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Abstract: In these lectures, we develop the t.hm)ry of the Ckkmr Glws

Ck)ndmsate. This is the mitt er mack of gluons in the high dwsity emrirml-

ment cl]aracteristic of deep iuelaatic sc;att ering or ha,drcm-hadron ml lisicms

at. very high ewx-gy, The lectures are self corrtained and comprehensi W.

They start with a phenomenolqgical iut.roduct.ion, develop the theory of

ckssic’cd gluon fields appropriate e ff)r the (.kdour (.;li~ss,and end w ith a

derivation aml discussicm of the rellc)rIl]alizotic)l) ,qrwup wpmt.iom which

cletermine this effect iYe theory.

1 General Considerations

1.1 Introduction

The goal of these L=wtlms is to mmviuce yOII that the :iverage prcqwrties of’

llaclrc)llic i~lt,eractic)ns:]t very high energies arermntrnlled bya zle\vforln(:)fIn[i.t-

ter, a dense ccmclensat.e ofgluons. This is callecl the (!olour C;lass (hndensate

since

● Colour: The glm.ms are cololuwl.

. Glass: The associated fielcls evolve very slowly relative to natural time

scales, and are clisorclered. This is like a. glass which is clisorderwl :Ind is

:i liquicl cm low time scales but seems to he a scdid rJn short time scales.

*Lectures given at the N.ATC)Advanced Study Institute .’(J(7D perspectives on Ilot, ;ITId
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● Condensate Tl~ere is a very high density of massless glucms. These ,qluons

can be packed until t,heir phase space dcmsity is so high tluit interactions

prevent more glum occupation. ~Vith increasin~ energy, this fhrces the

glucms tcj occupy higher momenta, so th:it the conpling bwc)nlcx Weali.

‘The glucin density saturates tit a value of cmler l/ci,, >.1. correspcmcling

h a multiparticle state which is <iBcM~ c{mlcwsate.

In these lectures. we wilI try tc) explaiu why the almvc! is very pl:iusibIe.

Before doing this, however, it is useful to review some of the typical features

c]f Imcironic interactions, arl[ 1 some unansvrerecl theoret id quest ions which are

:Msoc iate with these pllencmwna.. T] lis will motivate nlLIch of the hi.ter discussion.

1.2 Total Cross Sections at Asymptotic Energy

Computing totrd crc)ss sectiom as E -+ cm is one of the grmt LUHCIIVM1problems

of Q(33. [J]dike for prc)cesses which are ccmqnlt ed in IJer’tLLrb}l.tkUl theory, it is

not recluirecl that, my euergy tr:insfer beccme large as the total mllisicm energy

E -+ cw. Computing a total cross section fcm hackonic Sciittering therefore

appears to l-w intrinsically non-pert urbat ive. In the 60’s awl early N)’s, Regge

theory was extensively developed in an attempt, tc) understanci the total cross

section. The results of this [Lnalysis were tc) our mind incmcllwive, and cert ai nl,v

can not be chimed to be a first principles UIICk’rSt[LllCb~ from QCD.

The total cross secticm for pp i.~ndPp collisions is S11OWHin Fig. 1. Typically, it,

is assluned that the tchl cross section grows as h12 E as E + ,W. This is the

so called Froissa.rt bc)uncl, which ccmespcmcl,s to the nmcimal grcnvth allowed

by the unitarity c)f the scattering matrix. Is this correct? Is the coefficient of

ln2 E universal for all hachonic precesses’~ Why is the unitarity limit saturatecl’i

hn we lulclerstarld the totaI Crc)ss section from first principles in QC’D? Is it

unclerst a.nda.hle in weakly couplticl QC’D, or is it an intrinsiciill,y ]]{>~1-~}erturb:.it,ive

phenomenon’?

1.3 Particle Production in High Energy Collisions

III order to discuss particle prodllcticmi it is L~seful to int,rc~duce! some kinematical

variables adapted fcm high energy collisions: thr light cone coordimtes. Let

z be the lcngitudillal axis of the coIIision. For an il.r})ibriLrJ7 -&vector LII’ =

(Vo, !.+, 1)2,LJ3) ( (J:+ = ‘/Iz , etc. ), we cldine it,s light-(”{me (IX j cmrclinates as

= 2- (.ip + .LF).

“’)+- a
(1.1)

In particular, ~ve s~la,ll refer to r+ = (t + Z]/ ~fi :LS the LC ““time”. [UK] to

r-., = (f–z)/@ iis the LC “lcm.gituclimd cimrdinate”. The invariant dot product.

reads:
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W]licll suggest .Sthat p- — the momentum Vi.lriable C’OUjU&~t.Pt{) the Yinw” .r+
— should be interpreted as the LC energy, and p+ as the (LC j longitudinal

momentum. In particular. fen- particles cm t,lw mass-shell: p* = (E+ p:)/ vq,

with E = (n~.2+ p2 j‘ /2, and therefore:

(1.3)

This equation defines the transverse mass n~ ~. W(+ Sll{.dlilk) 116X?(Ithf? r’apia!i.t?l :

(1.4)

These definitions ure useful, among other reilSOllS, because CJftheir simple prop-

erties under longitudinal Lcxcmt z housts: p+ h l-if)+, j)– + (l/fi)]J-, wlwrc h’ is

il. Wlrishllt. Under hoc)strs. the ra~]iditty is just shiftecl l>y a crest ant: y - y + };.

Consicler ncnv the cc)llisicm of two iclent,ical haclrons in the center of mass frame.

as shown in Fig. 2. In this figure, we have assumed that the colliding haclrons

have a transverse extent which is large ccmparecl to the size of the produced

partich%. This is true fur mclei, cm if the t~~lktll transverse nicmenta, of the

produced particles is large comparecl tcj A~c,Ij, since the t:(.)rresl)c)llclillg size will

be much smaller than a. Fermi. We have also i~ssll~~ld that the ccdlidillg particles

have an energy which is large wlc)ugh SC)thnt, they pass throll,gll orus another and

procllwe mesons in their wake. This is known to happen exI~erilnellt,illly: the

particles which carry the quantum numbers of the colliclin~ particles typically

lose ml-y some finite fraction c)f their momeuta in the collision. Because of their

large energy, the incoming haclrcms prcJpagate uearly ;it the slwed of light), arlcl

therefore are Lcmntz ccmtracted ill the lon,qit.ldinal direct,icm, as sllggcsted krj

the figLlre.

In LC’ rocmlinatws, the right rncwing particle ( “th(: prc~jm:tile’$) has a 4-]Ilo~llellt,l.1~~1

p! = (I)T. p;. 0~ ) with p: H v%: MN] P; = f~12/2P~ (since p, s M, with

M = the projectile mass). Similarly. fbr the left moving 11adrcm ( Y he t.tw-

get” ), we have p2● = Jl; i.UICl j); = ~)f , The iuvariaut energy scpmrwd is

s = (pl + p2)~ = 2pl . [)2 2 2p:pt; = 411:>il~l(l coiuci[les. ;~.t.it. SIMJIM, with

the total energy scluarw:l (E] + E’~)2 in the center c)f mass t’ramd.

We (]efhle the hmgituclinal lMJ1llf?rlt.Urll fract.icm, or Fejmrmm’s x, c)f a prdlwed

pion as

~ _ p:
—

p;

(with O < x < 1). The rapidity of the pion is then

(1.5)

(1.0)

-1



Figllre 2: A l~a.flr(:]rl-ll:i.clrcJ1lcollisicm. The

circles.

large p

I)rodlmd par~ich;s iir(’ shown as

(JI

-1
[iy

------

Figuw 3: The rapidity t.listribllticm of particlm producwl in [I hwhonic collision.

A typical distribution of produced particles (SLLY,picms j in [i haclnmic collision

is shown in Fig. 3. We denote by dN/dy the numlwr of prodllmd IN1rt irles per

Unit, ral)iClit,~. ‘~hC’h:ding partiCkX We dl(JWll hjr the did h! 2{d (1W ClllSfWd

around the pro j ect ile and target, rapid it,ies. For esample, in [i heavy ion collision,

t:his is where the nucleons &ulcl be. The (l[whed line is the distribution of

produced mesons. %vera.1 theoretical issuw arise in multiparticle production:

Gn we compute dN/(@ ? Or even diV/d.Y at y = O ( “central rapidity”) ?

HCJWdoes the avtirage tra.mvme ulomcmtum ()f prod {weil pitrticlw (Ijl ) behave

with energy? What is the r[itici of proclucwl st,r:~llge/~l{~llstrtlllge mwms. md

corresponding ratios of charm, t 01.),bcktom etc at y = () ilS tlw (.wnter C)fmhss

energy approaches infinity? Does mult ipart.icle prcdllct ion as .s - ~KIat y = ()

bec’o~ne simple, LIIlderst:lIlc] ilkJle and cwmputabk?

Nche tht y = O correspomls to particles with p= = O or p+ = nll / v’>, fcm

r
J



Figure 4: Feynnm,n scaling of ri.i.pidity distributions. The two different lines

corres?xmcl to ra~)idit.v dis t ril )Iltions at (liffev.wnt tmrgim.

which .x == rll~ / ( Vq- ) = nlA/ \/z is SII1:L1l, .S <:: 1, i]] the high-energy limit

of interest. Thus, presumaldy, the multipart icle production at central rapidity

reflects properties cd’ the smill-x degrees of freedom in the collidiqq ha droll

llrii~~efullct,i(.)lls.

There is a r’emarkdie featllre of rapidity distrihlltims of prodlm’d h*ldr(JllS,

which we shall refer tc) as Feymmn scaling. If we plot rapidity distributions

of produced hadrons at different energies, then as f~lnct ion c~f Y — YprOj, ~hc

rapidity distrihllt ions are to a. goo cl approximation inclepen dent c)f energy. This

is illustrated in Fig. -1.,where the ritpiclity distriblltion measured at one energy

is shown with a. solid line and the rapidity distribution at ii. different,. higher,

energy is shown with a dottecl line. (In this plot, the rapidity distribution at>

the lower energy has been shifted t)y an alnount sc) that particles cd’ pc)sitive

ri.ipiclit,y }.)e.gintheir distribution at the same Yr,r,.,j as tl w high erlergy K):lrticles,

and (“r)rrespc~llcli~lgly for the negative rapidity pmt,icles. This of courw leads to

a gap in the center for the h M twergy particles due to this mapping. )

This means thi].t as we go to higher and higher energies, the new physics is

associated with the additional degrees of freedom at, small r:ipiditiw in the centrer

of mass frame (small-x dcyyecs c)f frecdcm ). The large x dwqwes {Jf freedom do

not change much. This suggests that t.herw may he some sfJrt iJf reli(Jrl~l/lliz~tti{Jl~

groLlp description in rapidity where the degrees of frewli m tlt hirger x tire hek]

fixed as we gc) to smaller values of x. We Shidl see tllilt ill fact these large x

degrees of freedom act ns scmrces for the small x degrees rJf freedom, amd the

renorma.lizati on group is generated by integniting out degrees of freedom ;at

relatively large x to genera.t e these sources.

1.4 Deep Inelastic Scattering

In Fig. 5, dee~J inelastic scattering is shmm. Here [in electron emits a virtual

photon which sc:itters from a quark in a hwlrcm. The momentum and energy

transfer of’ the electron is measured, I)ut the rrsldt)s of the hadron brink up arc



electron

photon

quark i ‘)
‘ -.

hdrcm

Figure 5: Deep inehtstir scattering of’ iill elcctr{)ll on i~ l]; MINXL

not. In these lectlmw. we do not ham sutficieut, t,imc to develop the theory

of’ deep inelastic scattering (we. e.g.. [1] fbr more details). “For the present

purposes, it is enough to s:iy that, at, kwge momentum transfer Q2 ;.+ i~$(-, ~,,

this experiment call be Ilwd to measure the Clistributic)ns of Cluarks in the hadron.

To describe the (Iui]rk clistrihut,ions. it is convenient to work in a wfewmw flame
~l,~lcire the ~lwlrcMl ll:ls ;~ l:lr~e ligllt.~.{.]lle k>rlgitudinal IUOHlent Um F’y >.. i~f

(t’hfinite momeHtLmI frame” ). In this frmne,” one can <h!scrilx: t,he 11/droll as

a collection cd’ constit:llents ( “partons” ), which are nevwly on-shell wxcit.aticms

rarryin~ screw fraction x of tlw tot,:d longitudinal momentum .P+. ThLH, the

hmgitujimd momentum of a parton is p+ = x~+, with [) <. x < 1.

For the struck cluarlc in Fig. 5, t,his x variable ( “F~~l~mi~~l’~x“ ) is equal tw t,he

Bjorlwn vi.iriabh? x~j, WhiCk iS ck$ned ill a frtil ~lti illfl~J)el~dellt w~l~ aS ~~j =

Q2/2P ~q, aud is directly measured in the ~xpuimeut. In this defi]lition, Q2 =

–ql[ cf~,, with qi’ the (qmce-like ) 4-momentum c)f’tlw exch:in,qecl photcm, The

ccmclition that x = XEJ is what maxilllizes the spati~il c)~erlfw l~etweell tll~’

struck (11lark and the virtual phc)tmn, thus making the interaction fa.vcmrable.

The Bjorken variable scales like x~ i N QQ/ ,s. with .s = tlw invariant ell~rgy

SClLl;HY3Cl.ThLLS, in c~eep hwlilst,i(.! watt wing fit high eneL’~y ( hr,f$ .s flt

one measures qu;i.rk ciist.rihtirms d.N{/!1ark;’(~~ at sm~tll ~ (~ ~~ 1).

It is useful to think abcILn these clistributicms as a flmction of r:ipiditcy.

the ra.piditf,y in deeIJ iuelastic scattering as

y = y/, u,lror, – 111(1/x),

ad the invariwt. mpi clitv clist ribut ion as

_=xfidiV

(ly (1.s ‘

In Fi~. 6. a typical dAT/(ly dist,ributicm fc)r constituent. ,glucms of a

rLYed Q~’1

We ckfme

(1.7)

(1..s)

htidrcm is.
shown. This ~dot is similar to the r{~piclit.y clistributiicm of prcducwl ~mrticlw in

l][i.clr{.)ll-lladro~l cc)llisi(]tls (MY Fig. 3). The m:iiu differe~l(’eis that, I](1w, we have

7
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cmly half of the plot, corresponding to the right, moving haclron in a collision in

the center of mass frame.

C)ne may in fi.i(’t argue that there is iudeed a rwlaticmship between the stmlcture

functions as measured ill deep inelastic scattering and the rapidity distributions

for particle prcdnction. We expect, for instance, the glum djstributicm function

to be prc]portiomd to the pion rapidity distribution. This is what cc)mw out in

many models of particle prwcluction. It is further plallsible, since the (Iegrew of

freeclom of the gllums should not be Iclstt, hut, rather tmn-rrted into the degmws

of freedom of the produced hadrons.

The small x problem is that in experiments at HERA. the rapidit,y clistrilmtions

fc)r c~uarks allclgll.lc)lls grc)\vr:l.l)iclly tls the r;l.l~ic:lit.yditierell{:e

betmww the quark and the hwlron imr-eases [2]. This growth appears tc~ be

more rapid thafi 7 or T2 , illld various t.heoretir:al models based on the ori~inal

considerations by Lipatov and colleagues [3] suggest it may grow as an c’.Ypcl-

nemtialin~ [3, 4]. Tllel~~c~re estii.t)lislled DGLAP mwluticm eqlmtion [5] pre(licts

a less rapicle grcwth, like an expon(.mtial iu X, hut this is still exceedin,q t,he

Frr)issart Llllita.rity ~~c~~llld,ll~llicll re(lllires r:illidity dist.rit~llti(J1lstilgro11':i.t most

as# (since-r~lns).

T.u Fig. 7, the ZEUS clata for the :Iuon clistrihution are plotted for Q2 =

5 C+eV2, 20 C%VJ and 200 GeV2 [2]. The glLI(JIi distrihllt.icm is the number of

gluons I)~rllllit rapiclity illtll(; llaclrc)rlM~:ivefllnt:tioll, xC~(x,Q2) = dlN”<ll~,,,,l,$/dy.

Experimentally, it is extracteclfr’om the datafbr the ~.ltl:i.rkstrllctllre functious,

by expk)iting the dt’penclence c)f the hitter LIpcm the rescduticm of the probe, thi~t

is, upon the transferred momentum Q2. Note therisecj fxG’(x,Q2) utsnmllx

this isthesnlall xprc]bkm. lfollellacl plot.ted tlletc)t~ll ~~l\~ltiplicity (] f~~ro[iLl(:erl

particles inpp ard~pcollisions on the sameld(]t, (“)neltrcjtll(:i have f[ll.l~ld rough

agreement in the shape of the curves.

8
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Why is the small x rise in the gluou distributirm a proldem’~ Ckmsider Fig. 8,

where we view the hadrcm hmcl cm. The mnstitwnt,s we the wilence qwirks,

gluons and sea quarks shown as cwloured circles. AS WC’N:ld 111{we iilld m(JI’(?

constituents, the ha.drcm 1w(:(roles more :ind more crowded. If we were tti) try

to measure these constituents with my :111elementary photon probe. i.Wwe do

in deep inelastir sc:i.tt,eringl We l~li,@t fqcct. t.htit, the lM(lr( )n would become

so (rcnvclecl t.hiit we cc)ldcl not ignore trlw shadowing effects of {wnstcit.uc:nts ns

we make the measurement,. (Shallowing means that, some of’ the p;.i.rtons tire

obscured by virtue cd’h:.iving another parton in front of them. This wouk~ Wsl.dt

in a deCreiMe of the scattering cross sectliou rehitive to what, is expect,ecl from

incoherent inclepcmclent scattering. )

We shall later argue that the distributicm functions at fixecl Q2 .sahlmtf, which

means that t hcy cease grc)willg so rapidly at high energy [[i. 7, b’. !1, 10]. (SW also

R efs. [11, 12, 13, 14] for recent reviews tincl mc,re refertinces. ) This saturation

will be seen tc) cwcwr at trti.usvwms momenta I:wlow some iut.rinsic srale, the

‘“slit.l.lr:.~tic)~lM’i.de”, which is estimated as:

(1.10)

where (hV/dy is the gluon ilist.rikmticm. ~n]y g’lLIons nuit.ter sim.e, at small x,

the g]ucm density (grows faster then the (~~li.i.rkdmsity, i.iIld is the driving fc)rce

towards saturation. This is why ill the forthcoming comiderations we SIML1l

ignore the (sin) clua.rks, but focus cm the glLmIM ah.)w, Nwthermore, ~~2 —

with R the hadron r:idius — is the area of the hiidroll in tlw transverse plane,

(This is well defined as long ;Ls the wavelengths c)f the wctern;d probes are smLLll

c.cmparecl tc) R.) Fimilly, a,,iVc, is the colour charge squared (i a single glum

Thus, the “s:ttllr:~t,iolls(:;~.le” (l.l()) lltistlle lllei~lli~l,goftlle: ivera,ge( ~rjlr~llr(:l~~irge

sq~mred of the gluons ill the llidrou ~r:~.~r(?fl.lllcti(.)11per unit tr; msverse iir~[i.

Since the glLIcm distribution incrmses rapi(ily with the energy. as shown k)y the

HERA data, so clcms the s:ituration mile. WF sh:dl Ilse the rapidity difference

~ = ln(l/x) w h]s, eq. (1.{)), tlcjcharacterize this increase, ;md writf’ Q: - Q:(~).

Fc)rs~~ficielltlyl:irge~ (i.ti., lligliellc)~l,gll erler,\y, orslllt~ll enutlghx),

Q:(T)>>A&r,, (1.11)

[Lncl CYq(Q~) << 1. Tlwn we :ire dealing with uwakl,~ coq~led QC’D, so we slmuld

be al>leto~Jerforlllt lfirstpr illciplEcal (:tllt].ti(:)1lof, e.g..

. the glucm distribution function;

● the quark and hc:a~:y cluark clistribllticm flmctions:

● the intrinsic pl distributions of’ qlwrks ;mcl glurms.

10



number. .Another example is the atomic pllysiw of highly char~ecl nuclei. whew

the electron propagates in the })ackground {d’ i] strol 1,%uuclea~ (hdmnl ) field.

Also, at very high t.enl~xmtllre, QC’D heccnnes a wwddy co~~pled quark-gl~mn

plasma, but, it exhibits llollpert,l.lrl~ati~’e phemmwml. on lar<ye distances r Y> 1/’T

(with T the tenq>erature), due to the cokctive behaviour of many clLIanta [15].

ReturniIlg to our small-x glnons. we notice that, :~.t low t,ramwerse momenta

Q2 < Q2 (j-), thev make a hi~h density system, in which t.hc interaction prolx~-,$
bilit~r

(1.12)

is of order OUP [6, 7, 16]. That is, ;dtl~ough the coupling is small, (L,. (Q2 ) .<< 1,

the effects of the intemcticms are amplified by the large Nuon density (we shall

see that dN/cly ~ l/n ~ at SiitllL’;ltiOll), and ordinary perturbaticm theory breaks

down .

Tr) cope with this, a resunmmtion of the high clensity effects is necmsa.ry. Olw

strategy to do s(.) — to lw tlmcritxxl at len~tll in thww Iccturw — will be tm

(XXIStrU(’t W e~C’C~iWth E’O~<Vin WhiCh the S1ll:L1l-XglLLOllSMe dWK’rilWd M the

classical coloLlr fields r:ldia.ted by “COlOLLrsrmrces “ at higher rapidit:y. Physi[.’ally,

these smuces are the “fast’) partcms, i.e., the hadron constitlwllts with larger

longitudinal monwutla p Y ::> ~~)~, The properties Of the colww sources will be

obt, ained via n renornmlizat ion group i.WLl@3, in which the ‘%t” p:Lrtl~nS are

iutejqated OLlt.iu steps of rapiclity and iu the bi~.rk,~roull[i of the dnssi(al field

generiited at the previcnls steps.

The advantage of this strategy is that t lw non-ii near etfkct.s are dealt, with ill ii

classical context, which makes ex[wt C:ilculatiims possible. )%f~~ific~~hl (.a ) the

classical field problem will he s[dved exact ly, +i.nd (h) at each step in the renor-

malization group analysis, the non-linear effects :i.ssr)ciiltt’d with the (:1iLSSiCfd

fielcls will be treated exactly. On the other baud, the mutual interilctions of the

fast partcms will be treated in perturbation theory, ill ~~“le:-icli~lg-lc)~l.ritlllllic”’

approximation which rewuns the most important cpmntum mrrectiom at high

energy (namely, those which are enhancwd by the large logtlrit hm ln( 1/s)).

As we shall see, the resulting effective theory (Iescrilws the sat 1lritted gluons as

a C’olour Gla.w ~:~)?t.~if’l?.$(1.te?.“Me CliMSi(’alfield il~~proxilll:lti(:)~l is appropriate for

these saturated glLmns, l)eca use of’the large Occupation number N), - 1/[1s :}> 1

of their true quantum state. In this limit, the Heisenberg c{.mmlllt at (m twtvreeu

particle creation ;md wmihilatiion opmat ors lx wmw negligible:

lkak = lVA,[(1/,..(/j.] = 1 ,:<:f+ (1,13)

which corresponds inckwcl to ;i (.’]assical re,ginw. The (lassictil field lan~uage

is also well adapted to describe tihe coh em rl.ce c)f these small-x glUOnS, which

overlap with each other heca.uw of their large kmgit Lldina] wnveleI@~s.

