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METHODOLOGY

The combination of gas-phase 
�uorophore technology and automation 
to enable high-throughput analysis of plant 
respiration
Andrew P. Scafaro1,2, A. Clarissa A. Negrini1, Brendan O’Leary1,4, F. Azzahra Ahmad Rashid1, Lucy Hayes1, 

Yuzhen Fan1, You Zhang1, Vincent Chochois3, Murray R. Badger3, A. Harvey Millar4 and Owen K. Atkin1*

Abstract 

Background: Mitochondrial respiration in the dark (Rdark) is a critical plant physiological process, and hence a reli-

able, efficient and high-throughput method of measuring variation in rates of Rdark is essential for agronomic and 

ecological studies. However, currently methods used to measure Rdark in plant tissues are typically low throughput. 

We assessed a high-throughput automated fluorophore system of detecting multiple O2 consumption rates. The 

fluorophore technique was compared with O2-electrodes, infrared gas analysers (IRGA), and membrane inlet mass 

spectrometry, to determine accuracy and speed of detecting respiratory fluxes.

Results: The high-throughput fluorophore system provided stable measurements of Rdark in detached leaf and root 

tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold 

faster per sample measurement than other conventional methods. The versatility of the technique was evident in its 

enabling: (1) rapid screening of Rdark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant 

Rdark through dissection and simultaneous measurements of above- and below-ground organs.

Discussion: Variation in absolute Rdark was observed between techniques, likely due to variation in sample condi-

tions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using differ-

ent measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar 

values of Rdark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the 

greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables 

reliable, stable and reproducible measurements of Rdark on multiple samples simultaneously, irrespective of plant or 

tissue type.

Keywords: Dark respiration, Fluorophore, Gas-exchange, High-throughput, Oxygen consumption, Oxygen 

electrodes, Respiration, Respiratory flux, Respiratory quotient
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Background

Mitochondrial respiration (R) is an essential physiologi-

cal process in plants required for most energy-dependent 

metabolic processes. In mature leaves, R takes place in 

darkness (Rdark) and in the light, and is central to process-

ing of carbon assimilates and nitrogen assimilation [1], 

while also supporting the energy requirements of phloem 

loading and maintenance processes (e.g. protein turno-

ver and membrane transport) [2–6]. Respiration is also 

central to the functioning of roots, providing the energy 

needed for biosynthesis, nutrient uptake and assimila-

tion, as well as maintenance processes [7]. As such, geno-

typic and/or environmentally-induced variations in leaf 
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and root R play a crucial role in determining growth/

survival of individual plants, and productivity/function-

ing of terrestrial ecosystems [8–10]. Because of this, 

there is a growing need to describe and predict variabil-

ity in rates of plant R, which in turn requires provision 

of large-scale data sets on leaf and root R. Recent stud-

ies reporting on expanded global data sets of leaf Rdark 

and its T-dependence [11–13]—compiled over several 

years using slow, low-throughput gas exchange proto-

cols—are a step forward. However, our understanding of 

fine-scale temporal, spatial and developmental variation 

in plant R remains limited, both for natural and managed 

ecosystems. Addressing the need for new, large-scale 

datasets on plant R will require development of rapid, 

high-throughput methods capable of overcoming current 

bottlenecks in data provision.

One area where there is an urgent need for data on 

plant R is within the agriculture industry, where more 

energy-efficient crops are needed to improve global food 

security. For wheat (Triticum aestivum), only 10–15% 

of photosynthetic carbon gain contributes to yield [14], 

demonstrating the untapped potential for improving 

energy use efficiency. 30–80% of daily carbon gain by 

photosynthesis is subsequently respired [15–18], with 

respiratory costs increasing with increasing tempera-

ture [19]. Given that the efficiency of ATP synthesis per 

unit of CO2 or O2 equivalents respired varies (reflecting 

engagement of phosphorylating and non-phosphoryl-

ating pathways of mitochondrial electron transport [20, 

21]), there is potential to improve crop yields via select-

ing for efficient genotypes with reduced rates of R [22, 

23]. Indeed, there is growing evidence that physiological 

screening on a large scale assists crop breeders in identi-

fying beneficial genetic material [24]. However, recombi-

nant inbred line (RIL) populations, diversity panels and/

or the structured genetic populations used in genome 

wide association studies (GWAS) typically include many 

hundreds of plant variants. Studying these for respiratory 

traits will require thousands of respiratory measurements 

to be routinely made on material at the same time of day 

and developmental stage.

Comprehensive R datasets are also needed to improve 

modelling of respiratory fluxes in terrestrial ecosystems 

[9, 25–27]. Using standard leaf gas exchange methods, 

recent surveys have greatly increased our understand-

ing of biome-to-biome variation in leaf Rdark [11–13]; 

our understanding of how sustained changes in the envi-

ronment affect respiratory rates is also improving [11, 

28–31]. Yet, limitations in available data (e.g. document-

ing environmental, developmental and/or temporal 

variations) restrict our ability to fully describe the com-

plexity of plant R that occurs in nature. Similarly, respira-

tory measurements have been conducted in only a small 

fraction of extant terrestrial plant species, limiting our 

ability to explore evolutionary changes in plant energy 

use efficiency. Addressing these challenges requires 

development of high-throughput methods for quantify-

ing respiratory fluxes of plants growing in natural ecosys-

tem across the globe.

