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Abstract

The network coding can spread a single original error over the whole network. The simulation shows that the

propagated error mostly all the time pollute just 100% of the received packets at the sink if Hamming distance is

adopted. If subspace codes are adopted, usually the propagated error will not pollute 100% of the received packets

in the sense of subspace distance. However, it also usually pollutes 90% of received packets which is a high error

ratio. Even if the rank code and the subspace code are adopted, these existing schemes based on traditional block

codes can correct corrupted errors no more than C/2 because of the limitation of the block coding where C is the

max flow min cut. It is an agent to find a dense error correction method in random network coding. List decoding

of subspace codes can correct C
k
‐1 errors where k is the size of information. When C

k
is big, many errors in the sense

of subspace distance can be corrected. However, the solution of list decoding is not unique. John Wright proposed

a dense error correction technique based on L1 minimization, which can recover nearly 100% of the corrupted

observations. In our proposal, the original packets are coded with John Wright’s coding matrix, and then, the coded

message is coded again with subspace codes. In the sink, the decoding procedures about list decoding of

subspace codes and John Wright’s scheme are performed. At last, the unique solution is achieved even though

there are dense propagated errors in random network coding.
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1 Introduction

1.1 The tough problem about error propagation in

network coding

In network coding, its very nature of combining infor-

mation in the intermediate nodes makes it very suscep-

tible to transmission errors. A single error will be

propagated by every node further downstream in net-

works. This will thus prevent the reconstruction of the

file in the sink. There are fruitful works about network

error correction coding (NEC) in network coding. How-

ever, none of the existing works solved the error spread

problem in random network coding. If network coding

theory is to be applied the commercial theory to the reality,

a new method should be proposed to cope with the error

spread in the random network coding. A deep under-

standing of how the error is spread in random net-

work coding is necessary to tackle this difficult issue.

To understand the error propagation in network coding,

we will illustrate the transmission model in network

coding. A sketch approach is as follows. κ ∈ (FQ)
k × 1 is the

original uncompressible message needed to be sent where

k <C. C is the max flow min cut, and FQ is the finite field

in the source. In the source of a multicast network, κis

encoded with a MDS (maximum distance separable) linear

block code Ω. The block code Ω is with code length C

and information length k and is denoted by (C, k). The

maximum distance of code Ω is dmin. κ ∈ (FQ)
k × 1 is coded
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into X ∈ (FQ)
C × 1 with X =G∗κ. G ∈ (FQ)

n × k is the generate

matrix of code Ω. X is then sent through the network with

the network coding scheme. The transport procedure can

be expressed by the formulation Y = T ⋅X + TZ→ Y ⋅ Z [1].

Z is the error vector which occurs actually in the network.

The length of Z ∈ (FQ)
t × 1 is the number of links where the

error occurs. T and TZ→ Y are the transfer matrix in

network of X and Z respectively. Y ∈ (FQ)
C × 1 is the re-

ceived messages vector in the sink. To decode κ, we

first perform decoding algorithm of network coding

scheme. The procedure can be expressed by the for-

mulation X = T−1
⋅ Y − (T−1

⋅ TZ→ Y) ⋅ Z. Second, the

decoding algorithm of Ω is performed to get κ ultim-

ately. If there are no errors which occur in the net-

work, the vector (T−1
⋅ TZ→ Y) ⋅ Z ∈ (FQ)

C × 1 will be

zero vector, and this moment, X = T−1
⋅ Y =G ⋅ κ. κ is

mapped to X based on the codebook of code Ω. There-

fore, κ can be decoded successfully based on the decoding

algorithm of code Ω. Now, we consider the situation that

(T−1
⋅TZ→ Y) ⋅Z is not omitted. We denote the number of

nonzero components of (T−1
⋅ TZ→ Y) ⋅ Z ∈ (FQ)

C × 1 with

t'. If t' < dmin/2, based on the block coding theory, we can

also decode κ successfully. However, because of the im-

pact of T−1
⋅ TZ→ Y, (T

−1
⋅ TZ→ Y) ⋅ Z will have nonzero

components more than t'. That means t' > t, and it may

t' < dmin/2. In this situation, we can decode κ no longer

based on the decoding algorithm if the code is Ω. In

the sense of network coding, the error Z ∈ (FQ)
t × 1 is

propagated into (T−1
⋅ TZ→ Y) ⋅ Z ∈ (FQ)

C × 1 with t' non-

zero components. If t' > t, we say the error is propa-

gated. We denote the error Z, which is the error occurs

actually, with the terminology “original error”. After

the impact of the network coding, the error Z is

propagated into (T−1
⋅ TZ→ Y) ⋅ Z ∈ (FQ)