The phenomenon of saturation provides tils(o a n~i.tural solllt.icm to the (mit:irity

prc)blenl :dlLLded to befhre. We shall sw that. with increiising em’rgv, tlw new

lmrtons are pro(lllced l)reI:]c)llclerPlltly at momenta p I 2 Q.,. Thus. these uewzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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partons have a typical transverse size N l/pl 2 l/Q,,. Smaller is x (i.e.. lar~er

is ~), larger is QS (~j, ancl th ereffxe S1na] Iw a w the newly pmcluced partons.

An external probe of transverse rest-dution Al ~ -J 1/Q will not see partcms

smaller tlum this resolution size, For ~ large encmgh, Q2 ~...Q:(~). so that the

partons proclucwl when f’urt her ilwreasin,g the euergy will not contri})ute to the

crc)ss section at, fixed Q2. Thus, although the glucm distrihl~ticm keeps iucreasillg

With ~, t,llere is mwertheless lJci cmlt.rndictiou with Iluit,ariry.

1.5 Geometrical Scaling

Another striking feature of the experimental d~ito nt HERA is gwrrimt rid sccL/-

ing at Bjorken x ~< O.01 [17]. II] Keneral. cme expects the structure hmctions

extracted frcrm cle~p inelastir scattering to depencl upon two (linwnsic)idws lcille-

maticril variables, x am-l Q 2/ AZ. where AZ is some ar hitrary mwnen tum sc:ilc

of reference, which is fixecl. The striking feat \lre allwiecl to before is tlw olxwr-

~~:itioll tlla.t t,he x clependencp mm surecl at HERA at x ,< 0.01 }111(.1for a hrodd

region c)f Q2 (between 0.[M5 and 450 Ckvg ) call 1.)(+entirely i.i[’CC)U1lteClfor hy [I

correspondin~ depenckmce of the reference scale AJ - 1/R2 (x) done. ‘IMt is.

rat her than being functions of two indepcmckwt wiri Ales x :ind Q 2/A2. tflw men-

S1uwcl structure functions Fit x .< ().(11 dqwncl dfective]y o1lIY lqxm the scaling

variaMe

where R2 (x) N x“ ancl A A ().3 -- 0.4 in cmler t,c)tit the datw This is illustrated in

Fig. O [17]. Sllch a scaling lwhaviour is consistent with the saturatic,n scen;lric)

[18, 1(.), 19], as we shall discuss tcnvarcls the end of these lw:tures. Note lmwever

that the experimentally c)bswved sctiling extends to relti.tively large values clf

x ant] Q 2, shove all the estimates for tlw s:itlm~tion sc~il(J. TIILIs, this feature

seems to be more general thau the pllencmlenon of SiLtUL’2it ion.

1.6 Universality

There are two separate fimnuki.tions of !mivers:dity which are importnnt in lm-

derstancling small x physics

a) The first. is :1 we(i.k universality [8. 10]. This is the statement that at sutJi-

cieutly high energy, physics should depemd upolJ the specific properties of the

hadron :Lt lmlci (like its size i)r atomic nlunber .4) cmly via the satlw:i.t.ion ~ci.d~

Q,, (j-, A). Tlms, at high energy, there shcmlcl he NmJe eql~ivakncc’ ktween uu-

clei and l)rotom: IWwn their Q% vallles are the swne, thvir properties must

he the same. An empirical ~);~rri.ll~eteriz:~ti{>l~of tl]e gIIImJ stru{t.luw flmcticm ill

eq. (1.10) is

1 dlv
.41/:<

-— .—
irlv dy .r(s

(1.15)

where d N 0.2 —0.3 [2]. This suggests tl)e fbllmving cc)rres~][)llcle~l(:es:. .
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● RHIC with nuclei w HERA with protons;

, ‘

● LHC with nuclei --J HERA with nuclei.

Estimates of the satmraticm sciLle for nuclei at RHIC’ energies give w 1 – 2 J&v,

WIC1t~.t,LH(l Q,5 w 2 —3 (%.

1]) The MWJnClis a strong universality which is meant ill a statistical mechanical

sense. This is the statement that the effective action which describes small x

distribution fi-mct)ion is critical and at a fix?( 1 poiut of smne rellc)rlll&~liz:LticJn

group. This InCZ~.LEthat the behavior of correlation functions is given ljy uni-

vm-sal critical expone~lts, which clqmnd (Jnlv on genera] prc~perties of the theory

such as its symmetries :.i.nclclimensionality.

1.7 Some applications

We ccmelude these in~roductory consickra.ti 0]1s with [i (Ilr)ll-{!xlltl.llstivf]) enlmler-

ation of recent applicaticms c)t tjhe concq)t, of sat.u ration and t,he (.:olc)ur Glass

C’onclensate (CYX) to phenomenc)h )gy.

C!onsicler deep inelastic scattering first. It has lxwn shown in Fiefs. [18] that.

the HERA d~i.ta for (both inclusive and diffractive) structure functio~Js rim he

well a~co~lllte~l for lry ;i pllellolne~lolc)gical nlcdel which inccmPorates saturaticm.

The same model has motivated the s&rch for gecmwtrical sctding in the data,

as explained in Sect. 1.5.

Coming to ultrarvlativistic heavy icm collisions, /1s f.sperinlent ally realized at

13HIf2 and, in perspective, at LHC. we ucie that, the (!C;C shoulcl be the ap-

prc)priat. e description of the initial conditicms. Indeed, Jn()st c)f the multiparticde

procluctlion at central ra.pidities is from the small-s (x < 10 ‘:;) partcms iu tlw

uuclear ~~~,~~~eftl~lctio~ls,which a re in a high-densi t-y, s(~i~li-(.1:1.ssic:a.l,re~ime. The

ra.rly stages of a uucle:ir ccdlision, up tc) times -- 1,lQ,5, (.<in thus be described as

the melting of the Colc)ln- Glass (~CJdWStit.eS iu th~ two nuclei, In R.efs. [2( I],this

tneltillg has been systlematicatl.v studiecl. and the mult.ipart icle prcJciuction cwnl-

puted. via numerical sinJulaticJns of the cl:.wsicvd effect ivc thmry [8$ 21]. After

they form, the particles scatter with each C)ther. iinc{ the’ir sllthseclLlf?nt C!vcdllti{ )lJ

ran t)e clescrihecl by transport t:heory [22].

The first. experinwntal dots at R HIC’ [23] have lwen aLMlyze~l from the perslxw-

tive of the CWC in Rvfs. [W, 25, 26]. Specifically, the multipciltiele prcJcluction

has been stuclierl with respect, to its depenclemx’ upon centrality ( “lJulJlber of

~):.~rticip~i~lts’i) [24], ra~]idity [%h]ancl transverse nmlJwntunl distrit)uticm ~26].

The charnl prcductiou from the C’CX in peripheral hea.vv-ion collisions has l-Jeeu

investigated in ~7].

Electrc)~l-Jlu(lells (eA) clee~Jly inelastic scattering has hee~l recently summarized

in [28]. Screw implications of the Colour C;lNSSCondensate for the central regicm

c)f p -I- .4 cfJllisious have been explored in R.efs. ~2g, 301.

.hsti~ntons in the Saturaticm envircmnlellt have f)eeIJ CrJXISidered iU Ref. [31].



2 The classical effective theory

●

With this sectitjn, we st:irt the stillcly of an eff’e(tive theory fc)r the small x

0 mlponent of the hadrcxl Wilvefl.lllction [8. 1(), 32. 33, 3-1. 35, 36, 37] (see ho

the previous review papers [12, 38] ). LM ivated by t,he physical :irgumcmt,s

expc)sed before, in part icwlar, by the separation of scales between f(Lst partcms

find .sofl (i. e., small-x) glucms, in the infinite ul(Jmeutunl fralJle, this effective

theory admits a rigourous clerivaticm from Q(;D ~ to he (lwcrihed in %ct. :3.

Here, we shall rather rely on simple kinematical cc)]]sicleri.ltii>lls to motivate its

general structure.

2.1 A stochastic Yang-Mills theory

In brief, the effective theory is :) tlassical Y“ang-hlills t.ht’ory with ii random

colour source which has onl,v a “plus” conlpcment L :

(I&v’ )’,(r) = J’f ‘ /)(, (J’). (~.1)

The classical gallge fields A: represent the sofl gllicms in the lwk-cm wavefunc-

tlion, i.e.. the gluc)m with small lmlgitludinal momelltu (k+ = xf’+’ with x .<. 1).

For these gluons, the classical :~.l:]r)roxinlatic~l~shcmld l.w aljproprii~.te siucw they

are in a multip article state with larlgc occupation numbers.

The @Y partcms, with m(jmenta p + ..X }(+, ~ire ~l(,t, dynanlical fielcls {iilylonger.

but they have been rather repli:ld by the C(A)llr current ,1/( = ,Ij’+p,, which il.Ct.S

as ,a scmrce fbr the soft gluon fields. This is ql lit.e i~ltlliti ve: the soft SIluons in

the hadrcm waveflmction i.lre riidiat.ed by typically fast. Imrf.ons. via the pmtc~n

(:a,scades shcmm in Fig. 10. It is ill fhct well knm17n that. for the tree-level

. . 10 .a. classical ilIICl (.lua.llt.lun calculations giverildiative process shown in Fig

i(lentical results in the limit} where the emitted ~luoll is soft, [1I. What is less

obvious. but will he demonstlratecl by t.he analysis in W(L. 3, is that quantum

corrections like those displayed in Fig. 10. l-J do nc)ti iuvaliclate this classical

clescripticm, but simply renorm:.dize the pri~perties of the classic;d source, in

particular, its correlations.

The gross properties of this source fcdlow from kinematics. The fhst Imrtons

move along t,he z axis at nearly the sped uf light. They con emit, C)r absorb,

soft gluons, but in a first appro.ximat ion they preserve strai,@hne tra~ ec+oriw

along the light-cone (: = t j. In terms of LC, coordinates, they prc)pn.gat.e in

the positive J;+ clirection, while sitting at .r - = O. Their colour current is

proportirmal to their velocitv, which implies .l~ = cV’‘p,,, with u rha.rge density

p,, (r) which is localized near .r– = O. ~l(Jr(-}~m’cisely, as quantum fields. the

fast partons are truly delocalized over a longitudinal distamw A.r - .- l/~J+. ;.is

required by the mmmaintv principle. But since l/p + ,,<; 1 i;+, tll dy st,ill lock W/

sharply 10calized wheu “seen” by the soft gluons, which have long wavelmlgtlls

and therefore a. pc}or lcmgit,lldinal resolution.

lWrit.ten as it stands, q. (2.1 ) is correct only for field conti~urat icms hnving .-t– = 0; wheu

.4- # (J, the source p in its r.h.s. gets rotated hy \VilsOn Iiws built frmu .4- [37].
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Figure 10: a) ScJft ,glllcm emissicm 1ry /.i fi~st ~mrto~l; h j i~.glum cascade.

Th separation d’ scales in kmgit Ldina.1 Incmwnta implies u C’(JrreSpWLdiIl~ sep-

itraticm in time: Sc&r pa rt,cms have liu’gw wwrgies, ~~11(1thereklre Shorter life-

times. C13nsicler inclfwd the radiative process in Fig. 1().il., wl wre k+ ~<<p+. This

is a virtual excitation whose lifetime (in units of IX’ time .r+ ) CWJbt: estimated

from the uncertainty principle as

This is small M compared to the tyl)ica.1 time scule l/E,, for the dymunics of’ the

fast partons. [In eel. (2.2), ~{, - Iii/2p+ is the LC’ WWKY of the on-shell gluon

With lllO1llelltUUl f; = (p+, p ~ ), M]d W’ htl~e USed thC’ fiWt th:tt. f(lr k+ .<<:p+

and comparable transverse momenta kl {ind pl, FL. >}}ii-l,,<,,_k. ] Thus, the

“fast:’ degrees c]f freedom are effectively frozen over the short lifetime of the sc]ft

glnon, and can be described by a fh (’-in dcpm dr77t (i.e., id?pf?deIlt, of Y+)

colour source p,, (r-, .r~ ).

Still, this coluur sourw is eventually ch:.mging over the 11.irger time srnle 1/:,,.

ThLw, if another soft glLwn is emitted after a time interval 2 l/tP, it will ‘see” :4

{lifferent configuration of p, without qlmntum int erfereucw h etv:eeu the (lifferent

ccmfigurations. This call be ~i~iyof the cmdi.gurat ions allowed by the tlywi mics c)f

the fast partons. We are thLIS led to treat p;, (r-, J’1 ) iiS ii chlss;(w~ rf~ r~ih)rn vari-

a Me (here. a ,firld in riahle ), with some Im )h:ihilit,v density, or u~rif~ht .~((nr’tiiJ7&

U-k+ [p], which is a flmctional of p.

As sllggested by itsnc)t:it,ion, the weight functi{ml dqwnds L~pcm the soft sc:i.le

k+ at which we measlu-c correlations. Indeed, as we shall see in Sect. 3, ll’K.E[p]