Protocols using O2-electrodes and infrared gas-ana-

lysers have dominated the measuring of plant Rdark for 

several decades (refer to Hunt [32] for a comprehensive 

review of each techniques application, advantages and 

disadvantages). �e O2-electrode technique was popu-

larised in the form of Clark-type O2-electrodes, being 

first applied to measure human blood O2 levels [33]. 

O2-electrodes are often used for measurements of root 

respiration [34–36] and to assess the impact of exog-

enous substrates, uncouplers and inhibitors on leaf slices, 

intact roots and isolated mitochondria [37–39]. While a 

series of O2 electrodes can be set up in parallel to per-

form respiratory measurements, in most cases a single 

electrode is used and each measurement takes an esti-

mated 25–50 min to complete (see Table 1 for a compari-

son of measurement times associated with this and other 

methods).

Infrared gas-analysers (IRGA) are also commonly used 

to measure rates of plant R (as respiratory CO2 efflux), 

exploiting the infrared absorption properties of CO2. �e 

major benefit of the IRGA systems is that they can be 

portable and operate as a gas-phase/open system. Such 

systems have been extensively used in recent times for 

quantifying plant Rdark [12, 40–42], including specialised 

chambers for whole-plant Rdark [16, 19, 43]. While a few 

research teams have developed multiplex systems for sin-

gle IRGA measurement of four to 12 samples [e.g. 44], 

most IRGA measurements are made individually, each 

requiring 10–20 min per sample (Table 1). Consequently, 

existing IRGA methods are unlikely to provide the high 

throughput capacity needed to screen for genetic varia-

tions in energy use efficiency and/or improved modelling 

of ecosystem gas exchange.

Less employed spectroscopy technology for detect-

ing respiratory O2 and/or CO2 exchange include tune-

able diode laser (TDL) spectroscopy [45] and cavity 

ring-down (CRDS) spectroscopy [46]. Mass spectrometry 

can also be used, with one example of a mass spectrom-

etry technique being membrane inlet mass spectrometry 

(MIMS), a gas phase method that is used to discrimi-

nate between O2 and CO2 isotopes, enabling deeper 

insight into the photosynthesis/respiratory process [44, 

47]. Although MIMS is beneficial in that it can discern 

gas isotopes, neither it nor the above spectroscopic 

approaches are high-throughput (Table 1). Similarly, cal-

orimetry measurements of metabolic heat rate and res-

piratory fluxes [48, 49] while providing an opportunity to 
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explore relationships between respiration and growth—

are also not high throughput.

Using O2-sensitive fluorophores in combination with 

fibre-optic fluorescent detection mechanisms for meas-

uring the O2 evolution of photosynthesis of illuminated 

leaf disks was occurring by the late 1990s [50]. �e tech-

nique works by exciting a fluorophore, in most cases 

a metal porphyrin, whose fluorescence is sensitive to 

O2 quenching. �e measured decay rate of the fluores-

cent emission is thus proportional to the partial pres-

sure of O2 present [51, 52]. �is technology is becoming 

a more common technique for detecting respiratory O2 

consumption of biological samples ranging from bacte-

rial plankton to benthic meiofauna [53, 54]. �e power 

of this technology is that many tissue types of varying 

abundance can be simultaneously and accurately meas-

ured. For example, fluorophore technology has enabled 

multiple simultaneous measurements of leaf, root and 

seed respiratory rates [55]. �e authors highlight the 

high-throughput and small tissue size capabilities of the 

technique, not achievable using conventional Clark-type 

electrodes, infrared gas-analyser, spectroscopy or calo-

rimetry methods. Yet, take-up of fluorophore technology 

to facilitate high-throughput measures of plant R remains 

limited, reflecting the need for more straightforward 

sample preparation than was possible using the liquid-

phase approach of Sew et  al. [55]. By contrast, using 

fluorophore technology in a gas-phase medium is likely 

to lead to faster processing times and avoid technical 

issues, such as floating tissues and air-pockets. To date, 

automated gas-phase measurements of O2 consumption 

using fluorophore techniques for plants have primar-

ily focused on large-scale analysis of seed germination 

[56, 57], with automated, high-throughput assessments 

of non-seed plant R yet to be attempted using gas-phase 

fluorophore approaches.

To address the urgent need for high-throughput meas-

urements of plant Rdark, we have trialled an approach 

for measuring respiratory O2 uptake which re-purposes 

equipment designed for seed germination assays and 

combines the advantages of: (1) fluorophore technol-

ogy that can accurately measure changes in O2 par-

tial pressure in small measuring volumes that are easily 

calibrated; (2) closed, gas-phase measurements, which 

require minimal preparation time; and, (3) an automated 

sampling mechanism, relying on robotics to take meas-

urements of multiple samples within a short period of 

time. As part of our study, we compare multiple O2 con-

sumption detection methodologies to ascertain the reli-

ability and compatibility of the different approaches. 