C × 1. We call

the error (T−1
⋅ TZ→ Y) ⋅ Z “propagated error”. Usually,

the nonzero components of (T−1
⋅ TZ→ Y) ⋅ Z are far

more than t. This is the famous error propagation

problem in the network coding. We can also interpret

this problem from other perspective. This will help us

understand the error propagation problem more

clearly. We call the above model as the first model

and the upcoming model as the second model. In this

paper, we adopted the first model and the second

model is just used to interpret the propagate problem

more clearly. In the sense of transformation of generate

matrix G, the transport procedure can be expressed by the

simplified formulation Y =T ⋅X = T ⋅G ⋅ κ. We can regard

T ⋅G as the generate matrix a new code Ω'. Because of the

impact of T, the minimum distance dmin' of code Ω' is

usually smaller than dmin, i.e., dmin' ≤ dmin. The error TZ→

Y ⋅Z can be regarded as a disturbance to the new

code Ω'. t'' < dmin'/2 is the number of nonzero com-

ponents in the vector TZ→ Y ⋅ Z. If t'' < dmin'/2, we

can decode κ successfully based on the decoding

algorithm of code Ω'(not Ω). Therefore, we can con-

clude that the combination operation of network

coding in the intermediate nodes makes it harder to

decode κ. The issue in the network coding is more

complicated than that in the point-to-point commu-

nication environment. In this environment, to re-

cover the original uncompressible message κ, we

should first perform network decoding and then per-

form decoding procedure of code Ω. The decoding

difficulty not only comes from the combination of

network coding, but also is leaded by the complexity

of code Ω. The network coding scheme in the net-

work and code Ω in the source must maintain good

coordination and cooperation. The two codes should

be constructed delicately.

To describe the model more conveniently, two termin-

ologies are defined here. They are original error Z and

propagated error (T−1
⋅ TZ→ Y) ⋅ Z. Original error Z is

caused by many reasons. It includes the random error

from physical cause and error caused by attacks from

malicious nodes. It also includes the error caused by the

rank deficiency of the transfer matrix of the source mes-

sages. The terminology of “original error” captures the

essence that the error is injected to one link from the

outside word. It is the equivalent of “symbol error” de-

fined in [2]. It is also the equivalent of “corrupted packets”

defined in [3] and “erroneous packets” in [4]. Another ter-

minology is propagated error ((T−1
⋅TZ→ Y) ⋅Z) which

represents the propagated result of the link error in the

network coding. Under the influence of the error transfer

matrix, the link error is enlarged to the propagated error.

The definition of the two terminologies “original error”

and “propagated error” are just right necessary.

Based on the brief description about error propagation

in the network, it is easy to see that the key factor is

to reduce the number of propagated error. That is to

say we should make the value t' as small as possible.

In (T−1
⋅ TZ→ Y) ⋅ Z, Z is objective and it cannot be

modified. If we want to decrease t', T−1
⋅ TZ→ Y is the

only target that we can change. T−1
⋅ TZ→ Y reflects

the construction effect of network coding scheme. We

have to construct network coding scheme delicately to

avoid the spread of error Z. Just for a sink, it may ap-

pear t' < t, but for a multicast network, the minimum

of t' among all the sinks is indeed bigger than t. If else,

we can always reach the upper bound of multicast cap-

acity, no matter how many original errors. This contra-

dicts with common sense. We cannot construct such

unrealistic perfect network coding scheme. Yang et al. [5]

also confirm this point. Therefore, in the network coding,

the best case is t' = t. We need to construct the network

coding scheme delicately to reach this best case. Even so,

this best case just appears in the coherent network if

Hamming distance is adopted. The reason is that, in
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coherent network, we can take advantage of the topology

which is a prior knowledge. That means we can construct

T−1
⋅ TZ→ Y ingeniously to restrain the spread of Z. A co-

herent network is a network whose topology is known

and stable. Accordingly, non-coherent network is a net-

work whose topology is unknown. However, in non-

coherent network, T−1
⋅TZ→ Y is completely random. We

cannot interfere with the construction of T−1
⋅ TZ→ Y. The

simulation experiment in the following section shows,

even if t = 1, T−1
⋅TZ→ Y ⋅ t is always between C/2 and C

when the max flow min cut is smaller than 7. If the max

flow min cut is bigger than 7, even if t = 1, T−1
⋅ TZ→ Y ⋅ t

is always equal to C. In the latter situation, the propagated

errors (T−1
⋅ TZ→ Y) ⋅ Z always pollute all the components

of received messages Y. It is not surprising to see such a

phenomenon because T−1
⋅ TZ→ Y is completely random.

Although some works increase the information rate as far

as possible, the effectiveness of such improvements is

limited [6, 7]. T−1
⋅ TZ→ Y has the potential to pollute the

received messages completely. Therefore, the propagated

error in network coding is dense. Especially, we have to

face the fact that a propagated error mostly all the time

pollute just 100% of the received packets. If we want to

apply network coding scheme in a real application, an effi-

cient NEC has to be proposed. Unfortunately, there is no

such a method to solve this problem.

Though there are fruitful works for the error-

correcting of network coding, most of them have a fatal

drawback that they cannot correct corrupted propagated

errors which are dense. As far as we know, all the

existing works about NEC have an unrealistic assump-

tion: the number of errors in network coding is bounded

by a constant which is less than C. More so, in the

situation where the traditional block codes are used, they

assume that the number of errors in network coding is

smaller than C/2. They cannot correct errors beyond

dmin/2 = (C − k)/2 <C/2 where (C, k) is MDS linear block

code with code length C and information length k. Only

a few studies refer to the assumption that the number of

errors in network coding is bigger than C/2. They are list

coding in network coding [8, 9] homomorphic signa-

tures [10]. However, homomorphic signatures based on

cryptographic approaches can correct the propagated

error which equals C. However, cryptographic ap-

proaches have great complexity, and it is completely im-

practical in NEC [10]. Although a novel idea using

nonlinear network coding seems a promising method to

correct more errors, it cannot solve the problem com-

pletely just now and this method needs further being

studied [11]. Except homomorphic signatures [10], there

is no approach that can cope with propagated error

which reaches C.

