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Immune checkpoint blockade (ICB) has become a standard treatment for non-small cell

lung cancer (NSCLC). However, most patients with NSCLC do not benefit from these

treatments. Abnormal vasculature is a hallmark of solid tumors and is involved in tumor

immune escape. These abnormalities stem from the increase in the expression of pro-

angiogenic factors, which is involved in the regulation of the function and migration of

immune cells. Anti-angiogenic agents can normalize blood vessels, and thus transforming

the tumor microenvironment from immunosuppressive to immune-supportive by

increasing the infiltration and activation of immune cells. Therefore, the combination of

immunotherapy with anti-angiogenesis is a promising strategy for cancer treatment. Here,

we outline the current understanding of the mechanisms of vascular endothelial growth

factor/vascular endothelial growth factor receptor (VEGF/VEGFR) signaling in tumor

immune escape and progression, and summarize the preclinical studies and current

clinical data of the combination of ICB and anti-angiogenic drugs in the treatment of

advanced NSCLC.
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tumor microenvironment

INTRODUCTION

Lung cancer is one of the most common cancer types with high mortality in the world (1).

Adenocarcinoma, squamous cell carcinoma and large cell carcinoma are the three major kinds of

NSCLC comprising 85% of all lung cancers (2). Because of the lack of early diagnosis indicators,

more than 70% of cancer patients have experienced local invasion, lymph node and distant

metastasis at the first diagnosis (3). These patients have extremely poor prognoses. The five-year
survival rate of patients at this stage is only 4% (4).
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In the past decade, immunotherapy has made significant

progress for the treatment of NSCLC. Improving the

therapeutic effect via combination strategy has become the

main direction in the field. A number of clinical trials testing

the combination of immunotherapy and anti-angiogenesis have

shown promising results in different tumor types including
NSCLC. However, due to the complicated regulatory

mechanisms of these two kinds of therapies, how to

collaboratively use them to obtain the maximal therapeutic

effect remains to be answered. Understanding the potential

mechanisms of combination might help to select appropriate

patients and treat them at right timing with optimized dosages
of drugs.

IMMUNE CHECKPOINTS AND
INHIBITORS

Immune checkpoint inhibitors (ICIs) are widely used in the

treatment of NSCLC. A series of receptor/ligand pairs such as

CD28-CTLA4/B7 and programmed cell death-1/programmed

death ligand 1 (PD-1/PD-L1) are involved in the antitumor
immune response at different stages (5, 6). These costimulatory

and coinhibitory receptor/ligand pairs are collectively referred to

as immune checkpoints (7). PD-1 is expressed on a variety of

immune cells, such as T cells, NK cells, B cells, and monocytes

(8). The PD-1 pathway mediates inhibitory signaling triggered by

the binding to PD-L1. PD-L1 expressed on cancer cells could
suppress effector T cells and thus prevent T cell-mediated tumor

destruction (9). Therefore, blocking the PD-1/PD-L1 inhibitory

pathway can reactivate the immune attack on tumor cells,

thereby treating cancer (10).

A number of PD-1, PD-L1 and CTLA-4 inhibitors, including

Pembrolizumab (11), nivolumab (12), atezolizumab (13),

durvalumab (14), avelumab (15) and ipilimumab (16), have been
approved for the treatment of advanced NSCLC. Pembrolizumab

and nivolumab have been approved by the U.S. Food and Drug

Administration (FDA) for the treatment of non-small cell lung

cancer with positive PD-L1 expression. The PACIFIC (17) Phase III

clinical trial (NCT02125461) in Europe makes durvalumab the only

phase III immunotherapy drug recommended by the current
guidelines. Japan is also conducting trails of atezolizumab, such as

J-TAIL (NCT03645330) (https://clinicaltrials.gov/ct2/show/

NCT03645330), J-TAIL-2 (NCT04501497) (https://clinicaltrials.

gov/ct2/show/NCT04501497), and durvalumab, AYAME

(NCT03995875) (https://clinicaltrials.gov/ct2/show/NCT03995875).

In China, according to the ORIENT-11 study (NCT03607539),

sintilimab has been approved as the first-line treatment for non-
squamous NSCLC combined with pemetrexed and platinum

chemotherapy. The Phase III trial (NCT03134872) (18) of SHR-

1210 combined with pemetrexed and carboplatin in the treatment of

non-squamous non-small cell lung cancer is also ongoing.

Nevertheless, due to the tumor heterogeneity and the complexity

of the tumor microenvironment (TME), the overall response rates to
ICI therapy keep at low levels (19). To increase the therapeutic

efficacy, combination strategies have become the major focus of

cancer immunotherapy (20). A large number of clinical trials are

testing the combination of immunotherapy with traditional therapies

such as surgery, chemotherapy, radiotherapy, targeted therapy and

other treatment methods.