Table 1 Measurement times required per sample for each of the Rdark techniques assessed

T (min) represents the estimated time it takes to measure a single sample in minutes. For example, if 20 samples can be measured without recalibration and it takes 

20-min to calibrate, then the calibration T is 1-min

Technique Step Description T (min)

Fluorophore Calibration Purge tubes of air using N2 gas or sodium dithionite 0.02–0.05

Sample preparation Dissect tissue (e.g. scalpel, scissors or leaf punch) and place in measuring tube 0.5–1

Measurements In general, slopes taken from 1 to 2.5-h. 186 samples per run. Note: more than 186 
samples can be simultaneously measured but cycle time between O2 recordings will 
increase to >6-min, reducing resolution

0.8

Total 1.3–1.9

O2-electrode Calibration Prepare and assemble electrodes, including application of membrane and electrode 
solution. Aerate calibration solutions and obtain zero and saturated O2 values after 
stabilisation of current

4–9

Sample preparation Dissect tissue and place inside cuvette and adjust plunger being careful not to introduce 
air pockets

1–2

Measurements Slopes taken after stabilisation of signal and before depletion of O2, usually within 
10–40 min but dependent on sample

20–40

Total 25–51

IRGA Calibration Change consumables (e.g. soda lime, desiccant, CO2 canister) and zero IRGA chambers 1–2

Sample preparation Select and clip measuring chamber onto leaf 0.5–1

Measurements Allow steady-state gas-exchange to be reached 10–15

Total 11.5–18

MIMS Calibration Apply membrane and test membrane stability. Purge tube and inject known volumes of 
O2 and CO2. Record background consumption

5–10

Sample preparation Dissect tissue and place inside cuvette and air-seal cuvette 1–3

Measurements Allow signal to stabilise (usually 5 min) and record slope between 5 and 20 min 20

Total 26–33
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Further, to illustrate the potential of the high-throughput 

fluorophore technology to accelerate our understand-

ing of plant Rdark, we report on: (1) a screen of Rdark in 

138 genotypes of wheat (using >550 plants) that was 

conducted over a few days; and, (2) rapid assessments 

of respiration in leaf, stem and root tissues that enable 

whole-plant respiratory fluxes to be estimated by simul-

taneous analysis of individually dissected plants.

Methods

Plant material

�e species used in this study were a grass (wheat—

Triticum aestivum), a herb (thale cress—Arabidopsis 

thaliana) and an evergreen broadleaved tree (red river 

gum—Eucalyptus camaldulensis), enabling the method 

to be tested on a range of plant functional types. Con-

sidering its agricultural significance, T. aestivum was 

selected as the primary species of interest, and all exper-

iments, including the high throughput practical applica-

tions, were undertaken on T. aestivum, with a sub-set 

of other experiments conducted using other tissues. All 

experiments took place at the Research School of Biol-

ogy at the ANU, Canberra, Australia plants grown in 

organic potting mix, enriched with Osmocote® OSEX34 

EXACT slow-release fertiliser, following manufacturer’s 

instructions (Scotts Australia, Bella Vista, NSW) with 

an N/P/K ratio of 16:3.9:10. Plants were watered daily 

to field capacity. For experiments where roots were 

analysed, wheat plants were grown hydroponically in 

a nutrient solution consisting of 1.4  mM NH4NO3, 

0.6  mM NaH2PO4·2H2O, 0.5  mM K2SO4, 0.2  mM 

CaCl2·2H2O, 0.8 mM MgSO4·7H2O, 0.07 mM Fe-EDTA, 

0.037 mM H3BO3, 0.009 mM MnCl2·4H2O, 0.00075 mM 

ZnCl2·7H2O, 0.0003  mM CuSO4·5H2O, 0.0001  mM 

(NH4)6Mo7O24·4H2O, 0.000138  mM NH4VO3, and 

0.0012963 mM Na2SiO3. A pH ranging from 5 to 6 was 

maintained by adding concentrated sulphuric acid or 

sodium hydroxide, and monitoring of pH using a porta-

ble pH meter (Rowe Scientific Pty. Ltd., NSW, Australia). 

�e hydroponic solution was aerated continuously using 

Infinity AP-950 aquatic air pumps (Kong’s Pty Ltd, 

Ingleburn, Australia). Plants were grown at tempera-

tures of 25/20  °C for T. aestivum and E. camaldulensis, 

in temperature controlled greenhouses with natural 

photosynthetically active radiation (PAR) of between 

400 and 1200  μmol  m−2  s−1. A. thaliana was grown at 

22/15  °C in temperature-controlled growth chambers 

(�ermoline, Wetherhill Park, Australia) with a PAR of 

200  ±  30  μmol  m−2 s−1 and a 12:12  h light/dark pho-

toperiod. For leaf dissection samples, broad-leaved A. 

thaliana and E. camaldulensis leaf tissue was extracted 

using brass coring tools of known diameter and for T. 

aestivum a set distance of leaf blade was dissected with a 

scalpel. Where sectioned, root segments were dissected 

transversely from base to tip.

High throughput �uorophore measurements

A Q2 O2-sensor (Astec Global, Maarssen, �e Neth-

erlands) designed and marketed for seed germination 

assays was used to obtain automated, high-throughput 

fluorophore measurements of dark respiration from plant 

material. A custom-built frame covered in black cloth 

was used to maintain darkness during sample measure-

ments. Plant material were freshly dissected and placed 

in empty tubes (1, 2 or 4 ml in volume) and hermetically 

sealed with specialised caps (Astec Global). �e top sur-

face of caps contained a fluorescent metal organic dye, 

sensitive to O2 quenching. A blue-spectrum LED exci-

tation pulse (approximately 480 nm) onto the surface of 

caps, followed by emission detection in the red spectrum 

(approximately 580 nm), enables the O2 dependent decay 

in fluorescence signal to be quantified. �e fibre optic 

fluorescence detection unit is attached to a robotic arm 

which sequentially measures vials placed in racks of 48 

tubes each (or 24, 4 ml tubes). �e machine can accom-

modate 16 racks allowing 768 samples (1 or 2 ml tubes) 

to be measured in a single run. �e frequency of meas-

urements was in most cases set to 4  min, enough time 

to measure approximately 180 samples (a minimum 

measurement frequency of 1-min is required). �e Q2 

O2-sensor is calibrated before each set of measurements 

by measuring a designated tube containing ambient air 

(designated 100% O2), and a tube purged of all O2 using 

a sodium dithionite solution, or alternatively purging 

the tube of air using N2 gas (designated 0% O2). Output 

is given as an O2 percentage, relative to the calibration 

readings.