Next, we will give a review of previous research works.

All the mentioned works will be judged from such a

perspective: how many errors can be corrected by these

methods at most? Can they correct the propagated error

which reaches C? For limitation of space, we will just

outline the most relevant and typical works about NEC.

Sanna and Izquierdo [12] has made a survey on NEC.

1.2 Existing error-correcting methods in network coding

Existing solutions can be categorized into cryptographic

approaches and information theoretic approaches. Gen-

erally speaking, cryptographic approaches have high rate,

but they have high complexity. Meanwhile, informa-

tion theoretic approaches have low complexity, but

they cannot cope with the dense corrupted errors be-

yond C/2.

Cryptographic approaches include the methods such

as keys, signatures, null space, and authentication [13].

And also, it is really worthwhile to mention the homo-

morphic signatures [10]. In the homomorphic signa-

tures, the intermediate nodes can combine and encode

the incoming hash packets and forward them without

knowing the content of native packets or private key of

the source node. The hash packet is a parity part of the

common packet. The parity part is the so-called homo-

morphic signature. The excellent advantage of this

scheme is that it can correct all the errors occurring in

every links in network coding. That is to say it has

solved the extreme tough problem: the network coding

is susceptible to errors. However, almost all the existing

homomorphic signature schemes have high complexity

and intolerable delay [14]. The reason is that every inter-

mediate node needs to perform time-consuming compu-

tation based on cryptographic approaches. Therefore,

the homomorphic signatures are utterly impractical.

The existing works about information theoretic ap-

proaches for NEC can be divided into two categories. In

the first category, a secret channel is needed. On the

contrary, the secret channel is not needed. The represen-

tative work of the first type is [15]. After both parity

symbols and hash values are sent over secret channels,

the original messages can be recovered through solving

equations. Parity symbols and hash values are used to

counteract the uncertainty of the transfer matrix in the

network coding. However, both the field size and the

packet length are needed to be sufficiently large. A se-

cret channel is also needed. Therefore, it would not be a

promising practical scheme. The second kind type is re-

dundancy NEC which introduces redundancy to the

space domain. This method is also the so-called FEC

(forward error correction) method. It is also the main

stream in NEC. These skills can decode the code when

the number of erasures and errors is within the mini-

mum distance of the code. These skills are developed

from traditional codes’ methods that add redundancy in

the time domain.
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For a coherent network, there are such typical relevant

work as follows. Based on the concept of transfer matrix

in network coding defined in [1], Zhang presents a

ground-breaking method that gives a framework of error-

correcting in coherent networks [16]. Some important

concepts such as error vector and error pattern are intro-

duced. The transfer of messages and errors in the network

coding can be expressed by the following equation.

Y ¼ κAþ zð Þ I−Fð ÞTB ð1Þ

Here, A, B, and F denote the adjacency matrixes of the

source node, the sink node, and the whole graph. κ is

the source message injected into the network, and Y is

the message received by the sink. I is the unit matrix.

The error is considered as an 1 × ∣ E∣error vector

z ∈ (FQ)
1 × ∣ E∣. The error pattern of z is a 1 × ∣ E∣ error

vector ρz with unitary components in the corresponding

nonzero components of z. Note that Z ∈ (FQ)
t × 1 (in

Section 1.1) and z ∈ (FQ)
1 × ∣ E∣ are all the original error

in essence. Some components inz ∈ (FQ)
1 × ∣ E∣ can be

equal to zero, and no components in z ∈ (FQ)
1 × ∣ E∣ can

be equal to zero. They just can be defined with different

dimensions to adapt different algebraic formulations.

rank(ρz) is the number of the nonzero components of z.

It also generates traditional codes’ concepts of the mini-

mum distance and MDS (maximum distance separable)

to NEC. It shows that if the coding field is big enough,

there exists a linear network MDS code with minimum

distance dmin = C − k + 1 where kis the dimension of the

information transmitted in the source. The dminof the

generated NEC has properties like traditional codes. It

can decode error z with rank(ρz) ≤ 1/2∗(dmin − 1). It also

can decode erasure z with rank(ρz) ≤ dmin − 1. The eras-

ure is like that mentioned above, the error links, i.e.,

error pattern is known by the sink. Obviously, the MDS

codes in [16] cannot correct dense corrupted errors be-

yond C/2 because dmin = C − k + 1.

For the construction of MDS codes of NEC in coherent

networks, [16] does not give an efficient construction al-

gorithm. It just outlines this existence of MDS code in co-

herent networks. Its brute force decoding algorithm just

checks all error patterns ρ in a non-decreasing order of

cardinality up to rank(ρ) ≤ 1/2∗(dmin − 1) and then solve

equations. Therefore, [17–20] each gives the construction

algorithm of a MDS codes in NEC. Yang et al. [17] is

based on the model of [16], and it just considers the situ-

ation that rank(ρ) ≤ dmin − 1 =C − k where rank(ρ) is the

number of the nonzero of ρ. Xuan et al. and Matsumoto

[18, 19] all modify the Jaggi-Sanders algorithm [21] to get

an efficient construction algorithm. In finding the global

coding kernel for the processing link, they select a vector

from the candidate vectors. Through an exhaustive search,

the candidate vectors are promised as legal by avoiding all

the error patterns ρ where rank(ρ) ≤ dmin − 1 = C − k.

