DRAM size, and

the loss in DRAM throughput caused by refreshes reaches

nearly 50% at 64 Gb [4]. Some work focuses on reducing

DRAM refresh latencies from both hardware and software

angles. Although the DRAM refresh impact can be reduced

by some proposed hardware solutions [8], [9], [10], [11], such

solutions take a long time before they become widely adopted.

Hence, other works seek to assess the viability of software

solutions by lowering refresh overhead via exploiting inter-

cell variation in retention time [4], [12], reducing unnecessary

refreshes [13], [14], and decreasing the probability of a mem-

ory access interfering with a refresh [15], [7]. Fine Granularity

Refresh (FGR), proposed by JeDEC’s DDR4 specification,

reduces refresh delays by trading off refresh latency against

frequency [2]. Such software approaches either heavily rely

on specific data access patterns of workloads or have high

implementation overhead. More significantly, none of them

can hide refresh overhead.

For real-time systems, the refresh problem is even more sig-

nificant. Bounding the worst-case execution time (WCET) of a

task’s code is key to assuring correctness under schedulability

analysis, and only static timing analysis methods can provide

safe bounds on the WCET [16]. Due to the asynchronous

nature of refreshes relative to task schedules and preemptions,

none of the current analysis techniques tightly bound the effect

of DRAM refreshes as a blocking term on response time.

Atanassov and Puschner [17] discuss the impact of DRAM

refresh on the execution time of real-time tasks and calculate

the maximum possible increase of execution time due to

refreshes. However, this bound is too pessimistic (loose): If the

WCET or the blocking term were augmented by the maximum

possible refresh delay, many schedules would become theoreti-

cally infeasible, even though executions may meet deadlines in

practice. Furthermore, as the refresh overhead almost increases

approximately linearly with growing DRAM density, it quickly

becomes untenable to augment the WCET or blocking term

by ever increasing refresh delays for future high density

DRAM. Although Bhat et al. make refreshes predictable and

reduce preemption due to refreshes by triggering them in

software instead of hardware auto-refresh [3], the cost of

refresh operations is only considered, but cannot be hidden.

Also, a task cannot be scheduled under Bhat if its period is

less than the execution time of a burst refresh.

This work contributes the “Colored Refresh Server” (CRS)

to remove task preemptions due to refreshes and to hide

DRAM refresh overhead. As a result, CRS makes real-time

systems more predictable, particularly for high DRAM density.

CRS exploits colored memory allocation to partition the entire



memory space into two colors corresponding to two server

tasks (simply called servers from here on) on a uniprocessor.

Each real-time task is assigned one color and associated with

the corresponding server, where the two servers have different

static priorities. DRAM refresh operations are triggered by two

tasks, each of which issues refresh commands to the memory

of its corresponding server for a subset of a colors (DRAM

ranks) using a burst refresh pattern. More significantly, by

appropriately grouping real-time tasks into different servers,

refreshes and competing memory accesses can be strategically

co-scheduled so that memory reads/writes do not suffer from

refresh interference. As a result, access latencies are reduced

and memory throughput increases, which tends to result in

schedulability of more real-time tasks. What is more, the

overhead of CRS is small and remains constant irrespective

of DRAM density/size. In contrast, auto-refreshed overhead

keeps growing as DRAM density increases.

Contributions: (1) The impact of refresh delay under varying

DRAM densities/sizes is assessed for real-time systems with

stringent timing constraints. We observe that refresh overhead

for an application is not easy to predict under standard auto-

refresh. Furthermore, the losses in DRAM throughput and

performance caused by refreshes quickly become unacceptable

for real-time systems with high DRAM density.

(2) The Colored Refresh Server (CRS) for uniprocessors is

developed to refresh DRAM via memory space coloring and

shown to hide to schedule tasks via the server policy. refresh

overhead almost entirely . hidden since a memory space is

either being accessed or refreshed, but never both at the

same time. Thus, regular memory accesses no longer suffer

from refresh interference, i.e., the blocking effect of refreshes

remains hidden in a safe manner.

(3) Experiments with real-time tasks confirm that both refresh

delays are hidden and DRAM access latencies are reduced.

Consequently, application execution times become more pre-

dictable and stable, even when DRAM density increases. An

experimental comparison with DDR4’s FGR shows that CRS

exhibits better performance and higher task predictability.

(4) CRS is realized in software and can be implemented on

commercial off-the-shelf (COTS) systems.

(5) Compared to previous work [3], CRS not only hides refresh

overhead, but also feasibly schedules short tasks (period less

than execution time of burst refresh) by refactoring them as

“copy tasks”.

(6) Our approach can be implemented with any real-time

scheduling policy supported inside the CRS servers.

II. BACKGROUND AND MOTIVATION

Today’s computers predominantly utilize dynamic random

access memory (DRAM), where each bit of data is stored

in a separate capacitor within DRAM memory. To serve

memory requests from the CPU, the memory controller acts

as a mediator between the last-level cache (LLC) and DRAM

devices (see Fig. 1) . Once memory transactions are received

by a DRAM controller from its memory controller, these

read/write requests are translated into corresponding DRAM

commands and scheduled while satisfying the timing con-

straints of DRAM banks and buses. A DRAM controller is

also called a node that governs DRAM memory organized

into channels, ranks and banks (see Fig. 1).

Fig. 1. DRAM System ArchitectureA DRAM bank array is organized into rows and columns of

individual data cells (see Fig. 2). To resolve a memory access

request, the row containing the requested data needs to first be

copied from the bank array into the row buffer. As a side effect,

the old row in the buffer is closed (“precharge”) incurring

a Row Precharge delay, tRP , and the new row is opened

(“activate”) incurring a Row Access Strobe delay, tRAS. This

is called a row buffer miss. Once loaded into the row buffer

and opened, accesses of adjacent data in a row due to spatial

locality incur just a Column Access Strobe penalty, tCAS
(row buffer hit), which is much faster than tRP + tRAS.

Fig. 2. DRAM Bank Architecture
A. Memory Space Partitioning

We assume a DRAM hierarchy with node, channel, rank,

and bank abstraction. To partition this memory space, we ob-

tained a copy of TintMalloc [18], a heap allocator that “colors”

memory pages with controller (node) and bank affinity.

TintMalloc allows programmers to select one (or more)

colors to choose a memory controller and bank regions disjoint

from those of other tasks. DRAM is further partitioned into

channels and ranks above banks. The memory space of an

application can be chosen such that it conforms to a specific

color. E.g., a real-time task can be assigned a private memory

space based on rank granularity. When this task runs, it can

only access the memory rank it is allocated to. No other

memory rank will ever be touched by it. By design, there is a

penalty for the first heap allocation request with a color under

TintMalloc. This penalty only impacts the initialization phase.

After a “first touch” page initialization, the latency of any

subsequent accesses to colored memory is always lower than

that of uncolored memory subject to buddy allocation (Linux

default). Also, once the colored free list has been populated

with pages, the initialization cost becomes constant for a stable



working set size, even for dynamic allocations/deallocation

assuming they are balanced in size. Real-time tasks, after

their initialization, experience highly predictable latencies for

subsequent memory requests. Hence, a first coloring allocation

suffices to amortize the overhead of initialization.

B. DRAM Refresh

Refresh commands are periodically issued by the DRAM

controller to recharge all DRAM cells, which ensures data

validity in the presence of electric leakage. A refresh command

forces a read to each memory cell followed by a write-back

without modification, which recharges the cell to its original

level. The reference refresh interval of commodity DRAMs is

64ms under 85◦C (185◦F) or 32ms above 85◦C, the so-called

retention time, tRET , of leaky cells, sometimes also called

refresh window, tREFW [1], [2], [19], [20]. All rows in a

DRAM chip need to be refreshed within tRET , otherwise

data will be lost. In order to reduce refresh overhead, refresh

commands are processed at rank granularity for commodity

DRAM [21]. The DRAM controller can either schedule an

automatic refresh for all ranks simultaneously (simultaneous

refresh), or schedule automatic refresh commands for each

rank independently (independent refresh). Whether simulta-

neous or independent, a successive area of multiple cells in

consecutive cycles is affected by a memory refresh cycle. This

area is called a “refresh bin” and contains multiple rows. The

DDR3 specification [1] generally requires that 8192 automatic

refresh commands are sent by the DRAM controller to refresh

the entire memory (one command per bin at a time). Here, the

refresh interval, tREFI , denotes the gap between two refresh

commands, e.g., tREFI = 7.8us, i.e., tREFW/8192. The

so-called refresh completion time, tRFC, is the refresh dura-

tion per bin. Auto-refresh is triggered in the background by

the DRAM controller while the CPU executes instructions.