is c)btained hy integrating ollt degrees of freedcnn with hjngitudinal mcunento

kirger than k+. It tlums ollt that it is more convenient tu LISPt.lle mpidi~?;~

‘r-= ln(P+/L!+) = ln(l/x) (2.3)

~~~~i~t,l~r sp&~l<i*~g,t,l,is is t,lle rilpidit.y d{jft n n m k>et.weeuthe W1U311-X,glUO1l a UCI the hadrm

as defined previously in eq. [1.9). But. this difference is the relmwnt qlmutit.v for whf\Tfollows,
m from ncnv on it will he simply referred t c] as Y lie rapidit y“, k.r 1]wvit y,
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tc) indicate this dependence, and thus write II-T [pl = 11‘L.+[~~].

To deal with field variables :id functicma]s of them, it is convenient to consider

a disrretizecl (or Iattic+) vc:rsicm of the 1~-dilll(:llsi(~lliil (.wIkigurutiiJn space, with

lattice points (.c - , .1:1). (lf~e Ilse tlw M me not ations for discwtf’ and c.cmtinu-

ous c.ocdinates, to avoicl a proliferation of syHJbols. ) A ccmtigurati(m of the

cwlour source is specified by ,giving its values pc{(.r- . .J’J ) at, the IV lattice pc)ints,

The functional ll-T [p] is a (rei~l) function of these AT valtws. To h:~ve a mtlan-

ingful probabilistic ildwpret aticm. this hmct iou mLISt be positive serni-dethit e

(117~[p] ~ O for any p), nml nornmlizwl t{) Imity:

/
ll~pj 11’7[/)] = 1, (2.4

with the following function:.il nleasure.:

(2.5

GILIcm correlation fuucticms at. the soft scale }1.+ = ~~~+ = ~)+(~–~ ;I.rf, obtained

by first solving the classical ecpmtions of moticm (2.1) ilIld them averaging the

soluticm cnwr I) with the weight fhnct ion TT”~[p] (below .ti E (.r-, .rl ) ) :

(.4:,(J!+,.iwj;(.r+l {7). . “)T= /D[/’lII’T[/’lA:z(F)Ji(ti)”””, (2.6)

where AL = A~, [p] is the sohlticm to the classical Y:illg-fiIills ecluat.iom with

static source pfl, allcl is itself independent c)f time (cf. SM. 2.3 beluw). .Not.e

that only ecllml-tinw correlatcms carl be computwl in this w:.iy: but tljese are

precisely the ccmwlators that are measlmxl by a sJ]dl-x exterutd protw. which

is absorbed almost i~lstzlllta~leotlsl}’ byt.he hilClroIl (cf. q. (2.2)).

lle formula (2.6) is reaclily extcmdcd to any operator whi(;h can he r~la.t.ed to /).

TogLla.ra.Iltee tl~at c)IllytllerJll}rsica.1, ga.Llge-iJll~zirii.~llt, {.)l~er~ltr]rs acqllirc? F1I1OI1-

vanishing expectation value, we sh:ill rc!qllire ll-T[fl] to be &~~l.lge-iJl~tiri~l.llt. In

practical ca.lcldaticms, one gener:i.lly has to fix a ~iLU~~ , so the gallge symmetry

of WT7[p]may not, be always m:mifest.

To summarize, the effective theory is clefinecl b,v eqs. (2.1) and (2.6) together

with the (so far, unspecified) weight, function TTr~[p]. In wh:it follows, we shall

clevote much effort to derive this thec)ry from QC’D, :IDC1construct the weight

fhnction tt:~[p] intheprcxwss (in Sw%s. 3-5). But t]ef(:)re clc)i~lgt.il~it, let lw gain

more experience with the chissicrd thecw.v I)y solving the actuations of nmticm

(2.1) (iu Sect. 2.3), and then using the result to compute the glLlon clistributicm

of a large nLIcleus (in Sect. 2,-4). I1ll)erfor~~li~lg tllesec.ti]c~lli~ tic)l]s. we shall need

a more precise definition c}fthe glurm distribution fhnctic)n :L1lc1,more generally,

of the relevaut physical observable. so we stlartl lly disf ’llssing that.

2.2 Some useful observable

In sukmecplem i~pplicaticms of the efk.tiw tlwory, w shall mainly f{WIW ou

two observable which, bee:.iuse d their physical [.unt+nt, iWd (d’ the specific

17’



~t,r~lcture Of tile efiective thef)ry, :tre particulml~: suggestive fo] studies C}f11011-

lineil.r phellOmella like ,SELtllI’ft.~iOIL These {)1-)stirv;.lt.)les.tl~i~t we intrcd{me now,

are the gluon distribution function and the crrm-serticm for the scattering of a

“colour dipole” off the hadron.

2.2.1 Tile gluon distribution function

/

.

= (PA’E)(Q’J–k~)x($(x- k+/ P+) H, (2.7)

(2.s)

is the Foci space ,gluon density, i.e., ~he nLulltwr cigluons per unit, ofv I.dLuIIe in

momentum space. The clifficulty is. however. that this number depends IIpon

the galIge, soiu gener alitis not al~ll~rsif:al (.~l]s(3rI~i~l>les. Mill, [is wc shall shcAy

W’glle, thiS CIUL1.Lltit~CZLI1be ~i~ell [I ~;lll~e-illV~LriZIIlt l~eMliIlg WheIl CCJIllpllteCl iIl

t.ht’li@t-C’CJM (L~) #LU&’

.4$ = o. (2.!3)

D,, Fbll’ = (], (2.1.())

iI@~ for tile -i component

w]li~]l :L]]o ws orle to compute .4 – in terms of .-1’ F(S

(“2.12)

This ecpmticm says that we can express the longitudinal fi.ekl in terms of the

transverse degrees of freedom which are spe.citiecl by the transverse ,fields entirely

~For t,]lc ~)ll~p OS(,S (f Lr (1I l;{~lt,iztil,ir)rlWeIW. t.hf,e(llmt ions of Inotic!ll WithOllt .wllrw5; t Il:i.t.

is. we consider real QC31. aILd not the effective theory (2.1).



. ,

i.iIld mphcitly. These degrees of freedom C(.nm-spcmd h“) the two pohirizat ion

states of the glucms. The qll:wtizat.icm of these tle~rws of fr<w Iom prcweeds by

writing 139]:

.4:,(.1;+,,7) =
./

J3~

(f.’~@l.;,(,r+ , 1) + t- –Wl:! (.7’+, k)

‘)

(2.13)

~+ .,[) (2rj:{2/~+

(.7. ~ = x- k+ – xl ~kl ) with the creation and a.nnihilatiuu c]peratc)rs satisfying

the following t:orlll~lllta.t,ic)ll relation at equal LC t irue .r+ :

[(/;(.r+, i), [{:t(.r+, @] = fs’j($f,c 2L”f(2Ti)’J(P(k - q). (2.1’4)

In terms of these Foclc space operators. the gluon density is computed as:

(HV

~ = (~{:~ (.I:+, F) f[j.(.r+. 1)) = - (.-i; .(r’+, F).’.l(.l;+,+, -;)) , (2,15)

,

where the avernge is over the hadmn wa.~~efllll(:t.ic)rl.By homqgeneit.,v in time, this

equal-time average is indepenckmt of the cworclinat e .r +. which will he t.herefcn-e

omitted in what, follows. By inserting this into eel. (,2.7) ilrld usinx the fhct thi~.t,,

in the LC-gauge, $’,;+(k) = ik+.4~ (k), one c)htains (with /i+ = XP+ ):

1

1
‘ @ 6)(Q2 - k)(~:+(r)F;+(-i)). (2.lfijXC;(X, Q2) = ; , (~T)2

As anticipated, this dews not look g:iuge invi~ri:illt. In cwmlin;~te Spi.LC’~:

//

d;3.!’ (1< {/ F’ (~ly),(.~-r)~ q+(,7)F;+(,J)
F;+(F)F;+(-z) = ,

involves the electric fields~ at clifferent sI]at)ial points .t’ and !~. A manifestly

gauge invariant operator c;an be ccmstruct.ecl t )y ;l~)r)rol]ri:.itc’ly inserting Wilscm

lines. Specifically, in some arbitrary gauge, wr Cll>fhl~

where

and -f is an arbit rar.v cn-iented path .t’rorn ~ t.c) .7. Tlw (omit t ccl) t emlm-al coc)r-

clina.tes .r+ are the same fbr i.Lllfields. For any p:ith T. the operatcm in eq. (2.18)

is gatlge-i~)~~~iriiilit, since the chain of operittorx there m;ilces t.i rlcmd lr)c)p.

We now show that,, by a])prcipriatel.v chosing the p:ith, the gtiuge, i~nclthe t.)ouncl-

ary conditions, the gauge-invariant operat c~r(2. 18) rim Iw m~icle to cc)incicle with

4Thr ccnnp cmwt. F,++ = – F)+.$ is usually referred to w the (LC ) “elertric field” lJy anrikgv

wit h the standard ekrt.ric fkh~ .!?: = ~(~()= - i~’).+, (ill the t wnpcwd XWlfy+.~~ = (J1.

lfJ
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Figure 11: The path ‘1 used for the e~dut~t io~l (f the &:lLlge-illviIrii~llt opwat.c)r

(2.18).

the simple 2-poil~t fhnction (2.17). Specifically, f:cmsicler the p~i.th shown in Fig.

11, with the the fc]llowin,g three elements: two “lmlizcmtal” pie(:es going iilO1l~

the :r – :~~is from (!/- , yl ) to (–w, :1)1), and, respet:t ively. from (—IXI,xl) to

(X- , .l’~) , and a “~,ert,iral” piece frcjlll ( -.x~, !/1 ) to (–x-,, .c~ j. Along tilt lmi-

mntal pieces, d2. A = dz – .4+. SC)these pieces do not, matter in the LC’ gatlge.

AIoIlg the vertic:il piece, (1;. .1 = (lzi ~AL (–,%, ;~ ), iuid t.k Path ‘; ~)thef?ll ~~~

and :L~ is still arbitrary. BILt t,he ccmt.ribl ltion of’ any SIIC1la path to the Wi lscm

line vanishes once we impc)se the following, “retarclw~, lmundary conclition:

A:,(r) 70 as J!- – –x). (2.2[))

(Note that the “retardation” property refers ]wre to .r- , arid Ilot. to time. )

Tc) summarize, for the particmlnr class t)f paths nw~lt.ioued al m-e, in the LC’

gauge .4+ = (1, and with the boundary u.mdittiou (2.20), lT-,(.~, !~ + 1, :1.nclthe

manifestly gauge-invariant cperator iu eel. (2.18) reduces to the simpler operator

(2.17) whicil defines the number of glmms in this gallg,e C!unverserly. the l;it.tier

quantity has ii gal.lge-i~l~p:iria~lt,nwalling, :M the expression of a RI{ll,<e-hvariii] Lt

I y) ma.tor in a specific gauge.

We shall wed latrer also trlw gluoll dktrihltkJIl fuuct)irm ill t.lw transverse ldMse-

spacw (in short. the “glu cm density’” ), i.e. , the nundxw of ~llu ms per Imit. r:lpidity

per unit transverse momentum per unit tratisvcxw iir<~i:

(2.21)

where -r = ln( 1/.~) = in(l) ‘/}:+ ) ilIICl I)J is the impact parameter ill the tmns-

verse plane (i.e., the central coordinate h.L = (.CL + .v1 )/2 in WI. (2.17)). This

phase-space distribution is a mea.nin~ftd quantity since the typical transverse



m cm cuta. we col~sicler are relatively large,

(2.2/2)

so that the transverse de Bm~Iie wavclengt hs w 1/ 1:~ of the part,o ns uncler

[‘cmsidwati on are uJuch shorter than the typical s(’i.d63 of tmmverse variation

in the hadron, 1 /Ac2(7~,. (In partit>uhtr, this expl,aim why W(Jcm cmnsi{k the

hadrcm to hal’e a well defined transverse size R.)

In fact, fc)r simplicity, we slmll mostly consider a hadron which is hcmic)geneotrs

in the tr:~nsverse plane, with a sharp hcmmlary at ra.clial distance R. ‘Then, the

density (2. 2,1) is independent of 1~1 (within the disk h~ .:: R j, ad reads (cf.

eq. (2.16)) :

(2.23)

2.2.2 The dipole-hadron cross-sectiou

~onsicler high energy cleep inelastic scattering (DIS) in aspecial fran w-the

‘Ldipolefra.me” — in which the virtual photon -f* is nwvingveryfast, say, ill the

negative z direction. but mc)st. cjft,he tc)tal energy is still carried by the hadrcm,

which moves nearly at. the speed of li,@t in the positive : direction. Thus, t,he

rapiclity gap between the haclrcm ;i.nd the virtual l)h(jt.ou is

T = ,vhacimn –3--,’ , with [y-,. I ~~:y,,,,,,,,,,, . (2.24)

(As in Sect,. 1.4, -r=hl(l/x) Nln(,s/Q2), where Q2 is the virtualityof T* and

,s is the invariaut energy s~pmred. Note also that y-,. .:: 0, sin<e -)* is a left

Inc)ver.)

Tlledipole fr:~~lle issl~eci~i.lil] two respects [14] (:~.~lclreferences tllcreill):

i) The DIS lc)oks like a two step process, in which -1” tluctuat,es first into n

qll:irk-:t~lticlll:irk pilir, which t,herr scatters (+ifthe hadron. The qq pair is in a

COkJUr singlet Statre, SC)it fOrl~lS a cW~O’W’di~Mk!.

ii) The essential of the quautum evoluticm is put in the hadrou ~v:~veftlllcti(.)11,

~vhich carries most o.fthp energy. The (li~JOle\WLl\refl.lllCtic)ll.(jn the Othet’ haJIcl,

is si~nple WIC1given b,v lcnvest order perturhat,ion t,hfwry. NIcme precisely, if

[.~$lyl.l << 1, then the dipoie is just, a. clll:Lrk–alltiLlll;lrk pair, witlmLlt a(lditional

glum.

Thus, in this frame, all the non-trivial clynamics is in the cliFJr~l~-ll:iclrc)llscat-

tering. Bec:~l.lse c)ftlle lligllellergy oftlleq~l>a.ir, tllissc:i.t.teri~ ~gcal~betre:~.ted

in the eikcmal approximation [40, 41:42, -1-l] : the! clLlark (ancl the :LnticlLlad<)

follows a straight line trajwtor,v with z = t (m .r+ = ()). ;~l~~~the etiect: C)f

its interactions with the colour ‘iielcl clf the l]adronic tar@ is contained in the

Wilscm line:

(~.2,5)



wh~r~ Xl j~ fjl~ transverse coordi~late of the quark, V‘s are the gene’ratml? rJf th?

ccdcmr group in the fundamental representation, iiI~cl the symbol ~) { ]eIxjtes the

c]rdering of the colotw matrices .~+’ (.7) = .~~ (.7) FZ in the exp{meIIt, frc}m right to

left in increasing order of their .r - arguments. lNot e that .4+ is the pm j ectiml

of’ AJL along the t rfLj ectory of the fermicm. For fLll +ultiqlmrk with trimsverse

cocJrdirmt@ yi the corresponding g’wlge factor is 1“ ( ~1~). Warly, we ndupt here

a ga II,ey where .4: # O (c .g.. t h{? covariaut gaIIge to he discussed at le@l inzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Seit . 2 .3).

It. can then be shown that the 5’-nmtrix element b- the cii~>~-,lc’-l~~i.cl~ollsc:i.t teriug

is obtaimxl hy averaging the tot,(il ~allge factor tjr( t’ i (,r~ J1“({i~ ) ) (the mlour

trace occurs since we mnsicler a colorless q~ State) ovm id] the colour fielcl

configurations in the hachmn }z’:tt~efuIlc.tic)rl:

The dipide frame is like the hadrcm infinik mmlle~]tulm fram’ i~l t,l~ii.t,vl,(,,/rC,,,z

7-, cf. eq. (2.24). so the average in eel. (2.26) c:.in I)e romputw I wit:hin the etfect.ive

theory of’ NM. 2.1. that is, iike in eq. (2. G).

The dipok-h:idrcm crow section fk’ a dipole of size 7“~ = .r~ – {11 is o~:)tnineci ]JY

integrating 2(1 – ST (.TL, yl )) cnw all thi iUpiWt piulwlet(?rs b~ = (.r~ + !j~ ) /2 :

Fiwilly, the V*–haclmn cross-section is obtainecl by convcdut,ing the clipole cross-

se~tioll (2.27) with t,he pr(.)lml )ility that the incoming photon splits intc) [L q(~ p,air:

Hew, W(z, r~; Q2 j is the light-cone ~vti.~~ef~l~lctiic]llfcu- tL photon splitting into a

q? pair with transverse size rl and ii fractic)Il s of the pllc)t {.111“s lcmgit udiruLl

momentum carried by the qlmrk ~40. 41].

2.3 The classical colour fielcl

From the point of view of the effective theory, the high density regime i.it small

x is clmra.c.t erizccl by strong classical cf dollr fielt Is, whose mm-linear dymrnics

must he t r~ii.td exact ,ly. IINIA. we shall soon discx wer t h:it. tit SiLt.uraticm,

XC:(X, Q2) w 1/(”1,,, which via eels. (2. l(i ) Liud (2.6) implies cbsi(’al fiehk with

amplitudes At w l/~. SIICII strmlg fielcls c:imotj lW expauded o(lt from the

invariant derivative D’ = (.);– i{].-t’. Thus, We lied the l-xil(’t solLlti[m to the

classical equations of motion (2.1), that we shall now (wllst,ruct,.

We note first t.hiit, for a large c:liiss of gal~ges. it is cmsisteut to kmk fcmwlutic)ns

having the fcdlowiu% properties:
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where “static” means independent of.r ‘. (In fact. mice s[wh a.st,atic solution is

fc~ll~lclilltigiverlg:tllge. tllellt lle1]r(J1~erties (2.2!l) l\~illt~e l>rc\st:rvecl l~y/~llytillle-

indqwmleuti gallge tr:i.llsfcJrl~l:*.ti(}~~.)This follows from the specific st.rllct.ure of

the ccJlcmr source which hasjlwt, a “+” u:unpoIL~nt, it ll(l is ~ti.~ti~. Forirjstance,

the cwmpouent ~1.=i ofwl. (2.1) reads:

[1 = D,,F1’” = D,IF]’ + D~Fht + D_ F-(. (2.30)

But D+ = D– = d- – i~/.4– vanishes by eq. (2.2!)), imcl m dow F-i. Thus

eel. (2.30 ) redlwes to Dj F] i = (), which implies F’J – (1,~lsindicated in wI. (2.X).

This fhrther implies that the transverse fielcls A’ form a t~vi]-clilrle~lsic)ll~~lpure

gaIlge. That, is, there exists i.i gallge rotnticnl CT(J--, .rl ) E SLJ(lV) such tthat (iu

matrix not atliuns i.l.ppropriatce for the acijoint represent iition: .4 ~ = .-l~l‘T(I, etc ) :

A’(.r-,.r~) = ~L~(,r-,.r~) i) ’[7t(,r-,.7~). (2.31)

Thus, the requirements (2.29 ) lmve j lM twc) imlepenclwlt. field degrees (f free-

dom, A+ (1) and (J(.7), which are further reduced tc] one (either .4+ or U) hy

imposing a gauge-fixing condition.

W-e cr~]lsicler first the invariant gauge ((~OV-gauge) i~~,.-l~’ -0. By WIS. (2.29)

;.i.ucl(2.31), this implies d,.4 ~ = U, ~.mU = O. Tl~Lw, in this ,~aLlcy:

J:;(.T) = W(:i({(<l’-. .f’~). (2.32)

with CtCZ(.F) linearly relt~t.ed to the (7dollr smmce /1,7ill the (_!OV-gauge :

– Y~c},l(.T) = fi,,(.Fj. (2.33)

Note that we use curly k:ttms to dmote solutions to the cksical field equations

(as we did alreacly in eq. (2.6)). Besides, w(e generitlly uw i] tilde to im:licate

qlmntities ill the C’OV-gauge, ,fdtllough we keep the simple nc)tatiou n,7 (.7) for

the classical field in t,his ,<allge, since this quantity w-ill be frequently used.

Eel. (2.33) has the SWILltilJll :

./
,U,(:C-, .~lj = dqyl (.r~l + 1]/1) A (J’– , UL)

—
L

two dimensions, lnlt it will eventually disap~Jear fl cm

(:ollfhlenlellt scale AQ(:IL) ill) ol.lr sllhsequ~llt fc)rlnd~i~.

The only non-tri~’ial field strength is the ele(tric fiekl:

In terms of the usLud electric (E) LLncl magnetic (B) fields, this solution is chara-

cterized by purely transverse fielch, El = (-@, El) ~md BL = (B1, B2), which

are ort,ho,gcud to each other: EL BL = [) (since B] = —E’z ilIIC] ~2 = ~1 ).

23



T<) ccmlpute the gluon ciistriblltion (2. lti ). one needs the classical solution in

the LC-ga.uge A+ = [1. This is of the form A~~ = .dl’iA~, with A~,(r-, .r~ ) :1

“pure gauge’”’, cf. eel. (,2.31 ). The gauge rotation [f(.F) (an Iw c)ht,ii.iuecl F)y

inserting the Ansatz (2.31) in MI. (2.1) with ~~= + to deduce ail wluation fbr ~~.

Mterw~.tivel~~, allcl simpler. the L@-gauge soluticm call he obtained by n ,gall,ge

mtatiolJ of the sckt.icm (2.32) in the COV-gauKe:

Eq. (2.37’) is easily inverted to give

(2.3s)

Frcun eq. (2.36), A’ is ohtaine(l iuclwd in the fimn (2.31). with tl giww in

q. (2.38). The lower limit :r~ - —no in the int,e~ral mwr .r– in eq. (2.38)

has been chosen SUC1l/Ls to impose the Wtarclecl” boundary conditicm (2. Xl ).

.Ruthermore:

Together, eqs. (2.31), (2.34) and (2.38) provid~ an explicit expression for the

L(~-gange solution A’ in terms of the colour sc)urce F iii the C’OV-gallge. The

corresponding expression ill terms of the colour source in tlw LC-Kauge p cmmot

be easily ol.haiuwi: E(1. (2.33) implies indeed

Which iUlpliCit]V determines o (:uld thllS [T) in t@rlllS Of p, bl.1t, Which wC’d~J1l”t,

know how to solve exldicitly. But this is uot a. diffkmlty, as we argue now:

Recall incleed that the classical source is ,jlIst a ‘klumnly” varial.llr which is

integrated ()Ilt in cmnputti~l,g correlations accordill,g i o ~q. (2.6). Both the mti.l-

Sure m-d the weight fhnction in eq. (2.6) :u-e gauge invariant. Tlllls, iJne can

comput ti ccrrelat ion functions iu the LC’-gal lge 1)y performing a clJa.nge of vari-

ables p —+~, iiIKl thus replacing the a priori unknown fmctrion~k A{ [p] h tjlle

functional A’i[I], which me known explicitly. III other terms. one [an rephwe

eq. (2.6) by
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Morecwer-, the ga~lge-ill~~ari~l~lt observaldw earl b? evqjrwsd directly in terms of

the gauge fklcls in tthe C’C)V-giiuge, falthough tile c(:]rresl)(:)llcliJlg expressions may

look more complicated thtin in tdJe LC.gauge. For instance. the (qwrator which

enters the gluou distrilmtioll can be written us (cf. e(~. (2.3!1) )

Ivllere the classical fields are inthe LC-ga 1lge in the 1.11.S. a] ld ill the C!(.)V-KaUge

in the r.h.s, ancl U aucl tJt are given hy eel. (2.38). 130th writirlgs repress tlw

~.i~lge-i~l~raria~lt operator (2. 18) (with the pat h ? i~l Fig. 11) iu the indicated

gauges. (Indeecl, (1., (,7, ~) = LJt(Z) [j(j) for the CWV-gallge field ~~’ = h“+ {.}.)

Note that, while in the LC-gauge the non-linear effects are emwdwl in the electric

fields X+’, in the COV-gauge tlw,y are rather encoded in the Wilson lines [r :mcl

[Jt (the corresponcliug field ~(~” = –t)i u CIbeing liJlear ill ;)(~).

IJp to this pc)int, the longitudinal structure of the somw hiis been iirt.)itrary-:

the solutions written at.wve 11(.IMfor any funct.i{jn p’z(.r ). For what follows,

however, it is lu+XUI to recall, fronJ Sect. 2.1, that, p has is localizcrl near

.r - = O. More precisely, the quantum analysis in Sect. 3A will demonstrate

that thd classical source at, the longituclimd scale k+ has support, at positive .r -,

Wit,ll () < ,r - ~: I/k+. FrOIII eqs. (2.33 )–( 2.34.), it is clear that this is nlso the—

longit uclinal support> of the “(70u1()lJI1) fkld” a ( ,7). Thlw, integrilk over J“- w

that in eq. (2.38) receive contributions only from J - iJl t,his Iinlit e{1 range, The

resulting longit uclinal struct m-e for the classical S()ll~t,iou is illustrated ill Fig. 12,

and call be appr’minlawxl as follows:

.A’(.r-..rJ) % ()(.r-);l”(i-mE (9(.r-)A;, (.r~), (2.43)

Pi(l) - i)+”-ti7= J(J” )“4’,.,(,/’1). (2..44)

Itislleretllldersto(jcl that. t,he d-- ~]11(:1fl–-fl.lll(:tic)rlso f.r– are smeared over

n distance A..r - w l/k+. In the tyu;at.iom ah~[-, 1’ :mcl ~’t are the asyJnptrXic

values of the respective ~a.uge mtatlicms as .r - — w :

In practice. LF(.r- ..rl) = I1(J:~) for :my J- ~> l//:+. N(jt.~ thiit (Z.-lfi) is t}le

Sil.Llle ~Vilson line as in the discussion of the eikon:il ~l~>~]rc)xiJllo.ti(jllin Se(’t.. 2.2.2