ICIs obtain therapeutic effect by inducing a durable antitumor
immune response (21). However, high levels of immunosuppressive

cells in the TME and insufficient infiltration of effector cells into

tumor severely impair the antitumor immunity, and thus decreasing

the efficacy of ICIs. Recent studies have shown that pro-angiogenic

factors in tumor promote the development of immunosuppressive

cells, and neovessels reduce the infiltration of effector cells (22). The
combination with anti-angiogenic agents is thought to be a

promising strategy to enhance the therapeutic efficacy of ICIs.

TUMOR ANGIOGENESIS AND INHIBITORS

Angiogenesis is a hallmark of cancer associated with occurrence,

proliferation and metastasis of tumors (23). Targeting the

angiogenesis pathway has been found to be effective in

the treatment of a variety of cancers including NSCLC. The
abnormal structure and function of tumor angiogenesis facilitate

the development of a hostile tumor microenvironment

characterized by increased interstitial pressure, hypoxia and

acidosis (24). Hypoxia further induces the expression of genes

involved in blood vessel formation and cell proliferation, and thus

exacerbating the TME (25). VEGFs, a family of secreted
glycoproteins, play an essential role in the angiogenesis of

tumor, which include VEGF-A, VEGF-B, VEGF-C, VEGF-D,

VEGF-E, VEGF-F, placental growth factor (PIGF) (26). There are

three VEGF receptors, VEGFR-1, -2 and -3. The effect of VEGF in

promoting angiogenesis is mainly mediated by VEGFR-2.

Signaling pathways downstream VEGFR-2, such as

phospholipase C gamma (PLCg), Raf and phosphoinositide-3-
kinase (PI3K) (22), promote angiogenesis and vascular

permeability by regulating the differentiation, migration,

proliferation and survival of microvascular endothelial cells

(27). Both monoclonal antibodies blocking the interaction

between VEGF and VEGFR or small molecules targeting

downstream signaling could inhibit tumor angiogenesis (28). As
listed in Figure 1, both monoclonal antibodies and small

molecule inhibitors interfering angiogenesis have been

approved for the treatment in various cancer types.

Bevacizumab, or Avastin, is a humanized monoclonal antibody

binding to VEGF-A. It has been approved for the treatment of

advanced non-squamous NSCLC. Phase III clinical trials showed
that bevacizumab combined with carboplatin and paclitaxel

significantly improved the therapeutic efficacy (29). Ramucirumab

is a recombinant human IgG1 monoclonal antibody targeting

VEGFR2. According to the results of the REVEL study, the FDA

and European Medicines Agency (EMA) have approved the

combination of Ramucirumab and docetaxel for the treatment of

metastatic NSCLC and progressed disease after the treatment of
platinum (30).
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Nintedanib is a small molecular inhibitor targeting three critical

receptors signaling in angiogenesis, VEGFR, fibroblast growth factor
receptor (FGFR) and platelet-derived growth factor receptor

(PDGFR). The LUME-Lung 1 study showed that nintedanib in

combination with pemetrexed significantly improved progress-free

survival (PFS) of patients (31). It was approved by EMA as the

second-line treatment for stage IV NSCLC. In addition, tyrosine

kinase inhibitors (TKIs) including sorafenib, sunitinib and apatinib
have also been clinically studied in advanced NSCLC, but no obvious

overall survival (OS) benefit was observed. Anlotinib is another small

molecular inhibitor targeting multiple receptor tyrosine kinases

(RTKs), including VEGFR2 and VEGFR3. The results of the

ALTER 0303 trial showed that anlotinib significantly prolonged

the OS and PFS of patients with advanced NSCLC (32). It has been
approved as the third-line treatment for advanced NSCLC.

Although a number of angiogenesis inhibitors have been tested in

clinical trials, anti-angiogenesis alone showed limited therapeutic

effect in cancer treatment (33). Most of the angiogenesis inhibitors

were approved for the combination therapy with other drugs. Given

that reduced vessels in tumor will result in decreased delivery of

combinatory drugs as well, these results challenge the well-accepted
mechanism of anti-angiogenesis in reducing vascular supply, and

thus suppress tumor growth by starving tumor. This paradox is

resolved by recent findings of vessel normalization, a process

recovering the perfusion function and structure of vessels in
tumor, which enhanced antitumor immune response by increasing

immune cell infiltration and oxygen supply in tumor (33–36).

Consistent with the mechanism of vessel normalization, low dose

of anti-VEGFR2 antibody showed better effect on reprogramming

the tumor microenvironment and displayed better therapeutic

efficacy than the high-dose treatment (37). The vessel
normalization theory provides novel perspectives in the

combination of anti-angiogenesis with other drugs or therapies.