Memory ranks remain unavailable during a refresh cycle,

tRFC, i.e., memory accesses (read and write operations) to

this region will stall the CPU during a refresh cycle. The

cost of a refresh operation is calculated as tRFC/tREFI .

As density of DRAM chips grows, the size of each refresh

bin becomes larger, i.e., it contains more rows. But the more

rows in a refresh bin, the longer the refresh delay and memory

blocking times become. The cost of a refresh operation,

tRFC, is delimited by power constraints. Table I shows that

The size of a refresh bin expands linearly with memory density

so that tRFC increases rapidly as DRAM density grows

from 119ns at 1Gb to more than 1us at 32 Gb DRAM,

even with conservative estimates of growth in density [4].

DRAM ranks can be refreshed in parallel under auto-refresh.

However, the amount of unavailable memory increases when

refreshing ranks in parallel. A fully parallel refresh blocks the

entire memory space for tRFC. This blocking time not only

decreases system performance, but can also result in deadline

misses unless it is considered in a blocking term by all tasks.

Furthermore, a side effect of DRAM refresh is that a row

buffer is first closed, i.e., its data is written back to the data

array and any memory access is preempted. After the refresh

TABLE I
tRFC FOR DIFFERENT DRAM DENSITIES (DATA FROM [1], [2], [4])

Chip Density total rows number of rows per bin tRFC

1Gb 128K 16 110ns
2Gb 256K 32 160ns
4Gb 512K 64 260ns
8Gb 1M 128 350ns

16Gb 2M 256 550ns
32Gb 4M 512 ≥ 1us
64Gb 8M 1K ≥ 2us

completes, the original data is loaded back into the row buffer

again, and the deferred memory access can continue. In other

words, the row which contains data needs to be closed and

re-opened due to interference between refresh and an in-

flight memory access. As a result, an additional overhead of

tRP + tRAS is incurred to close and re-open rows since the

refresh purges all buffers. This tends to result in additional

row buffer misses and thus decreased memory throughput. Liu

et al. [4] observe that the loss in DRAM throughput caused

by refreshes quickly becomes untenable, reaching nearly 50%

for 64 Gb DRAM. By considering both the cost of a refresh

operation itself and the extra row close/re-open delay, DRAM

refresh not only decreases memory performance, but also

causes the response time of memory accesses to fluctuate. Due

to the asynchronous nature of refreshes and task preemptions,

it is hard to accurately predict and bound DRAM refresh

delay. Depending on when a refresh command is sent to a bin

(successive rows), two scheduling strategies exist: distributed

and burst refresh (see Appendix A).

III. DESIGN

The core problem with the standard hardware-controlled

auto-refresh is the interference between periodic refresh com-

mands generated by the DRAM controller and memory access

requests generated by the processor. The latter ones are

blocked once one of the former is issued until the refresh

completes. As a result, memory latency increases and becomes

highly unpredictable since refreshes are asynchronous. The

central idea of our approach is to remove DRAM refresh

interference by memory partitioning (coloring). Given a real-

time task set, we design a hierarchical resource model [22],

[23], [24] to schedule it with two servers. To this end, we

partition the DRAM space into two colors, and each server

is assigned a colored memory partition. (We show in Sect. D

of the appendix that two colors suffice, i.e., adding additional

colors does not extend the applicability of the method, it would

only make schedulability tests more restrictive.) By cooper-

atively grouping applications into two resource servers and

appropriately configuring those servers (period and budget),

we ensure that memory accesses can no longer be subject to

interference by DRAM refreshes. Our approach can be adapted

to any real-time scheduling policy supported inside the CRS

servers. In this section, we describe the resource model, bound

the timing requirements of each server, and analyze system

schedulability.



A. Assumptions

We assume that a given real-time task set is schedulable

with auto-refresh under a given scheduling policy (e.g., EDF or

fixed priority), i.e., that the worst-case blocking time of refresh

is taken into account. As specified by the DRAM standards [1],

[2], the entire DRAM has to be refreshed within its retention

time, tRET , either serially or in parallel for all K ranks. . We

also assume hardware support for timer interrupts and memory

controller interrupts (MC interrupts).

B. Task Model

Let us denote the set of periodic real-time tasks as

T = {T1...Tn}, where each task, Ti, is characterized by

(φi, pi, ei, Di), or (pi, ei, Di) if φi = 0, or (pi, ei) if pi = Di

for a phase φi, a period pi, (worst-case) execution time ei,
relative deadline Di per job, task utilization ui = ei/Di, and

a hyperperiod H of T . Furthermore, let

tRET be the DRAM retention time,

L be the least common multiple of H and tRET , and

K be the number of DRAM ranks, and let ki denote rank i.

C. DRAM Refresh Server Model

The Colored Refresh Server (CRS) partitions the entire

DRAM space into two “colors”, such that each color con-

tains one or more DRAM ranks, e.g., c1(k0, k1...ki), and

c2(ki+1, ki+2...kK−1).
We build a hierarchical resource model (task server) [24],

S(W,A, c, ps, es), with CPU time as the resource, where

W is the workload model (applications),

A is the scheduling algorithm, e.g., EDF or RM,

c denotes the memory color(s) assigned to this server, i.e., a

set of memory ranks available for allocation,

ps is the server period, and

es is the server execution time (budget). Notice that the

base model [24] is compositional (assuming an anomaly-free

processor design) and it has been shown that a schedulability

test within the hyperperiod suffices for uniprocessors.

The refresh server can execute when

(i) its budget is not zero,

(ii) its available task queue is not empty, and

(iii) its memory color is not locked by a “refresh task”

(introduced below). Otherwise, it remains suspended.

D. Refresh Lock and Unlock Tasks

We employ “software burst parallel refresh” [3] to refresh

multiple DRAM ranks in parallel via the burst pattern (i.e.,

another refresh command is issued for the next row immedi-

ately after the previous one finishes , also see Appendix A

with Fig. 11). In our approach, there are two “refresh lock

tasks” (Trl1 and Trl2) and two “refresh unlock tasks” (Tru1

and Tru2), Trl1 and Tru1 surround the refresh for color c1
and are allocated to server S1 while Trl2 and Tru2 surround

the refresh for color c2 and are allocated by server S2. The

top-level task set T⊤ of our hierarchical model thus consists

of the two server tasks S1 and S2 plus another two tasks per

color, with the highest priority, for refresh lock/unlock, Trl1

and Tru1 as well as Tru2 and Tru2:

T⊤ = {S1, S2, Trl1, Tru1, Trl2, Tru2}.

Lock Task 1: 
Lock Color

Color 1 is refreshing

Server 2 is Executing Unlock Task 1: 
Unlock Color

Start Refresh 
Command

Interrupt

CPU Work CPU Work

DRAM Work

Fig. 3. Refresh Task with CPU Work plus DRAM Controller Work

When a refresh lock task is released (Fig. 3), the CPU

sends a command to the DRAM controller to initiate parallel

refreshes in a burst. Furthermore, a “virtual lock” is obtained

for the colors subject to refresh. Due to their higher priority,

refresh lock/unlock tasks preempt any server (if one was

running) until they complete. Subsequently, the refresh lock

task terminates so that a server task (of opposite color) can be

resumed. In parallel, the “DRAM refresh work” is performed,

i.e., burst refreshes are triggered by the controller. We use er1
and er2 to represent the duration of DRAM refresh per color

r1 and r2, respectively. A CPU server resumes execution only

if its budget is not exhausted, its allocated color is not locked,

and some task in its server queue is ready to execute.

Once all burst refreshes have completed, an interrupt is

triggered, which causes the CPU to call the refresh unlock task

that unlocks the newly refreshed colors so that they become

available again. This interrupt can be raised in two ways:

(1) If the DRAM controller supports interrupt completion

notification in hardware, it can be raised by the DRAM

controller. (2) Otherwise, the length of a burst refresh, δ, can

be measured and the interrupt can be triggered by imposing a

phase of δ on the unlock task relative to the phase of the lock

task of the same color. Interrupts are triggered at absolute

times to reduce jitter (see Sect. IV). The overhead of this

interrupt handler is folded into the refresh unlock task for

schedulability analysis in the following. In practice, the cost

of a refresh lock/unlock task is extremely small since it only

programs the DRAM controller or handles the interrupt.