Based on the ideal gas law, raw output as the % O2 rela-

tive to the air calibration tube was converted to absolute 

values of dark respiration rates (Rdark) in moles of O2 s−1 

using Eq. 1.

Po equals 20.95, the partial pressure of ambient O2 in kPa 

(i.e. 20.95% of atmospheric pressure), and V equals the 

volume of the sample tube (1, 2 or 4 ± 0.2 ml tubes were 

used in this study). S refers to the slope of sample tubes 

O2 consumption, (as a % of air and subtracting the air cal-

ibration tube slope), from 1 to 2.5 h after the beginning of 

sample measurements, expressed as the % of O2 per sec-

ond. R is the gas constant (8314 cm3 kPa K−1 mol−1) and 

T is the temperature in Kelvin (K). �e final calculation of 

O2 consumption rates in moles s−1 were expressed on a 

leaf area (cm2) basis, calculated from the diameter of the 

leaf corer (for leaf disks) or ruler measurements for grass 

(1)Rdark =

PoVS

RT
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leaf sections. Alternatively, for whole-plant developmen-

tal partitioning measurements respiration was expressed 

on a fresh mass basis. To test technical reproducibility 

of the instrument, a chemical oxidation assay consist-

ing of 100 mM of cysteine in 600 μL of buffered solution 

(50 mM Hepes, 10 mM MES pH 6.5, 200 μM CaCl2) was 

used, and the stabilised O2 consumption rate over a 2-h 

run was measured repeatedly. To test fluorophore sensi-

tivity to O2 depletion, known volumes of pure CO2 gas 

were injected into tubes through a pin-hole created on 

the side of tubes and sealed with blu-tack (Bostik, Paris, 

France) immediately after the gas-injection. All measure-

ments were made at a room temperature of 21.5 ± 1.0 °C.

O2-electrode measurements

Respiratory consumption of O2 by leaves (3–42 mg fresh 

mass) or roots (56–214  mg fresh mass) were measured 

in the liquid-phase using Oxytherm Clark-type O2-elec-

trode (Hansatech Instruments, Pentney, UK) in a 2  ml 

measuring volume. Electrodes were calibrated by bub-

bling water with compressed air for approximately 2-h 

to reach saturation followed by adding sodium dithionite 

to record O2 depleted signals. Leaf and root respiration 

was measured in a solution containing 20  mM Hepes 

(pH 7.2), 10 mM MES and 2 mM CaCl2, at 21.5 ± 1 °C. 

All measurements were made by dark adapting tissue for 

>30  min, submerging tissue in the Clark-type electrode 

cuvettes below measuring solution, with no obvious air 

pockets and continually stirring, and recording O2 con-

sumption using Oxygraph Plus v1.02 software (Hansat-

ech Instruments). �e linear part of O2 consumption 

(approximately 10–30  min into each run) was used to 

calculate respiration rates.

IRGA measurements

Infrared gas-analysis of CO2 efflux by respiring leaves 

was measured using a Licor 6400XT with a 3  ×  2  cm 

chamber head ((LI-COR, Lincoln, Nebraska, USA) on 

>30  min dark-adapted leaves. Attached whole leaves 

were placed across the measuring chamber and cham-

ber gaskets and measurements recorded after CO2 read-

ings stabilised (~10–15  min). �e flow rate was set to 

300  µmol  s−1, the block temperature set to ambient air 

temperature of 22 °C and the CO2 reference sample was 

set to 400  µmol  mol−1, to match ambient air. �e light 

source was turned off.

Membrane inlet mass spectrometry

Dark-adapted wheat leaf disks (3  ×  0.5  cm2 or 

6 × 0.5 cm2) were placed in a 1 mL O-ring sealed cuvette 

containing only air and a polyethylene membrane sealed 

outlet attached to a mass spectrometer (MM6: VG, Wins-

ford, UK). O2 (m/z = 32) and CO2 (m/z = 44) detection 

over a 20-min period was recorded. Prior to leaf disk 

samples being placed in the cuvette, N2 gas purging of the 

cuvette and injections of known volumes of O2 and CO2 

allowed for conversion of mass detection signal to a gas 

concentration and the background consumption rate of 

O2 and CO2 by the mass spectrometer to be accounted 

for when determining leaf derived O2 consumption and 

CO2 evolution rates.

Replication and statistical analysis

For all experiments four to six biological replicates, with 

a biological replicate considered as plant material from 

individual plants grown in separate pots, or containers 

(when grown hydroponically) were measured. For the 

comparison of respiratory techniques, two or more sam-

ples from each biological replicate were analysed by each 

technique and sampling was standardised by selecting a 

2 cm long mid-section of young, healthy, fully expanded 

leaves, or in relation to root samples, a longitudinal sec-

tion from base to tip of the longest root segment. A one-

way ANOVA was used to determine significance between 

leaf O2 consumption techniques and Two-Sample t-tests 

for differences between leaf CO2 evolution techniques 

and root O2 uptake techniques.