Bahramgiri and Lahouti [20] is very similar to [18].

Except [17–20], there is no other important construction

schemes for coherent networks with Hamming metric as

far as we know. Especially, what deserves to be mentioned

is that these error-correcting codes for coherent networks

is based on Hamming distance. It handles symbol errors,

rather than dimensional errors [2]. However, obviously, all

the three schemes also cannot correct dense corrupted er-

rors beyond C/2 because rank(ρ) ≤C − k.

For non-coherent networks, there are mainly two

kinds of methods essentially. They are subspace codes

based on the subspace distance and rank codes based on

rank distance. Silva and Kschischang present a seminal

idea of subspace codes. They consider, for the com-

pletely random network channel resulting from random

coefficient operations in the intermediate nodes, the

only stable thing is the vector space spanned by the

source messages. The subspace distance captures the

above essence. Theorem 2 in [4] shows it can correct up

to an error dimension bDðΩÞ−1
4

c where D(Ω) is the mini-

mum space distance about the space code Ω. Therefore, a

subspace code Ω can correct bDðΩÞ−1
4

c corrupted packets

(it is original corrupted packets) at most. It is for that, in

the worst case, t corrupted packets (it is original corrupted

packets) can make 2t error dimensions. Therefore, the

space code cannot correct more than bDðΩÞ−1
4

c errors.

Another approach is the rank code [22]. It can also

correct no more than dmin/2 corrupted packets where

dmin is the minimum rank distance of the rank codes.

The maximum value of dmin is C.

After we are aware of the shortcomings about the sub-

space distance in Silva and Kschischang’s method, [2]

combines correcting symbol errors and dimension

losses together. Symbol errors are based on the Ham-

ming metric, and dimension losses are based on the

subspace distance metrics. However, the effectiveness

of this improvement is limited. Skachek et al. [2] points

that most of NEC approaches have a limited error-

correcting ability. It also shows directly, rather than

evading the questions and avoiding them, that the er-

rors in network coding are really very dense. Mahdavi-

far and Vardy [9] generates Silva and Kschischang code

about list decoding. It shows that for any L, the list-L

decoder can correct at most L−
L2ðLþ1Þ

2
R errors where R

is the normalized rate of the code. However, the solu-

tions are not unique and additional redundancy must

be send again. Therefore, it is also inefficient. Based on

[9, 23], this improves the list model and achieves a

much bigger decoding radius C
k
‐1 where C is the max

flow min cut and k is the size of information. Guruswami

and Sudan [24] can correct C � ð1−
ffiffiffiffiffiffiffiffiffiffiffiffi

1− dmin

C

q

Þ errors where
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Hamming distance is adopted instead of subspace

distance.

In conclusion, most approaches can correct few errors.

However, it is not realistic to assume that, t, the number

of the original error is less than C/2 or bDðΩÞ−1
4

c (in [16]).

The original error usually exceeds C/2. Under a fixed

BER (bit error rate), the more the links, the more the

corrupted packets. The situation will be worse where no

link-layer error correction is performed; this kind of net-

work includes sensor networks where the computational

power is not sufficiently large. The random errors are

more common in reality indeed. Based on the NEC de-

veloped from traditional codes, the error-correcting abil-

ity cannot go beyond dmin/2 according to the inexorable

law. Even listing decoding is influenced by this law.

Though list decoding can correct errors whose number

is beyond dmin/2, the ability of correcting more errors is

at the cost that the solution is not unique. It needs the

additional information to make the solution unique. The

essential reason is that the decoding is performed in the

framework of traditional block codes.

Let us take a look at this problem from a different per-

spective formulation sketchily. The perspective is how the

original error is transferred into the propagated errors

based on different distance metrics. Martínez-Peñas [25]

compares Hamming metric and the rank metric in network

coding. X is transmitted with network coding scheme. The

transport procedure can be expressed by the formulation,

Y ¼ T � X þ TZ→Y � Z ð2Þ

The propagated error is (T−1
⋅TZ→ Y) ⋅Z ∈ (FQ)

C× 1. If the

metric is Hamming distance, where the Hamming weight

of Z is t, then the Hamming weight of (T−1
⋅TZ→Y) ⋅Z

cannot be restricted within a small range less than C.

Theoretically, it may equal the dimension of X and Y,

where X and Y are both C × 1 dimensional vectors. It

means Z pollutes all the received messages and the

messages are spread over the networks. When the max

flow min cut is bigger than 7, the coding field must be

bigger than 7. If the size of coding field is bigger than

7, the Hamming weights of (T−1
⋅ TZ→ Y) ⋅ Z is equal to

C with a very high probability, even if there is only one

nonzero component. It means that a single error may

pollute all the received messages almost all the time, if

the Hamming distance metric is adopted in network

coding. The propagated error is much greater than earlier

thought. For coherent networks, it provides the Hamming

weights of (T−1
⋅TZ→ Y) ⋅Z is equal to Z’s through ex-

haustive searching all the error pattern. It means, based

on the construction of MDS codes in coherent networks,

it prevents the corrupted error Z from spreading and puts

the corrupted errors into a “cage” [17–20]. This needs a

prerequisite that the characteristics of the networks must

be known a priori. Hamming distance is not suited for

non-coherent NEC.