The periods of both the refresh lock and unlock task are

tRET . The refresh lock tasks are released at k∗ tRET , while

the refresh unlock tasks are released at k ∗ tRET + δ. The

phases φ of Trl1 and Trl2 are tRET
2 and 0, respectively, i.e.,

memory ranks allocated to S2 are refreshed first followed by

those of S1. Let us summarize:

T⊤ = {S1, S2, Trl1, Tru1, Trl2, Tru2}, where

S1 = (0, p1, e1, p1), S2 = (0, p1, e2, p1),

Trl1 = (tRET/2, tRET, erl, δ), Trl2 = (0, tRET, erl, δ),

Tru1 = (tRET/2+δ, tRET, eru, δ), Tru2 = (δ, tRET, eru, δ).

The execution times erl and eru of the lock and unlock

tasks are upper bounds on the respective interrupts plus

programming the memory controllers for refresh and obtaining

the lock for the former and just unlocking the the latter

task, respectively. (They are also upper bounded by δ.) The



execution times e1 and e2 depend on the task sets of the servers

covered later, while their deadlines are equal to their periods

(p1 and p2). The task set T⊤ can be scheduled statically as

long as the lock and unlock tasks have a higher priority than

the server tasks. A refresh unlock task is triggered by interrupt

with a period of tRET . Since we refresh multiple ranks in

parallel, the cost of refreshing one entire rank is the same as

the cost of refreshing multiple ones. Furthermore, the cost of

the DRAM burst refresh, δ, is small (e.g., less than 0.2ms
for a 2Gb DRAM chip with 8 ranks) , and derived from the

DRAM density according to Table I .

E. CRS Implementation

Consumption and Replenishment: The execution budget

is consumed one time unit per unit of execution. The execution

budget is set to es at time instants k∗ps, where k ≥ 0. Unused

execution budget cannot be carried over to the next period.

Scheduling: As described in Sec. III-D, the two refresh

servers, S1 and S2, are treated as periodic tasks with their pe-

riods and execution times. We assign static priorities to servers

and refresh tasks (lock and unlock). Instead of rate-monotonic

priority assignment (shorter period, higher priority), static

scheduling requires assignment of a strict fixed priority to each

task (each server and each refresh task). The four refresh tasks

receive the highest priority in the system. S1 has the next

highest priority and S2 has a lower one than S1. However,

a server may only execute while its colors are unlocked.

Tasks can be scheduled with any real-time scheduling policy

supported inside the CRS servers, such as EDF, RM, or cyclic

executive. During system initialization, we utilize the default

hardware auto-refresh and switch to CRS once servers and

refresh tasks have been released.

Example: Let there be four real-time tasks with periods and

execution times of T1(16, 4), T2(16, 2), T3(32, 8), T4(64, 8).
DRAM is partitioned into 2 colors, c1 and c2, which in total

contains 8 memory ranks (k0 – k7).

The four real-time tasks are grouped into two Colored

Refresh Servers:

S1((T1, T2), RM, c1(k0, k1, k2, k3), 16ms, 6ms) and

S2((T3, T4), RM, c2(k4, k5, k6, k7), 16ms, 6ms).
In addition, refresh lock tasks Trl1 and Trl2 have a period of

tRET (64ms) and trigger refreshes for c1 and c2, respectively,

i.e., Trl2 triggers refreshes for (k4, k5, k6, k7) with φ=0 while

Trl1 triggers refreshes (k0, k1, k2, k3) with φ=32ms. Once

refreshes have finished, the refresh unlock tasks Tru1 and Tru2

update corresponding memory colors to be available again.

Fig. 4 depicts the task execution for our CRS. Here, regular

memory accesses from a processor of one color are overlaid

with DRAM refresh commands of the opposite color, just by

scheduling servers and refresh tasks according to their policies.

We further observe that S2 executes at time 32ms, even though

S1 has a higher priority than S2. This is because color c1 is

locked by refresh task Trl1. S1 can preempt S2 once c1 is

unlocked by Tru1, i.e., after its DRAM refresh finishes.

Fig. 4. Server scheduling example

F. Schedulability Analysis

In this section, we combine the analysis of the periodic

capacity bound and the utilization bound (see Appendix C)

to bound the response time, quantify the cost of CRS, and

analyze the schedulability of entire system, including the

servers and refresh lock/unlock tasks, i.e., Trl1 (0, tRET , erl,
tRET ), Trl2 (tRET/2, tRET , erl, tRET ), Tru1 (δ, tRET ,

eru, tRET ), Tru2 (tRET/2 + δ, tRET , eru, tRET ), S1

(p1, e1), and S2 (p2, e2), where we assume that the two

refresh lock tasks have the same execution time (erl), as

do the two refresh unlock tasks (eru). Compared to auto-

refresh, we build a hierarchical resource model (by selecting

period, budget, and workload for both servers), which not

only guarantees schedulability but also has a lower cost than

the overhead of auto-refresh. As a result of removing DRAM

refresh interference, our Colored Refresh Server outperforms

auto-refresh.

As described in Sec. III-D, the refresh tasks, Trl1, Trl2,

Tru1, and Tru2, have the highest priority, S1 has the next

highest priority, followed by S2 with the lowest priority. To

guarantee the schedulability of a real-time system with static

priority scheduling, we require that

(1) each task satisfies the TDA (time demand analysis) re-

quirement, and

(2) the total utilization does not exceed 1, i.e.,
e1
p1

+ e2
p2

+ 2 ∗ erl
tRET

+ 2 ∗ eru
tRET

≤ 1.

For hierarchical resource models [24], S1 and S2 are treated

as periodic tasks.

With auto-refresh, the maximum response time of S1 is

r
(k)
s1 = es1+ b, where b = ⌊ r

(k−1)
s1

tREFI
⌋∗ (tRFC+ tRP + tRAS)

represents the refresh overhead.

The maximum response time of S2 is:

r
(k)
s2 = es2+⌈ r

(k−1)
s2

ps1
⌉∗es1+b, where b = ⌊ r

(k−1)
s2

tREFI
⌋∗(tRFC+

tRP + tRAS) represents the refresh overhead.

With our CRS, S1 and S2 are co-scheduled with the refresh

lock and unlock tasks. The maximum response time of S1 is

r
(m)
s1 = es1 + 2 ∗ ⌈ r

(m−1)
s1

tRET
⌉ ∗ (erl + eru) + ǫ1,



where ǫ1 is the refresh overhead that cannot be hidden by our

CRS, which is

ǫ1 =
∑

n,k γ for n ∈ [0, L/p2] and k ∈ [0, L/tRET ]; also

γ = er1 if

(1) (m+1)∗p1 > prl1∗k > m∗p1 and prl1∗k−p1∗m ≤ rms1
(2) (n+1)∗p2 > prl1 ∗k > n∗p2 and prl1 ∗k−p2 ∗n ≥ rns2;

otherwise, γ = 0.

The maximum response time of S2 is:

r
(n)
s2 = es2 + ⌈ r

(n−1)
s2

ps1
⌉ ∗ es1 + 2 ∗ ⌈ r

(k−1)
s2

tRET
⌉ ∗ (erl + eru) + ǫ2,

where ǫ2 is the refresh overhead that cannot be hidden by our

CRS, which is

ǫ2 =
∑

m,k γ for m ∈ [0, L/p1] and k ∈ [0, L/tRET ]; also

γ = er2 if

(1) (m+1)∗p1 > prl2∗k > m∗p1 and prl2∗k−p1∗m ≥ rms1
(2) (n+1)∗p2 > prl2 ∗k > n∗p2 and prl2 ∗k−p2 ∗n ≤ rns2;

otherwise, γ = 0.

As defined in Sec. III-D, er1 and er2 represent the exe-

cution time of burst refreshes for the corresponding colors,

respectively. rms1 and rns2 can be calculated by response time

analysis under fixed-priority assignment. As we showed above,

the periods of both Trl1 and Trl2 are the DRAM retention time,

i.e., prl1 = prl2 = tRET .