RATIONALE FOR COMBINATION OF ICI
INHIBITORS WITH ANGIOGENESIS IN
NSCLC

Angiogenesis Fosters An
Immunosuppressive Tumor
Microenvironment by Modifying The
Recruitment of Immune Cells
TME is a dynamic ecosystem composed of tumor cells, immune

cells, fibroblasts, stroma cells, blood vessels and various soluble

FIGURE 1 | Monoclonal antibodies and small molecules targeting VEGF/VEGFR signaling in tumor angiogenesis. Monoclonal antibodies and small molecule TKIs

targeting the VEGFA/VEGFR-2/PLCg/Raf/PI3K signaling pathway could inhibit tumor angiogenesis and improve the efficiency of anticancer treatments. VEGF,

Vascular Endothelial Growth Factor; VEGFR, Vascular Endothelial Growth Factor Receptor; TKI, Tyrosine Kinase Inhibitor; PI3K, Phosphoitide 3-Kinase; AKT, serine/

threonine-specific protein kinase; mTOR, mammalian target of rapamycin; PLCg, Phospholipase C g; PI3P, Phosphatidylinositol 3-Phosphate; IP3, Inositol

Triphosphate; DAG, Diacyl Glycerol; pKC, Protein Kinase C; MEK, Mitogen-activated protein kinase; MAPK, Mitogen Activated Protein Kinase.
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factors, which suppress antitumor immune response and

promote resistance to immunotherapy (38). Excessive VEGF

signaling drives aberrant angiogenesis in tumor. Compared to

normal blood vessels in tissues, blood vessels in TME are leaky,

tortuous, cystic dilation, interlaced and randomly connected.

The tumor vascular endothelial cells have abnormal morphology,
loose connections between pericytes and varied basement

membrane thickness. These abnormalities of structure and

function lead to the heterogeneity of tumor blood perfusion,

and eventually form a microenvironment characterized by

increased interstitial fluid pressure, hypoxia and acidosis (39).

The hypoxic microenvironment induced by VEGF/VEGFR
signaling suppresses the antitumor immune response through

a variety of mechanisms (40, 41).

The TME is enriched with suppressive immune cells

including regulatory T cells (Tregs), myeloid-derived

suppressive cells (MDSCs), tumor associated macrophages

(TAMs), and immature dendritic cells (imDC). Hypoxia
facilitates the infiltration of these suppressive immune cells by

inducing the expression of chemokines recruiting these immune

cells. For example, C-C motif chemokine ligand 22 (CCL22) and

C-C motif chemokine ligand 28 (CCL28) recruits Tregs into

tumor (42); colony Stimulating factor 1 (CSF1), C-C motif

chemokine ligand 2 (CCL2) and C-X-C motif chemokine

ligand 12 (CXCL12) increases the recruitment of pro-
inflammatory monocytes and TAMs, and convert TAMs from

a pro-inflammatory M1-like type to a tumor-promoting M2-like

type (43); Dendritic cells (DCs) are mainly recruited into tumor

by C-C motif chemokine ligand 20 (CCL20), and granulocyte-

macrophage colony stimulating factor (GM-CSF), Interleukin-6

(IL-6), Interleukin-10 (IL-10) prevent maturation of recruited
DCs (44). Moreover, the hypoxic environment inhibits the

infiltration of effector T cells. VEGF can reduce the expression

of adhesion molecules critical for T cell infiltration, such as

integrin ligand vascular cell adhesion protein 1 (VCAM1) and

intercellular adhesion molecule 1 (ICAM1), on immune cells and

endothelial cells (ECs) (45). VEGF-A, IL-10 and prostaglandin

E2 (PGE2) induce the expression of Fas ligand on endothelial
cells, which causes cell death of endothelial cells and CD8+ T cells

through the Fas/FasL signaling pathway, and thus reduce T cell

mobilization and infiltration (46). Consistently, blockade of the

VEGF signaling reduced the recruitment of suppressive cells into

tumor but increased the infiltration of effector T cells (37),

indicating that anti-angiogenesis is a potential strategy to re-
program the immunosuppressive TME, and thus improve the

efficacy of immunotherapy.

Angiogenic Factors Directly Regulate
Differentiation of Various Immune Cells
In addition to its effect on immune cell migration, the VEGF
signaling directly regulates differentiation and proliferation of

suppressive immune cells including Tregs, TAMs, MDSCs, and

DCs (47, 48). VEGF (red stars) and angiopoietin-2 (ANG2)

(green pentagons) are also produced by these immune cells,

which foster both the paracrine and the autocrine VEGF (and/or

ANG2) signaling in tumor (49). Immunosuppressive cytokines

secreted by these suppressive immune cells, including IL-10,

indoleamine 2,3-dioxygenase (IDO), and transforming growth

factor beta (TGF-b) et al., further worsen the environment by

inducing Tregs and inhibiting DC maturation, NK cell

activation, T cell activation and proliferation (50). Therefore,

angiogenesis inhibitors might normalize the aberrant vasculature
in tumor, reduce the development of suppressive immune cells,

enhance effector cell infiltration into tumor, and thus reprogram

the immunosuppressive to immunosupportive (Figure 2).