Results

Technical and biological reliability and accuracy

�e stability of the fluorescent oxygen concentra-

tion measurements performed using the Q2 is evident 

because control tubes containing either ambient air or no 

O2, gave long-term stable readings at 100 ± 5 or 0 ± 5%, 

respectively (Fig.  1a). �e stability of O2 in the purged 

tubes demonstrates that the sample tubes were hermeti-

cally sealed, providing a closed system, necessary for 

accurately measuring O2 uptake. Nevertheless, we sug-

gest periodically testing the accuracy of the calibration 

tubes, in case of drift over time, by placing 100% air and 

0% O2 tubes amongst samples during a run. Measuring 

the spontaneous chemical oxidation of a cysteine solu-

tion in replicate vials assessed the technical reproducibil-

ity of the O2 consumption measurements. Analysis of 30 

tubes in three separate experiments gave an average coef-

ficient of variation of 8.1% (Additional file 1: Table S1).

When cut leaf material was placed inside the sample 

tubes, the fluorophore system was able to measure a con-

sistent decline in O2 over a greater than 7-h period fol-

lowing an initial 1 h period of stabilization (Fig. 1a). �e 

decline was linear in all species and tissues tested. �e 

90-min O2 consumption slope between 1 and 2.5-h had 

a mean r2 of 0.99 across both species (Fig. 1b). Typically, 

the initial 0–30  min period of each run was associated 

with sharp declines in the O2 consumption slope. Rdark 

calculated from a 1-h moving average of slopes over 7-h 
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was similar to the slope of O2 consumption over a set 

90 min period between 1 and 2.5-h (presented as dashed 

horizontal lines in Fig.  1c). �e O2 consumption slope 

between 1 and 2.5-h can therefore be used as a standard 

period for calculating Rdark across experiments.

Respiratory rates per unit leaf area were independ-

ent of the amount of leaf material placed within a given 

tube volume, apart from exceedingly small tissue abun-

dance of below 0.1  cm2 mL−1 (Fig.  2a). To test whether 

the signal was independent of CO2 concentration and 

linearly related to O2 concentration between 0 and 100% 

of atmospheric O2 known volumes of pure CO2 gas 

were injected and sealed in measuring tubes. �e meas-

ured percentage of O2 in the tube declined linearly in 

close proximity to the expected values for the amount of 

air displaced by CO2 (Additional file 1: Fig. S1), validat-

ing that for the fluorophore in question, the O2 depend-

ent fluorescence quenching is linear and independent of 

CO2 concentration. An increase in CO2 concentration 

was not inhibitory to Rdark, evident in maintained Rdark 

when O2 was depleted to less than 40% of ambient levels, 

equivalent to the gas volume being >8% CO2, assuming 

a respiratory quotient of one. We provided further sup-

port of a lack of CO2 inhibition of Rdark by purging tubes 

containing wheat leaf samples with various concentra-

tions of pure CO2 gas (Fig.  2b). Interestingly, replacing 

the volume of gas surrounding leaf material with as much 

as 90% CO2 did not lead to a substantial decline in Rdark. 

When 100% of the air within a tube was replaced with 

CO2, Rdark did essentially stop, understandable consider-

ing no O2 would be available for respiration.

Although increased CO2 concentration was not inhibi-

tory to Rdark, heavy mechanical wounding of tissue 

resulted in higher Rdark (Fig. 2c). Intact wheat leaves ver-

sus a 2 ×  0.5  cm transverse section from the middle of 

leaves (a ratio of 1:1, wounded boundary length to leaf 

area) did not exhibit significant differences in Rdark on an 

area basis (Fig. 2c). However, if the transverse section was 

further sliced into 20 smaller pieces (a 20-fold increase in 

the cut surface length to leaf area ratio), Rdark increased 

by as much as two-fold (Fig.  2c). Applying a buffered 

saline solution to the heavily wounded leaf partly miti-

gated the enhancement of Rdark by wounding. �us it 

is important to reduce the amount of tissue exposed to 

mechanical damage when processing samples, to avoid 

the risk of artificially enhancing respiration rates.

Comparisons between leaf gas-exchange methods

Considering the many methods currently in use for 

determining plant respiratory gas-exchange, and the 

need to ensure that the fluorophore system was giving 

comparable rates, we compared Rdark values generated 

using the fluorophore technology, the more conventional 

Clark-type O2-electrodes, Licor 6400 IRGA gas-exchange 

system, and membrane inlet mass spectrometry (MIMS). 

All of these techniques have varying degrees of differ-

ence in sample preparation and technical methodology 

that may influence the final respiratory rate recorded. 

For example, while we measured O2 consumption in the 

gas-phase using the fluorophore technique, O2-electrode 

measurements were made in aqueous-phase. Despite the 

IRGA measurements being made in gas-phase, measure-

ments were of CO2 rather than O2 flux, and in an open 

gas-exchange system rather than the closed fluorophore 

system. Furthermore, IRGA measurements are made on 

intact not detached leaves. MIMS would be closest in 

methodology to the fluorophore technique in that both 

were measuring in the gas phase, in an essentially closed 
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technique. a O2 is given as a percentage of O2 in ambient air. A tube 

containing no sample (labelled as Blank) provided the baseline 

for no O2 consumption, while a tube devoid of all air (labelled as 

N2-purged) provided the baseline for total O2 consumption, and 
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within this range. b A higher resolution plot of individual data points 

over a 90-min period, from 1 to 2.5-h and linear regression analysis. c 

Respiration rates calculated from linear regression of O2 consumption 

using Eq. 1. Presented are Rdark calculated from a 1-h moving slope 

(solid lines), and Rdark calculated from the 1–2.5 h slope as shown in 

Panel b (dashed horizontal lines). Values are the means of four biologi-

cal replicates for each species with the % of O2 measured every 4 min
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system. However, the MIMS system is not a completely 

closed system as the gradual leak of gasses through the 

semi-permeable membrane to the mass spectrometer 

would lead to changes in partial pressure and water 

vapour at the site of the leaf.