For subspace distance metric, Theorem 1 shows that

ds TXh i; Yh ið Þ≤2rankTZ→YZ≤2rankZ≤2t ð3Þ

Here, rankZ is the rank of Z, which means t cor-

rupted errors can make 2t dimension change at most

even though the network is not known at all according

to the space metric. For the rank distance metric, it is

obvious that t corrupted errors can make t rank

changes in the received messages at most. It is for that

the rank of (T−1
⋅ TZ→ Y) ⋅ Z is no more than Z’s even

though the T−1
⋅ TZ→ Y is not known at all. Therefore,

from the perspective of “rank” metric, the error Z will

not spread. If Hamming metric is adopted, the error

will spread. However, the spread of original errors in

non-coherent networks is avoided by adopting the sub-

space metric or the rank metric; the number of original

errors can be corrected is very small. For coherent net-

works, the number of original errors can be corrected

is also very small. Constructing a MDS codes based on

the Hamming metric is a tough work too, because there

are too many combinations of the error patterns to

make an exhaustive search [17–20]. When the network

becomes larger, this method will completely fail.

A possible idea for NEC is to find a method to correct

corrupted errors as many as possible, rather than errors

less than dmin/2. Avoiding this point of “correct more

errors” may be unrealistic. We need a new error-

correcting framework which is different from the

block codes theory.

1.3 Correcting propagated errors in network coding via

L1 minimization

Recently, there is a new trend which is applying the

machine learning theory to communications [26].

Combing the compressed sensing with the network

coding is intensively researched by a lot of work.

Among them, [27, 28] are representatives. However,

there are some drawbacks. It takes advantage of the re-

lated information in different sources If these messages

in different sources are not correlative, it is hard to

apply the compressed sensing. The common assump-

tion in this kind of studies is that the coding vectors of

network coding satisfy the restricted isometry property

(RIP) of the compressive sensing. This assumption has

no serious mathematics foundation and not been met

all the time in experiments [29]. Its purpose is mainly to

decrease sampling frequency rather than to communicate.

There are also some works of applying the convex

optimization to correct errors. Wright and Ma [30] is

the first important in this kind of works. It proposes a

decoding algorithm which is completely different from
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decoding methods of the block codes. However, based

on the experimental data’s analysis, the error-correcting

ability is nearly equal to that of the traditional codes.

Therefore, this method cannot be used to correct dense

errors like the propagated error in network coding. We

noticed an interesting work whose result is very surpris-

ing and attractive in [30]. This work is developed from

the work [31]. It suggests that the accurate and efficient

recovery of sparse signals is possible even 100% of the

observations are nearly corrupted. The error fraction

which can be corrected is at most 50% in traditional

codes. In formulation dmin/n = ((n − k)/2)/n = (1 − k/n)/2

where n is length of one code and k is the information

rate, we can see, even k/n is 0, the dmin/n is 1/2 at most.

This work is stirring and attractive. Its character of

correcting dense error is inherently suited for solving

the tough task to correct dense “propagated error” in

network coding. Ganesh et al. and Qiu and Vaswani

[32, 33] are other works whose performance may be

near the performance of [30]. Except [32, 33], as far as

we know, none of the other works in parse recovery

have studied the case of any other kinds of large noise.

However, in our work in this paper, we just consider

applying [30] to the network coding.

The information does not need have any a priori charac-

teristics inherently. Some redundancy of zeros is added to

produce a sparse signal. Then, the sparse signal is sent

through a dense error channel. Finally, the received signal

polluted by the dense error can be corrected accurately via

L1 minimization. The networks adopting network coding

can be seen as such a channel with dense errors. There-

fore, it is natural to apply [30] to the network coding.

Though near 100% errors can be corrected, in experi-

ments, [30] can correct successfully varying the fraction

of errors from 0 to 0.95. But when the fraction of errors

is high, the information rate is low. It also gets a high in-

formation rate when the corrupted fraction is 60%. The-

oretically, [30] cannot correct accurate (not near) 100%

fraction of errors. Correcting 100% fraction of errors

contradict the information theory and the basic truth.

However, as mentioned above, when the size of the cod-

ing field is bigger than 7, the corrupted fraction is nearly

100%. Therefore, we should give some kinds of a priori

interfaces to the network coding to decrease its cor-

rupted percentage.

In the sense of the sparseness of L1 minimization in

[30], we can make the transfer matrix sparse in random

network coding. This method makes the “propagated

errors” less than the “original errors”, even the latter’s

fraction is 1 (each link in networks has an original

error). After this operation, the error-correcting scheme

of the network coding will be performed successfully,

regardless of how many the corrupted errors in net-

works there are.

However, the above method is just effective for the

environment where the max flow min cut is smaller

than 7. For the communication in the realistic world,

the network whose min cut is bigger than 7 is the com-

mon environment. Therefore, we have to give some im-

provements based on L1 minimization in [30].

1.4 The potential viable solutions

It is impossible to avoid the two facts: one is that the

propagated error will just pollute 100% of the observa-

tions in random network coding and the other is the

max flow min cut of the most networks is bigger than 7.

Applying the network coding technique to the real world

needs us to find a new way of dealing with the propa-

gated errors in random network coding. Because the co-

herent network is a model with unrealistic assumptions

about real processes, we are not going to take the ques-

tion of error correction for coherent network into con-

sideration for the time being. We will only consider the

error correction issue for random network coding. This

problem is pregnant and agent.