VEGF Inhibits the Maturation and Differentiation

of DCs
DCs are the professional antigen-presenting cells (APCs) which

play a critical role in the antitumor immune cycle. Following the

exposure to tumor antigens, DCs migrate to lymph nodes and

become mature during the migration. They initiate adaptive

antitumor immune response by activating T cells recognizing

tumor antigens (51). Plenty of evidence has shown that VEGF

could inhibit differentiation and maturation of DCs (52, 53). It
was found that elevated VEGF levels in mice hindered the

development of DCs (48). Studies have showed that VEGF-A

inhibited the differentiation of monocytes to DC, and VEGF-A

inhibition using bevacizumab or sorafenib restored this

process (54).

Due to the lack of costimulatory molecules, immature DCs
promote tolerance instead of activation of T cells. It was reported

that the binding of VEGF to VEGFR-2 on the surface of DC

restrains its maturation by inhibiting the nuclear factor kB (NF-kB)
signaling pathway (55). VEGF inhibition increases antigen uptake

and migration of tumor-associated DCs in mouse tumor models

(56). The VEGFR inhibitor Axitinib promotes maturation of
monocyte-derived human DCs, featured with elevated levels of

activation markers, major histocompatibility complex (MHC)

molecules and co-stimulatory genes such as CD80, CD86, and

CD83 (57).

VEGF Increases the Number of Tregs
It is known that Tregs in tumor suppress T cell response against

cancer (58). Studies have shown that the VEGF signaling

contributes to the induction, maintenance and activation of

Tregs in tumors. The expression of VEGF was found to be

positively associated with the levels of Tregs in tumor, which

indicate poor prognosis in many cancer types (59). Consistent
with this finding, higher expression of VEGFR2 was found in

Tregs compared to other CD4+ T cells (59, 60), suggesting a

preferential role of VEGF signaling in Tregs. Interestingly,

neuropilin-1, an co-receptor increasing the binding affinity of

VEGF for VEGFRs, is also highly expressed in Tregs (61), which

mediates the activation of Tregs and thus enhances their

suppressive function (62). VEGF can directly bind to
Neuropilin 1 (Nrp-1) on Tregs and guide their migration into

a tumor (63). Inhibition of VEGF signaling using sunitinib,

bevacizumab or soluble VEGFR-1/-2 reduce Treg proportion

in different mouse tumor models and in cancer patients (47, 64–

66). Decreased proliferation of Tregs and reduced levels of

peripheral Treg levels are also reported in some studies.
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Following the reduction of Tregs, enhanced antitumor immune

response was detected in tumors.

VEGF Promotes the Expansion of MDSCs
MDSCs were initially defined as CD11b+Gr-1+ cells in tumors.

There are two main major populations of MDSCs: monocytic

MDSCs (M-MDSC) and polymorphonuclear MDSCs (PMN-

MDSC). PMN-MDSCs are the dominant population of MDSCs
in mouse tumor models, while M-MDSCs are mainly found in

human tumors (67). MDSCs employ a number of mechanisms to

suppress the antitumor immune response, for examples,

consuming the nutrient of lymphocyte, reducing trafficking

and viability of lymphocyte, generating oxidative stress, and

inducing the differentiation of Tregs (67, 68).
The intratumoral level of MDSCs was found to be associated

with the VEGF concentration in mouse tumor models. In

addition, VEGF infusion significantly elevated levels of Gr1+

cells in normal mice without tumor (48), suggesting that VEGF

signaling is involved the differentiation of myeloid cells. It was

reported that VEGF-A-induced excessive activation of Janus

kinase 2/Signal transducer and activator of transcription 3
(Jak2/STAT3) signaling contributes to the abnormal myeloid

cell differentiation in cancer (69). Inhibition of VEGF signaling

by sunitinib decreased the levels of MDSC in the spleen, bone

marrow, and tumor in mouse models, and showed combinatory

effect with HPV vaccine for the treatment of tumors expressing

human papillomavirus (HPV) antigens (70). Mechanistically,
sunitinib downregulates STAT3 signaling and leads to

apoptosis in MDSCs (71). In addition to the reduction in

MDSC quantity, VEGF inhibition impairs their suppressive

function. Axitinib treatment decreases the suppressive capacity

of MDSCs isolated from spleens or tumors in mouse models.