Understandably, due to the aforementioned differ-

ences in methodology, calculations of Rdark using match-

ing leaf or root material were significantly different 

between methods (Fig. 3). On an O2 basis, the conven-

tional O2-electrode technique gave lower values, MIMS 

gave higher values, and the fluorophore values were 

intermediate. On a CO2 basis, MIMS measurements 

were significantly higher than IRGA measurements. 

MIMS, the only technique that can measure both O2 and 

CO2 concentrations, gave almost matching Rdark meas-

urements on an O2 and CO2 basis, indicating a respira-

tory quotient near unity for darkened wheat leaf tissue. 

Root Rdark measurements in the gas-phase on the fluo-

rophore system were significantly higher than in the liq-

uid phase measured with O2-electrodes. �us, while the 

fluorophore and IRGA approaches provide similar esti-

mates of leaf Rdark, both methods yield relatively lower 

estimated respiratory fluxes compared to MIMS; by con-

trast, the fluorophore approach yields relatively high val-

ues compared to liquid-phase Clark-type O2 electrode 

measurements.

High-throughput analysis of respiration

Two studies were undertaken to verify the capabilities 

and versatility of automated O2 fluorophore technol-

ogy for measuring high-throughput plant respiration in 

leaves and other plant tissues.

For the first study we undertook a fully replicated 

experiment of leaf respiration in 138 wheat cultivars 

(Fig. 4). �ere were clear differences in Rdark among many 

genotypes, with a two-fold variation between the low-

est and highest respiring cultivars (Fig.  4a). �e wheat 
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dataset was used to calculate the average standard devia-

tion among biological replicates. As a proportion, the 

standard deviation was close to 20% of the overall mean 

Rdark. �is coefficient of variation was used to estimate 

the statistical power for future t test comparisons of Rdark 

between wheat lines as a function of replicate number 

and difference in means, using a false discovery rate of 

5% (α = 0.05; not including corrections for multiple test-

ing). Given the four biological replicates per genotype 

used in this 138-genotype study, there is sufficient sta-

tistical power [(1 − β) > 0.8] to consistently detect only 

large differences in Rdark between two lines equal to 50% 

of the mean (Fig.  4b). In a further example, to detect a 

20% difference in mean respiration rates between any 

two wheat lines with the conventional statistical power 

target of (1 − β) = 0.8, 17 replicates would be appropri-

ate (Fig. 4c). Of course, significant differences can still be 

detected with less replicates and less power, but given the 

high-throughput capacity of the fluorophore technique, 

appraisal of statistical power and appropriate biological 

replication can now be achieved, where previously, such 

high levels of replication were a barrier to experiments.

With the potential to run a single sample using the fluo-

rophore system in less than 2 min (Table 1), a single rep-

licate of all 138 genotypes could be processed in less than 

4 h, and potentially, a fully replicated 138 genotype study 

could be achieved in a single day. �e number of samples 

per day is limited by the capacity of the robotic system, 

and by the time taken to prepare samples. By comparison, 

the other techniques have significantly longer calibration, 

sampling and measurement times required to acquire a 

single measurement (Table 1). Hence, what can be under-

taken in 8-h using the high-throughput fluorophore tech-

nique, would require a minimum of 83 equivalent hours, 

or as much as 200-h for other commonly used proce-

dures to measure R.

�e second study looked at whole-plant developmental 

partitioning of Rdark between leaves, stems and roots of 

46-day-old wheat plants, which had reached the tillering 

stage of development (Additional file 1: Fig. S2). �is type 

of experiment enables the quantitative attribution of total 

plant Rdark to different parts of the plant at a specific stage 

of development. �e simultaneous measurement of a 

whole dissected plant saves on the need to combine rates 

over time from measurements made on different plants. 

Plants were dissected and the individual leaves (including 

both leaf blade and sheath), the stem and roots were sep-

arated. �e Rdark of all separated tissues was measured for 

six entire plants simultaneously. Relative to healthy fully 

expanded leaves of a tiller; Rdark was slightly higher in the 

oldest and much higher in the youngest leaves, on a fresh 

mass (i.e. nmol O2  g−1  s−1) basis (Fig.  5a, b). Leaves of 

intermediate ages exhibited similar rates of mass-based 

Rdark. �e total Rdark for an entire leaf increased with age, 

presumably due to the increase in leaf size with stem and 

tiller developmental maturity. However, the total flux of 

O2 for the youngest leaf of the main stem or tiller was 

low (Fig. 5b), due to the smaller leaf size (Fig. 5a). When 

considered together, the total respiratory output of wheat 

foliage is dominated by healthy, relatively young, fully-

expanded leaves (Fig.  5b) despite the oldest and young-

est leaf of a stem or tiller having greater rates of Rdark on 

a mass basis. When considering the partitioning of Rdark 

between all tissues of the entire plant, leaves accounted 

for 51% (Fig.  5c), roots 37% and stems 12% of the total 

respiratory flux. Although the stem accounted for 12% of 

total R flux, it was only 4% of the entire fresh mass of the 

plant; however, stems had the highest mass based fluxes, 
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likely due to energy expensive processes of cell division 

and elongation at the site of the apical meristem.