(compare to eel. (2.25) there). In the present c(jntext, the eikonai a.pproximatioll

is implicit in the special geometry of the colcmr source in q. (2.1), which is

created by f%t moving particles.

2.4 The gluon clistribution of the ydence c]uarks

To cmnpLlte C)h.servables in idle effective theory, I.me still IJeeds :111Wqm?ssion for

the weight flmcticm 11”7[p]. 13efore discLIssillg the ,gelwra] coJlstrmcticm of ll’r [1)]

ill sect. 3, k’t us present N simple Ino(-lel fhr it., (lIW to h[cLf}rr:]11-~7elll l,gc1~~fl.litlJ
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Figure 12: The longitlwlin:d stmwture of the CO1OUIsol me p i.iid of’ the [:lassital

field sollltion Ai for the (Jfcx’tive theory ;It. the scale 1<+. As functicms (i’ ,r -, a

and >+J me /is lo(.’illiZed as (J.

(NIV) [8], which takes into accmmt the colc)ur charge of’ tlm valence qlmrks

alone. That is, it ignores the fluuutwn eve] uticm of the cwhmr sol lrces with ~.

This model is expecte(l to work better for a large uucltIIIs, with atomic number

A ;> 1 ; indeed, this l~as really valence (plarks (.4 X ~\T,. ), iiIJCl therefcxe ils mimy

colour sources, which can create a strong CO1()ur field :Llrwdy at nm ckvwt e vallws

of x, where the ql] ant,um evolution can be still mgk’t.ed. 11] this model, ~ is

fixed, bllt one can stluly the strong field effects (in pmt.irular, gluon satlwaticm)

in the limit< where A is large. Besides, the MV mo(lel lxovides a reascmdie

initial condition for the qll ant:um evolution tOWi’lrdS small x, to be [lescribed

la.tlm.

The main assumption of the kll~ model is that the A .< NC.WI.lEWW(llli.irks can

be treated as in dcpen dent colcmr soluxxw. This relies OH [:ontinenwnt. Note first,

that confinement plays nc) role fim the dynamics ill the transverse ~llilll(?: hidewl,

we prol]e t,lle n~lelells with lar,~e tramerse momenta Q q ;2, A&, ~). that is, over

(listance SCOIW.much shorter than those where confinement sets in. (.)n tk other

hand, even at: moderate Yduw of x, we are still prul)iu,g :Ln integrat d Yersicm

t)f t:lw hadron in the lcmgit udinal direction, i.e., W(? 111(WSI.LW Zlll t.hE’ “lN1.rtLJllH”

(here, valence f~lmrlw) in a t ,ll-X?of tri:WISVC1’Se;trea M’1 -- l/Q2 illl(l k>ngitllditlal

extent AL -- 1/xP+ ‘~ 1/.P i . The number of va.lellce qwuks which me rrossw 1

hy this tLlbk’,

(2.46)
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(with n = the number of quarks per unit t.ri~~ls~er~e area, R the radius uf i.isi@

nucleon, and RA = A1~:]R the radius of the nuclelw) increaws with A, hut, these

(pmrks are ccmfinwl within different nuchwns, w tlwy are lmcorrelatw 1. W7wn

the number c)f partcms AiV is lnrge enough, t,hf? ext erual probe “’sees” them as a

classical cololw source with a ramiom distribution over the transverse area. TIM

total CO1OLNcharge Q“ “m the tube is the iucolwrerk sum of the colour charges

of the individual partcrns. TIJus,

\t,llere ~ve h:i,ve ~lse~ the f:l,ct that, the ~c)lc~lIr charge scpla.re(l of a single cplark is

g2t0 t“ = g2Cf. Oue can treat this charge M classiral since., when A.fV is lm~e

enough, we can i~nore cwmnut at ors of ChiUgW:

(2.48)

In orcler to lmke the continulun limit (i.e., the limit where tile transverse arm

ASJ of’ the tube is small~ ), it is ccmvcmient t.~~ intrcduce the coh )llr chmge

densities pc’(z-, .r~ ) (with the same nwaniug as in Sect. 2.1) i.~~ld

fr (IJ) =
/

(Lr-f.)c’(r-. .rl) (~,<4CJ)

(the dour ch:.irge per unit area iu the transverse pl:.tn~). Then,

/
(h” A.4(J”-) = //,~. (2.51)

Here, }1~ N A113 is the average colcmr charge scluarecl of the wdence quarks pm

Imit transverse are:.i. and per dour. :Lnd AA(.c– ) is the corresponcliug dhusity

per unit volume. The latter has scnne delwuclellce llpon .U-, WIWWIpre(ise

form is, however, not impc)rtjrmt since the final formulae will imwlve cmly the

integrated clensity }t~. There is no explicit clependellc’e UPOII .rl i~l t’1.qor ~ A(r- )

since we assume transverse hcnnogeneity- within the ll~l~leilr clisk c)f r:.idius RA.

2 ,. ,~~i~+,lysp~al{i~,~.fl~,t,llisStc,p(:)116SI10111(1211S0inclluk‘This a.nlo~mts to increasing ~ . w, s

the DGLAP quantum evolrtticm (i.e., the fact. that, with increasing t.rmwwrse resolution 1, the

ori%inal “cluark” 1s resolved iM o a set of smaller {r.jllstit.l.lellt.s ). The quan tum amlysis to 1x+

discussed later will incllwle tllat. in the “rloubl*lo~ appr[)xitnatiorl°; see %ct.. 5.3.
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Finally, the crlrrek~.ticms are local in .r– since. as al~uwl More, cwlour sollrces

at different valLws of .r – k)ek)llg tO Chfkellt llllCkoIIS, sO the,v WY’ lUIC(”)TJ’eliitGCl.

All the higher-pc)int, connected, correlzitim fimctic)ns Of p,, (.?) arp assluued Ix]

wmish. The mm-zero correlat m-s (2.51) are gtwerat:ed by tlJe followin: wei~ht

fLLllCtiOIl [8] :

(2.52)

which is a. Gaussian in pa, with a lo~id kernel. T] lis is g:i.llge-illv:i riallt, so the

variable p(~in this e.xpressicm can be the dour source in any gaLLge. The integral

over xl in eq. (2.52) is effectively cutoff at R ,A. By using this weight functicm,

W? sha,ll now conlpllte the ol>swwables introduced in Se(”t. 2.2.

Consider first the gluon distlrihlltion in rhe low rlelJsity regime, i.e., w-hen the

fit omit lJunher .-l is lJot t cm high, SC}that the ccnwspomlin~ clmsicti 1 field is

weak ancl can be comput ml iu the linear a.l)proxilrJ;~t ioi J. By expancli~lg the

gelleI’al SOIUtiO1l(~.~ 1) tO lillWr Order ill (~, Or. ~(-llli~r[ll[;~ltl~, h~ (hLX?C~lS SO]Vill~

the linearized versiou of’ q. (2,1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj, one easily obt sins:

which together with WI. (2.5 1) ilJJplies:

By inserti~lg this [i.~)~jroxilll:ltic)~lill exls. (2.23 ) uric] (2. 16), one cJ1.)tai~Jsthe fol-

lowing estimates for the gluon density and clistribntion function:

(2.55)

(with~,, =f12/-ln-). Tlleilltcgralc~ verkl il~tl~e secc)~~cllillell:i.s t~log~iritlllnic

infrared cliver,gence which has beeu cut t.~y baud at the scale A~~fTr- since we

kncnvt hat, I]e(::illse (.)fc:(.]rltinelllellt, tllerec:illll()tl lt?glllolll llc)(l(~s\vitlltr:l1ls\~erse

~valrelellgtllsl:irger than l/A~~~r~ (see:i]so FM. 135]).

lVererognizeineq. (2.55) tllJest}and:ird l)re~llsst,r:~lllllll,g s~~e(:trlllll c)f soft “phcb

tons” racliatwl by fast moving charges [1]. In [l(:ririllg this result. we have

however neglected tlJe lJolJ-.%belialJ nature ofthe ri.dii.i.te(l fields, i.e., the fiNt

that they represent glmms, and nc)t photons. T’his will be correctedin the nmct

subsection.

2.5 Gluon saturation in a large nucleus

According to P(1. (2.55), the gllli)n density in the transverse phase-space is pr-

oportional tc~ .41):] , aId becomw arbitrarily large when .4 iucrwws. This is
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hcmwver an artifact. c~fc)ur previous :~pprc~.tilll~(t}ic)llswhich have nc@Mml the

int eractfions among the rildiated gluons, i.e., the mm-linear dfects in the classi-

cal fielcl equations. To see this, om needs to rem input e t 1Ie Kluon clistril~ut ion

by using the exact, ncm-linwr solut,icm fc)r the classical Mel, a+ ohtainecl i~l $&t.

2.3. This invc)lvm t.hr follfJwillg LC’-~i:~~]~~field-field ccmelatc,r:

which, ill view c)f tjhe nomliuear cal culatricm, has h-w rewritten in Terms cf

the classical field iu the C~OV-,qauge ((:f. PCI. (2.42) j, whine 7:’ = –i)’ {lfl. To

F’VidUiit(+ (2.56). cme wqmnds the M;ilscm lines in powers of (’~iuld tfhen contracts

the a fields in all the possible ways with t,lw following propagatcm:

(CL,(.OC%(’J)).4= (Ld(l-- – !/-) “,,-I(X-, J’1 – !/1),

(2.57)

We have Lwxl here j“(.r-, k~) = k~~.t”(.r-.l:~), ~f. eq. (2.3-I.), t,c)~(ther with

WI. (2.51) which hc)lds in any gauge and, iu Iwtic’ldar, iu the (’ov-gii.LIge. The

propagator (2.57) is very singular as k~ — (), hilt. this t.lumsouttc) lw (;dmost)

harrnlessforthe cc]~lsicler:itiolls to foll(>~~~.

The fact that the fields c~are uncorrelatecl in .E- grc~~ltlysilll~>lities the calcldatirm

of the correhit,cn- (2.56). Indeed, this implies that the t,wc) CI”)V-gauge electric

fields f)’(~~(.~) and t)tnr(~~) (an lw contracted [rely together. iMIClnot with the

other fields o generated wheu expwlding the Wilsou liuw. That, is:

where We hZL,VeLlsed {1~(, = tTC(, ill thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAid jc)int IY3pl’eselltLlt.iOIJ. ~(~. ( 2.58) CM1 be

proven as follcnvs: i) 13y rc)tational synml’etrv, t)’{ I (.7) C’/.LIlllotlw ccJIltracted with

a field c1(z–, .r~ ) resulting from the expimsion of CTt (.7): inckwd:

WY! llCIt fdlCJWed by the C)rCk’riIl~ (.)f the WikC)Il ]iIleS ill .C– : (.r( 2– , J/~) has been

generated by expanding Llt (~), which recp.lires z -.: !~– (and similarly {1- <f ,r - ).

Then, the first umtractic)n in (2.59) implies .r– = ;- <:- !)-, while the second

one leads to the contradictory recluirement ~– = u – .: r –.

The allowed contractions in eq. (2.58) inv[.dve:
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which is like the S’-m:itrix element, (2.X) km the cli~~c)le-lla.clrc}rlsca.ttming, but

now for :i (:olollr dipole in the a dj oint represeut,uticm (i. e.. :a dipole made of two

glu{Jns). This cm he conlpllted 1)y wcpamling the lVilson lines. perfcmnillg con-

tractions with the help of eel. (2.57), imcl recc)gylizing the result, as the expansion

of an orclinary exponential. C)ne thus finds (Ser also Sect. .5.1 f[.)r i~.~lwe riapi d

clerivit.ticm):

s’.~(.r-, t ’~) = exp{–.fi2N,[<,4(7-”. 01) – <A(.r-, r-L)j},

where the expcmentr (can be easily unclerstcmd: lt ilriSeS :.w

({p’ ((.k(,(.7) – (U,(y))(Lrt)(cth(a – f.kh(;r))) (~.(jl)

where i.qTa(CI,, (.7) – ck,,(!l)) is the amplitude fc)r the (Iipde sc:ltterill~ off tile

CWoldomb” field c~,,, t,c)lc)ltrest$c]rderi~l tllisfiel(l (i.e.. tll(:i’llllplitllcle for flsi~lgle

scattering). Then, (2.61) is the amplitude times the complex WJIljU.~~i.tean]-

plitucle, that is. the cross secfi~m for such :i sill~le s(c[i.ttering. This $.iplwnrs

~~sfin exponent ill e~~. (2.60) ~in~e thi~ e(lU}.1.t,iOllresU1llS lUUlt.i~Jk S(’Zi.ttWhl~S k)

idl orclers, :md, in the eikonal il~>~)rt)xi~llii.ti(:)ll,the all-order rwult is simply th~

expcmentia.1 of the lcmwt fmler rwldt. Since.. moreover, n(i is the field created

by the colour sour(:es i~l the haclron (here, the wilence quarks), wc (Itduce that

eq. (2.6[)) describes the multiple sca.tterin,g of the cwlc)lw dipole cltft.hese ccdour

sources.

If the fielcl ma is slowly wtrying over the transverse siz~ ti = :{1 – .yl of the

dipole (“small dipole”), on? (’iill expand

and then eel. (!2.61) involves the’ ccJrrelatlor of two (~ OV-,cyl.ugej electric fields.

This is illcleecl the case, at, it can l.w swm by an analysis of tlw wqmnent in

eel. (2.60) :

/

(PA-L 1
c,4(.r’--,o_) –<.-i(.r””.?’l) = p...lr.)-) ——

[

~ _ ~,hl.rll
(~T)2 /:j ,,

J

Tlw a.bcn’e iutegral cwer ]i~ is clcnninated l)Y soft. momenta, and has even a

lc)garithlllic clivergell(:e ~~~llicllreflects tllel~lcltc~f codinenusnt incJurnmclel (WW

+ilsc) [35]). Note, hCJWeTW, that the domiuant. qlmdratic. infrared Clivergcmw

-- ~(#k~/k~), which wcmlcl characterim the s[attrrilw clf u f’{~tf~/~r’(’cll)il.rtricle ((1.

single ghlcmj off the haclronic fielcl(i, lltisczlrlcellelll )et:kve(’ll tlletlvr)rolll~][~rlerlts
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of tk CO1OM7-1C’S,Sclipck. Tk remaining, Ic),garithnlic, divergencw{an k cut off

{

_ (l,5i\Tc
S’A(.1”-,1”1)2! exp —

1

4
rjy.~(,r-] 111,., J1~ ‘

(2.(;5)
Lf Q(.’n

which together with ccl. (2.58) can he Iwecl to fimdly i+Villllii.tF’the gluon dvnsity

(2.23). This requires a (kmlde Fourier transftmn (to ki alicl L-l), as shown

in WI. (2.17). The presence of the d-function in eq. (,2.5S) makes tlw F{Jllri?r

t.ransfcmn to k + t~i~i:~~, :~ncl one gets:

where (cf. e(ls. (2.57) ;uIc1 (2.63)) :

Tlw mm-linear effwts in WI. (2.66) i~re wmod[:(l ill thv quantity 5’.1(r-, rl ),

which fincls its origin in the ~illl,~~ rc]tat.ions ill the r. h.s. of e(l. (2.56). In

fact,, by rephicing S,4 (r-, rl ) - 1 ill eq. (2.66). mw w<)lM recover the linwir

:.lp~jrf~.xilll:ittirjll of’ eq. (2.55 ). Ti ) 1wrfcmn the int.e,qal over ,r - in WI. (‘2.66 ),

we nOte t]la,t the cpl:illtitv (2.bi’ j is (:ssenti:dlv tlw deliv;.tt.ive w.r. t. ,r - of tjhe

expcmeut in S,4 (.C–, rl), wl. (2.65). Therefcm:

Qi = CF.<iVc[.l.4= C\.sNc
/

(l.l:–A,~(,/”-) -- .4’ ‘:3. (2.69)

Eq. (2.68) is the ccnnplet. result. for the gllmn demity of a largp nurlells in the

NIV nmclel [33, 34]. To stucly its ciependence upcm kl, cmr must still pcrfm-m

the Fourier trmsform, but the result. can he e;.wiIy anticip:~.tecl:

i) At higk momenta I:J >> Q,4, tile ilmgral is d(JIIliIli.\td hy smull (list~imes

J’L<< 1/Q A, illlCl CaIi 1-)F&Vi~llIiltPCl h~ expanding (.lllt the rx~)o~lerlt ial. T( I l{JWWt
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uon-trivial cmier (which ccmwsponds to the linear [~ppl’C).XilIliLt.icm), me c~l]tains

the l>renlsstri.illl~lllg spectrum of eq. (2.55):

ii) At small monmnta, kl ~< Q,1, tlw dcmlinant contribution comes from large

distances r~ >> l/QA, where cm can simply Ile$+&Ct the wcpcmentiul in the

I luInera.t or an(l recc)gnize 1/r~ as the Fourier tnmsfcmn7 c)f Ill }c~ :

(2.71)

There are two fundamental differences between eqs. (‘.i?.~(1) a.lld (~.i’l ). which

refer hck,h tc) a scztwatim Of the incrrase cd’the glucm clensity: rither with 1/k~

(at fixed atomic uuml.wr A), or with A (iLt, fixe(i transverse momentum k~ ). in

bckh cases, this satulat.ion is c)nlv m mqinol : in tjhe lC)W-/i’~ reginw, e(l. (2.71),

the glImu density keeps illcWMillg with l/k~. ;md alsu with .4, hut. this increase

is cmly hyja?.ith m k, in Collt rilSt to the strong, power-like, iIICrei.1.St?(.Y (A
l/3,,ij )

in the high-l;~ regime, ec]. (2.;0zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj.

h,~c~reover, the gluon cdensity at, lcm li~ is of orcler 1/~ is , which is the maximum

clellsity allowed hy the wpulsive iutm-actions between the strong colour fields

.~”i = ~~ w 1/{/. When increasing the ttomic number A, t.l,e UeW glUOM

;.we produced l:)repo~ldererlt,l,y at, large. transverse momenta 2 Q.4, whf:w this

repulsion is less important. This is illustrtit, ecl ill Fig. 13.

TO lw more precise. the true scale which ~epi~~+~tes l.wtween the tw{o re,gimes

(2.70) and (2.71 ) is not Q,A, kmt rather the ,?utMntio?L n~~m~entwn Q., (.4) which

is the reciprocal of’the clistance l/rJ where tho expmwnt in WI. (2.68) }wccunes

of orcler cme. Thus, this is defined as the scdut icnJ t.c) the fcdlowill,g PC1lm t,im K

Tc~ clarify its physical illterpr(:tciti(:,ll. note thatt. iit sliurt.-(list:illces rl <?: l/Q4,

(2.7’3)
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Figure 13: ‘1’he glurm phs.se-spaw density J~~A (kL ) of” il hrge IiLM;]eus (ss de-

scribed by the hlV model) plotted as a fimcti on of 1;~.

is the average C(J1Our charge sqllared of thCI gluons lmving tranwwse size r ~ pw

unit [i.rea aucl per cwlour. Then, eq. (2.72) is the condition that, the total cololm

charge sc~umxi within the [~r~ii ( wcupied by mch ~lucm is of (jrder one, This is

the original critericm c)f saturs,t,icm 1)y Gribov, Levin and R yslcin [6]. f(jr which

the hIV moclel offers m explicit realizutioll.

To conclllcle this disclwicm c)f the hIV Ino(lel, note that, in the prc!’ir]lw cwrnpu-

tation, we have also (jhtained the b’-nli.Ltri~ element b’,~(r~ ) for the cliljole-]1:~.{”lrcjll

sc~j,ttering (cf. Sect. 2.2.2). This is given b-y q. (2.65) with /1A(r- ) -+ // ,AHild

iVc = ‘P P rephwl in general 1y the cc)lour (.’i-~.si]l]irf c’t“ for the rqmwntat,irm

of interest (e.g., C’,f = (N;? – 1) ~2NC fcm the fuml:urmtal reI>reseIlttlti(:~n). As

cliscussecl ~dkr 6Yi. (2.61), this clescribes t 11(+Intd tipk watt wing of the colcmr

dipok c)n the ColclLlr fie]d ill the hdr( )11 (here, the field Cd’the V;d(:nCY (.[ll:lrh ).

According tc) eel. (2.65), cme c;.m distinguish. here too, lwtwm+n a shcmt-dishmce

ancl a Iarge-dist ante re,gi me, which moreover are sqmmt e( 1 by the same %atu-

ration scale” as for the glLIcm clistribLlt,icm:

“’- 1/Q.< is only weakly interacting with the hadrcm:i) A sndl-sim (lipcde rl <s.

u phenomenon Lmrall,v referred tic)as “Wlmm transyirency”.

ii) A relatively large dipck, with rl >>1 IQ$, is strongly absorbed:
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a sit lmticm ccmmwnly referwcl t o as the “black dis~. or ‘“uuit arit y“. limit.

The remarkable fact that t]Je crit.icd dip~lle siw is set hy tlw satl lration scale

Q,, can be Lmclmst.ood w Mlows: A small dipfdf~ — slna]l as comlxued t (-]t,he

typical va.riaticm scale of the external Coulcmlb field — C’lJll@ t(J the asscwiat.ed

electric field ~+i (cf. q. (2.(;2 ) ), so itrs crc)ss-srcticm for CJIN sci.it.tw-ing, (’cl. (2.01 ),. .
is propmticmal kc) the number of glucms (%+ t-F+’ ) within the trarlsvmsw itrea

~~ e~pli.]red by the dipcde. This is manifest cm eq. (2.65), whose exponent is

precisely the ccdcnrr charge scluared c)ft he gluons wit hin trhat i.LIY21 (cl. the remark

after eq. (2.74) ). Att Silturat.ic)n, this charge heccmles of order one, i.illCltl] e dipole

is st.rc~ngly illteract,ing. The inlportmlt, lesson is that the Imit:irity Iimit (2. i’(i)

for the scattering of a small clipole cm n higj energy hadrcm is ecplivaleut t,(.)

glmm saturaticm in the hudron wavefuncticJn [40, !1. 10, 45, 14].

3 Quantum evolution and

the Colour Glass Condensate

Iu this section, we show thi.it, the classical Yarlg-MilIs tlwcmy described iu Sect,.

2 (i.~11be actually derived from QCD as arl effective theory- at small x. This

requires integrating out. quantum fluct uat icms in layers c)f p+. which can be

done with the help of a rc\l~c)rnl~~lizutic~llgroup eclu:t.ti(Jn (.RGE) for t he weight

funeticJn II:r [p]. WV shall not ~Jresent all the ((\lctlli.~t.i~)ll~lea(ling LC)this R C~E;

this woulcl recluire heavy t.eclmicnl developments ,goillg far l.]eyiJncl the purpose

c)f’these lectures. (See Ref. [37] for more det ai 1s.) r~at.her, we shall emphasize

the general strategy of this construction an(l the physical pirt,ure behid it (that.

c)f the c.cdour glass), t ogcther with t.hfJse elemelJLs of the (:al(ldaticm which are

important to understaml the structure of the final equat.icm.

3.1 The BFKL cascade

III Scot. 2.1, we htLve arguecl that. the ra(liaticm of [Lsoft, :IUOII by :1 fast [)il.rt~)~l

via the tree-level graph shcmm in Fig. 10.;.L can he (Iwcrilxxl [is a c]assicd

prcmws with a dour sc)~wce whose drllcturf? is largerly fixe(l 1,y the kinematics.

Our main gcml iu this section will be to show thiit this picture is mJt s~milt

hy tprautum corrc’cticJns. WF start by showin~ that the (Ic}minant quarltum

corrections, those which will be reslunmwl in what follows. preserve indeed the

separation of scales which lies at the basis of the dfectiw+ theory devc’lorJPC]in

Sc’ct . 2.

Consider first the lcnvwt.-~.mler radiative corMct icm to the tree-level graph in

Fig. 1(J.a, namely, t.lw en lissicnl of one additimud ((lllilrlt.lU1l) gluoLJ. iiS slJown

in Fig. 1-1.a. At, the s:arne 1evel of accuracy, i)ne shcJldd inclucle i,Ilso t,lJe vertex

and self-energy correcticms illustrated in Fig. 1-i.b, c. This will be (lone iu the

ccmlplete ca.lcldation presented in Sect,. 3.4. But ill cn-cler to get a simple or&r-

of-ma.gnitucle estirJMt e f(Jr the quantum cm-rwticms — which is our p~w~xwe in

this subsection — it is encmgh to consider the ra( liatiw l)rf)cess in Fi,q. 1-La.



, s
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Figure 14: Lmvwt-ordw quantum ccu-rections to the emission of’ ti soft gluon })y

a f%t p:irton: :L) a real-gluon emission: b) a wa-tcw correction; c) ii self-ene~:~y

cwrrc’cticm.

The probability for the emission of a quantum ~luon with kmgitlldinal mcmien-

t,lun p~ in the range p+ :> p~ >, li+ is

(3.1)

This becomes large when the a.v:iilable intervid of r/il)idit,v A ~ = hI(l/x) is l:irge.

This is the typical kind of qwintlun correction that we would like to resum hwe.