Based on the above description, the existing methods

to solve the error-correcting problem in network coding

are divided into six categories. The first is cryptographic

approaches whose representative work is homomorphic

signatures [10]. The second is being based on Hamming

distance to construct a NEC (network error correction

coding) which is MDS (maximum distance separable).

The third is being based on the rank distance [3] or sub-

space distance [4] to construct a NEC which is also

MDS. The fourth is the list decoding. The representative

work is [9]. Mahdavifar and Vardy [9] generate Silva and

Kschischang code to list decoding. Especially what de-

serves to be mentioned most is that there are also list

decoding methods based on rank distance [8] and Ham-

ming distance [34, 35]. Unlike [9] which designs list decod-

ing with a purpose to solve the error-correcting problem in

random network coding, [8, 23, 24, 34, 35] are not de-

signed for solving the error-correcting problem in random

network coding. However, because [8, 23, 24, 34, 35] can

correct errors beyond dmin/2, they may have the potential

to solve the propagated errors in random network coding.

The fifth is the approach based on the secret channel. The

representative work is [15]. The sixth is John Wright’s

method. The method has been introduced briefly in

Section 1.3.

All the above methods have not solved the propagated

error problems in network coding. However, we also

want to select some methods among them as the poten-

tial approaches to solve this tough problem. Even if they

do not work at it ultimately, they can offer some insight

and enlightenment for us at least. Because of the obvious

lack of utility, we will neglect approaches from the first

to the third. The first approach has a high complexity.
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The second and the third approaches can correct errors

not beyond dmin/2. Though the fourth approach can cor-

rect errors more than dmin/2, the normalized rate of er-

rors which are corrected by list coding is also far less

than 100%. It also seems that the fifth has the poten-

tial to solve the propagated problem in random net-

work coding. The rate of the approach with shared

channel in [15] is C − t − k2/j. The source encodes k

unimpressive packets into one batch with C − t redun-

dancy and then sends the batch into network. A

packet contains a sequence of j symbols from the fi-

nite field FQ. If n is big enough, k2/j will be a asymp-

totically negligible term. Therefore, the rate of the

approach with shared channel in [15] is C − t asymp-

totically. If t is big enough, we say, t = C − 1, the error

will pollute nearly all the observations. Even if the error

pollute nearly all the observations, this scheme also can

correct the error by adding t redundancy packets and send

both parity symbols and hash values over secret channel.

The size of parity symbols and hash values reach k2/j which

can be neglected. However, the redundancy (t redundancy

packets) is too much which results in a low information

rate ultimately. What is nice is that this scheme can correct

errors beyond dmin/2 though the redundancy cost is expen-

sive. Based on the traditional block code, we cannot correct

errors beyond dmin/2. However, the fifth method also can-

not correct propagated error which is t =C. However, it

certainly draws some inspiration and reference to the error

correction when t =C.

Obviously, among the six methods, there is not an

alone method which can correct the dense errors in

random network coding. One is inspired with the

combination of some methods to solve the difficult

problem. John Wright’s method is a method which

seems has the greatest potential to solve the tough

problem of errors spread in random network coding

if some variable improvement solutions are given to

[30]. However, some improvements must be given.

1.5 Combination of L1 minimization and list decoding

Though [30] can correct dense error which is nearly 100%

of the observations, they also cannot correct completely

100% corrupted observations. The conclusion is that, if

Hamming distance is adopted, the ratio of propagated

error will be 100% in random network coding and there is

no method which can correct so dense errors. The inspir-

ation is to adopt list-decoding of subspace codes for error

correction because the ratio of propagated error will be

not 100% in random network coding in the sense of sub-

space distance. To overcome the drawback that the solu-

tion of list decoding is not unique, we need an “inner

code” to achieve a unique solution from the multiple solu-

tions of list decoding. However, the traditional block code

will not be the candidate of the “inner code” because it

will not correct errors exceed dmin/2 where the errors in

the “inner code” will exceed dmin/2 usually. We will adopt

the L1 minimization method of John Wright as the “inner

code” which can correct errors more than dmin/2. The list

decoding code can be such codes as in [24] which can cor-

rect C � ð1−
ffiffiffiffiffiffiffiffiffiffiffiffi

1− dmin

C

q

Þ . Though C � ð1−
ffiffiffiffiffiffiffiffiffiffiffiffi

1− dmin

C

q

Þ can ap-

proach C when dmin approaches C/2 and C is big, the

propagated errors are always equal to C; [24] also cannot

correct errors 100% of the propagated errors. Thus, we

should adopt such list codes which are based on subspace

or rank distance. In the sense of subspace distance, the

propagated error usually does not pollute all the received

messages. Thus, the list code based on subspace can cor-

rect propagated errors in random network coding though

the solution is not unique. To make the solution unique,

we combine the list code based on the subspace code and

LI optimization together, and LI optimization can make

the solution unique after the list decoding of the subspace

code is performed. In one of the solutions after list decod-

ing, there are some differences between the solution and

the real unique solution and the difference may exceed

C/2 errors. If L1 minimization method of John Wright

be as the “inner code”, it can correct difference which

may exceed C/2 errors. The whole decoding procedure

is completed. This is a perfect combination of different

methods.

The remainder of this paper is organized as follows.