Discussion

We demonstrate that using robotic fluorophore-based 

gas-phase measurements of O2 consumption in sealed 

tubes provides a simple yet reliable and reproducible 

means of measuring Rdark for a diverse range of plant tis-

sue types and species. �e technique differentiates itself 

from other conventional methods in that it significantly 

reduces the time required for sample preparation and has 

substantial simultaneous measuring capabilities, making 

the technique a truly high-throughput means for measur-

ing respiration. We demonstrate the potential capabilities 

of the method by measuring Rdark of 138 wheat geno-

types, and by measuring Rdark of all tissues of six mid-

vegetative stage plants simultaneously. A comparison of 

Rdark in absolute terms, generated by different methodol-

ogies suggests variation in respiratory rates depending on 

technique employed, which should be considered when 

making direct comparisons between methods.

Strengths and weaknesses of high-throughput �uorophore 

methods

�ere was an initial spike and rapid decline in respiratory 

activity within the first 30-min of measurements (Fig. 1b). 

We dark-adapted leaves for a minimum or 30-min prior 

to fluorophore analysis, so although it is common to find 

a spike in respiration of leaves following exposure to light 

within the initial 30-min post-illumination period [58], 

post-illumination bursts in respiration do not explain 

the findings. Furthermore, while the O2-electrode and 

MIMS measurements continuously recorded in a simi-

lar manner to the fluorophore system, neither approach 

showed the initial spike, followed by rapid decline in Rdark 

that was exhibited by the fluorophore approach (Fig. S3). 

Consequently, the first 60-min of each run were not used 

to calculate rates of Rdark in the genotypic and develop-

mental studies; the initial stabilisation period, however, 

can be used as a dark-adaptation period if tissue is not 

dark-adapted prior to fluorophore experimentation.

CO2 has previously been postulated to inhibit 

cytochrome c oxidase (COX) activity [59]. Reports ini-

tially suggested that a doubling of current atmospheric 

CO2 (i.e. from 0.04% of atmospheric gas to 0.08%) 

reduced Rdark by 15–30% [60–62]. However, it was later 

discovered that CO2 inhibition of Rdark was mostly likely 

an artefact of the measuring techniques used to quantify 

respiratory CO2 release [63–65]. Our results show that 

CO2 accumulation does not inhibit Rdark. In fact, even 

with CO2 concentrations surrounding the sampled tis-

sue reaching more than 90% of the gas volume (a 450-fold 

increase in concentration relative to previously reported 

measurements), no substantial inhibition in respiration 

occurred (Fig. 2b). We therefore conclude that leaf Rdark 

is highly insensitive to CO2 accumulation over a course of 

several hours.

One factor that does seem to influence Rdark is mechan-

ical wounding (Fig.  2c). Leaf wounding was thought to 

affect leaf respiration as far back as 1950 [66]. Increased 

Rdark with mechanical wounding is attributed to stimu-

lation of the ATP/ADP ratio and activation of pyruvate 
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kinase due to ion changes associated with wounding 

[67]. Pre-treatment by washing leaf samples with a buff-

ered saline solution, the same as the measuring solution 

in liquid phase measurements, reduces any wounding 

effects on leaf R [38, 68]. We observed an increase in Rdark 

when a large proportion of the sample had a wounded 

edge, and a reduction in Rdark by applying wounding 

buffer, although not enough of a reduction to eliminate 

the wounded effect (Fig. 2c). However, minimal wound-

ing did not significantly change Rdark. Considering the 

time required to wash the sample tissue with a wound-

ing solution, we suggest minimising as much as possible 

the mechanical wounding of tissue, rather than apply-

ing a wounding solution, if high-throughput sampling 

is desired. However, minimising mechanical wounding 

may require using larger volume tubes (e.g. moving from 

1 to 4 mL tubes) to adequately fit sample tissue. By run-

ning a preliminary experiment, one could initially check 

for wounding effects and use the appropriate tissue size 

thereon after.

�e limited effect of leaf wounding and lack of any 

inhibition to Rdark from CO2 accumulation resulted in 

respiration measurements being stable over a period of 

many hours (Fig.  1). �e stability of Rdark for small leaf 

sections means that although the fluorophore technique 

we present is a closed-system that destroys the sampled 

tissue, a small sample of leaf collected in the field can 

be transported to the lab (making sure to keep detached 

leaves from desiccating), accurately representing in  situ 

Rdark. �us, the fluorophore method can be considered as 

a pseudo non-destructive technique for high-throughput 

analysis for field experiments, as demonstrated below in 

the 138 wheat genotypes study we present.