This shows that overhead is only incurred when a refresh

task is released but its corresponding server (accessing the

opposite color) is not ready to execute. Here, the overhead of

refresh operations cannot be hidden. But this overhead is a

small fraction of the entire DRAM refresh cost. Besides, it is

predictable and quantifiable. The refresh overheads, ǫ1 and ǫ2,

under CRS can be optimized as discussed next.

Let us assume a task set is partitioned into two groups, each

associated with its own server. The servers with periods p1 and

p2 each have a periodic capacity and utilization bound that can

be calculated (shown in Appendix C). For server S1 and S2,

let PCB1 and PCB2 denote their periodic capacity bounds,

while UB1 and UB2 denote their utilization bounds.

The following algorithms find the lowest refresh overhead

for each server. Algorithm 3 searches the entire range of

available budgets and uses Algorithm 4 to quantify the refresh

overhead. This search, which considers all permutations, is

performed off-line, i.e., it does not incur overhead during real-

time task execution.

With Algorithms 3 and 4, our CRS reduces the refresh

overhead by selecting appropriate periods and budgets for each

server. Compared to the response time under auto-refresh, CRS

obtains a lower response time due to reduced refresh overhead,

and requirement (1) is satisfied. We further assume that the ex-

ecution times of refresh lock/unlock tasks (Trl1, Trl2, Tru1 and

Tru2) are identical (and known to be very small in practice).

Since refresh tasks issue refresh commands in burst mode,

CRS does not result in additional row buffer misses, i.e., er1
and er2 do not need to consider extra tRP or tRAS overheads,

which makes them smaller than their corresponding overheads

under auto-refresh [3], i.e., requirement (2) is satisfied. Finally,

our CRS not only bounds the response time of each server,

but also guarantees system schedulability.

Algorithm 1 Optimize Refresh Overhead

1: Input: Two given workloads, W1, W2, of servers S1, S2, respectively
2: for p1 in (0, hyperperiod of W1] do

3: for p2 in (0, hyperperiod of W2] do

4: for e1 in [PCB1 ∗ p1, p1] do

5: for e2 in [PCB2 ∗ p2, p2] do

6: Calc. UB1 using (p1,e1), UB2 using (p2,e2), Appendix C
7: if

∑
Ti∈W1

ui ≤ UB1 and
∑

Tj∈W2
uj ≤ UB2 then

8: for m in [0, L/p1] do

9: ǫ1 = Refresh Overhead(1, m, (p1, e1), (p2, e2))
10: calculate rms1
11: if rms1 ≥ p1 then

12: break
13: end if

14: TotalCost1+=ǫ1
15: end for

16: for n in [0, L/p2] do

17: ǫ2 = Refresh Overhead(2, n, (p1, e1), (p2, e2))
18: calculate rns2
19: if rns2 ≥ p2 then

20: break
21: end if

22: TotalCost2+=ǫ2
23: end for

24: if
∑

2

i=1
TotalCosti < min overhead then

25: budget1 = e1
26: budget2 = e2
27: min overhead = TotalCost1 + TotalCost2
28: end if

29: end if

30: end for

31: end for

32: end for

33: end for

34: return budget1 and budget2

For a “short task”, there is extra overhead under CRS due

to the task copy cost (see Appendix B). The cost (datasize ∗
bandwidth) can be folded into the response time of one sever

if it has a copy task. However, the discussion in Appendix H

shows that the cost of task copying is much less than the delay

incurred on real-time tasks by a refresh, i.e., a “short task” can

be scheduled under our CRS.

IV. IMPLEMENTATION

CRS has been implemented in an environment of three

components, a CPU simulator, a scheduler combined with a

coloring tool, and a DRAM simulator. SimpleScalar 3.0 [25]

simulates the execution of an application and generates its

memory traces. Memory traces are recorded to capture last-

level cache (LLC) misses, i.e., from the L2 cache in our case.

This information includes request intervals, physical address,

command type, command size, etc. Each LLC miss results

in a memory request (memory transaction) from processor to

DRAM (see Fig. 5). The red/solid blocks and lines represent

the LLC misses during application execution. The memory

transactions of different applications are combined by a hier-

archical scheduler according to scheduling policies (e.g., the

priority of refresh tasks and servers at the upper level and task

priorities within servers at the lower level). Furthermore, each

memory transaction’s physical address is colored based on the

coloring policy (see “coloring tool” in Appendix E).

After scheduling and coloring, the memory traces are ex-

posed to the DRAM simulator, RTMemController [26], to



Algorithm 2 Refresh Overhead

1: Input:index, i, (p1, e1), (p2, e2)
2: for k in [0, L/tRET ] do

3: if index==1 then

4: for n in [0, L/p2] do

5: if (i+ 1) ∗ p1 > tRET ∗ k > i ∗ p1 and
6: (n+ 1) ∗ p2 > tRET ∗ k > n ∗ p2 then

7: calculate ris1 and rns2
8: if tRET ∗ k − p1 ∗ i ≤ ris1 and
9: tRET ∗ k − p2 ∗ n ≥ rns2 then

10: return er1
11: else

12: return 0
13: end if

14: end if

15: end for

16: end if

17: if index==2 then

18: for m in [0, L/p1] do

19: if (m+ 1) ∗ p1 > tRET ∗ k > m ∗ p1 and
20: (i+ 1) ∗ p2 > tRET ∗ k > i ∗ p2 then

21: calculate rms1 and ris2
22: if tRET ∗ k − p1 ∗m ≤ rms1 and

23: tRET ∗ k − p2 ∗ i ≥ ris2 then

24: return er2
25: else

26: return 0
27: end if

28: end if

29: end for

30: end if

31: end for

Fig. 5. System Architecture

analyze the DRAM performance. All memory transactions

of the trace are scheduled by RTMemController, and their

execution times are calculated. Instead of using fixed memory

latencies for every task, which is the default, we enhanced

SimpleScalar to consider the average execution time of each

task’s memory transactions analyzed by RTMemController

over all LLC misses, which includes the DRAM refresh

overhead. At last, the result of RTMemController (execution

time of each memory transaction) is fed back to SimpleScalar

to determine the application’s overall execution time. This

models the execution time of each real-time application,

including its DRAM performance per memory access.

RTMemController is a back-end architecture for real-time

memory controllers and was originally designed for DDR3

SDRAMs using dynamic command scheduling. We extended

RTMemController to support burst refresh and DDR4 Fine

Granularity Refresh (FGR). The performance of DRAM is

analyzed by the enhanced RTMemController, which schedules

the DRAM refresh commands at rank granularity.

The simulation environment also supports generation of an

interrupt triggered by the DRAM controller when the bursts

of a refresh task complete. Should a DRAM controller not

support such an interrupt signal upon refresh completion,

one can utilize a second timer. The refresh tasks are already

triggered by a first periodic timer, say at time t. Once all

DRAM refreshes have been issued by a refresh task, an

absolute timer is installed for t + tRFC (adding the refresh

blocking time) to trigger the handler that unlocks the colors

subject to refresh.

Color locks are implemented as attributes for scheduling at

the top level, i.e., a flag per color suffices. Such a flag is set for

colors of a refresh task before this refresh task is dispatched,

and the flag is cleared inside the handler invoked upon refresh

completion. We referred to a “virtual” lock earlier since the

mechanism resembles a lock in terms of resource allocation

for schedulability analysis. However, it cannot be implemented

via a lock since a server task, if it obtained a lock, could

not release it when interrupted by a refresh task. Instead, the

refresh task would have to steal this lock, which is typically

not supported by any API. Since we are implementing low-

level scheduling directly, our flag solution is not only much

easier to realize, it also has lower overhead as neither atomic

instructions nor additional queues are required.

Discussion: This paper shows that the refresh overhead of a

periodic real-time task set on a single processor can be hidden

by our CRS. CRS could be generalized to multicore platforms

under partitioned parallel scheduling of tasks with respect to

cores, but the analysis would have to be revised beyond the

hyperperiod as our base model [24] assumes a uniprocessor,

whereas multicore schedules with task offsets may only reach

a fixpoint after multiple hyperperiods [27]. Nonetheless, CRS

could simply schedule the subset of tasks associated with the

partition of a given core using CRS’ hierarchical server model

on a per-core basis, where servers receive different memory

colors to guarantee when their allocated colors are not being

refreshed while a server executes.