Section 2 presents a brief review on [30] and gives some

basic definitions. In Section 3, we will formally give our

scheme. Then, Section 4 performs the experiments. Fi-

nally, Section 5 presents our conclusions.

2 Error-correcting model in John Wright’s model
and list decoding of subspace distance

2.1 Error-correcting model in John Wright’s model

The flowing definitions mainly refer to [30]. Consider

the problem of recovering a sparse signal x0 ∈ R
n from

highly corrupted observations x ∈ Rm:

x ¼ Ax0 þ e0 ð4Þ

where e0 ∈ R
m is a sparse vector of errors with an arbi-

trary magnitude. The model for A ∈ Rm × n captures the

idea that the messages consist of small deviations about

a mean; hence, the model for A likes a “bouquet”. A are

i.i.d. samples from a Gaussian distribution:

A ¼ a1…an½ �∈Rm�n; ai∼iidℕ μ;
υ2

m
Im

� �

;

μk k2 ¼ 1; μk k∞≤Cμm
−1=2:

ð5Þ

The two assumptions on the mean force it to remain

incoherent with the standard basis as m→∞.
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Assumption 1 (weak proportional growth). A sequence

of signal-error problems exhibits weak proportional

growth with parameters δ > 0, ρ ∈ (0, 1), C0 > 0, η0 > 0, de-

noted WPGδ;ρ;C0;η0 , if as m→∞,

n

m
→δ;

e0k k0
m

→ρ; x0k k0≤C0m
1−η0 ð6Þ

We say the cross-and-bouquet model is ℓ
1 − recover-

able at (I, J, σ) if for all x0 ≥ 0with supporting I and e0
with supporting J and signs σ,

x0; e0ð Þ ¼ arg min xk k1 þ ek k1
subject to Axþ e ¼ Ax0 þ e0

ð7Þ

And the minimization is uniquely defined.

Theorem 1 For any δ > 0, ∃ υ0(δ) > 0 such that if υ < υ0
and ρ < 1, in WPGδ;ρ;C0;η0 with a distribution according

to (4), if the error support J and signs σ are chosen uni-

formly at random, then as m→∞,

PA; J ;σ ℓ
1−recoverable at I; J ; σð Þ∀I∈

n½ �
k1

� �� �

→1 ð8Þ

In other words, as long as the bouquet is sufficiently

tight, asymptotically ℓ
1 minimization recovers any

sparse signal from almost any errors with support size

less than 100%.

2.2 List decoding of subspace distance

2.2.1 List decoding

In the traditional linear block code, it cannot correct er-

rors which exceed dmin/2. The so-called list decoding,

proposed independently by Elias in the late 50s, allows

the decoder to output a list of all code words that differ

from the received word in a certain number of positions.

Even when constrained to output a relatively small num-

ber of answers, list decoding permits recovery from er-

rors well beyond the dmin/2 barrier and opens up the

possibility of meaningful error correction from large

amounts of noise [36].

Definition 1 ((e, L)-list decodability) For positive inte-

gers e, L, a code C � Fnq is said to be (e, L)-list decodable

if every Hamming ball of radius e has at most L code

words, i.e., ∀x∈Fnq , ∣Bq(x, e) ∩C ∣ ≤ L.

2.2.2 Subspace distance

Koetter and Kschischang [4] proposes the subspace code

which is dependent on the subspace distance other than

the Hamming distance. Motivated by the property that

linear network coding is vector space-preserving, infor-

mation transmission is modeled as the injection into the

network of a basis for a vector space V and the collec-

tion by the receiver of a basis for a vector space U. Based

on the subspace distance, the original error in random

network will not spread, and this is a good characteristic

in the error correction of random network coding.

Definition 2 The subspace distance is

d A;Bð Þ ¼ dim Aþ Bð Þ− dim A∩Bð Þ ð9Þ

it is also

d A;Bð Þ ¼ 2 dim Aþ Bð Þ− dim Að Þ− dim Bð Þ ð10Þ

Definition 3 A subspace code denoted as Ω has a

minimum distance as DðΩÞ ¼ min
X;Y∈Ω:X≠Y

dðX;Y Þ.

The maximum dimension of code words of Ω is de-

noted by ℓðΩÞ ¼ max
X∈Ω

dimðXÞ.

2.2.3 The combination of list decoding and subspace

distance

Combining list decoding and subspace code, [23] pro-

poses list decoding of subspace codes. For any inte-

gers L and r, the list-L decoder with multiplicityr

guarantees successful recovery of the message sub-

space provided that the normalized dimension of

error is at most
2ðLþ1Þ
rþ1

−1−
LðLþ1Þ
rðrþ1Þ R

� where R∗ is the

normalized packet rate. In the network coding envir-

onment, R� ¼ k
C
. The decoding radius of this scheme

with an appropriate choice of r approaches C
k
−1. Ob-

viously, C
k
−1 can be very large and can even approach

to C − 1. The big decoding radius is very suitable for

the propagated error correction in network coding.

3 Our proposal

3.1 Important issues needed to be clarified

A sketch approach is as follows: κ∈Fqp
k�1 is the mes-

sage needed to be sent where k < n. κ may not sparse.

Add n − k zeros to κ to form x0∈Fqp
n�1 which is

sparse. Then, get x∈Fqp
m�1 based on Eq. (4). Al-

though adopting complex field may improve perform-

ance of network coding [37], we just consider real

field other than complex field. In this case, p is an in-

teger and Fqp is a finite field.