Moreover, axitinib promotes the differentiation of MDSC toward

a phenotype with enhanced capacity of antigen presentation

(72). Reduction of MDSCs was also observed in cancer patient
treated with sunitinib, which led to stronger T cell immune

response against cancer (73). A recent study also showed that

bevacizumab-containing regimens had low levels of the

granulocytic MDSCs than regimens without bevacizumab in

patient tumor samples of NSCLC (74).

VEGF Induces the Differentiation of Macrophages

From M1 to M2
TAMs promote angiogenesis by expressing a high level of VEGF.

The lacked expression of costimulatory molecules on TAMs

induces T cell tolerance and apoptosis. TAMs also promote

immunosuppression in tumor by secreting cytokines that can

suppress T cell recruitment and activation, such as IL-10, TGFb,
and prostaglandins (75). In addition to the recruitment of TAMs

into tumor, VEGF signaling is also involved in the conversion of

TAMs from the M1 to M2 phenotype. High levels of TAMs were

observed in tumors with increased expression of stromal-cell-

derived factor 1 alpha (SDF-1a), CXCL12, C-X-C motif

chemokine receptor 4 (CXCR4) and VEGF in mouse tumor
models (76, 77). Teresa E Peterson et al. have shown that dual

inhibition of VEGFRs and Ang-2 reduced macrophage

FIGURE 2 | VEGF and ANG2 regulate immune cells in tumor. The VEGF family can suppress the maturation, differentiation, and antigen presentation of APCs, DCs,

NKs, and T cells, while both VEGF and Ang2 can improve the suppressive effect of Tregs, TAMs, and MDSCs. VEGF, Vascular Endothelial Growth Factor; ANG2,

Angiogenin 2; APCs, Antigen Presenting Cells, DCs, Dendritic Cells; Treg, Regulatory T cells; NKs, Natural Killer Cells; TAMs, Tumor Associated Macrophages;

MDSCs, Myeloid Derived Suppressor Cells.
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recruitment and promoted the polarization of TAMs to a M1

antitumor phenotype (78). Deng et al. also found that VEGF

blockade potentiated antitumor efficacy in glioblastoma by

reducing TAM recruitment into tumor (79), The combination

of VEGFR and CXCR4 inhibitors also showed therapeutic effect

in glioblastoma multiforme (GBM) xenografts (80).

VEGF Inhibits the Development and Activation

of T Cells
T cells play an essential role in the antitumor immune response by

directly killing tumor cells. Boosting the T cell immune response

against cancer has become the primary goal of most
immunotherapies. Low expression of VEGF was detected in T

cells from tumor (81), suggesting that T cells might also promote

angiogenesis. Ohm et al. found that the infusion of VEGF-A to

tumor-bearing mice led to severe thymic atrophy resulted from a

dramatic reduction in CD4+/CD8+ thymocytes (82). The inhibition

of thymocyte maturation is mediated by the VEGFR2. These

findings indicate that the VEGF signaling could directly inhibit T
cell development. In addition, studies have shown that VEGF-A

produced in the tumor microenvironment promotes T cell

exhaustion by inducing the expression of co-inhibitory molecules

in CD8+ T cell, and targeting VEGF-A/VEGFR signaling could

reduce the expression of these suppressive genes (83).

VEGF-induced recruitment and expansion of suppressive
immune cells in tumor inhibit the activation of tumor antigen-

specific T cells. A lot of clinical and preclinical studies support that

blockade of the VEGF/VEGFR signaling can enhance T cell

response in tumor. Bevacizumab (Avastin) administration

increased cytotoxic T cell levels in colorectal cancer and NSCLC

patients (84, 85). Sunitinib treatment increase the levels of CD4+

and CD8+ T cell inmouse cancer models. Stronger cytotoxic activity

and elevated expression of Th1 cytokine (Interferon-gamma, IFN-g)
were observed in these T cells from sunitinib-treated tumors (71).

Similarly, Schmittnaegel et al. found that dual targeting of ANG2

and VEGFA increased the levels of effector CD8+ T cells in tumors

(86). Furthermore, IFN-g secreted by activated T cells has strong

anti-angiogenic activity, suggesting that immunotherapy can also be
antiangiogenic. The IFN-gR signaling could directly modulate the

function and phenotype of vascular endothelial cells, and thereby

normalize tumor blood vessels and promote effector T cell

infiltration (87).

Lenvatinib is a RTK that specifically inhibits the kinase

activities of VEGF receptors 1-3. Studies have shown that
Lenvatinib reduced TAMs and increased the levels of effector

CD8+ T cells. Combined with PD-1 blockade can further elevate

the levels of activated CD8+ T cells, and thereby enhance

antitumor immunity via the IFN signaling pathway (88).