We evaluate our approach via hardware simulation, but

software refresh control has been demonstrated on different

hardware platforms [3], and CRS could be implemented with

similar software refresh controls on such platforms (with some

engineering overhead). DRAM refreshes are synchronous with

the processor clock (if the clock is fixed) and can, in fact,

optionally be disabled for a subset of ranks on contemporary

single- and multi-core systems [28]. Furthermore, the phase

when a per-rank hardware refresh starts could be reverse engi-

neered by monitoring access latencies during the initialization

of a CRS-controlled system on these platforms.

V. EVALUATION FRAMEWORK

The experimental evaluation assesses the performance of

CRS relative to standard DRAM auto-refresh in four ex-

periments. The first investigates the memory performance

enhancements of CRS. The second illustrates how CRS hides

the refresh delay instead of inflating execution times and

guarantees the schedulability of real-time system. The third

and fourth compare CRS with DDR4 Fine Granularity Refresh

(FGR) and previous work, respectively.



We assess the Malardalen WCET benchmark programs [29]

atop SimpleScalar 3.0 [25] combined with RTMemCon-

troller [30]. The processor is configured with split data and

instruction caches of 16KB size each, a unified L2 cache

of 128KB size, and a cache line size of 64B. The memory

system is a JEDEC-compliant DDR3 SDRAM (DDR3-1600G)

with adjustable memory density (1Gb, 2Gb, 4Gb, 8Gb, 16Gb,

32Gb and 64Gb). The DRAM retention time, tRET , is 64

ms. Furthermore, there are 8 ranks, i.e., K = 8, and one

memory controller per DRAM chip. (The approach requires a

minimum of two ranks, which even small embedded systems

tend to provide.) Refresh commands are issued by memory

controllers at rank granularity.

TABLE II
REAL-TIME TASK SET

Application Period Execution Time

cnt 20ms 3ms

compress 10ms 1.2ms

lms 10ms 1.6ms

matmult 40ms 10ms

st 8ms 2ms

Multiple Malardalen applications are scheduled as real-time

tasks under both CRS (hierarchical scheduling of refresh tasks

plus servers and then real-time tasks within servers) and auto-

refresh (single-level priority scheduling). Execution times and

periods (deadlines) per Malardalen task are shown in Table II.

Here, the base for execution time is an ideal one without

refreshes. This ideal method is infeasible in a practice, but

it provides a lower bound and allows us to assess how close

a scheme is to this bound. The real-time task set shown in

Table II can be scheduled under either a dynamic priority

policy (e.g., EDF) or a static priority policy (e.g., RM and

DM). We assess EDF due to space limitations, but CRS also

works and obtains better performance than auto-refresh under

static priority scheduling.

The task set in Table II has a hyperperiod of 40ms, and is

schedulable under EDF without considering refresh overhead.

CRS segregates each Malardalen application into one of the

two servers. As shown in Sec.III-F, Algorithms 3 and 4 assist

in finding a partition with minimal refresh overhead. There

may be multiple best configurations under CRS, but we only

assess experiments with one of them due to symmetry.

We employ two servers (S1 and S2) and refresh tasks (Trl1,

Trl2, Tru1 and Tru2). Applications “cnt”, “lms” and “st” are

assigned to S1 with 4ms periods and a 2.4ms budget, while

application “compress” and “matmult” belong to S2 with 4ms

periods and a 1.6ms budget. The entire memory space is

equally partitioned into 2 colors (c1 and c2), i.e., the 8 DRAM

ranks comprise 2 groups with 4 ranks each. TintMalloc [18]

ensures that tasks of one server only access memory of one

color, i.e., tasks in S1 only allocate memory from the 4 ranks

belonging to c1 while tasks in S2 only allocate from c2.

Furthermore, memory within c1 and c2 is triggered by Trl1 and

Trl2 to be refresh by the burst pattern. The memory space is

locked, and the server allocated to this space/color is prevented

to execute during refresh until it is unlocked by Tru1 and Tru2

when all refresh operations finish. The periods of all refresh

tasks (Trl1, Trl2, Tru1 and Tru2) are equal to the DRAM

retention time tRET (64ms), and their phases are 32ms and

0 for Trl1 and Trl2, respectively.

VI. EXPERIMENTAL RESULTS

Fig. 6 shows the memory access latency (y-axis) of auto-

refresh normalized to that of CRS for all benchmarks at

different DRAM densities (x-axis). The red/solid line inside

the boxes indicates the median while the green/dashed line

represents the average across the 5 tasks. The “whiskers”

above/below the box indicate the maximum and minimum.
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Fig. 6. Memory Latency of Auto-Refresh Normalized to CRS

We observe that CRS obtains better memory performance

than auto-refresh, i.e., CRS reduces the memory latency due

to refresh stalls for all DRAM densities. While auto-refresh

suffers a small latency penalty at low DRAM density (8.34%

on avg. at 1Gb density), this increases rapidly with density up

to an unacceptable level (e.g., the average memory latency of

auto-refresh increases by 455% relative to CRS at 64Gb). CRS

avoids any latency penalty because memory requests of a real-

time task do not (and cannot) interfere with any DRAM refresh

since memory assigned to a server is not refreshed while

the server executes. When this memory subspace needs to be

refreshed, the respective server is suspended so that the other

server may execute, which accesses memory of opposite color

(not subject to refresh). In short, CRS co-schedules servers

and refresh tasks such that any memory subspace can either be

accessed by a processor or refreshed by the DRAM controller,

but not by both at the same time. Hence, real-time tasks do

not suffer from refresh overhead/blocking.

Observation 1: CRS avoids the memory latency penalty of

auto-refresh, which increases with memory density under auto-

refresh.

Auto-refresh not only increases memory access latency, it

also causes memory performance to highly fluctuate across

applications. Fig. 6 shows that different tasks suffer different

latency penalties dependent on their memory access patterns.

E.g., for a density of 16Gb, “compress” suffers a 9.7% in-

creased latency while “cnt” suffers more than 154% increased

latency. With growing density, the refresh delay increases not

only due to longer execution time of refresh commands, but

also because the probability of interference with refreshes

increases. Fig. 7 illustrates this by plotting the number of

memory references suffering from interference (y-axis) by task



over the same x-axis as before. Memory requests of a task

suffer from more refresh interference with growing density

since longer refresh durations imply a higher probability of

blocking specific memory accesses.
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Fig. 7. Number of Memory Accesses with Refresh Interference

Observation 2: Auto-refresh results in high variability of

memory access latency depending on memory access patterns

and DRAM density while CRS hides this variability.

A. System Schedulability

Let us compare the execution time of each task under

auto-refresh and CRS. Fig. 8 depicts the execution time of

auto-refresh normalized to CRS (y-axis) over the same x-

axis as before. We observe that execution times of tasks

under auto-refresh exceed those under CRS since the latter

avoids refresh blocking. Execution times increase rapidly with

DRAM density under auto-refresh. E.g., refreshes increase

execution times by 3.16% for 8Gb and by 22% at 64Gb for

auto-refresh. The execution time of each application under

CRS remains constant irrespective of DRAM density. Since

there is no refresh blocking anymore, changing density has no

effect on performance.
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Fig. 8. Execution Time of Auto-Refresh Normalized to CRS

Fig. 9 depicts the overall system utilization factor (y-

axis starting at 0.93) over DRAM densities (x-axis) of this

real-time task set under different refresh methods. A lower

utilization factor indicates better performance since the real-

time system has more slack to guarantee schedulability. Auto-

refresh experiences a higher utilization factor than CRS due

to the longer execution times of tasks, which increases with

density to the point where deadlines are missed (above factor

1.0) at 16, 32, and 64Gb.

In contrast, the utilization of CRS is lower and remains

constant irrespective of densities. In fact, it is within 0.01% of

the lower bound (non-refresh), i.e., scheduling overheads (e.g.,

due to preemption) are extremely low. Overall, CRS is superior

because it co-schedules memory accesses and refreshes such

that refresh interference is avoided.
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Fig. 9. System Utilization vs. DRAM Density

Observation 3: Compared to auto-refresh, CRS reduces the

execution time of tasks and enhances system utilization by

hiding refresh overheads, which increases predictability while

preserving real-time schedulability. Furthermore, the perfor-

mance of CRS remains stable and predictable irrespective

of DRAM density while auto-refresh experiences increased

overheads as density grows.