A calculation which incluclw effects of cmk (c~,,ln( I/x))” t{-)all orders in n is

said to be valid to “leading lc)ga,rithmic a.cxuracy” (LLA ).

The typical contrilmtions to the logarithmic integr~iticm in eel. (3.1) come from

+ deepi,~ insicle the strip; p+ ‘>>pf ‘>> /{+. Thus. inmc)des with mcmleuta p,

Fig. ld.al the soft fhuil glum] with momentum k+ is t~nlitted typic~illy frcnn ~i

relati ve]y fast gluon, with momentl 1111pf >2 A“+. This hitter glLK)u can thsrefhre

be seen :is :i rc)mpcnwnt of the eflwtit{t c(~lour source at the soft s(nle /;+. In

other terms, one C?I.11 visualise the ccmlbiued effect (of’t.li(! tmw-lewl prcxww. Fig.

10,a, illld the first-order radi~.it.ive correction, Fig. l-la, ;.is the ~emwltion of :i

modified colcmr source at the sc:.ilc k+, which receives C(mtril )l~tjions onl;~lfrom

the modes with longitudinal momenta uLuch li.it’~er thi.iu k+. This is illllst.rateci

in Fig. 15.

P+ P+

k-
P:

+

~+ 7
,,,:=~+

Figure 15: Effective cololu solwce after including the lcnvest-order r;.t.dititive

correction.

C’learl-y, when x is small encmgh, ln( l/x) ~ l/~Ls, the “Yorrecti(on;’ (3.1) heccmws

of 0(1), ancl it is highly probable that, more glu( ~m will he wnitt ed [ilong the

way. This gives 1)irt~ to the gllum (:i~scide depict~cl in Fig. 1(j.h, whew clcmli-
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nant. cent.ribut iou, for a fbwd nunlbw of’ “run~s” N, is of ord(~r (~},,In( l/c) j’v.

and comes from the ki m-wmt ici.d donmin wlu+r(J t b e Itm,qit udinal monmlit n me

st.rrmg,ly ordered:

(Wher nmmentuni orderings give {c,lltril~l~t.ic,~ls which :are sllppresswl by, at

least, one f’act,c)r of’ 1/ ln( l/x), aml thus can be neghx’tecl to LLA. ) With this

ordering, this is the ftimwls 13FKL cascade, that we wol dd lilw to inclllde in our

effectiv; source. This should be possil)le siiwe the hierarchy cjf scales ill eq. (3.2)

is indeed ccmsist.wit, with the kinem:ltical aSSUlllIJtiC)llSiu Sect. 2.

Note first that, the strong ordering (3.2 ) in km~itmdimd momenta implies a

corresponding ordering in the lifetimes of the emitt,ed :<lLIOIH (d. 6q. (2.2)):

Because of’this, any newly emitted gluoll lives t[)() shortly w notice the dynamics

ofthe ,glucms above it. Tllisis trllcilll~:i.rti( Llli~rf{>rt. ll~l:~st~~~~lit,teclgll.lc)rl, with

momentum k+, which “’sees” the AT previous gll.ions ill the (;i.lS(’Lld~ ilS <i. frozen

mlolw charge dist,ribl~tion, with an avwage CO1OIUclmrgx? Q, ~ ~m-.-. jli.

‘Thus. this (W} l)th ~luon is ~:nlitted Amen tl~~ off tlwC(dolu char~e fiuctrmticms

ofthe iV previous trees, with aditferential ~m)l)~ll)ility ((,fmllmr<~ to eq.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.1)) :

(3A)

When increasing the rapidit,v hy one m(Ire step, T — T+ (i~. t.]]? IILIIllher of

radiated gluons changes acc{Jrcliug to

l\T(T+(/T) =(l+jv(T))(lP,v +l\T(T)(l –(/F’j V). (3.5)

(3.6)

Thus, the glucm clistril:]ut,ion grows ex~Jonentia lly with ~ = lu( l/x j. A more

refined treatment, 1wing the 13FKL equat ioul gives Ii = -11112, and shows t,ha.t

the prefactor C’ in the r.h.s. of eq. (3.6) has i.M’tUall~a weak dependence on r:

c ‘x (rL,,T)-J/~ [3, 4].

Thus, the BFKL picture is that of an unsta Me ~rowth of the cohlu charge

filwtuations as x becomes smaller ancl snuiller. However. this evolution [issllmes

the radiated gluons to I.wh[ive m free pilrticles. so it cxwws to h ~ valid i~t,very

low x. where t lJe glLlc)n df?nsit,y becomes so large that their llllltllid interatticms

cannot be ueglect d anylcmgw. This happem. typically, wh rn the interaction

prol:mbilitjy fcm the raCkLted ~luons kwcomcs fd’ order olw, cf. eq. (1.12), which

is also the criterion for the saturation etfw’t.s t( J be iml )cwtimt (comp:.m ~ in this

respect. eq. (1. 12) and eqs, (2.72)-(2.73 I). TIJIw (me ranuot st Ilcly satluatirm

umsistently withoLlt inclLlcling mm-limwr effects ill tlw (lLmntLuH mwlllticm. lt is

our nmin objective ilJ what fhllcnvs to explnill how to do tlmt..



3.2 The quantum effective theory

T() the accurac37 of interest, quantum cxmwctions can he inccup mated in the

effective theory by rwmrmalizing the source fj,~ a Tic1 its (:orrel ation functions

(i.e., the weight functicm Il”r[p]). The argument proceeds hy in{llwtion: We

assume the effective theory t 0 exist ,at scJlne sc[i Ie A + :UK1show thilt it Ci.ilI be

extended at the Imvcz- scale bA+ <K .4+. Specifically:

I ) We assume tdl:.~t a quontwn effective theory exists [It, S(nne origiuid s(’ale A+

with A+ <<”P+. That is, we i]ssmne t hnt the fast qua.ut.mu UK)des with momenta
+ ,X A,+ ~.all lJe ~c,placed, :i~ f:~r M t,lleir etiects cm the correlation hulctlicmsp ,

at the scale. A+ are concerned, by a. classic:il random sour-cc p(t with weight

function HT,,+[p]. (We shall evcntual]y cxmvert A+ iut.o the r:ipidity -r hy usin~

~ = l~l(p + /,~+ ), j on tile ~~tller lUUIC1,the .sofl glUOnS, wit,h nmmento p+ .. A+.

are N,ill explirit ely pr.wwnt iu the theory, :N qllillltlllll ,gall,qe fields. ‘rhl M. this

effective theory includes hot,h the (:li~s~id field .Ai [p] genw;.i.tvd hy /~, i~~~dthe

soft Cplantunl ghrons .

Within this tl;eory, the correl:itirm functions of the soft (1:+ ~ A+) fields are

obtained as (e.g., fur the 2-lJoint function)

(3.’7)

where T stays fcm time ordering (i.e. {JrCh?rillg ill z+ ). This is writ t ell in the

LC-,ga.uge A: = (), and irwcdves tmc} furwtioni~l integrals:

tL) a quantum path integral over the soft glum fields .-i~’ at fixed p:

?s [.4, /)]

(TAf’ (.r).-l’’(,y)){, = ‘~’j+ “~~(-4+ ) “4”‘“z”)’A’’(f’)e .

,1 2?.-! (\(.-i+) ~ i$[.4,,i

(3.s)

b) a classical average {)ver [j. like in wI. (2.(.i) :

The upper script “A+” ml the (~unntlml pi~.th integral is tc] recall the restriction

to soft (lP+ I < A+) lcmgituclimd mmnent.as. The M-tion S[.4, p] is chosen slwh as

to generate the classical field eqlmticms (2.1) in the saddle point, :iIl~)roxilll:iticJrl

fiS/~$.4i’ = (). This rec~uirernent, togethe~ with gauge synmwtry and the eikcmal

:Jpproxirlla.tric) rl. single out, the following action [36] :

. ..
‘The separation between fast and soft degrees 1,t’ fnwkm wwmding to t heu l[.mgit.udi-

nd m cmenta has a ~~l~ge-itl~~iiri:irlt uwaniug (within t he L(.:-wuge I since the rrsi~lual W~UW

transformations, being independent of r – , Caunrt change the /7+ lnclluenta

3’i



w~lere ~t,”[A - ] is s Wilsi.)n line in the temporal direction:

11-[.4-](,7) = T exp {ig/d.r+A-(.l,}. (3.11)

With this action, the conciitic)n (\S/f$ALL = (1 implies iudf?ed eq. (2.1) fhr field

configurations having A,; = [). ThIUS, the ela~si~iil ~(jltltion A$~= i;~t’A~,[p] f(juud

in Sect. 2.3 is the tree-level field ill the present, cluantum theory.

As long as we are interest,f,cl in correlation fimctiows at the Male A+, or slightly

1W1OWit, we mm satisfy olwselves with this classical (or siacldle point) upproxima-

ticm. That is, to the acclmxy to which holds the eflectit’e theory in eq. (3. i’), the

.gIuon correlations at the sca.h: A+ can be computed from the cki.ssical field solu-

tion, as in eq. (2.ti ). But qlmntum ccnmctions become important when vw ron-

sicie.r correlations at a much scjfter scd? ~:+ .:< A+, sllch that cr., hl (A+ /1,:+ ) -1.

I I ) Within the qlmntlml effective tlmwy, W(Iirltcyqate out the scm i-fadqumtlun

fluctuations, i.e., the fields with longitudinal momenta inside the strip:

lA+ .< ]p+I ,s. A+ . with b <.1 and (“t,, 111(1//)) <: 1. (3.12)

This generates (pmntum correct.icms to the (orrelii.tion fln)ctions at the softer

scale M+, whif:h can be compllt.ecl hy decomposin~ the total ,glL1cm field as

follows:

4/’ = A:! [p] + (/:! -i- rsfl; !.. ... (3.13)

Here, ~~ is the tree-hwel fidd, a: are the se]ni-fiM fluctlmtions to he integra.trd

OLlt, and (JA: are the S(Oj-t1I1OC1Wwith momenta Ip+ I < LA+ whose correlations

receive quantum cc)rrecticms from the semi-fast glLIons.

These irld7(md correlations must be ccmqwted to leading order in 0,, ln(l/b)

(LL.4), but to all orders in the classical fields A’ [p] (since we expect A’ x l/Jg

at saturation). This :LnlOLUltSto an one-loop calcldtktirm, 1)llt. with the exact

lmckgmund field propagator (r7f’ (.r)a” (y j )~ c)f the semi-fast. ,gluons. Fur instance,

the quautlun ccrrect.iom t(J the 2-pc]illt fuuct.iou read scller~lilt.ic:Lll~~:

wll~r~ t]l~ ~jrac~~ljs (. . .)~,sto,Ild for the qll~llltul~l average over the Semi-fast tields

in the backgrmud of p; this average is defined as in eq. (13.8), but with the

flmc.tional integral now restricted to the fields a:!. The purpose of’ the quantum

(:i.LIC’UlatiOnisto~)r(~I~iclerxI)licit. expressionsfor the l-point ftmction (f\.4t)~) aml

the 2-pc)illtfLIIlcti(]Il (rJA’fJAj)P M hmctimmls of p (to the indicated accuracvj.

once these expressions are known, the 2-l)oiut fluwtiou (.4’(.T:)AJ(!I)) at, the

SC&’ blj+ (’F1.11he fhl:LllV CO1llpUted i.LS:

(.4’.4’) = ((( A’[,)] -1-(\.- l’)(. A’[,)]+ (s.4’)’),,),[,,, (:3.15)
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where the external brackets (. , .)~~<, denc)te the clussica] avera~e cnw p with

weight function lt~~[p], as in WI. (3.9).

(3.16)

where the average inther. hs. isdefincd asinf>cl. (2.6], m (,3.[1). blltwith weight,

fll~lctiont~:[,,~+[fl]. Tllis(lelll,")llst, r:l.tes tlleexisten['ef )ftlleFt iert,il'et, lleory:it.ille

softer scale bA+.

Since AT17 - Ttj,,l+ – lT”,i+ x c~.,h](l/b), the evolution of the weight fuuction

is best written in terms of lapiciitv: 11’7+JT II”r = -A~HTl:~, where j- =

hl(F’+/A+ ), Ar = ln( l/h), and H - H[fj, ~] is a functional differential operat.cm

acting cm TITT(gc:nerally, a non-linear functional of p). In the limit AT + [). this

gives:] rcnf7r/71cliz[lt. iOrLgr(]/L~) fy(~f~fio71.(R.(-JE)clrscril)ing t.lleflc)ll~ c)ftllc’~trt’igl~t

flmcticmwith ~ [33,3G] :

(3.17)

By integrating this equat,icm with initial conditions /it ~ <t 1 (i.e., t~.t A+ --

.P+), one can c)bta.in the weight functicm at the rapidity ~ of ilJterest. T’he

initial conditions are not really pertlubat.ive, Ijllt olw CW1rely on some non-

perturbs.tive mc~clcl, like the hIV model cliscussecl in Sects. 2.4–2.5.

A key ingredient illtllis itppriJac~l,l $zlliclll ll;llL(`stlleclifi&rellce`l v.r.t. t.heBFKL

ecluaticm, are the non-linear effects encoded in tlw Lack,qround field calculation.

Recall that p, anti t herwfore tlw classic:d fields A’ [p], fire r:mdclm variables whose

correlat.c)rs (2.6) reprocluc(? the gluon density illld, mow generally, the n-point

correlation functions c)f the glum fields at the S(”il.lC? fl+. Thus I)y rc]rtlputing

quantum correcticms iu the presence of these background ficdcls, rmcl thcm aver-

i~,gillg cwer the latter, one is effectively stlldyin,g cluantum evcdution in :i medium

with hi~h ,glLIon clensit,y. .4fter each step illtjllise~r[)llltioll, tlle~]r~.)~~ertiesc~ftlle

nleclium (i.e., the cc)rrel{itc)rsc)ff~) areupclatw$ I:)y illclL~cliIl~ tllcil[it(:~st Cp.liUltLIUl

cc]rrections. In terms of Fqmnui.rl graphs ci tlw cmliua.ry perturbation them-y,

this corresponds to:i. (:c~lllplica.tecl resllllllllatioll (~f(ii:.t.gr[lllls clesrril-)illg tlleillt.(3r-

actions between the glucms r;i.cliatwl in different partcm cascades and at different,

vapidities. A typicalsuch ~~dit~grt~.~~lissllc)~~~llili Fig. 16. .4tl(:]tvcle~lsity,~vllere

the non-linear etfect.s can be ueglectedl PC!.(3. 1’7’)mrrect.ly reproduces the BFKL

ecpuition [36], as it. should (see Sect. 3.5 below).
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Figllre 16: A typiml Feynman diagram th{lt is

quantum evolution of the effwti ve t]] emy.

3.3 The Colour Glass Condensate

Note the special fcmn of the avwmge in Pq. (3.7).

implicitly reslunmed in the

j’ i?p It][p] ,f’iDA A~(.r).41’(,//) (’ “$1’~’“1

,[ ~f) JT~’\[/)] f“ D.-1 e ‘~l.~> ,71 “

(3.18)

In WI. (3.18), both the c&JLu source p<, and the K’ange fields .-l+; [ire dynamical

varidk that are summed over cm t]Je same h)t:irl~, ‘rhey arc’ free to take cm

values which extre.mize trhe t,otal “effective mtion” :

seff[A,p]= S[.4,p]—i11111’,1[p]. (3.1!))

By contrast, in eel. (3.7’), the ilverage Over .4P is taken at fixed [J : the gaLlg6!

fields ran vary in response to p, bnt p cannot wiry in respcmse to the gauge

fields. That is, p is not a. dynamical variable, hut rather an “exterwd” s{)urce.

(;iving a colour charge distribution p,, (.7) specifies a meclilun in which propagate

the cpmnturn ghms. But this medium is, hy itself, random, so after performing

the quantum armlysis atl fixed p, cme must also perform an i.i\VI’Llg’6’ over p. Thr

reason for treating p and Al’ clifferently lies is the separ:ition of scales in the

prolJlem: the changes in p happeus ml time scales much larger thiM1 the lifetime

of the soft glum. This sitlmtion is typira] ~(m anmrphom materials called

“L,glasses”.

The prototype of such systmus is a “spin @i_iSS” [43]. that is. (i (wllw:t.iou of

magnetic implwities (the

magnetic met al host. For

“spins” ) which are ~iUICIOlll~}r distribute{ i in a lmrl-

imtvmce. OIle can tfike the s~)im t{] sit 011 ;.Lre%ular

-10



lattice with lattice sites i, j, . . .. and inter act,i cm Hamiltmliarl

,

HJ[S] = – ~ ,.7,J$’,s, , (3 .X))

‘ /,,,.>

(thes,un runs over all pairs<: i.. j >, a~ld the spins S~ +L.reallowed to take twcl

values, +1 or – 1), tnrt let their interaction (the ‘Llild{va.riublw”

random. with a Gaussian probabilit.v distributiolJ, for simplicity:

:>
_*

d-p[~l] = ~ d.7(jI’(,.Tij) , F(<71,))= /Le ‘A’J .
.:.1,] .. \ ‘27iA,,

,r~;) to 1“)(J

(3.21)

Physically, this corresponds tc) the fhct. thi.tt the mot lific.atiom in ,71J occ.llr cm

time scales much larger than the time scales characterizill~ the (“l~lliillli(s of the

spins (e.g., their thwmmlizatfiou wlwII the systrm is br(JUght in contact with

a thermal bath). In practice, the ,Jt,j’s are frozeu into their fixed values by

rapid cooling when the sample is prepared. This kind or rapid cooling is called

“quenching”, anclo~les:l.}~stll:it the ,l~j’S ilre “quenched variables”, as oppowdto

the “dynamical variables”. the spins .5’,. This proceclluw selertsrandom values

fortlle ..7ij's, ~~~itlltlleprobal)ilit~r iistril~lltic)~l (3.21).

Thus, thespin st.llermalize foragivensd of’ “qllc~lcllecll~~iri:thles”, andfm-each

such a set one can ccunpute the thermal partition flmction and t,he frev energy:

Z[.T] = ~ e-L;HIIA$l, F[,.J] = –2’IIIZ[.7]. (3.22)

{,$}

But the ,li,j's ~i.retllel~~sel~res rall[lolll, s~Jt.lle ex~)eril~lel~t:~Jly relev:il~tc lT.l:i.lltityis

the following avcqge

F = (l?[cJ]}- fdP[,T]F[c7] = –T~dP[<7]hIZ[.T]. (:3.23)

Note that it is hlZ[.7], not Z~.7] itself, which sholdd be :~verilged (“queuchecl

average” ). Silrlihu’ly, (colllJected) correlation fullctimls are gmwra ted hy the

free energy in the presencec)f a site-dependent e’xter~l[ll~~~:~glleti{’fiek~:

(3.24)

with hlZ[.J. h] Mi.ued as ill w!. (3.22), but, with H,l[S] -+ H,r[S] – ~, J),S’,.

Eels. (3.23)–(3.2-4) are the aL~alc)gs of’ eq. (3.7) for the probhml at h~iud: the

co]our source pC, is our “qlwnched varitd)le”, aId the (Ilmlltjlun average over the

fi&ls.AK at fi?wdp, WI. (3.8),(cJrrespc)11cls trc)tlle tjllerIll[il [i.l”eri:igc:(ttfix[’(l .7;/’s.

eel. (3.22). AS in Ml. (3.23), it is lnZ, rwd not Z. which is effectively i{.~’eri.lged

in eq. (3.7) (the a~’erage of Z WOUIC1r:ither corresponds to eq. (3.18)). In fact.

the cr~rl:r/ecte(lcc)rrel:Ltic)ll f~mctions of the soft glLWIISill tlw dfwti~:e theury are

obtained from the fcdlowing generating fum.ticmal:

I (1

A

&’[j:] = Dpli-,\ [/.)] in 23<4(J(A~) f’7.s[.4.&7]–tJ ,/..4

)

(3.25)
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which is the analog of eq. (3.23 ) with in .2[,1] .+ in 2[.7, 1)]. (The external cm-rent,

j~~ in (3.25) is just a device to generate Clreen’s functions ~~in differentiations,

and should not he ccmfllsecl with tjhe pll.~sical source p(]. j

We are thus naturally lw1 to interpret e the small-s (mnponent, of the hadron

wavdmction as a glfls.s. wit b the colcmr Ch;lrge densitv playing the role of t,hp

spin for spin glasses. Thus ~this is a CO1OWglass. LTnlilccwhat happeus ftm spin

glasses, which may have a ncm-zercj value fc)r the aver[igv lll~lglletizt~ti(>ll (S’~) (at

least locally, i.e.. at a giveu site), the Czjemqe colour charge must be zero,

by gauge Symmetry. In practice, this is insured by the fact, thi.~t we sLuu over

all the pc)ssit de configurations of p,, (.Y’)with a g:illge-illl~ari:lllt weight, flmct,ion.

Let LN.however exiimiue a particular ccmfiguraticm p,: (.7) from this ensenlkde.

We now ar,glw that,, at sufficiently small x (or large at( miic number A), this

cmnfigura.ticm describes typically a Bose codmsatt.

‘This applies to the sdurated modes, i.e.. the m[Jdes with tmnsverse mcmwnta

Acjc-,D << kl ~< Q,,(~) and Iongituclinal momenta k 1- = ~p+ .<<, ~+. As argllecl

in Sect. 2.5, t] lese IIlrJdes are characterized by a higl ~luon number density in

the tr:insverse phase-s~Jace, .N~ (AA) w 1/{~,,. (This predictir)n of the classical

NIV model remains valid after including the c~uantum evcduticm, as we sM1 see

in Sect. 5.4 below.) h’licrc)src)~)ict~lly, these mo clewcwrrespcmd to ]msonic st ates

with kl.rge occupation mmdmrs - 1/cY,,. Each sLwh a state is :1~(.w Wllck’nsate.

N,h.xe precisely, the general definition of’a Bose condensate is that of a {luantum

state in which the Fock space a.nnihilat,ion operator a;(~) (cf. eq. (2.13)), or,

eqllivalently, the field c~pcmttc]r A:, (.r ), t alws on a non-zero expect.aticm v:d(le.

This situation may be characterized as the spcnlt.anwus gelJeraticm of a classical

field. of course, this cannot happen for glucms in the viLrL~Lu~I,as it WCJLIIC1 vkd[Lte

@Llf# symmetry. And, in 7U1absolute S(?11S(?,this CilllIIC)th:~ppen in a hach’c)n

neither, since the overage cc]lc)ur churge vauishes there too (cf. eq. (3.26)), ancl

therefore so does the asscwiat.ed elassictd field: (A:. [p]) = (). But in the hadrcm

there me ccdc)ur sc)urces, ,and, as arguecl 1wf(ore, they (’:1.111w even treated i.i~

a classical charge clistributicm which is frozen (Ilwing the short lifetime of the

small-x gluons. Thus, olwr such a shcxt time scale (short as compared to the

typical time scalct for changes iu the rol(Jlu (distritmtlion), C)lIC’effect:ivel,y has a

nrJn-trivial classical fielcl d~.[p]. k satlmnticm. this field is typically str{ mg (cf.

ecIs. (2.68) ancl (2.-M)) :

aml its typical amplitude (3.23) :~.t large ?L is ?ven independent c)f t hc! actual

) ~ ~., C)ftlle rcdour s,olwce.strength ~ M ~= This can he thus [:}12~.rl~(:t.erizP(l

as a Bose f.’(mdf’lls:l ix’.
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We thus see that it is the mme fundamental separation in time scales which

allows 1.1sto speak about l)ot.h the C’ol(mrglass and t lle B()<$f? Corldtll,!$(r k, alt hollgll

th~’se twO COn(’f’pt!Ssf%’m at, a first, sight C(J1ltradiC’tOrJT:th~’ IIOtiOrl (.)f /.1“@lSS”

makes explicit reference to the awragc c)ver p, while the “ct:}llt-lel~s+it,e”rathw

refers to a specific walization of p, before avera~ing,

3.4 The renormalization group equation

As explained in Sect. 3.2, the qlmntmm evc,llltion c)f t hc Iffe[:t ive tlwcn-y is

ubt,arned by mi~.tChlng cormjl:it.rous computed m two wnvs: (:1) vi:, {1 CliLSSi-

cal+qua.rltr.rm calcwlatiou in the dfective theory at t he sc;ile A+, allcl (h ) via

a. purel,v classical calculation within the effective t hecry at the scale llA+. The

quarltum corrections that are includecl in this way arc thos~ g(-:nerated by the

rmlpling between the “semi-fast.” gll.lC)llSwith p + lWJlllellt.:1 in the stjrip (3.12) ar] d

the “soft” glucms fi.4# with momenta ]p+ [ < hA +. T() thd ac(:uracy of iuterest,

it is sufficient to rcmsider the eikcmal cou~di~lg ($.4; Aj,l t u trhe plus c(mlpmwnt

fl.1,~ = ~~o c)f the colcJur current of the semi-fmt, gluws. Indeed, these %luons

are r&.tiVel~ fhst mo~i~]g i~l th(? .r + dir CCtioll, S(J (S/;,lk th(-> h~~~i C(”)mpC)Ilellt Of

their current.

The results of the IWlt.ChiUg can he summar’izecl as fhl]ows:

i) ‘r. O(aS In( l/b) j, the incluced correlations of the trauwwwe fielcls A~l (see

eq, (3.14) for an example) can lJe all related to the fdlowi~lg l-pc)int :Lnd 2-

point functions c)f 6P (with AT= ln(l/b) ) :

(3.29)

where, as in eq. (3.1-Q, (~. .)~, denotes the avma~e over semi-fast qu:inturn fluc-

t.uat:ions in the background of the tree-level source p.

Thus the quantum evolution consists in adding new t:orreliit.iom r and y tc] p.

ii) These new ccm-elaticms cm be inclucleci in tllc wri,ght ftmction 11’7[~~]by

;dlCWiIlg t.hiS t.C)eVOIV(’ With T MCCUdillg k) t.hf? ~ObWhl~ RC;E [36, ~~] :

We use here compact notations where cr; z cr,,(11), \ ~~ G \,,/, (,.r I., {/.L j, arid

repeated cwlmu inclices (ancl roc)rclinates) arc um:lerst.ocxl to Iw slunmed [irlte-

grtitecl) over. The notation p; (.r~ ) will he Pxplailled later (we P(1. (3.-M)).

A complete proof of the sttitements ahcwe would require the le@hy :umlysis

(~f R,efs. [37]. But assuming them to lx-: true, it is ~iis~ to lmderstaud the

general structure rJf the R(2E (3.31). Indeed, :iccorrling to eqs. (3.29)-(3.30), the

induced correlations that vw need to t.;dw into awolmt are (with the not at ions
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of eq. (3.15)):

((( )( )Pa + ~$iil)-z’l(A+-fiii),u),, ,i. – P(l(J’1)/.Jh(!/.l) ,t, (3.3’2)
. ,

——
/

J!3[p]It”r[plAT {0(,(.u.L)pb(;vL) -1-p,, (.rL )cu(!/_L) -t bh[.i’J-, .VL ) } =

wher? the c{dour indices c, d (the transverse coordinates :1, uJ- ) in tlw last line

are to he summed (integrated) OV(?L-.After a few integrations by parts w.r.t. p,

the last expression can be recast ilit,o the fix-m:

(3.33)

with AH ~ [p] given by the finite-difference version of WI. (3.31).

In eqs. (3.32)–(3.33 ), we l]ave cc,nsiclered only cwrrelators of tu}r~–ciil~~ellsiollal

(m “’integrated”) charge densities, like

~I1cIsi~llilzt,rlv cl~fl(.rl ). This is in agretwlent with eqs. (3.2!1)—(3.30 ), which ShOW

that, only such idfyrutd (over x – ) qlmutlun corrections {me relf?Viillt, tu the m-

der c)f interest:, and is moreover physicdl.y intuitive: The soft glucms (k+ 5 M.+)

to which applies the effective theory mm lula.hlc: to (liscrimina.te tht’ intmmal lml-

git,udinal structure of their sources, which tare lc)calizwl ill .r – (wer relatively

snort clist.:t.llcc,s z< 1/bif +, l>c~c~t.1.lseOf trbeir l:ir~c~ ~}+ tnolnent,;a. Alt,llO@l es-

sentially correct. this argumwt is a little t cm simlJlistic tis SIMWH 1)y the ihct.

that. some of the qlmntities elwc)unterecl Mow mr in fa[t sensitilrf’ to the loxl-

gitudinal structure of p (i.e., th c:y are not simply functiona]s of the integrated

charge density (3.3-I )). A generic example is the lxickgrouud fielcl At [p]. or any

Ofh?r (~11/i.II@’ hdt With ih \~7kMl kM’S (~. 38 )zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(JL’ (~ .~~ ). ~ UCh ClllaIltitieS We

sensitive to the :r– dependence of p beta use of the path-ordering of the Wilson

lines in z-. The c)rdering is inlljortant since ccdmlr nmtri(es p(,r -) = p,, (.I- )Ta

i.Jt (liffereIlt, Va.lLleS C)f .r – do not C’CUIlmUte With f!a(’h C)ther. ThiS Sll~~eStS that

the cwrrcwt way to think of an “bintegra.tec~’ version of the hadrc)n (over 2 – j is

in terms of Wilson lines — which t a.ke into account the CO](mr precessic)n ill the

colour field of the hadrcm, with the proper ordering c)f colour matrices —, and

mit of 2-clilllellsic)ll:.il cha,r%e dcmsities like (3. 3-I ). ‘This will I-w ronfirmed l>y tlhe

subsequent analysis (of the qu~illt um correct ions.

3.4.1 The quantum wlour source

FcJr the purposes c)f t.hc cp.uintum Ca]culaticm. it is ~lsehd to e.xlMMi the action

S[A, p] G S’[A + ~{+ d.~, p] tc) cpwdratic orcler in the Nmill flllct uatirms (i.~, iind
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retain only their eilmnal cmlpling to the component AA~ of the soft, fields:

whew it is uudcwtood that only t.hc soft modes with k+ 2 l)A + arf’ ]wpt, ill the

products of’ fields.

The expansion (3.3.5 ) corresponds to a one-lcwp ~~~)~>r[.)xil~li~tic.)11for the soft cwr-

relatic)n funct,icms like (fi.4~ ),, iUICl (JAid.4.) ) ~, ((f’. q. (3. l-l)), hut where the

propagator i@’” (.~. ;y) = {T~J$’(c)/[” (y))f) of the smni-fast gluons rumling along

the loop is cornputwl in the background of the tree-level field A’ [p], I)Yillvertirlg

the differential operator irl eq. (3.3ti ).

F ‘+

u

F ‘+
:,,:/, /

x \\Y
/

/ \
/ \

\

a) h)

Figure 17: Scurle typical Feymnan diagrams for \ tmd CT. The intend wavy

lines are props.gat ors of’i% semi-fast gluolls; tlw tixterual (dotted lines cmry soft

momenta., a.ncl couple to the fields J.-l–. (:~j A contribution to ~. The extterual

blobs denote insertions of the electric fiekl 3+’ : the irlternzd liue with a 1)101.)

denotes the hackgrouml field prop:.igator. (1>)A C()ntributicm to c to linear order

in p. The cwtinuous liue represents the source p.

T~J gaiu sorrw more intuition, we lIW w ml ex:implc’ tlw (-(.)~lt,rit)~ltii)llsto ~$~fl

coming from the Yarl,g-Mills piece of the a.cticm. Sl,fil = ,[ d4.c(-F:,,/4) :

The first term in the r.h.s., which is linear irl ai, is the only orle to corltri Lute

to X, eel. (3.3[) ), to lwiding order in n,. It gener[.it w the trw+like clia,qrarn in

’45
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Fig. 1‘i.a, where the internal line with a blob represents the }Nicl{ground fiehl

propagator GLJ(r, ~i) tIf the semi-f:ist glucms. physically, Fig. 1~.il describes the

emission of an on-shell (or “real”) swni-f:ist ,gllKm I“ry the Cli.tSSiCill source.

Since (fl”izyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = (), it is cmly the semml, (Iui.dratic t.erl~J in the r.h. s. [)f eq. (3.38)

~I,hiCh ~rjI1tril)Lltes t,~,~, e(l. (3. 2!,I). Ill Fi~. 17.11 We shmv NIC1]a e(-J1lf,ril~l.lticJl~of

lowest order in p. (This involves a]su ve~tices frcnn the Wilson line piece of the

tlCtiC)ll, eCIS.(3.10)-(3.11).) ~]bYiCIUS1y,this rC’prC’SelltS:{ ~M’tf?XCCJrreCt,k)Il tL) the

tree-level mnission in Fig, 1[1.a,

The structures illustrated by Figs. l’7.a and b are generic: y is the “r~i~l’” corrtw-

tion, whcjse iteraticm generates the gluon cascades: o is the “Virt.Ui.L~ (x )rrw:t ion,

which provides one-loop corrections to the emission ~erti ces in these e~wcvides.

Both k and CTinclude terms non-linear in p which descrilw interact,icms among

.glLIcmsat different vapidities in ciifferent cascades. In general, real ~uld virtual

corrections m-e relat,ecl by gauge symmetry, a ncl this is also the case f~m y a.nci

cr, as We shall discuss later.

The cliagrams contributing tc) o and \ in the general case, tiy@her with their

explicit evallmticm, can be foullcl ill Ref. [37]. Here. we slJall present only the

tinal results of this calculation.

3.4.2 The induced CO1OUL-source and field

For the reasons explained in S{’ct. 2.3, it is mom convenient to work with the

dour source PC in the coouriunt g,:ulge. The (wrrwpc,mling weight. f~ulctic)n

H; [P] obe}w an evolut,ioll equation similar to (3.31), lmt with mc)ditiecl co&i-

cients 6 ancl ~, which are obtainecl from the L~-gau~e codlkient.s a al]d \ via

the gauge rotation (2.36). In what follows, wc shall give clire(:t,ly tbe fk[d results

for these ~OV-ga.uge qlmntities.

~onsicler first the tn ducwi sourw c$p” = (,$fY),,, thll~ k$ dle COL’LWt&311 tU th12

average colour charge density gewrated b,v the Ix)larizaticm c]f thti s~llli-fast

glLmns. After rotation tc) the ~OV-gauge, this reacls [37] :

specities the longitlldinal profile of fi~u, while (1~t = 1‘t (.r~ ), cf. eq. (2.45))

ccmt sins the ck’penclence upon the background fielcl a,7 (vi [i the Wilson lines ~’-

ancl Vt ), together with the transverse and ccdour structl Ire of fl~>(l.By comlmring

WIS. (3.39) ancl (2.33), we decllwe that &’(.r– )v(’(.Tl ) is the in (lwcd fitld in the

C’(jV-gau,qA i.e., t)hf> quantum correction tcJ tlw tree-level tielci cto. Since:

/
dJ”--.F,iI .)-’) = hl; = AT, (3.42)

-!6



fqs. (3. Xl) and (3.39) immecliatf>ly imply :

*

This is the ccx+fficie~lt of the virtual term in the RGE for H-T[~].

But the Iongituclinal structllre of iij(, is also interesting%. Eq. (3.39) shcnvs t,hat

the induced source and field havr t)yI>ically support at:)

Recall that fifia has lwen ge~leri~.te(.lby intqgutin,q out clll;.illtunl fluctuations in

the strip blf+ << lp+ [ << .~+. Thus, when htf?~rilthlg out quantlun ,$llK)IIs in

layers cjf p+. one builds the classical source p (or field cl) in la,vers of .r -. with

a onc-to-cme correspondence between t.hc .r — cwruxlinat{’ 01 a given hiyer i.1.Lld

the p+ momenta of the modes that have lxwu integrated ollt to generate that.

layer. By induction. we dedllce that p,, (1) (,= the ccdollr soluw generiitecl hy the

quantum evolution clown to A+) has support at [) s .r – ~ l/A+, as anticipat,ec}

in Sect. 2. This a.llcnvs us to crmsider only positive vi]luw fhr .r – in what follows.

To exploit this tight {:cJrresl](.J~lclellcebetween p+ :L1lc1.r–, it, is convenient to use

the ,spo.ce-tim? nLpidi@ y.

y = ln(.r-/.Lj ), r; E 1/1)+ . —‘x ‘:: J’ ,:: m’ , (3.’45)

to indicate the hmgit.udinal coordinate c)f a field. WJeshall set, e.g.,

./
dy p; (.rl) =

./
d:c- pa(.r- , .r~ ), (3.46)

and siruilarly for the cmher fields (~, cl., etc.). The previol M discussicm on the

longitudinal structure Cil.rlthen be sunmmrizecl as fMrJws:

The source p: (.cL ) generated by the quantum evolution from r’ = () up to ~

has support ~t y in the intrmwl O ~ y ~ 7-. When new quantmn mockw. with

rapiclities 7-’ ill the iutcmml ~ s<,T’ <~ T + AT, /Lre hte~riLt,fd out,, thf? Pref%kting

colour source at y S ~ is uot. changec], hilt some lww {:(.)lltril)lltic~li is added to

it,, in the rapidity bin ~ <. y ~< T + AT. Bectiuse of that., AI~- = It ‘r t.~~ — ~t’~

involves only the change in p,, within t,ha.t last bin. In the continuum limit,

A-j- 4 (), this generates the fu;lcticmal clcrivatiww of li -~ with respect tc) p; at

y = ~, as shcnvn in eq. (;3.31 ). This clarifies the longitudinal structure of the

R.GE.

~onsiclcr also the transverse and ccdcmr structure of the indllcwl fic=lcl (3.41).

This can be understood by reference t,c) Fig. 1’7.h. The transverse kernel in

eq. (3.41) hiis been ,generated as:

911Kkd, ~A(J’– ) = 0 bot.b for small .r - < I./,\+ (<ince in t.llis case the two txpomntia.ls

mutually canal ), and km large 2 – :>s 1/h;l+ (whre t be two e.xponmt i<ds me individually
Stllall).



where (compare with eels. (2.34 j and (2..53))

●

is the propag,:tw td’ the semi-fast glum! emitted I)y the source p (,r(IC;.L1lthat

F+J m (ipJ/p~)f) trc)linear orclrr). The two R’ilson lines in eq. (3.41 ) i.t(’(’(.)1.lnt for

the scattering of this semi-hst. glum cdl the baclcgromd field :.lt CL (this brings

in a ~tiCtCJr 1’ t (:1 ) in the eikonal ~i.~)~)rc)xi~li[l.tit:)ll), iind for its gall,y rotat,ion by

the classical field A’ (.?) at, .r - >, l/A+ (cf. W. (3.44)). which is a pure gwge

(cf. q. (2.43)).

3.4.3 The RGE in the w-representation

Eq. (3.43) suggests that it maybe technically simpler md IIILysically IILINYtra.ns-

parmt to work directly with the classical field CYflit~ld the qua.nt lull corrections

to it, (like Pa), rather than with the ~wlour source j,, m]c1 the cmwspomling

ccmrecticms (like &,,). This point of view is :tlso supported by the fact that tlm

Lc-ga.LIge fielcl i~.nd the related otmmwhlw are primarily rela.t.ect to n,, (cl. Sects.

2.2 and 2.3), and rewqnwsing them in terms of’ ~ — with the help c)f q. (2.34 )
— wc)uld intr’c)duce il dependence upon the unphysim 1 iufrim?d cllt,[)ff }L.

For these reascms, we prefer to work in the a–mpre.sw tdion, in which c]bserv-

;d.des are exprwsecl in terms of G, [lIld the averagezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis performed with the wei,qht

function IVT[u] ~ H ~ [~ = – V! (v]. This satisfies the fcdlowin~ RC;E. which is

obtained i.~fter a chuge c)f vmiahles in WI. (3.31) :

It, k thUS Sllffkkllt tO j2jiVC’the KWl]t, fOr the ‘k?d COLTWthMl” ({$o,td/Jb)p

in the o-rc:prcselltz~.tic~~l (cf. eqs. (3.30) and (3.50) ). This rcwds [37]:

(3.’4!))

(3.50)

directly

(3.51)

The transverse WC] colcm st.ructlu’e of 71 have the *i]lllP Ililtttirrl as ( h’USSd

after @cl.(3. 53) in C(mnecticm with v.

The r.h.s. of eel. (3.49) involves functional deriwitives w.r.t. the colcjur tielct

cp~(.rl ) at the end pc)int y = -r. When appli ecl tcl the ccwtiicients t~ aml v, this



requires the corresponding derivatives c)f the Wilscm limw I” and I-+, that we

compute now. Note first that, since o ~ = (1f{w v :s, ~, wv ca~l rewrite

C\T-t(./”J) rn’(.c~)
= ig($rl,l’’’+(+c.~),), = –if@r{,I”(.rjJT(’ .

(kg (,//J-)
(:3..73)

(k$(,r/~)

A simple interpretation cJftJhe four terms in eq. (3.51) follows frcml the dlml

picture of the cIipole-ll:iclroll sc:~tterillg, ill whichthe clll~~llt~l~l~evollltioll is put

in the (.lipole wavefunc%icm , and, more gelwrally, in t.lw Wilsmi lin~ ol~eriltors

tllrcJllglll lFllicll~igelle`ricex terlli.kllj roje[:tiles{ ::itlterscJ titll(Jll; lclro1lict:lrget [44,

45, 46, 4.7, 48, 4!~, WI, 51]. (See also the lw:tures notes h-y Al L[ueller in this

VOIU~~le[Id], ) ~<e~ellt analyses Of the hi,qh energy scattering from this dual

perspective havelwl to awtof collpled evolution elc-lll:it.ic~llsfc)rthe correlation

ftlllctit)lls c)f Wilson lillesl iJri,qill~llly deril'eci l:l,yB:ilitsl<y [44] (SW?iilSO [45,50]),

and subseciuently reft)rmulated by TVeigmt [47] in a c(mpact way, as LIfunctional

(aVOllltiOIl WIU[itkm h th gellf?ra.thlg fl.lIlrtiOIld Of tkW? (“’OrrehltiOIl klCtiCJIIS.

I t turnsout that \Veigert.’secll~~~ticJll isecll.~i~’:ilellt. tc)t.lleIICIE (3.49) [37, 52],

which demomtrates the wlllivzileuce hetwewn the ttwo drscriptifJm — the tar~et

pictluw ancl the projectile picture — c)f’the nodinem e~:olllti[on in QC~D i~t s&ll

x. We shall say more on Ba.litsky’s rx]~mticms in Sert. 4.3.

3.5 Recovering the BFKL equation

Before stlldying more gorieral properties ancl conseql~enc’es of thr RGE in the

next section, let us rapidly show that, in the weak ‘Mel (or low clensity ) limit, this

equa.t iou reproduces the BFKL equat imll as expect ecl [3(.i]. E( I. (3. 32) implies

the following evc)luticm eqna.tion for the 2-point fuucticm (pp) ~ :

Fcm a generic, strong, sourre p, t.hc coeifkieuts a and k are ucm-linear ill p to :.J1

cmiers, SC)the r.h.s. of W. (3.54) invol~w n-point Cwrelatc)rs (f}(1){)(2) . p(n )) ~

of arbitrarily high orckr ]‘) n. Bllt in the weak field 1imit,, where CTis linear in

p aud x is cp.cirat.ir, this becwmes a rlosccl ~quation for the ~-point function,

which coincides with the BFKL ecpmt ion, as we S1]OWnow.

Spwifical]v. ccmsicler the wollltioll ccluaticm fhr the followirl~ 2-poiut. iimcticm:

//T(k~)= (f),l(kl)i)(l(–k~))T. (:3.55)

1(JlI,~i~~~~f,:LllVtl]iS SIIOWStl~a~ tile /1-pc>iIltfunctions of p do not for] 11a ccmvenitint, b:LSiS.,
tri study the. non-limarit. ies in the woluticm. By cc!lLtrast.. the c.orrelat tms of the W’ikm litws

form a more crmvwient sllch a basis [44, L1], ah w s m1 II discuss in Sect.. $.:3.



(/~,1(kl) is the Fourier tra.nsfmw of p,, (.rl )), which acmrdin,< to eqs. (2. 16) ancl

(2’.54) represents the “unintegrated glum distribution>’ :

(3.56)

in the weak field

and therefore

Thcm, @C1.(~.~1 )

For y oue obtains similarly

(3.57)

(3.5s)

By inserting qs. (3.5?) and (3.58 j into the evcdutiion equ:.ition (3.54), and using

(3.55), me finally ol.kains:

which coincides, as ant icipatecl. with the BFKL c’cpat.ic)~l [3, 4]. Tlw first term

in the r.h.s., which here is gellerilted by ~ (U), is t,he ,.~y~~BFKL ker~]~!l, Whik the

second t mm, cwnil) g from m(1)), is t,lle c.~jrres~)~)llclin~llirtuul kermel.

Note finally that the BFKL ~ip~>roxilrli~.ti(~llhas Ix’ell ol.]t.aiwcl hy expanding the

Wilscm lines tc] linear cinder in go C’;thus, this is fomliilly the SilIUe M th~: kwest,

order perturlmtive expansion of the R C;E.

4 A functional Fokker-Planck equation

We now dispose of’a. powwrf~ll toc)l -– the hmctioml IIC;E (3.4!)) — to cimstruct

t.lw effective thin-y hy iIlt(:gr:iting c)ut, qmntum ffuctu:.itions in ~>ertllrl.)[~.t.ic)ll

theory. Eq. (3.49) has a rich and elegaut ma.them:it ical smrctlwe, tCJhe clescribecl

in Sects. 4.1 and 4.2. Thenj i~l Sects. .1.3 ancl 5, we shall indicate twc) strategies

to make use of’ this equation:

i) One can use it to derive orclimry (i.e., lloll-flllictic)ll:tl ) em dution equations for

the correlatic)u functions of interest, like vw did for the ~-point, function (pp) ~

in Sect,. 3.5, When specialized to correlation flmctions c~fthe Wilscm linw, this

strategy leads tc) a system c)f ecll~i.i.ti~~~lsori~ina.lly clerived hy Balitsky [-M]. This

will be cliscussed in Sect. 4.3.
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A difficulty with this approach is that, it generally leiicls tc] ~mq~hxl equations

(the 2-point function is (ouplecl to the -l-point one, t’t.c.). s(.) that one has to

fcdlcnv sirlllllta~le(]tlsly the evolution of’ infinit dy man,v CO1’reli.it:(.irS.Will, some

progress has been clone. by using fbctiowd techniques [53], :.md, especially, by

recognizing that, in the large N,; linlit, a closed eciuation CiiIl he written fbr the

2-pc&t function: this is the Kowhegov equation [45].

ii) one ctin try and scdve directly the fUYIChIMLl RGE. with apprc]printe initial

conditions. AII exact but f’cn-mal solution call he writt ml iu the form of i~ path

inte~r-al [52]. This is well suited for lattice si alulatimls in 2-I-1 din~imsicms. 13Iut

approximate analytic solllttions, which allow for a more direct physical insight,

have bem fmmcl as well [10. 5Y], Three solutions will be [lwcril-wcl iri Sect. 5,

4.1 General properties and consequences of the RGE

MTestart with a summary of the most, important properties of the R GE (3.4!1).

i) The coefficients ]) and v are real quantities. lM.oreover~ q is sym-

metric: qCtl,(ZJ, ~~ ) = qhc (~.yl, .rl), and positive semi-clef inite.

ii) The RGE preserves the normalization of the weight, function:

./
‘2?(.1II”T[(L]= 1 at. ally T-. (4.1)

Indeed. the r.h.s. of eel. (3..4!1) is a tot.a] deriv:itive with respect to {~. ‘TIJus, if

6x1. (4. 1) is satisfied by the initial condition at 70, it remains true 2Lta lIY ~ ;.> TO.

F’ropert ies (i) aJlcl (ii) ,qwantee that the wlutiou LI’~[o] to the R C~E lMS a

meaningful prx)babilistic int tirpretation (cf. the discussion prior to 6x1. (2.4)).

iii) The momentum rapidity ~ and the space-time rapidity y are iden-

t ified by the quant urn evolution. That is, the field o ~. in the rapidity bin

(y, Y+ dy) is generated ID’ the qll:~ntum mllltion from ~ = y W to ~ = Y + dy.

This follows frmn the discussion in Sect. 3.4.2, i.tlld implies that, the two vapidi-

ties can he treatecl as only one variable. the “’evc,llltiou time”.

With this interpretation, the function {a$ (.rJ ) I – m ~; y <’-x } — which l)hys-

ically represents the longitudinal profile ‘“ofthe 3-dimension:il field CF (r-, .rl )

in units of rwpiclity (cf. 6(]. (3.46)) — is ~imwl as a fnvject or?iiu the fumt:icmd

space spanned by the 2-dimensicmal fields a“ (.rl j. Quwltum evolution then

appe~irs as the ~.)r{)~rt:~ssk)~l d the “r] Oht” ~.] Cf{,IL ) along this tr:.t,jector-y TIH [s,

eq. (3, ~~ ) describes dfect.iw?ly n fielcl theory in ~+ 1 dinwnsic~lls (the tlgLllS verse

coordimt es and the ‘Wwl ution time” ). which is hwrver 7Lon-hcd in both .r ~

and y (since the coefficients (3.41) aIld (3.51) iJf the R GE iuvolve n~, at all the

“times” y ~ 7-, vi:~ the Wilson lines (3.52 j ).
iv) The initial condition. Let the fllmlt WJ1 evolllt ion pr( weed frcm solne

original “time” i-t)up to the :a(’tllal “time” 7_. The “tr~?jectory>’ {o ~,(.r ~) I – .x ,S;

Y .< co} can be decrmpcmd into tthree pieces: ~t) The field Oy at Y \ ~11~WWZS

to the iuitial cmlditicms. b) The field Qy :.i.t i-[}:. y L ~ is genewtixl hy T,lw

quantum evolution, c ) There is uo field at iill ~it largw y: (i ~ = O fbr :iny y >, ~.

Thus:

Tl; [n] = (s[(i ‘] wT[(r”], (4.2)
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and the d–functional d[a” ] shtndcl be u~derstood with a discwt imtion of t lw