Synergism of Anti-Angiogenesis Inhibitors
and ICB
Taken together, the VEGF signaling plays a pivotal role in the

immunosuppressive TME which severely inhibits antitumor
immune response. VEGF/VEGFR inhibition could reprogram the

TME from immunosuppressive into immunostimulating by

modulate the recruitment and function of immune suppressive

cells and T cells. Therefore, anti-VEGF/VEGFR therapy not only

has anti-angiogenic effects but also promotes immune response

against cancer.

On the other hand, hypoxia-inducible factor 1-alpha (HIF-

1a) up-regulates the expression of immune checkpoint

molecules in tumor (83). VEGF-A directly increases the
expression of PD-1 on activated CD8+ T cells and Tregs

through VEGFR2 (83). Besides, elevated levels of IFN-g in

tumor resulted from VEGF signaling inhibition could induce

the expression of PD-L1 on tumor cells. These mechanisms

provide a theoretical basis for the combined treatment of

advanced NSCLC with ICB and anti-angiogenic agents.

IMMUNOTHERAPY AND
ANTIANGIOGENIC AGENTS:
PRECLINICAL STUDY

Plenty of preclinical evidence also indicates that combining

immunotherapy with anti-angiogenic inhibitors can improve the

therapeutic efficacy in advanced NSCLC. It was reported that

endostatin could improve the therapeutic effect of adoptive transfer
of cytokine-induced killer cells (CIKs) for the treatment of lung

carcinomas (89). Another preclinical study also showed that the

VEGF inhibitor bevacizumab improved the effect of CIKs therapy in

treating NSCLC (90). These findings provide evidence for the

combination of anti-angiogenesis therapy and immunotherapy to

treat lung cancer. In addition, the effects of different doses of

antiangiogenic inhibitors on the combination with immunotherapy
are also studied. A small dose of apatinib was enough to increase T

cells infiltration, reduce hypoxia, and decrease the recruitment of

TAMs into tumor (37, 91). Consistently, the combination of low-dose

apatinib and PD-L1 antibody can significantly inhibit tumor growth

and increase the survival time in mouse models (91).

IMMUNOTHERAPY AND
ANTIANGIOGENIC AGENTS:
CLINICAL DATA

Given that both the potential molecular mechanism and

preclinical evidence support the combination of immunotherapy

with anti-angiogenesis therapy, a number of clinical trials are

underway to evaluate the safety and efficacy of this new therapy in

NSCLC (Table 1). Preliminary data indicate that immunotherapy

combined with anti-vascular therapy is a promising approach for
the treatment of NSCLC.

Nivolumab Combined With Bevacizumab
The combination between PD-1 blockade and bevacizumab was

tested in the Checkmate012 phase I clinical trial (NCT01454102).

Advanced NSCLC patients who failed in the first-line chemotherapy

of platinum were divided into two groups, and treated with
nivolumab or the combination of nivolumab with bevacizumab.

The median PFS in the combination group was 37.1 weeks, while
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the nivolumab monotherapy group was 16 weeks in patients with

squamous cancers and 21.4 weeks in patients with non-squamous

cancers. Lower incidence of severe adverse events (AEs) (grade 3 and

above) was observed in the combination. However, the objective
response rates (ORR) are similar in these two groups. Follow-up

studies are ongoing (12).

Pembrolizumab Combined With
Ramucirumab
The combination between ramucirumab and pembrolizumab has

been studying by a multicenter phase I study (NCT02443324) in

different types of cancers. 27 patients were recruited in this study. The

objective reactions in these NSCLC patients were 30%. The median

treatment time is 6.8months or longer, and themedian response time

is 1.45 months. The most common serious AEs related to treatment
in NSCLC patients were fatigue and myocardial infarction (7%) (92).

The team has also expanded a multi-center, open-label Phase 1a/b

trial to study ramoxiimab plus pembrolizumab in the treatment of

advanced newly-treatedNSCLC (N=26) (11). The results showed that

22 (84.6%) patients had any grade of treatment-related AEs, and

hypertension is the most common side-effect (n = 4, 15.4%). The

ORR of the treatment group was 42.3%. The ORR in patients with
high PD-L1 expression levels (tumor proportion score (TPS)≥50%)

and low levels (TPS 1%-49%) were 56.3% and 22.2%, respectively.

The median PFS was 9.3 months in the treated group, and the

patients with PD-L1 TPS 1%-49%were 4.2months. The patients with

PD-L1 TPS≥50% did not reach the median PFS. The median OS was

not reached in the treated population.

Atezolizumab Combined
With Bevacizumab
The combination of bevacizumab with atezolizumab and

chemotherapy was studied by IMpower150, which is a phase III

randomized controlled clinical trial (NCT02366143). 1202 non-
squamous NSCLC patients with stage IV or recurrent metastatic

diseases who have not treated with chemotherapy were included.

Patients were randomized 1:1:1 to receive atezolizumab combined

TABLE 1 | Clinical trials of the combination of anti-angiogenic inhibitors with immune checkpoint blockade in NSCLC.