B. Fine Granularity Refresh

JEDECs DDR4 DRAM specification [2] introduces a Fine

Granularity Refresh (FGR) that attempts to tackle increases

in DRAM refresh overhead by creating a range of refresh

options to provide a trade-off between refresh latency and

frequency. We compared CRS with three FGR refresh options,

namely the 1x, 2x, and 4x refresh modes. 1x is a direct

extension of DDR2 and DDR3 refreshes. A certain amount

of refresh commands are issued, and each command takes

tRFC time. The refresh interval, tREFI , of 1x is 7.8us [2].

2x and 4x require refresh commands to be sent twice and

four times as frequently, respectively. The interval, tREFI
is correspondingly reduced to 3.9us and 1.95us for 2x and

4x, respectively. More refresh commands mean fewer DRAM

rows are refreshed per command, and, as a result, the refresh

latencies, tRFC, for 2x and 4x are shorter. However, when

moving from 1x to 2x and then 4x, tREFI scales linearly,

yet tRFC does not. Instead, tRFC decreases at a rate of less

than 50% [5].

Fig. 12 depicts memory access latency (y-axis) normalized

to CRS over DRAM densities (x-axis) for FGR 1x, 2x, and

4x. We observe that although 4x outperforms 1x and 2x,

our approach uniformly provides the best performance and

lowest memory access latency due to elimination of refresh

blocking. After all, CRS hides the entire refresh operation

while FGR reduces the refresh blocking time. Furthermore,

the performance of FGR decreases with growing DRAM

density. E.g., at 64Gb density, memory requests suffer an

additional 17.6%, 20.7%, and 30.8% delay under FGR 4x,

2x and 1x, respectively, relative to CRS. This cost increases

to 343.7%, 376.4%, and 454.8% at 64Gb. CRS, in contrast,

hides refresh costs so that memory access latencies remain the

same irrespective of DRAM densities.
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Observation 4: CRS exhibits better performance and higher

task predictability than DDR4’s FGR.

VII. RELATED WORK

Contemporary DRAM specifications indicate increasing re-

fresh latencies [1], [2], which prompted researcher to search

for solutions. Recent works [21], [31], [32], [33], [6], [34]

analyze DRAM refresh and quantify its penalty. The refresh

overhead for DDR3+4 DRAM with high densities is discussed

by Mukundan et al. [5]. While some focus on hardware to

reduce the impact of DRAM refreshes [8], [9], [10], [11],

others assess the viability of software solutions since hardware

solutions take a long time before they become widely adopted.

Liu et al. [4] propose Retention-Aware Intelligent DRAM

Refresh (RAIDR), which reduces refresh overhead by using

knowledge of cell retention times. By exploiting the variation

of DRAM cell retention time, RAIDR groups DRAM cells

into several bins based on the measured minimum retention

time cross all cells in a corresponding bin. Refresh overhead

is reduced by RAIDR since rows are refreshed at different

rates based on which bin they belong to. However, the

retention time of a DRAM cell is sensitive to temperature,

voltage, internal DRAM noise, manufacturer variability, and

data access patterns. It may be risky to schedule refreshes at

intervals beyond DRAM specifications as the retention time

of cells is at least variable, if not unstable. RAPID [12] is

a similar approach, where pages are sorted by their retention

time and then allocated in this order to select pages with longer

retention time first. Compared to CRS, these techniques reduce

but cannot hide refresh blocking. RAPID not only suffers

from similar risks as RAIDR, but also heavily relies on high

memory locality to obtain better performance.

Smart Refresh [13] identifies and skips unnecessary re-

freshes by maintaining a refresh-needed counter. With this

counter, a row that has been read or written since a refresh

need not be refreshed again. Thus, memory performance is

enhanced since the total number of refreshes is reduced.

However, the performance of Smart Refresh heavily relies

on knowledge about the data access pattern and has a high

die space cost to maintain the refresh-needed counters. Liu

et al. proposed Flikker [14], a selective DRAM refresh that

uses a reference bit per row to record and determine if

this row needs to be refreshed. Rows that are labeled “non-

critical” will not be refreshed in order to reduce unnecessary

refreshes. But the performance of Selective DRAM Refresh

still heavily depends on the data access pattern. Our CRS

is agnostic of data access patterns, and it does not require

extra die space while its time overhead is very small. Bhati

et al. [15] propose a new DRAM refresh architecture that

combines refresh reduction techniques with the default auto-

refresh. Unnecessary refreshes can be skipped, while ensuring

that required refreshes are serviced. However, this approach

does not hide refresh overhead completely, and it suffers from

increased refresh latency for larger DRAM density/sizes.

Elastic Refresh [7] uses predictive mechanisms to decrease

the probability of a memory access interfering with a refresh.

Refresh commands are queued and scheduled when a DRAM

rank is idle. This way, some interferences between memory

accesses and refreshes can be avoided. However, as tRFC
increases with growing DRAM density, the probability of

avoiding interferences decreases. In contrast, our CRS hides

refresh delays for regular memory accesses under load. , and

its performance is not affected by increasing DRAM density.

Chang et al. [35] make hardware changes to the refresh

scheduler inside the memory controller/DRAM subarrays.

Kotra et al. [36] use LPDDR-technology for bank-partitioned

scheduling without deadlines. Our work focuses on how real-

time deadlines can be supported while hiding refresh via

hierarchical scheduling in a server paradigm, including the

assessment of overheads (lock/unlock) and the composition

of tasks. Our work focuses on commodity DDR-technology,

which is widely used in the embedded field and only supports

rank partitions under refresh, but our methodology is equally

applicable to LPDDR bank-partitioning (with its added flexi-

bility). Other DRAM technology, e.g., RLDRAM [37], makes

memory references more predictable but is subject to the same

refresh blocking, i.e., CRS is directly applicable to them as

well. Bhat et al. [3] make DRAM refresh more predictable.

Instead of hardware auto-refresh, a software-initiated burst

refresh is issued at the beginning of every DRAM retention

period. After this refresh burst completes, there is no refresh

interference for regular memory accesses during the remainder

of DRAM retention time. But the memory remains unavailable

during the refresh, and any stalls due to memory references at

this time increase execution time. Although memory latency

is predictable, memory throughput is still lower than CRS due

to refresh blocking, i.e., CRS overlays (hides) refresh with

computation. Furthermore, a task cannot be scheduled if its

period is less than the duration of the burst refresh.

VIII. CONCLUSION

A novel uniprocessor scheduling server, CRS, is developed

that hides DRAM refresh overheads via a software solution for

refresh scheduling in real-time systems. Experimental results

confirm that CRS increases the predictability of memory

latency in real-time systems by eliminating blocking due to

DRAM refreshes.
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APPENDIX

A. Refresh Mode and Scheduling Strategy

For commodity DDRx (e.g., DDR3 and DDR4), refresh

operations are issued at rank granularity. A single refresh

command for a given rank precharges all banks within this

rank, which is called “All-Bank” refresh [21]. In contrast,

recent LPDDRx DRAM [38] supports an enhanced “Per-

Bank” mode to refresh cells at bank level while other banks in

the same rank may be serviced. “Per-Bank” consumes more

refresh time overall than “All-Bank” but achieves higher bank

parallelism [15]. For each rank, a refresh counter maintains

the address of the row to be refreshed and applies charges

to the chip’s row address lines. A timer then increments

the refresh counter to step through the rows. Depending on

when a refresh command is sent to a bin (successive rows),

two scheduling strategies exist, namely distributed and burst

refresh (see Fig. 11).

Distributed Refresh: A single refresh operation is performed

periodically. Once all rows are refreshed, the refresh cycle is

repeated by starting from the first row. As Fig. 11 shows,

distributed refresh only schedules one automatic refresh every

tREFI . All refreshes are sent by the DRAM controller and

performed in hardware. Distributed refresh is currently the

most common method. However, the response time of regular

memory accesses varies over a wide time range due to the

spread of refreshes, and due to the overhead incurred by

closing the row buffer.

Burst refresh: A series of refresh cycles are performed back-

to-back (tREFI = 0) until all rows have been refreshed.