rcmfiqma.ticm spare, as in q. (2..5):

Llorecnwr, it can be shcwm [10, 52] that W7 [0” ] has the factorized structure:

W7[CL’”]= M+, ~(, [f.llti])VT,,[[L]. (-M)

where WT,,[<k]is the initial weight fun cticm at. To , i.Ul(1

iS the Wilson line bllilt with the iuit.ia] field. h] WI. (.4.5), it. is underst,cml that,

in VV~,,, t.hc field argument n ~ has support at y < m, wl~il(~ i~l )$)7, r,, itj has

Sllpport at -q, < y ~ 7-. me “~~r(Jf)iig:”ltOr”WT. ~,, from TOto 7 (lepends also upon

the initial fielcl at y < ~0, but only iu an integrated Way, via the Wilsc)n lines Ti]

“+ F’rom eq. (4.5) we drxllIce that. l’VT,~,,[fi[ l~j] -1 wheu ~ — ~J.and k “ .

The initial weight function W ~,, cannot lx+ obtninw-1 within the present forlnal-

ism, but rather rwluires some model for the hacbmn llr:l~~efllnct,i(-]ll at rapidity ~(1.

It. is convenient to chc)ose a mcdemte valnc for TO= in ( I /xo ), e.g., x() R 1o-2.

This X()is small enough fbr the LLA to apply, bllt, still larg~ encmg$ f{m the non-

linear effects to remain negligible. Then one (:nn use iuitial comliticms which

are consistent with the st anclarcl, liuear, evollltion eqlwtions (cf. Sect. 5.3 be-

low), once a convenient value for W, has been chmeu. one C;<m~Llways rech+ine

T = in (XO/x) so t)lmt the initial concliti( m is formulated ilt To = (j. Jf;i t h this

chc)ice, the fielcl av at pc)sitlive rapiclitfies y > () is g~’Jleratwl by the cpmntllnll

evolution, while the fiel cl i.it negative rapiciitiw y ~: () must be bpecified by the

initial ccmdit.ion.

v) The Hamiltonian structure of the RGE. ECI. (,3.4!)) ran be rewritten

[is:

A crucial property. with many Oc)IlscIcll.IelIces. is that the swcmd term withiIl

the braw!s is ttctually zero. Indeed, the fc]llowing relnt icm hchls t)tt.weeu the

codficients of the R C;E [J7: H]:

(.4.s)



\l,here ~Joth t,er~lls in th~ SWOIN] lhle vanish bw:ause of the :irlt,isy~ll~~letryc~f the

colcmr group gcmeratc)rs in the acljoint representation (e. g.. (Tb)[,~ = O). ‘1’he

{rely nonvanishing contribution is

which reproduces indeed eq. (3.41) after inte,~raticm (nw .cc:, since:

{)II’T[a]- = –m-.(,(}],
Or

~lrith the follc)lvi~lg Ha.nlilto~iian:

(-4.12)

which is Hermitian (since r~~’~is red tind symmet,ric ) [Ld positive semi-( kfinite

(simw the “current” .J~(CL) k itself Hermitian).

vi) The infrared and ultraviolet b ehaviours oft he RGE. These i.~r~:deW-

minecl by the kernel q“ ~)(xl, ;y~) in the Hamilt onian. 111t,lw infrared limit, where

z~ is much larger than both .rl and .yJ_ (see eq. (3.51)), ~:(IL, !/J-,:.L) = 1/2;:,

mm-lthe ensning integr(al (dq:1 /2~ ) has 8 logi.~rithniic infr:ired (Iivergen ce .

Thus, there is potentially an IR problem in the RCIE. This is not necessar-

ily :i real difficulty, since Ill problems are expectecl tc) he absent cmly for the

gcln~gfi-invariant observa.bles. lVe sh:ill see inckecl, cm specific exfimples, t,hftt

the IR. divergences cancel when the RG E is used to {Ierive m’c)lution equations

for gauge-invariant (Quantities. ‘.l.lis cancellation relies in a crucial way 011 the

property (4.8).

ck)nling 11OWtO the ldtraYi[Jk’t, Or short-distance, I)(?h~ll:ic)l~r, it is fwsy to see on

q. (3.51) th~it nc) LTV problem is tc) be anticip~lted. For inst;ince. the wc)uld-1)~

linear pole of K(.zL, !j~, 24 ) at. Iz~ – .rl ] - (1 is actually rancelled by the fartor

1 – V: l~z which vanishes in the same linlit.

It is easy to prove this relation by using eel. (3.53) tc) i.~(t,with fi/fif.t ~(;!~l) on

qa~(:r~, UJ), ecI. (3.51). l%is -yielcls, e.g.,

(L!])

(4.13)
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4.2 Quantum evolution as Brownian motion

To clarify the probaljilistic iuterpmtat.ion of the 13GE (3.-M ), we stwt by recf:dl-

ing the simplwt example of a stochastic pm mw. namely the Bmwnia.n u) otion

of a snmll particle in a visccms liqllid and in the preseuw of scme external force,

like gravitation [59]. The part.ick? is so small that it ~iln fwl the collisions with

the molecules in the licplicl; after each such a collision, the velocity of the particle

changes randomly. And the liquid is so viscous that, iift W mch collision, the

particle enters immediately :i constant velocit:y r?gime in which the frictic)n fbrce

xv’ (with t’ the velocity of the particle) is equilibrated hy this rand~ml fimw

due t( ) ccdlisions together with th~ &d(321ZLl force F‘ (.r). Iu these conchtkms, the

particle executes a random walk whose description is necessary stat istica.1. rrhc?

relevant quantity is the probability density P (.r. t ) to find the particle at point

.1:at time t. This is normalized as:

/
d~.r P(.r. t) = 1,

and obeys an evolution ecpmtion c)f the [liffusion type, known

Planrk ecluatiou [5!lj :

{W’(,I’.t) =D[~~
W ,P(:z, f) - +( F(:r)P(.r, t)).

[M .“. ”

(-M-4)

as the Fokker-

(4.15)

Here, D k the diffuSi(JIl coefficient, which is +1.ult’aslue of the strength of the

ranclcml force; for simplicity. we assume this t 0 be :i constlallt. i.e., independent

of .r or t. Tlw solution to eel. (4.15) corresponding to s<)nw arbit.rar~- initial

condition P (:U,t{j) ran be written as

P(,r. t) =
/

#.~”,)p(.~:,f[.~~,lto ) ~)(.l”(],t[J), (4.lU)

where P(.r, t].ro. t(l) is the solution to (4.15) with the initial Conditic}ll:

~(.r. flJ[~O,t{]) = [$(:~](:r- .rl)). (4.17)

Physically$ this is the probability clensity to find the ~)iirti(’le at point .r tit time

t knowing that it was iit, .r(] :~t time to.

If F’ = 0, this solution is immediately obtained 1)y going to momentum space:

The Folwier transform ~(1:, t) of .P(.r, t{]I.r(l, ()) s P(.r – XO, ~) obeys to:

@L’,t)
= –DIc: P(}c. t), P(L. t = O) = 1, (4.18)

Of

with the cdn~ious solution F(li, f) = e– ‘)~zf. or, finally.

(4,19)

This shows a purely diffusive behaviour: t.lw Im ]hability to find the p[i.rt$icle

Within ii,f&d volunlP cellt,ere(l at, sc~nle point .r ~oes $Illootllly to zero [iS t- CXI

w
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for any x (nmawa.y soluticm). The correlations of .E u&ct this hehnvicmr too;

for instance:

F(f) e ((r – .I’op)(t) E=

/

(I:i.r[.r – .r[l)~F’(.z’– .ro, t) = UN, (4.20)

showing that, (m the average, the partjicle gets further [inc1further +.lwav from

the original point .ril. hut along a llo~l-f~ifierelltiill>le trajectory: ~(t ) w V?, so

the average velocity ~ = ~(f.lt )/At llM no well-ddinecl limit when At --0.

This situation may change. hcwwver, if the moticm of the particle is biasecl h.v

ii,n external force. Assume this form to be derived fr(ml a potential: F’i =

–W/&i. Then one can check that the tillle-ill(-leI~el~cle~lt distrihuticm F(J(x ) w

exp[—i~V (.7:)] is a stationary solution to eq. (-l. 15 ) prc)vicled ~~D = 1.. (M course.

this solution is acceptable as a prc)bnljilit.y ckmsity unl.v if it is ilcJrln:iliz:Ll]le,

which puts some constrai~lts on the form of the ~wte~ltinl. Elut assuming this to

he the case, therl ~’(J(.r) w e– ‘Jt” represents an equilibrium clistril.JUt.iO1lwhich is

(ilsyxllptoti(fllly) reachecl hy the system at large times [5!J]. CJnce this is done,

idl the correlations becwne illclepenclcmt of tinJe (unlike (4,20)). This solution

is a “fixed point” in the flulctional space of all (w:cLIpt:Lble ) (distributions.

Returning to our R.C;E (3.49). it S11OU1CIbe rlear by I]mv that this is a f’unctiuna.l

Fokker-Pkmck ef~uation which desmihes a random walk in the functiowd spree

of the cc)lour fields o” (.rl ). Iu this equation, q I)l:IYS the role of’ the ““(diffusicm

cc)efficient’:, while v is like a ‘{force term”. althc@~ this iclent)iticaticm is sumehow

ambiguous since T)is itself:] flumtricmd c)f o , so its derivatives c:m generat,e cjthw

C(mtribut ions to t,he force t,m-rn, as shcm’u iu eq. (-i.7 ). (Iu the analogous problem

of the Brownian motion, this wcmlci correspcm(l to a difbion C(wi%rient which

(iepencls on x and has a t ensorial structure: D x D,, (.z ). This situation occurs,

e.g., in the descripticm of’ a random walk on ;.~curvecl manifold [59]. ) In fhct,

it is more ccmxwt to ickmt)ify thf’ combinaticm ~ (&f~/clc~~) — v as t.hc effective

“fc)rce t(?rm” , since the remainiug seconcl-ordw clitlerential operat cw in wl. (4.’7)

— ~l~llic~ld~}scri~les (liffltsioll — is tllell Hermitian all(j positive semi-c] efinitw.

A fkecl point of the qlmntum evolution woldd be a soluticm tl-[f~] to w.]. (3.4!1)

which is normalizidde WI independent of ““time” ~. If’ sllch a solution exist,ccl,

then the high energy limit of QCD scattering W(NM he trivia] (at l~ii~t. wit hill

the present a.~:)pr(~xiul[~tiolls): At sufficiently high ener,~ies, :dl the cross secticms

woulcl beccmw independent of energy (recall thi.lt ~ - h] .s). ‘lW relation (4.8)

between the coeficie~ks iu the R GE guara.utees, however. tll:it such a “fixed

point” cloes not exist: The effective f(mce in eq. (4. ‘i) vauishcs. ancl tjhe ccJrre-

sponding evolution Hamilt onian (4. 13 j is just a kinetir ()perator, which descrihw

pure cliffusicm. WC thus expect glum] correlations to keel~ growing with ~ --- 111s

even at asymptotically large encr~ies. 111Se(t. 5, WT’ S lil1 11find approximat~

solutions to eq. (-l. 12 ) which show incleed SUCI1a I-]ehavic)ur [101.
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4.3 The Balitsky-Kovchegov equation

I f (0 [a] ) ~ k any c)hsmmble w hich CM be complltd iLs M avera~e (NW (.!:

(()[f2])T =

/

‘D[o] 0[(1] H-T[(I], (4.21)

(cf. WI, (2.41) ), then its evcdl~ticm with ~ is fymwnwl I.}ythe foll(.,win~ eqlmtiou:

(4.22)

w}lere, in writing the sercmd liuej we have used q. (+!.12 ) for /:)11;7/ih aucl then

int e,gratecl twice hy parts within the functional integral over a.

Let, us apply this to the 2-point fincticm (2.26) of the Y\~ilson liues in the fl.uAi.-

mentlal representation. We recall that, physically, this is th? S-motrix element

fc)r dipole-hadrm scattering (cf. %ct. 2.2.2). A str~lightforwani calculation

yields (See [37] for detililS):

x (N,,f,r(I~fT’j,)– t,r(T;tl:.)tr(~;+l;,)jT . (4.2;3)

!llis is the equation origimlly c)btaineci hy Ba.litsky [441, within a cluite different

formalism : by an analysis c)f the cplantum evolution of the dipc)le it$elf.

Nck that the above ecluation is not C1OWC1:It relates the 2-pc)int functicm to

the ~-point, fluwticm (tr(t~ l’;:‘)tr( I;- 1~,)). ~~ne czm similarly derive iill evolutiml

eCllltLtj cm for the Mt w [-M], bllt this will iu turn (u1lple the 4-1)()int functicm to

a &point f~mct.ion, and so cm. That is, PCI. (4.23) is just, tlu-’ first. in au iufinite

hierarchy of coupled cquatiom [44].

A clc)sed e(pmtion c:m still be oljtainecl in the large iv,. limit. in which the -L1mint

function in eq. (4.23) factorizes:

(tr(Ir/I~)tY(I~~~l))T — (t.r(l”)l~))~ {tjr(lj!~’l,))~ for N - w...

Then eel. (4.23) reducws to :i ck)secl ecplatiO1l fOr S’~(.~’~, li~ ) = (tr( ~j~~~i)) Ti’l~c-:

~{b’T(.~l,jlL)-s T(.~1,21)ST(:L,!/~)}. (424)

Tllestl.l~le ecll~:itio~lll[isl-)ee~l illclepenclently c)l)titli~lecll~yl{t~vcllcgc]v [-u3]within

LI~leller’s{ lipc)le~lloclel[ 46, 14]. (See also Ref. [50] fc,r:illot,ller cleri~’:i.tioll.)

An important o}~servatioll refers to the transverse kernel in ecy. (4.23) or (4.24):

Tllisis ~lot, tl~es:illlea stlle(J rigill:ill{ erllelk; (.~l,!i L,:l). e(.i. (4.ll),(:Jftl~eri(~E.

Rather, this h:Ls been ,cy?lleratcd as
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illld has the remarlcable f’eatilm t 0 show a bettrf~r infrarecl behaviour tdlilll eq. (4.11):

When Z1 >> .T1, !JL, the lcerllel above decreases like (.rl – !i~ )2 /2~. so its i~ltegral

over :1 is ac:tlndly iinite.

There is currently a kl.rgt-:interest in the solutions to eq. (,4.24), :.mcl si,gliificant

progress has been achieved by combining analytic aud numerical methods [19,

45, 50, 54, !55, 58]. The cmwlusiolls reached in this way are equivalent. to those

obtainecl from direct investigations of the RGE (3.4!)) [10. 571 tlmt we shall

review in what follcnvs.

5 Approximate solutions to

the Renormalization Group Equation

We shall now construct. approximate solutims tc) the R GE (4. 12) i.Uld stlldy

their physiral implicaticms [10, 57].

5.1 The mean field approximate ion

As compared tc) the stnnclarcl diffusion ~cpmtion (4.15), the main (:~~ill~~licf.lt,ic)n

with the R(2E (-L12 ) comes from the fimt that its kernel r] is itself derwnclent

on a, In this respect, eel. (4.12) is similar to the folh riving clitfusicm [ecll~:i.ticm:

(5.1)

in which the diffusivities .D~j(.1:) are allowed to depend llpoIl the position x of

the particle. This dependence makes efl. (5.1) difficldt. to soil’e in general (i.e.,

fc)r some arbitrary t,eusc~r fielcl D,l (r)). BIIt since r is a random variable, with

probak)ility ckusity P (.c, f ), a reasonable a~~r~rc~xil~ltltric)llis clbtained hy replncing

Dij (r) in ec~. (5.1) t:)~its expect. [ition value:

,.

which is independent of z, hut a function of time. We cienot e with a bar cpmllti-

ties evaluated in this “mean field approximation” (IYIF.A.).In pimticxdar, ~(.r, t)

is itself related to D(f), as the solutiou to the fbllcming approximate equatim:

(JF’(.r.t)
= D(t)&F(.r, f)

(x .’,
(5.3)

Thus, eq. (5.2 j is :LCt.Ua@ :L .w(f- co nsistf’?lt ecylatim h’ D (t ). E@iw homoge-

neous in z, W. (5.3) is easily solved b,v Fourier transform, w in eqs. (4.18 )–(4. l!)).

For the initial ccmclition ~(.r, t= O)= A(:j)(I).oue thufi ol)tains:
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By inserting this solution in w[. (5.2), on? cm ccmpute the ~~~eritge there (iLS

a functional of D(t)), ancl then solve the self-ft)llsiste~lt equation for D (t), thLls

completely specifying the appmxinlate solllt.ion (5.4).

This is the strategy that we shall use to obt.aiu approximate solllt ions to the

flmctional diffusicm eqlmtion (4.12), TIIe mrreslmlding NIFA reads:

(5.5)

where tllc)tril~i~~l cc)lc)llr str~l(?turei~]tlle 1.11.s. follc)lirs frolllgilLlge sylnllletry. 13y

the same argument, (v[’(:rl))~ = (1. which is ind~?ecl consistent with the NIFA

(5.6) for r~ and the condition (4.8).

Eq. (5.5) isllc]~lloge~leol~s illtlle f~l~lctioll:~lv:irial~le~l~(.rJ.) (si~lceitslterllel~~ is

imlepemlent of u), so it ran be solvedby functional Fourier analysis. This is tho

str<aight.torward extension of the corresponding analysis for ordinary fhnctions,

~uld can be more rigc~lwolwdy introduced by l~sing a discret,imcl version of the

~-di~ne~lsic]lltil ccjllfig~lr:~tioll s~>i.tt:e(y,.rl), asin e;ls. (~.~) or (4.-$). \i’e write:

ByillsertiJlg tllisrel.]resellt:itioll for 1~’~[~1]ineq. (.5.5), aud using

one obtains the following equa.ticm for Ji-T [7r] (conqmw to t’(1. (4.18)):

(5.8)

(5.9)

with the immediate solution (transverse coordinates are omitted, for simplicity):

The argument TV of the initial wci,e$t function 11‘,1[r] has sllpport only at y .( O.

After insertion in e(l. (5.7), this yields:



.

In this ecpmtion. WO[a] is the or’igimdweight fr.ulct,ionat ~ = O, ard is’ ;Lfuuc-

tionalof thefielflov withyso. (M is :i~lirrelev:~lltl rlurrllalizt~ti~)rl fartc)r.)

Thesoluticm (5,11) (5.12)llas tllegener:~.l structllrez i.llti[:iI~at.ecli llecls. (4.2)

(4.5). Hthe initial conditions are described by the kIVrnoclel, or any other

MFA,thenW(l[c~] isa C;alwsiarl too (see. e.g., WI. (2. h2)), iiIld WI, (.5.12) (’fin Ix’

rewritten as:

For y <0, tlie width ~Y is specified by the initial conclitions, while at positive

vapidities O < y < r, it is detmmint?cl hy the cluantuul evolllt,ioni as we shall see.

The fact that the weight fiuwt.ion (5.13) is a Gaussiari d( ws ~lotlnecessarily mean

that thepresent a.p~)r{.)xilll[iti{]~l(les(’ril:)es cisysterllo fill(lel.)ell(lellt rwloursourws

(like the MVnmdel). Itj[~st *~~ear~stl~:,t, i~~tlle hIFA.tillt l~ecorrel{,tic,r,st~re

encocled iu the width of the CJaussian, or, equivalently, in the 2-point fllnct.ion

But this 2-point function contains also infcmnation w tlw higher-point, cm-

relations, dtlhOUgh jllSt in ikll iiVe123gd Way, lwc;.iIIse it is (letermimd hy the

following, n.cm-lirlwm, self-cclllsistency eclllilti~~ll:

(5.15)

x. (1+s7(.c.L,yl) – ST(.I’1, :,L) - S(w:)),

which fcdlowsfrorn cqs. (5.6) and (~.~1) t:CJget.her with thr fact th:it,, for i.i q.arE-

sian weight fhct,icm]~,

with S7 zi (non-linear) hmcticm:il of -~v, to be ccmst.ructxwl shortly.

Thc correlation function (5.14) is local in y : colollr sources locat:ecl at, dif-

ferent space-time vapidities appem to be statistically indepenclent. This is, {Jf

course, just an artifact of the LIFA. The complete RGE generates correla.ticms

in rapidity, via t)he Wilson lines in its coefficients. 13ut the {.ml,vtrace of t$hcw

correlations in the MFA is the fiict that the self-c(:l~lsistc’r~cy eqniltion (5.15) is

ncm-local in y.



To perform the average iu eel. (5.16). we first (It’rive an evolution equfltion fcJr

.Sr, by using the corresponding equaticm (5.5) for II-T :

(5.17)

(The functional derivatives of the Wilson lines have bee~, ev:dtmted :as

~l~llere ~ve 112iv~~11secleel. (3.53) ;UNIT”T(Z = N,.. ) Efl. (5.17) (..M be trivially inte-

grs,tecl. To siropli@ the mlcldat.ionsl we assume homogeneity in the transverse

plane within the htulron disk of radius R: theII’-ry(.r’l ..l)l) =-ly(.rl- –!/1) imd

and in writing the second equality in (5.19) we have :issume(l that the initlisl
j

condition So(rl) can be written in the form 5’0(r4) = e-$] ‘vlf’’((i~)-~(’(r~ll.

This isindeedthc c~~sefc)r tllet~~~iglltf ullctic)~li~lecj. (5.13) —i~l~jt)rti(:~ll;:ir, fcm

the iLIVmo(lPl, (f. ccl. (2.tiO) —, which yields :

By combining eqs”. (5.15), (5.19) ~lncl (5.20). one (>:ill fin~illy rewrit(’ the self-

consistwncy equation as an ewdution eqllationfhr <T(rlj :

( )x l+-s’T(.l”J_ –{y~)–s’, (.r~ –:~)–s,(:l –//JJ ,

witlhS’r(r~) = c‘~’;v’[<’((}~)-$’[r~)l. As LillticilJ/-it.ed,tllise(ll.latiL]llis lliglllyrlf2ll

linear in <~. It. is f~lrtller~rlore ~lc)n-lc)ca.li~ltlle tri~.lls~rc'rse (;(:~orclill~~tes,but local

in the “evolution time” ~. (The original mn-localityof eq. (5.15) in y lmi been

11OWabsorbed in the relation (5.2(J) between <~ :IUC1VY.)

Inthenmt sectiorls, ~lTesll;ill(leI'el()I~f Llrtllert l~J1lr()xir1lat.icjlls. tvlli(:llrely{jlltlle

l(illelnaticsi l.ll~l:illo\vl lstolllake~) r(]gress\vitll eq. (5.22).

ii(J



5.2 Saturation scale and Kinematical Approximations

Both the ncm-loczLl and the ILIm-limxir strlwt.rue of the evolution ecpmtion ( 5.22 )

depend crucially lqmn the belmviour of ST [ rl ) witk the transverse separatism

r L. From its definition (5.16). it is ck’sr t,htLt. 15’j-( I’1 ) ~ 1 ;.1sr.L - t] fOr any

r. Nhmmver, since a large dip(de is stron~ly al xorbed by o hadrcmic targPt,

we expect that ST ( rl ) <: ] f(.)1 Sufficiently large IL, where what we mean by

“sufficiently large” will generally depend on T. For instance, we lIavP seem in

,Sect. 2,5, within the hI1}r mCIdel, that fi’~ ( rl ) ~<< 1 fr)r rl ;.> 1/C~.s, with ~~,i. the

satum&io71 scak for glucms in the hadron wavefimcticm (cf. ccl. (2.76)). In that

classical model, Qs was independent cd’energy, but in general we expect it t.c)

increase with T, because of’ the cpmntum evolution (cf. the discussion in Sect.

1.-1 and Sect. 5.3 belcnv ). At a formal level, this intimate connection between

the strong almrlmicm limit fcm a colollr (lip(de and !Iucm saturaticm is based cm

the fact that. in both problems. the non-li~leiw effects iire encc]cled in Wilscm

lines. S0, let, us immJ(duce the correlaticm length 1/(J,,(T) of .S7 (7J ) :

(5.23)

which, M its notation suggests, will play ZLISOthe rck f)f the Si.LtUril.til”)Il scale.

This behavicmr of S7 (r~ ), with au u~lic~uesep:Lrii tion sctale between a slicJrt-r:iIlge

regime aml a long-range one, is ronfirmecl by numerical studies of the KovchegcIv

equation, which also show ii rapid increase c)f Q., with r [19, .50. 54, 5S].

ECI. (5.23), tc]gcther with the expression (5. l!-1) for ,$~( rl ) in the MFA, imply

t.h~ fCJbWill~ COnCht.iC1ll:

that vw shall use later t.cl c)btain an estimate for Q,,(~).

An external probe with transverw momentum Al will nwimue ccmvl:itio~ls in