Clinical trial Patients Targeted Agent Primary Endpoint Phase Status

NCT01454102

(CheckMate 012)

Stage IIIB/IV NSCLC, first or

subsequent line of therapy

Bevacizumab + nivolumab SAE I Active,

not

recruiting

NCT02574078

(CheckMate 370)

Stage IV NSCLC Bevacizumab + Nivolumab PFS, OS I/II Completed

NCT02681549 Untreated brain metastases from melanoma or NSCLC Bevacizumab + Pembrolizumab BMRR II Recruiting

NCT02039674

(KEYNOTE- 021)

In participants with unresectable or metastatic NSCLC Pembrolizumab + paclitaxel +

bevacizumab

DLTs I/II Active,

not

recruiting

NCT02366143

(IMpower 150)

Stage IV non-squamous NSCLC Atezolizumab + bevacizumab

carboplatin + paclitaxel

PFS, OS III Completed

NCT02856425

(PEMBIB)

Solid tumors including NSCLC of adenocarcinoma and

squamous

Nintedanib + Pembrolizumab MTD of nintedanib,

Safety

Ib Recruiting

NCT02443324 LA/Unresectable/Metastatic NSCLC 0–3 prior lines of

therapy

Ramucirumab + pembrolizumab DLTs I Active,

not

recruiting

NCT02572687 LA/unresectable/metastatic/thoracic Malignancies Ramucirumab + MEDI4736 DLTs I Completed

NCT02174172 Advanced or metastatic NSCLC Bevacizumab + Atezolizumab Dose of

Atezolizumab

Ib Completed

NCT03377023 Advanced or metastatic NSCLC Ramucirumab + durvalumab MTD, ORR I/II Recruiting

NCT03713944 Stage IV Non-squamous NSCLC Bevacizumab + Atezolizumab PFS, ORR II Active,

not

recruiting

NCT03647956 EGFR-mutant Metastatic NSCLC Bevacizumab + Atezolizumab ORR II Unknown

NCT03527108 Recurrent, Advanced, Metastatic NSCLC Ramucirumab + Nivolumab DCR II Recruiting

NCT03689855

(RamAtezo-1)

Stage IV, NSCLC, after progression on immune

checkpoint blockers (ICBs)

Ramucirumab + Atezolizumab ORR I/II Active,

not

recruiting

NCT03786692 Stage IV NSCLC in never smokers or possess a driver

mutation

Bevacizumab + Atezolizumab PFS II Recruiting

NCT03836066 LA/metastasis/high-intermediate tumor mutation burden

in First Line NSCLC

Bevacizumab + Atezolizumab PFS, OS II Recruiting

NCT03616691 LA/metastatic NSCLC after Failure with atezolizumab

monotherapy

Bevacizumab + Atezolizumab DCR II Not yet

recruiting

NCT03786692 Stage IV NSCLC in never smokers or possess a driver

mutation

Bevacizumab + Atezolizumab PFS II Recruiting

NCT03735121 Previously Treated LA/Metastatic NSCLC Bevacizumab + rHuPH20 Drug serum

concentration

Ib/III Recruiting

SAE, Serious Adverse Events; PFS, Progression-free survival; OS, Overall survival; BMRR, brain metastasis response rate; DLT, Dose-limiting Toxicity; MTD, Maximum Tolerated Dose

ORR, Objective Response Rate; DCR, Disease control rate; LA, Locally Advanced.
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with carboplatin + paclitaxel (ACP) (n = 402), atezolizumab

combined with carboplatin + paclitaxel + bevacizumab (ABCP)

(n = 400), carboplatin + Paclitaxel + Bevacizumab (BCP) (n =

400), after 4-6 courses of treatment, receive atezolizumab or

bevacizumab or both for maintenance treatment until the disease

progresses or no clinical benefit. The results of the study show that
immunotherapy on the basis of the combination of bevacizumab and

chemotherapy can prolong patient survival. The median PFS of the

ABCP was 8.3 months, and the BCP was 6.8 months (HR: 0.59,

P<0.0001). The median OS was 19.2 months for the ABCP group,

and 14.7 months for the BCP group (HR: 0.78, P=0.02). The

incidence of treatment-related serious AEs was 25.4% for ABCP
group and 19.3% for BCP group. However, 77.4% of ABCP patients

had grade 1-2 AEs. This study shows that, regardless of the PD-L1

expression, VEGFR or anaplastic lymphoma kinase mutation status,

the use of ABCP can significantly improve PFS and OS in patients

with metastatic non-squamous NSCLC (93). According to this study,

the FDA approved the combination therapy of ABCP as the first-line
treatment for metastatic non-squamous NSCLC in December 2018.