After that, the memory is available for accesses until the next

refresh, which is issued after tRET , the DRAM retention

time. As shown in Fig. 11, sequential refreshes are performed

successively at the beginning of each tRET period. Although

burst refresh can reduce extra row buffer misses, the cost of

refresh operations still decreases DRAM system performance.

More importantly, a burst refresh results in long periods

during which the memory is unavailable, which also affects

task execution and results in longer memory latencies, yet

such bursts occur less frequently. For real-time systems, a

long memory blocking time may result in deadline misses,

in particular if the period of a real-time task is short.

Fig. 11. DRAM Refresh Strategy
B. Copy Task

To schedule short tasks, we next propose the concept of a

“copy task”. A short task is defined as one whose period is

less than the burst refresh cost. Such tasks are not schedulable

in [3].

Our novel approach creates two instances of a task, the orig-

inal one and a so-called “copy tasks”. The two instances have

identical control flow, but their data is referencing memory

allocated from different colors so that the two instances belong

to different servers. When a job of this task is released, our

approach selects the instance to execute based on which server

is running. Once one instance starts, its data is forwarded

(copied) from another color if its previous instance had been

allocated to a different color than the current one. Notice that

differences in colors of consecutive instances can be deter-

mined statically over the entire hyperperiod, i.e., it is possible

to perform this check statically so that the copy subroutine

is triggered for exactly those instances prefixed by a different

color instance. The trade-off between CRS’s refresh hiding

and the forwarding cost, calculated as datasize ∗ bandwidth,

is evaluated Appendix H.

C. Schedulability Analysis within a Server

In this section, we analyze the schedulability of tasks within

a server by modeling the “Periodic Capacity Bound” and the

“Utilization Bound”. For each server, S(W,A, c, ps, es), we

can bound the periodic capacity for its period and budget that

guarantees the schedulability of workload W and scheduling

algorithm A. Similarly, when characterizing its period, budget

and scheduling algorithm, we determine a utilization bound

for its workload W that guarantees the schedulability of

this server. Let us derive the periodic capacity bounds and

the utilization bounds for the EDF algorithm and the RM

algorithm, respectively.

EDF: For our CRS, DRAM refresh operations are performed

by the refresh tasks (lock and unlock), which are outside of

the servers. As a result, there is no refresh overhead within

each server.

The resource demand bound function [24] under EDF is:

dbf(t) =
∑

Ti∈W ⌊ t
pi
⌋ ∗ ei

(i) Periodic Capacity Bound (PCB): For a sever with period

ps and budget es, its lowest supply bound function during t
time units lsbf(t) is [24]:

lsbf(t) = es
ps

∗ (t− 2 ∗ (ps − es))
In order to guarantee schedulability of tasks within a server,

∀ 0 < t ≤ H : dbf(t) ≤ lsbf(t) , where H is the hyperperiod

of tasks within this server.

dbf(t) ≤ lsbf(t) = es
ps

∗ (t− 2 ∗ (ps − es)).

We have PCB = es
ps

, where

es ≥
√

(t−2ps)2+8ps∗dbf(t)−(t−2ps)

4 .

(ii) Utilization Bound (UB): For a task set W , its utilization

bound UW can be calculated as p′ ∗ UW ≤ lsbf(p′) [24],

where p′ is the smallest period in task set W .

UW ≤ lsbf(p′)
p′

= es
ps

∗ (p
′
−2(ps−es)

p′
) = es

ps
∗ (1− 2(ps−es)

p′
).

RM: The response time of a task is

r
(k)
i = ei+

∑
Tk∈HP (W,Tk)

⌈ r
(k−1)
i

pk
⌉∗ek. As discussed before,

there is no refresh overhead within each server.

(i) Periodic Capacity Bound (PCB): The linear service time

bound function ltbf(t) represents the upper bound of service

time to supply t time units of a resource [24]:

ltbf(t) = ps

es
∗ t+ 2(ps − es).



To guarantee schedulability of tasks within a server, e.g.,

for Ti, the service time to supply r
(k)
i should be less than its

period, pi, i.e.,

ltbf(r
(k)
i ) = ps

es
∗ r(k)i + 2 ∗ (ps − es) ≤ pi.

As a result, the periodic capacity bound (PCB) is

PCB = es
ps

, where

es ≥
√

(pi−2ps)2+8∗ps∗r
(k)
i

−(pi−2ps)

4 .

(ii) Utilization Bound (UB): For a task set W , its utilization

bound, UW , can be calculated as UW = es
ps

∗ (ln2 − ps−es
p′

),
where p′ is the shortest period in the task set.

D. Two Colors Suffice

Our approach uses only two colors, which raises the ques-

tion if more colors extend the applicability of our method. In

short, the answer is no. We will sketch a proof in the following.

Let us assume an n-colored system with n servers X1...Xn

with phases i ∗ tRET/n for Xi. Any such system can then

be reduced to a (n − 1)-colored set of servers S1..Sn−1 as

follows. Let Si = Xi for 1...n − 1. Let T1 be a task of Xn.

If T1 never runs during Si’s refresh interval, we can simply

assign it to Ti. If T1 runs during multiple of Si’s refresh

intervals, then we assign all instances of T1 to S1, except

the ones that occur during S1’s refresh, which we assign as

T
′

1 (a copy tasks) to S2 (see Sect. B). This creates copy task

overhead, but this overhead is so small (see last paragraph

of appendix) that the extra overhead of context switches plus

interrupts for lock/unlocks tasks of S3 would likely be larger.

The budget of Xn is distributed proportionately to the Sis that

its tasks are assigned to. This process is repeated for all tasks

of Xn. Further, any n-colored set of servers can be inductively

reduced to a 2-colored server system using the constructive

steps (essentially an algorithm) above.

E. Coloring Tool

To hide the refresh overhead for real-time systems, our

approach requires that each task be assigned a memory color

via colored memory allocation. We ported TintMalloc [18]

to SimpleScalar so that it can select the color of physical

addresses in memory. In the experiments, the entire DRAM

is split into two colors corresponding to the two servers, and

each application is assigned to one of them. We can adjust the

number of ranks associated with one color, e.g., in order to

meet an application’s memory requirement. The TintMalloc

tool takes as an input an application’s memory trace and

scans the physical addresses accessed. To color a memory

space, the Rank ID of each physical address is calculated,

and it is checked if it belongs to the colors assigned to this

application. In our case, the rank ID is determined by bits 15-

17 of the physical address. If the Rank ID does not match,

these bits are set to the task’s respective color. Otherwise,

the physical address remains unchanged. Example: Consider

a total of 8 ranks, let ranks 0-3 belong to color 1 while

ranks 4-7 are in color 2. When an application is assigned to

color 1, TintMalloc ensures that all its pages are in the 0-

3 rank range by resetting bits 15-17 of the physical address

(in the page range). To avoid duplicated physical addresses,

TintMalloc’s port not only changes the rank ID of the physical

address, but also assigns this address to a new free page of the

corresponding color. We further retain page locality of physical

addresses, i.e., if two physical addresses originally reside in

the same page, they still share the same page after coloring.

Once applications are colored this way, all physical addresses

of a trace belong to a particular memory segment (color), and

a task only accesses this specific area as per coloring policy.

F. Algorithms to Assign Tasks to Servers

The following algorithms find the lowest refresh overhead

for each server. Algorithm 3 searches the entire range of

available budgets and uses Algorithm 4 to quantify the refresh

overhead. This search, which considers all permutations, is

performed off-line, i.e., it does not incur overhead during real-

time task execution.
Algorithm 3 Optimize Refresh Overhead

1: Input: Two given workloads, W1, W2, of servers S1, S2, respectively
2: for p1 in (0, hyperperiod of W1] do

3: for p2 in (0, hyperperiod of W2] do

4: for e1 in [PCB1 ∗ p1, p1] do

5: for e2 in [PCB2 ∗ p2, p2] do

6: Calc. UB1 using (p1,e1), UB2 using (p2,e2), see Ap-
pendix C

7: if
∑

Ti∈W1
ui ≤ UB1 and

∑
Tj∈W2

uj ≤ UB2 then

8: for m in [0, L/p1] do

9: ǫ1 = Refresh Overhead(1, m, (p1, e1), (p2, e2))
10: calculate rms1
11: if rms1 ≥ p1 then

12: break
13: end if
14: TotalCost1+=ǫ1
15: end for

16: for n in [0, L/p2] do

17: ǫ2 = Refresh Overhead(2, n, (p1, e1), (p2, e2))
18: calculate rns2
19: if rns2 ≥ p2 then

20: break
21: end if

22: TotalCost2+=ǫ2
23: end for

24: if
∑

2

i=1
TotalCosti < min overhead then

25: budget1 = e1
26: budget2 = e2
27: min overhead = TotalCost1 + TotalCost2
28: end if

29: end if

30: end for

31: end for

32: end for

33: end for

34: return budget1 and budget2

With Algorithms 3 and 4, our CRS reduces the refresh

overhead by selecting appropriate periods and budgets for each

server.