Comparisons between respiratory methods

Although Hunt [32] comprehensively compared the 

strengths and weaknesses of multiple photosynthesis 

and respiration measurement techniques, no study to 

our knowledge has directly compared the absolute val-

ues of R obtained from the same biological material but 

measured across multiple techniques. Determining if the 

fluorophore technique presented in our study is compa-

rable with previously well-established methods is impor-

tant. Firstly, if results are to be examined among studies 

that utilised different techniques, it must be established 

if the analysis is viable, or whether differences among 

studies are an artefact of measuring technique. Secondly, 

although in many cases only the relative differences in 

R between samples may be of interest (for example, the 

genotypic study we present here), in many circumstances, 

absolute R will be desired, such as for determining abso-

lute photosynthesis, or modelling the impact of R on ter-

restrial carbon budgets. Hence, we directly compared 

fluorophore, O2-electrode, IRGA, and MIMS output 

(Fig. 3). We found differences did exist between the tech-

niques, suggesting that comparing results between stud-

ies utilising different R measuring apparatus may not be 

appropriate, or at least with the caveat that comparisons 

may require cross-calibration of method. Differences in 

measurements based on either O2 consumption or CO2 

evolution may be expected considering the respiratory 

quotient (RQ) will not necessarily be equal to 1 (i.e. res-

piratory CO2 release being equal to O2 uptake) if pure 

carbohydrates were not the only source of respiratory 

substrate, or the oxidation state of respiratory prod-

ucts differed, although a RQ of 1 is usually assumed for 

higher plants under non-stressed conditions [69]. Indeed, 

the simultaneous measurement of Rdark derived from 

O2 and CO2 exchange by MIMS gave close to match-

ing values, supporting a RQ of 1, in contrast to a study 

of wheat leaves measured in the dark, 6-h into the light 

period (similar conditions to this study), which gave a RQ 

value of 1.8 ±  0.21 [70]. However, the study by Azcón-

Bieto, Lambers and Day [70] used values of R deter-

mined separately using O2-electrode and IRGA systems, 

and since we found lower O2 based O2-electrode values 

relative to CO2 IRGA values, we emphasise that caution 

must be taken when comparing R calculated from differ-

ent methodologies. Of note, the widely used IRGA gas-

exchange system on intact leaves gave similar rates to the 

fluorophore results, suggesting the two techniques may 

be complementary. We did not undertake subsequent 

experiments to determine the specific reasons for vari-

ations in Rdark between the techniques compared, and it 

will be of interest to further explore the reasons for why 

the techniques vary in future studies.

Genotypic and whole-plant analysis

Both a comprehensive genotype comparison and whole-

plant respiratory balances were successfully obtained by 

use of the gas-phase automated fluorophore technique. 

Interestingly, a more than two-fold variation in R was 

observed between the 138 wheat genotypes (Fig. 4a). �is 

demonstrates the inherent intra-specific divergence of 

R in Triticum aestivum, and a potential target for future 

yield improvements, if R not contributing to growth 

or yield can be minimised. Inherent differences in Rdark 

between species populations have previously been noted, 

such as in the ryegrass species Lolium perenne, attrib-

uted to adenylate limitations on glycolysis and varying 

ATP turnover rates between populations [71]. R was also 

highly variable among genotypes. �is may not be con-

sidered surprising as leaf functional traits vary considera-

bly among populations/genotypes within a given species. 

For example, a study of 13 common alpine species found 

that 30% of observable variance in measured traits, such 
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as specific leaf area and leaf nitrogen content, was among 

populations/genotypes of a given species [72]. Similar 

results were found for species growing in a dry tropical 

forest [73]. Considering R is highly variable among geno-

types within species, to gain sufficient statistical power 

a high level of replication is required (Fig. 4b, c), further 

supporting the benefit of the high-throughput fluoro-

phore technique we present.

Our whole-plant respiratory analysis demonstrated the 

important effects of plant development on leaf R and par-

titioning of R between tissue types, as previously demon-

strated in Arabidopsis by Sew et al. [55], which could be 

detrimentally ignored if the power of high-throughput 

respiratory analysis was not readily available. �e results 

highlight the fact that, when measuring leaf, stem and 

root O2 uptake in the gas phase, leaf Rdark accounted for 

51% of the entire R budget. In other words, close to half 

of all vegetative-stage wheat R occurs in non-leaf tis-

sue, a finding reported for previous studies that quanti-

fied whole-plant CO2 fluxes [15–19]. Yet, we tentatively 

suggest that the majority of plant R reports would focus 

entirely, or predominantly on leaf R. Furthermore, the 

oldest and newest emerging leaves had considerably 

higher mass-based rates of Rdark than intermediate aged 

leaves. In regards to the latter, this is presumably due to 

the added cost of growth R as well as maintenance R for 

newly emerging leaves [6]. �e spike in R for the oldest 

leaves may reflect the costs associated with senescence, 

such as an energy expensive remobilisation of nutrients 

from the senescing leaf to other parts of the plant. For 

example, in oats (Avena sativa), promotion of senes-

cence of leaves by withholding light leads to a greater 

than two-fold increase in O2 consumption, attributed to 

decoupling of Rdark from oxidative phosphorylation, and 

amino-acid and soluble sugar liberation during senes-

cence [74].

Conclusions

�e high-throughput and tissue size versatility of the 

experiments we conducted highlight the comparative 

advantages of an automated gas-phase system, over other 

systems based on the same technology but reliant on 

aqueous-phase and limited sample tubes and volumes. 

Although aqueous-phase fluorophore systems may be 

relatively high-throughput when compared to the older 

technology of Clark-type O2 electrodes, liquid-phase 

measurements still require extensive time in preparation 

of solutions, dispensing of solutions, and delicate sample 

positioning or sufficient stirring to facilitate O2 move-

ment to the sensor [e.g. 75]. We processed 138 samples, 

from tissue harvesting to initial O2 uptake measurements, 

in a period of less than 2-h, which was possible due to the 

simple procedure of placing tissue in tubes, tightening 

the caps and placing tubes in the designated instrument 

position. Such a fast turnaround for sample process-

ing would not be possible in a non-fluorophore and/or 

aqueous-phase procedure. �e speed at which samples 

can be processed and the versatility in sample size and 

tissue type enables respiratory analysis that simply would 

not be feasible using other established approaches. �e 

simultaneous measurement of many genotypes and the 

construction of multiple whole-plant respiratory budg-

ets emphasise the potential of this method and its wider 

application.
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