the hadron over a t~pi~id transverse size r~ -- l/lc~. Thus, short, clistlances {~ sit

1/Q,, (T) correspond to high mcmmmta, k~ ‘>> Q,,(r). whilt large sqxirat:i(ms

rl >> 1/Q ~(~) correspond to Icnv momenta k~ ~<. (~,(~). In what, fcJ]knvs, we

shall not aim at a precise clescripticm of the physic~ around the saturation scale,

but rather fc)cus on the two limiting regimes –- hi~h-l;~ MJC1lciw–kl – :incl

perform tippropriate simplifications on the evc~lution eqlla.tfi(m (.5.22).

O ) J%9}1 ‘k ~ . I t . is convenient, to rewrite q. (5. l!.I ) in momentlml space jas:

{./
ST (7”1 ) = (9JI –<12A’,,

- ‘r(J’L) [1 - -1} (5.25)

For ?l << l/Q., (~), the integral over JJL is dominated 1.11’momenta within the

riin,g~ ~ ~ (T) << ])L .<: l/~L. This hcdcls m leadin~ t runs ~w.s~log arcuracy: In this

range, <r (p~ ) -- l/p~ (up to lcg,s ), so the iutt’gral {ww PL prc]clucws the large

logarithm ln( 1/ r; Q! (T) ). 270 tjhe same logarithmic accumc,v, one ciLn FWand

(;1



the exponential in (5.25) in powers c~fp~. rI_, like ill q. (2. W ), and thlls obtain:

(5.26)

For r~ << I/Q,,(~). whew q.

l“)eexpanded to lc)west Clrck!r:

(5.26 ) is strictly valid, the ?xpmwutial there can

(The ultra.vickt cutc)ti 1/~1 is implicit in the nmmentluu represe~~tation ~~t’

~~((3).) By inserting this intc) (5.22), we ol)t,ain a /i/i wr evulutioll eqlui.tic>n

fc)r ~r(r~) :

(5.29)

TINIs, the sl~c)rt-clist:~ll(:e ~L~)~~roxi~~li~t,io~iis f~ut.omatirally a linear. or ~~~idc-fiel(l.

approximi~tion. This is to he expected sinre, at high k ~, the glLwn dcmsity is

low.

Tc~perform the integral over S1 in eq. (5 .2!4), it is useful to recall eel. (3.43) iincl

then notice th:.it. within the iutegmnd cd’(5. 2!1), one ci.m rfh:ct.ively replww:

(The acldit,icmal terms iu the r.h.s. Aare .- functiom at. .;~ = .r~ or ;~ = !l~ !

Whif:ll ~:~,nish when Xllllltiplied l]y tile reln:lining factor in (5.2!) ).) B~r using this,

together with a cwLlple c)fintegrzit.ions hy parts w.r.t. .sL, :incl a Fcmrier tmmsform

to nmmentum space, we fimilly c]l)tnin the following mwlutiou equation:

(G.:w)

fc)r the quantity:



“

which, physically, is the 2-poiut, fi.mctiou ()f the (:idolll char~e dcusity in the

transverse plane pa (.rl ) :

The initial condition for w:{. (~ .3(]) can he ti.~keIl from the ~1~~ InOde]: p ~(kl ) =

pA for ~ = [), ef. eel. (2.51 j. This initial concliticm is il)clepencient of I:l and,

t ogethw with eq. (5. 3C}), it implies that jl ~(kl ) remains a rather slowly v:i.ryiug

fl.mcticm of k~ in this high momentum regime. This will he manifest cm the

solutions to eq. (5.3(I) t,hat we shall write in the next sl lbsection.

b,) Low-iii . For large clistances r~ >> l/Q,5 (~). ST ( r~ ) +:: 1, aLMl the 2-pc)int

functions c)f the Wilson lines ci.~11he simply neglected in the self-cc)llsistcl~(:~’

ccluatious (5.15) or (5.22) [10, 571. Eq. (5.22) then simplifies tc) (see also

eq, (3.48))

or i~l momentum spacb (cf. eq. (5.20) j:

(5.33)

(5.34)

This is not an ecpwt,ion :Ulykmger, but rather an Wplicit., illld roller simple, ex-

pression for the propagator -~r(li~ ) (Jf the fields 0: this is just, the 2-[dimensional

Ccmlomb prcJpagyltor.

Remarkably. the Q(!D coupling constaut, g htts dropped out, from eqs. (5.33)

m d (5.34). (This should be t‘mkrast ed with the rorrespomling equ:iticm at, high

kl, eq. (5.29), whose r.11.s. is explicitly l~r(.)IJclrtJic)llalto N,, = g2/4m. ) The Sa.lllfl

property 1101c1sthen for the tori-espcmding mwm-iielcl Hamiltonian (cf. eq. (5 .5) ):

Ivhich is qtlit,e rema,rka~]le ~illce lit, low LL we are effectively ill a slmmg cc)~lpling

regime (in the sense that the COV-gallge fiekls are strong: o(z w l/fg; SW $&t.

5.4). If g nevertheless drops ollt. in this limit, it. is bec:ilw of the spe(:ial way it

enters the evohlticm Hamilt cJnian: ~’ii~the e.xponellt {ofthe ~trikm lines. %’hat.

is. the relevant degrees c)f frewdom in the mm-linear regime me nc)t the (strong)

colour fielcls by themselves, but rather thr TVilson Iiues built’ with these fields.

The Wilscm lines are mpidly oscillating over distamws r~ ;>’ l/Q,s (~) (simx

their exponent is of order one. i.l,n(lthe typi(:+ll scnle fcr V;lriiitious is 1IQ,, (7)),

and thus aver:~ge to zero ( % nclom phase ~il)~Jr[~.~illlati~jll”).
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For what follows, it is useful to summarize the prm’ic)lls kim?matical ~i.plwoxim~~-

tions into the followillq factcmized, fbrm for the weight function (5.13), which

is mc)st conveniently written as a weight function for 1:{p; (i<~) = k~n.;(k~) :

IV, [p] =5 Wp[,,] Wy’v[,,), (5.36)

In writing this equation, we hi.ive separat eel, for WL(lJr[ipitlity y, the lmv-moment ~ml

(k~ < Q.$(y) ) mocks of p from the lligll-llio~llelltlllll (kJ- s Q,T(y) ) ones. we

have used the appr(.]xinlat,ic)ll (5.34) for the width of tht? G[ilwsian (it low 111o-

menta, and we have written J ~(kJ- j = tipy(L’1)/dy,with p~ (i~~) {Mxmnined by

eq. (5.30), at high momenta.. Note thi~t the mc~cles with k~ w ~~,,(y) are not

correctly clescribecl by the present. approximate ions, 1)1It WC shall asslune that

the.v give (rely small contril~lltions to the cpmntities to I-)ecwupllt ecl belcmv.

5.3 High–kl : Recovering the perturbative evolution

We now consider the implications of eels. (5.30) iind (5.38 j for the physics at high

transverse momenta k~ >> Q,,(~). To this aim We conlpute the gluon d~nsity

(2.23) in this low density regime, where CMW ca.11 use the linear approximaticm

Y+~ (~) & (W /k~ )p(~). The calculation is similar to that i.dre:i(l~ performed iu

eqs. (2.53)–(2.5.5). Specifically, by ~~sing (cf. eq. (,5.X3)) :

one e~entually obtains:

(5.4(”))

Note the lower limit, Q., (~) in the integral giving xG(’x, Q2 ) : fbr Q“ ~) Q:(~),

and to Ica.cling transverse-log accuracy, it is sufficient tc~ consider the coutribu-

t.icm of the higll-k~ mocles of p to the gluotl distribution. \!Te shall check later

that the c.orrespondiug contribution of the modes with kl K Q,(7) is infrared

13Thi~ is tile ~OIOILr~:ll:~r~etlell~jt~ ill t,lw vC)V-gauSe. hilt. we omit. t IW tikie SVIIIbOl011p.

to simplify writing.

(M
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finite, although subheading as compared to P(1. (5.41) [10, 57]. This cures the

infrared problem that we hare faced in the classical calculation of Sects. 2.4–2.5.

F’hysjcally. ~1~(kl ) plays the same role as ~1.4 in the NIV mc)clel: It measures

the density of’ the colour swuxws in the transverse pla.nc , and, in the lill(:’ttr

regime at higll-kl, it is also prc)portional tn the lmintegra.ted gluon distribu-

tion: p~ (Q2 ) x d xC;(X, Q2) /d 111Q2. But ludilce ,UA, Which js constant for a.

given atomic llLL1llberA, 11~(~i~) has non-trivial dependence L1l)O1lboth T and

kl, as deterlllill(?d bY itS qLIWtLU1l eVOhltiC)ll MC’Ordillg tO eel. (5.30). The ck-

penclenc.e cm 7 describes the increase in t.lle density cd’ the colmlr scnuxms via

soft gluon radiation. The dependence on k~ corresponds in umrclinat ~ sp;i w tc~

correla.ticms in the transverse plane, which occur via the wcchaugw of qlwntum

gluons (see Fig. 17.a).

ECI. (5.30) can be recognized as the standard, linear Wcdut.ion ecluat iC)ll ill the

clc)lll)le-logaritlllllic ~~~]l~r(~xilll~iti(.Jll(DLA) [5]. i.e.. in the limit in which 13FKL

and DCTLAP coincide wjth each d her. (In this limit, only the first. ““real”, t mm

mLEt be ret ainccl in the r .h .s. c)f’the BFKL ecpmtion (3. W ); fhr k~ .2>PJ, this

term redLLces indeed tc) that, in eq. (~ .30). ) The cmergcmce of’ DLA is IJa.tLlri.d,

given the approximations performed in cleriving eq. (5.30): we hi~~e kept, only

terms c~fleading-log accluzw.y in both ~ = In( I/x) (in the rc)nstruction of the

effective the( )r~), /111(1hl(ki /Q~ (7 )) (ill the dlort,-r~l~lg~ eXp~Ulsiol~ at. high k~ ).

Eqs. (5.30) and (5.41) inlply the more stanclard form of the DLA equation [5] :

(5.42)

Atlarge r :md/orQz, the solutiou to this ecp.lation il~creilses like (with fi5 s

CYSIV(./7ranc IQ~ sc)llle scale t]frefereIlce) [5]

where we havr

running c~fthe

tlle~lt}leclepellde~>ce c)ftllescjlllt.i(~~ll~poll Q2 getssofh [5] :

xG(x, Q~) tcx exp {2$x@3z@. (5.44)

In a,l~y case, eqs. (5.43) and (5.44) show that “, at hlgll transverse momcmta

Q2 > Q~(~), the glucm distrilmticm xG(x, Q2) grows rapidly with ~. This

is the stauclard picture of proton evolution. which. if extrapolated to arl~itrar-

ily high energies, would predict violaticms c)f the lulitari~y bcJLuldl”l. But from

the pre~riolls”:i.ll:ilysis, vw know that the :il~l.)rc)xilll~iti(]~lslwding to eq. (5.42)

~Till ~)reak clc)wn at sufficieut,ly lar,qe energies. where the ucm-line;ir effects in

liNote fil,at, ~ltll(:,llgl~&j,V~,rt.ll~n for the BFKL SOILLtjCII1(;{.f.i),the g~[~~~tll with T of tllc’

DL.A solution (5.43) or (5.4.4) is still fa.st.w t.hau thnt of ally power of ~ -- 11!s.
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the qllmtuln CWJIUtkJIl (’aJIIIOt be lleg]eded i.Ul~]Oll~er. .~hrIlfLtiVd~, for fiXd

ra.pic]ity T, the hear approxhnathm breaks dmm at lcM transverse nmment:t

k~ << Q,,(T), with Q,,(T) the saturation sc~de. An estimate for this scale has

been give ninwl. (5.27 ), which, t~>getller~~ritllf’cls. (5.31) and (5.41 ),iuJplies:

By further cmnbinillgthis result witheq. (5.43) (Jr (5.44), C)Jle CiUl detlllcr the

T-dependence of the saturation wale in the DLA. (Jlw thus oi)t:tins:

[illCl,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(-J:(T) = (y(.&T, (fixed coupling), (5.4(i)

respectively,

Q;(7) = ‘f?j(.”’1}~’’’2b’’T]”Tl (rlmJlinR cullpling). (5.47)

Eel. (.5.46) ({m (.5.47)) clefines a clu-ve in the ~– kl IJlane. which divides this

plane in twc) (see Fig. 18) : Points oll its right are effectively in the hi,qh

momentum regime; tlJey correspond to a dilute gas ofweaklv Correhited dour

mnrces WIIOW clemity is rapicll,v increasing with ~. Points cm the left of’ the

saturation curve ccmeqmnd to the low mcunentum regime, to he discllssed in

the next subsection,

5.4 Low–kl : Coulomb gas and gluon saturation

We finally turn to the most, interesting physic:.d regime, tlJat of the non-linear

physics at S1nidl transverse momenta k~ *. Q,,(7) (with kl >’ ~fc~cr~, tllt@l),

whose underst a.nclin~ was ii main nmtivat iw for dl the ~Xevious ( kvebpnlents.

Within the effective” t hec)ry, the 1(.)fl’-1llc)l~le1ltlllllmodes of t he CCL)ur sourc’e

are described 1y the vwi ght hmction W$’V. fq. (J. 37). whicl 1 is ~(”fl.IiVid~Iltl~

rewritten as (cf. Fig. 18):

with 7(IC1 ) = the rapidity at, which the sat luntion nmmelltlurl is equtd t,o li~ :

Q~(7(li~)) = li~ , (5.4!9

There me several noteworthy features almllt eq. (5.-M) :

i) This describes a C’odomb ,qfw i. ~., a system of dour charges intmwt,in,g via

long-range C’cmlond ) forces. The coluur soluxe p$ (.r ~ ) ;lt: :r~ feels the Ckulcmlb

field a; (x 1 ) crest.ecl at .ZJ by all the c)tlwr scmr(ws:
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Figure 18: A ‘L1jll:~se-cli:i.gral~l“ of’tile Vi.iriC)US regions for Pvolllt ion ill the T — AL

plane.

The fart that the charge-charge correlator appwrs to winish whe~l k~ ~ (I is

in agreement with gauge symmetry: The dour source (]; (1:1 j tit low ii’~ is Ml

in dud source, WIMEWglobal strength must vanish:

ii) The cwlcmr charge correli.itions are 10CU.1in MipMy : the C’oulomb forces

ccmple only sources 10Ciit.E’Cl in the same layer of y ((M .r - ). At 10W-li’~, this

property is not jlwt all mtifhct c)f the MFA. lx~t rjatller has a {leep physical

meaning: In the quantum evolution, the ccdmu sources {it (Iifferent ropiclit.ies

get correlated with each other because of the presence of tVilson lines in the

e.vo]ut ion Hamilt onian (4. 13). But these ccmrelati ons are washecl out. cm a li.i.rge

W& J ~ >> 1/Qs (j-), On which the Wilson lines avwage t.0 zero. In particular,

this explains why the wiclth ,x k~ of the CLiussian (5.48) is inclepmclent c~f

the initial conditions at ~ N O. (By contrast. ilt. high momenta. the wiclt,h

& (k~ ) = dpy (Al )/L& in eq. (5.38) is sensitivp to the” initria.l conditicms, since

determined by solving eq. (5.:30 ).)

iii) Accorcling to wl. (5.48), the lo~~T-IIIolIlelltIll~]modes of p are ?ln i~om ly dis-

tributed in rapidity, within the interval 7(A1 ) .:: y .: i-. It fbllmvs th:tt. the



integrated quantity:

which measures the density of sources (with given l:L ) iu the t r:umverse plane,

grows only liwady with ~, that is. lc)g~irit.ll~rlic:~llv with the energy. This is

to he contrasted with the strong, (lll:tsi-expollc’llti:Ll, increase of p ~(lrJ-) in the

lligll-~llolllelltllln regime (cf. eqs. (5.43) and (5.-l-l)). lVe {:om:lude that,. at km

n~cune.nt.a kl << QS ( T ), the cwlour sol w{’es scrf (l rat c. because of tlw strcmg uwl-

linear effects in the qlliult UJ31evolution.

iv) The saturated sources form the outermost hi.yms crfth c hadr(m in the kmgit u-
– 7(IJ1~, 111p:trticL&{r,dinal direction: for ,giveu I:J-. they are lo(ated i~.t..r - ~ r,) e

(5.52)

is the longitudinal ~.stent of tlhe satlwatecl p:irt of the hiidron, in units of rapidity

(for mocles with tr:iuvwxc’ nmnlentum kl ). In writing (5.52), we have lwd the

DLA4 fxtimate (5.46) for the i--dependence of the sa.turat,ion s(:ale.

v) Note the fkrtor l/cL,s in the r.h.s. of (5.52); ibis implies that. at saturaticm, the

rh kyrdd charge clcnsity p“ (.rl ) has typically l:irge amplitudes: P N ~~ w

1/$). The same is therefme t.rlw for the C(3V-gau,ge field o” (.r~ ) : fi -- l/g.

Siuce the colour sources at lmv-l;~ itr? saturated, there should be no surprise

that. the glucms emitted by these sources are satluntecl as wel], :.iud this indepcw-

chmtly of their mutual interactions (i.e.. of the non-linear effects ill tlhe ckissic:il

Yang-Ivlills ecluaticms). Indeed, a cluasi-Abelian calculation c)fthe ,glltcm distribu-

tion, based on the linearized WIUtkJIl ~+~ (k) % (ikJ /k~ )p, yields the following

~lLIOndtinsity (cf. Cc[s. (,5.40) :.L1lC1eq. (5.51)) :

which alreacly exhibits sat,ur:it ion ! In fact,. iis ;irgued in Refs. [10], the (July

effect of the non-linearities in the Cki.ssical ~iiIlg-hlillS c!clu::itions in this lcnv-

liLregime is to modify the overall zlorl~la.liz~~t,ic)llof the lilJear-order result. In

anticipation of this, we h:ive insert wl in hq. (5.,53) it corrective f:ict.cm c, which

cannot be accur;i.tely determined in the present :i~>~~roxilll:~.t.io~~s(since sensitive

to the physics armmd Q.,), 1mt should be smaller than one (although not much

smaller).

Note the striking similarity Iwtween eel. (5.53) al~d the cm-reslmnding preclic-

tiou (2.71) of tlhe classical \lV model. Despite of the differences in the physical

mechanism leiicling to satur~ition — ncm-lineor (pI:intlml evolution fcm ml. (5.53),

as c)ppc)sed t( ) ncm-linwtr clwssical dynamics for eq. (2.71) —, the final rwuks

look very much the same. Sol the earlier dis~:llssiou of eq. (2.71) can hc’ inmle-

diatel~r adapted to eq. (5.53), after replacing .-! - .s : E(1, (5.53) shows rrl.wyird

(it+
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Figure 19: The gluou phas~-density .M7(I;l j in the effective theory- plotted as a

fl.mction of’ kl fc)r two values of ~ = 111(l/~j,

satumiio n (in the sense of’ a logarithmic increase only) with bc)tl 1 s and 1/lc ~,

with a typical amplitude of order 1/0,$. This is illustrated in Fig. 19, which

S11OUIC1be cmuparecl to Fig. 1:3. (The high-kl lwhavic}ur in Fig. 1!1 is taken

from eq. (5.40 ).)

Asicle from saturation, eq. (5.53) has also other inlpcn-tant consequences, which

idl reflect the proportionality to the rapidity wiudow 1:’ ~ – 7( k~ ), P(I. (5.52):

u) Scalhg. Tlw glum clensit,y at. satura.ticm depends upon the energy s ad the

transverse nmmentuul lc~ rmly via the sctdiu~ variable

A similar scaling is observw:l in the scduticms tc) the Kovclwgov equation [19.

56, 58]. As mentioned iu the Introclurtion , SLlc!h?.iWdillg h:l$ beWl WtLltdly

observed in DIS at HER.4 [17].

b,) tTniver.salifi!/. Eq. (5.53) is only weakly sensitivp — via its logarithmic de-

pendence Llpcm the saturaticm scale — to the initial ccJnclitiorls fcjr quantum

evolution. ancl therefore to the specific pr( qwrties of the hadrcJn unckv ccJnsid-

era.tion (e.g., its size and at( relic number). TIN IS, eel. (5. 53) M)T.ord,v provi cles

arguments in the favc)ur of hadron universality at hi,%h Vnergy$ but alst~ ~mxlicts

what should he the pattern c)f its viol at icm.

15Tlwse properties are tkrefbre generic: ’11lW hold for wy qu:u~t.ity which receives his

dominant cc>rltrik]llt.il>tlsfrom the saturated glw)ns.
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The gluon distribution xG(x, Q2) at Q2 << Q:(~) is immediately

integration in eq. (5.53):

——

hTote that, since LL7(kL ) w

N2 – 1 1
* ~ R’@’ [hl(Q:(T)/Q~) + 1]

k~ in the saturation regime (cf. q.

obtained by

(5.55)

(5.51)), the

above integral is almost insensitive to the soft m~)des A’1 ;% &~c-,D. This 1MM

allowed us to extend the integration dcnvn to k~ = O withuut Iclss of accuracy.

As anticipated, the phenomenon of saturation reduces the sensitivity c)f physical

quantities to the infrared gauge fields, thus making the weak coupling expansion

reliable. (Iu Ref. [58] a similar cxmrlusicm is drawn on tlw basis of Kovchegov

equation. ) If extrapcdated wp to Q N Q,s, eq. (5.55) yi(:lds

(5.56)

in rough agreement with the corresponding extrapohiticm from the high momen-

turn regime, WI. (5.45 ). ECI. (5.56) gives alsc) the contribution of the saturated

mc)des to the glucm distribution at mcmlenta ~ > C~.$(r). But for very high

IllODleIlta, Q >> Q$ (7). the clominant contlrilmtjion cwues form the hard n lodes

(Q., ~ k~ % Q), and is given h-y erl. (5,4.I.).

As a final a.pplicaticm, let us compute the 2-point function $’~( rl ) of the Wilson

lines for large distances /L >> I/Q,, (-r). This is interesting for at least two

reasons: It shows how the unitarity limit is reached for the scattering c]f a hwge

colour clipc}le off the h admn, aud it allows us to [heck a postericri the consistency

c)f the “ranclcnn phase :i~)prc~xinlatfioll” that we have used /it. low Al.

To this aim, wc rewrite etl. (5.25) as

where we hav~ anticipated that the main contribution comes from the saturated

modes, for which ~~ = l/(mp~ ), cf. eq. (5.34). The i~ltegral c)~er Pl is Ilow

infrared finite (as opposed to the LIV model: c(~l~lpare to WI. (2.64 j j, a~ld to

leading log accuracy can be eVillUateCl as:

The result cnn be understood as fhllcnvs: M lcuJg as 1/rJ- >> Q., (1’), ~Jry ~ 7( r~ ),
~;l}~“~~ x 1, a,~ld tile integral vanishes. Bur fc)r y > F(rl). or l/rl .<< Q,,(y), the
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integrals corresponding to the two terms in the blii rlcets me mlt off fit different

ultraviolet scales: Q ,f(y) for the first term, and 1/1 L for the w{:ond one. Their

difference ,gives the log’ in the r.h.s. By alscJ Iwing hl(Q~ (y) r~ ) = 4~l,g(y – ~(rl ) ).

cf. WI. (5. 52), and perfcmuing the integral over y, we finally deduce:

which coincides with the result c)btained from the Kcm:hegcw ecluation [1.9, l-l].

Eq. (.5..59) shows that the correlator c)f the Wilson lines is rapidly decreasing

when Q; (~)r~ >> 1, ..w t,hat the RPA is indeed j ustifiecl, at 1east as a mean field

a.pprcmimat ion.

More details finci further apIdications of the meau field :ll]~]roxi~llat:ic)ll will he

presented in Ref. [57], where the results obtained in this way will he also

rcmlparecl to the cwrrespcmcling predictions of the Kcwchegcn’ ecluation. It would

be i.dSO interesting (wpecially in view of applications to phemmlencdogy) to tztke

into account the transverse inhomo,geneity d the hadrun (i.e.. the dependence

upon the impact paramet m in the transverse [danc ). This cm be clcmr ah-m dy

in the framework of the h,IFA. but, mm-c geuerall,vl it would be important to

understand the Iimitaticms c)f the latter. and t c) be able tc) solve the r(mlplete

R.GE. This might be dcme, for instance, via numerical simulaticms cm a lattice.
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