G. Fine Granularity Refresh

JEDECs DDR4 DRAM specification [2] introduces a Fine

Granularity Refresh (FGR) that attempts to tackle increases

in DRAM refresh overhead by creating a range of refresh

options to provide a trade-off between refresh latency and

frequency. We compared CRS with three FGR refresh options,

namely the 1x, 2x, and 4x refresh modes. 1x is a direct



Algorithm 4 Refresh Overhead

1: Input:index, i, (p1, e1), (p2, e2)
2: for k in [0, L/tRET ] do

3: if index==1 then

4: for n in [0, L/p2] do

5: if (i+ 1) ∗ p1 > tRET ∗ k > i ∗ p1 and
6: (n+ 1) ∗ p2 > tRET ∗ k > n ∗ p2 then

7: calculate ris1 and rns2
8: if tRET ∗ k − p1 ∗ i ≤ ris1 and
9: tRET ∗ k − p2 ∗ n ≥ rns2 then

10: return er1
11: else

12: return 0
13: end if

14: end if

15: end for

16: end if

17: if index==2 then

18: for m in [0, L/p1] do

19: if (m+ 1) ∗ p1 > tRET ∗ k > m ∗ p1 and
20: (i+ 1) ∗ p2 > tRET ∗ k > i ∗ p2 then

21: calculate rms1 and ris2
22: if tRET ∗ k − p1 ∗m ≤ rms1 and

23: tRET ∗ k − p2 ∗ i ≥ ris2 then

24: return er2
25: else

26: return 0
27: end if

28: end if

29: end for

30: end if

31: end for

extension of DDR2 and DDR3 refreshes. A certain amount

of refresh commands are issued, and each command takes

tRFC time. The refresh interval, tREFI , of 1x is 7.8us [2].

2x and 4x require refresh commands to be sent twice and

four times as frequently, respectively. The interval, tREFI
is correspondingly reduced to 3.9us and 1.95us for 2x and

4x, respectively. More refresh commands mean fewer DRAM

rows are refreshed per command, and, as a result, the refresh

latencies, tRFC, for 2x and 4x are shorter. However, when

moving from 1x to 2x and then 4x, tREFI scales linearly,

yet tRFC does not. Instead, tRFC decreases at a rate of less

than 50% [5].

Fig. 12 depicts memory access latency (y-axis) normalized

to CRS over DRAM densities (x-axis) for FGR 1x, 2x, and

4x. We observe that although 4x outperforms 1x and 2x,

our approach uniformly provides the best performance and

lowest memory access latency due to elimination of refresh

blocking. After all, CRS hides the entire refresh operation

while FGR reduces the refresh blocking time. Furthermore,

the performance of FGR decreases with growing DRAM

density. E.g., at 64Gb density, memory requests suffer an

additional 17.6%, 20.7%, and 30.8% delay under FGR 4x,

2x and 1x, respectively, relative to CRS. This cost increases

to 343.7%, 376.4%, and 454.8% at 64Gb. CRS, in contrast,

hides refresh costs so that memory access latencies remain the

same irrespective of DRAM densities.

Observation 4: CRS exhibits better performance and higher

task predictability than DDR4’s FGR.
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Fig. 12. Memory Latency under FGR Schemes Normalized to CRS

H. Comparison with Prior Work

Bhat et al. [3] utilized burst patterns to reduce refresh

delay and increase timing predictability. We compare the

performance of CRS with the “burst-refresh” policy of [3].

Fig. 13 depicts the memory access latency (y-axis) normalized

to CRS under for different DRAM densities (x-axis) for three

refresh schemes. We observe that burst-refresh has a better

performance than standard auto-refresh since it reduces block-

ing by preempting lower priority tasks while refreshing. But

it cannot reduce the cost of refresh operations, which by far

exceeds the interference delay. As a result, the performance of

burst-refresh still suffers as it decreases rapidly with growing

DRAM density. In contrast, CRS not only incurs a constant

preemption cost to issue the DRAM burst, but resumes one set

of tasks while some set of ranks are refreshed. The other set of

ranks are thus accessed by the resumed tasks, which effectively

hides the cost of refresh. Hence, our approach outperforms

burst-refresh. As mentioned before, memory access latencies

remain constant under CRS irrespective of density.

1 2 4 8 16 32 64
DRAM density (Gb)

1

2

3

4

5

No
rm

al
ize

d 
M

em
or

y 
La

te
nc

y

auto-refresh
burst-refresh
Colored Refresh Server

Fig. 13. Memory Latency per Refresh Scheme Normalized to CRS

In addition, a task cannot be scheduled under Bhat’s

approach [3] if its period is less than the execution time

of a burst refresh. However, such a task can be scheduled

under CRS by “task copying” (see Sec. B). The cost of task

copying is extremely small, as quantified by globalMem
bandwidth

. Here,

globalMem denotes the cumulative size of global variables

that need to be copied from a current to the next job’s memory

space, while bandwidth represents the memory bandwidth.

We can determine if a short task benefits from task copying

by comparing the copy cost to the overhead it would suffer

under refresh-incurred blocking instead:
globalMem
bandwidth

≤ tRFC
tRFI

∗ e, where e is the task’s execution time



and tRFC
tRFI

∗ e represents the overhead due to refresh (upper

bound) that would have to be considered in a blocking term

during schedulability analysis.

Example: The cost of one refresh operation is tRFC =
350ns, and the length of a refresh interval is tRFI = 7.8us
for 8Gb DRAM density, which is common in commercial off-

the-shelf embedded systems and smartphones [1], [2]. If the

execution time of a given task is 1ms and memory bandwidth

is 10GB/s, globalMem = 0.5M is the break-even point, i.e.,

the cost of task copying is lower for smaller copy sizes than

suffering from refresh blocking. Notice that 0.5MB is larger

than one I-frame of a typical MPEG stream, of which only

one frame is needed roughly per 10ms at 30-60 frames/sec.

Or consider two 250x250 double-precision matrices (which is

less than 0.5MB) that are multiplied, with an execution time

that far exceeds 1ms, i.e., no copy task would be required since

the execution time exceeds 1ms so that this task’s period also

has to be larger than the refresh duration. Thus, we conjecture

that for a real-time task with 1ms execution time and a short

period in the same range, 0.5MB is quite sufficient to forward

outputs of one job to the next.

Observation 5: CRS obtains better performance and higher

task predictability than burst refresh of the closest prior work,

and CRS can schedule short tasks which prior work cannot [3].

I. Discussion

This paper shows that the refresh overhead of a periodic

real-time task set on a single processor can be hidden by

our CRS. CRS could be generalized to multicore platforms

under partitioned parallel scheduling of tasks with respect to

cores, but the analysis would have to be revised beyond the

hyperperiod as our base model [24] assumes a uniprocessor,

whereas multicore schedules with task offsets may only reach

a fixpoint after multiple hyperperiods [27]. Nonetheless, CRS

could simply schedule the subset of tasks associated with the

partition of a given core using CRS’ hierarchical server model

on a per-core basis, where servers receive different memory

colors to guarantee when their allocated colors are not being

refreshed while a server executes.

We evaluate our approach via hardware simulation, but

software refresh control has been demonstrated on different

hardware platforms [3], and CRS could be implemented with

similar software refresh controls on such platforms (with some

engineering overhead). DRAM refreshes are synchronous with

the processor clock (if the clock is fixed) and can, in fact,

optionally be disabled for a subset of ranks on contemporary

single- and multi-core systems [28]. Furthermore, the phase

when a per-rank hardware refresh starts could be reverse engi-

neered by monitoring access latencies during the initialization

of a CRS-controlled system on these platforms.
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