This combination is currently being tested in hepatocellular

carcinoma (HCC) as well. At the 2019 (ESMO) annual meeting, it

was reported that atilizumab combined with bevacizumab and

bisorafenib had better OS and PFS in patients with unresectable

hepatocellular carcinoma (94).

Apatinib Combined With SHR-1210
A single-arm phase II trial studying the combination of Apatinib

with SHR-1210 was reported at the ASCO meeting in 2019. 96

patients were recruited in this study. Apatinib is a small TKI that

primarily act on VEGFR-2, and SHR-1210 is another PD-1

antibody. These two drugs are developed in China. Patients failed

at least one previous line of chemotherapy received intravenous

infusion of SHR-1210 200 mg q2w combined with oral Apatinib
250 mg qd. The ORR of all evaluable patients was 30.8%. DCR was

82.4%. Median PFS was 5.9 months. The OS endpoint was not

reached. Among the patients with bTMB 1.54 mutations/Mb, the

ORR was 52.6%, and the DCR was 81.6%, suggesting that apatinib

combined with SHR-1210 might have better therapeutic effect in

patients with high tumor mutation burden (TMB) (95).
Overall, the combination of ICI and anti-angiogenic agents

has shown encouraging results in treating advanced NSCLC. To

achieve maximal therapeutic effect, a number of questions need

to be addressed in future trails, including the effect of different

anti-angiogenic inhibitors, the drug dose, the timing and

schedule of the two type of drugs in the treatment etc.

CONCLUSION

In this paper, we overviewed the updated knowledge of ICB, anti-

angiogenesis, and the combination of these two kinds of therapies.
A lot of preclinical studies have revealed the potential mechanisms

of abnormal angiogenesis in the regulation of antitumor immunity

in mouse tumor models, and support the application of combining

immunotherapy and anti-angiogenesis for cancer treatment. The

combination of immunotherapy and anti-angiogenesis is expected

to enhance the efficacy of immunotherapy by converting the
immunosuppressive TME to immunosupportive. Results of the

ongoing clinical trials also support that the combination of ICB

and anti-angiogenesis is a promising approach for the treatment of

NSCLC. Translational studies and innovative clinical trials are

needed in the future to address important questions not resolved

in current studies, including the identification of biomarkers

precisely the response to the combination therapy, optimizing the
drug dose, administration schedule and the timing of the treatment.
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GLOSSARY

AE Adverse event

ANG2 Angiopoietin-2

APC Antigen-presenting cell

CCL2 C-C motif chemokine ligand 2

CCL20 C-C motif chemokine ligand 20

CCL22 C-C motif chemokine ligand 22

CCL28 C-C motif chemokine ligand 28

CIK Cytokine-induced killer cell

CSF1 Colony stimulating factor 1

CTLA4 Cytotoxic T-lymphocyte-associated protein 4

CXCL12 C-X-C motif chemokine ligand 12

CXCR4 C-X-C motif chemokine receptor 4

DC Dendritic cell

EC Endothelial cell

EMA Exponential moving average

FDA Food and Drug Administration

FGFR Fibroblast growth factor receptor

GBM Glioblastoma multiforme

GM-CSF Granulocyte-macrophage colony stimulating factor

HCC Hepatocellular carcinoma

HIF-1a Hypoxia-inducible factor 1-alpha

HPV Human papillomavirus

ICAM1 Intercellular adhesion molecule 1

ICB Immune checkpoint blockade

ICI Immune checkpoint inhibitor

IDO Indoleamine 2,3-dioxygenase

IFN-g Interferon-gamma

(Continued)

Continued

IL-10 Interleukin-10

IL-6 Interleukin-6

imDC Immature dendritic cell

Jak2/STAT3 Janus kinase 2/Signal transducer and activator of transcription 3

MDSC Myeloid-derived suppressive cell

MHC Major histocompatibility complex

NF-kB Nuclear factor kB

Nrp-1 Neuropilin 1

NSCLC Non-small cell lung cancer

ORR Objective response rate

OS Overall survival

PD-1 Programmed cell death-1

PDGFR Platelet-derived growth factor receptor

PD-L1 Programmed death ligand 1

PFS Progress-free survival

PGE2 Prostaglandin E2

PI3K Phosphoinositide-3-kinase

PIGF Placental growth factor

PLCg Phospholipase C gamma

RTK Receptor tyrosine kinase

SDF-1a Stromal-cell-derived factor 1 alpha

TAM Tumor associated macrophage

TGF-b Transforming growth factor beta

TKI Tyrosine kinase inhibitor

TMB Tumor burden

TME Tumor microenvironment

TPS Tumor proportion score

Tregs Regulatory T cells

VCAM1 Vascular cell adhesion protein 1

VEGF Vascular endothelial growth factor

VEGFR Vascular endothelial growth factor receptor
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