Then x∈Fqp
m�1 is coded with a subspace code Ω∈

Fqp
C�m which has a coding matrix G ¼ Fqp

C�m . x' =G ⋅ x

is generated. This coding procedure is performed in the

field Fqp .

Next, x' is been sent through the network with net-

work coding scheme. That is to say, x' is sent through

the networks with network coding and polluted by er-

rors of the networks. The received messages are y which

is the mixture of x' and errors. This process can be

expressed by Eq. (2) where X is replaced by x'. That is,
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y ¼ T � x
0

þ TZ→y � Z ð11Þ

L1 optimization is performed in Fqp field. Therefore,

all the encodings in intermediate nodes are performed in

Fqp . The decoding of L1 optimization is also performed

in Fqp . However, all the coefficients of network coding

are selected in a finite field Fq as a usual way of doing

the common network coding.

With some abuse of terminologies, we re-define the

dimensions in (10), and they are different from (2).

T ∈ C × C. T is the true transfer matrix of x'. Z ∈ Rt × 1

is the error vector. Note that, in our L1 optimization

method, there is no need to assume t ≤ C/2 as done in

the previous works. t is a big arbitrary and even equals

the number of all the links. This is contradictory to intu-

ition seemingly. The propagated errors are what the t ori-

ginal errors are projected to the received messages Y.

Z’s all components are nonzero. t is the number of cor-

rupted packets. TZ→ y refers to the linear transform from

error edges to the sink. Tis C ×C, and TZ→ y is C × t.

3.2 The transfer model in non-coherent network

In Section 1, we have described the transfer model in

the coherent network. The transfer model in the non-

coherent network is different from the transfer model in

the coherent network. We should clarify this model in

detail because it is important for the network coding

and decoding. A classical random network code indi-

cates that y includes the identity matrix as a part of each

batch. The identity matrix sent by source experiences

the same transform matrix T with the raw data of the

batch. Thus,

T̂ ¼ T � I þ TZ→y � L ð12Þ

where T̂ and L are the columns corresponding to I’s lo-

cation in Y and Z respectively. T̂ is C ×C, and L is t ×C.

By substituting T, (10) can be simplified as:

y ¼ T̂ � x 0 þ TZ→y � Z−L � x 0ð Þ ð13Þ

Note that the matrix T̂ acts as a proxy transfer matrix

for T, which the sink does not know. Note that the above

is mainly in reference to [15]. Equation (13) is slightly

different from y = T ⋅ x' + TZ→ y ⋅ Z which is for coher-

ent network. Equation (13) is for random network cod-

ing. In random network, Tis unknown and it is replaced

by T̂ . y = T ⋅ x' + TZ→ y ⋅ Z is degraded from Eq. (13) for

random networks. In coherent networks, there are no

errors in the header because there are no coding vec-

tors in the head of the packets. Therefore, L is a 0

matrix.

In the sink, packets are collected until the proxy trans-

fer matrix T̂ is invertible. Matrix T̂
−1

is left multiplied in

Eq. (13); we get

x
0

¼ T̂
−1

� y−T̂
−1

� TZ→y � Z−L � x
0

� �

ð14Þ

where T̂
−1

� Y can be obtained and T̂
−1

� TZ→y � ðZ−L � x
0
Þ

is unknown. Let ðx0Þd ¼ T̂
−1

� y . (x')d is the result of net-

work coding decoding in the sink. (x')d can be regarded as

a deviation value of x'. In principle, T̂ can be seen as a

proxy transfer matrix of the true transfer matrix T to per-

form decoding.

However, there is a difference of T̂
−1

� TZ→y � ðZ−L � x 0Þ

between (x')d and x'. The difference is needed to be

corrected through L1 optimization in [30], rather than

traditional codes. Above all, the number of “original

error” is Z, and the number of “propagated error” is

T̂
−1

� TZ→y � ðZ−L � x 0Þ. The errors in the header men-

tioned above is expressed by L. T̂
−1

� TZ→y � ðZ−L � x 0Þ,

which is C × 1, represents the spread result of Z. In

random network coding, we just know T̂
−1
. However,

TZ→ y, Z, L, and x' are all unknown. Theoretically, even

t, the number of original corrupted packets, is very small,

T̂
−1

� TZ→Y � ðZ−L � x 0Þ is also potential to have C nonzero

components. That is to say, T̂
−1

� TZ→y � ðZ−L � x 0Þ pol-

lutes every symbol of the messages (x')d. With wr(β) de-

noting the number of nonzero components (or symbols)

in an arbitrary vector or matrix β and with

wrnorm(β) ∈ [0, 1] denoting the normalized wr(β), if

wrnormðT̂
−1

� TZ→y � ðZ−L � x 0ÞÞ is 1, where the percent-

age of propagated errors is 100%, we cannot decode

successfully with [30]. If wrnormðT̂
−1

� TZ→y � ðZ−L � x 0ÞÞ

is high, for example, 0.99999, [30] can decode suc-

cessfully with a large m. However, the information

rate is very low. It accords with the truth: the more

the errors, the lower the information rate. Any

method cannot contradict this basic truth. Therefore,

in random networks, we just can control the sparse-

ness of T̂
−1

partly. In a finite field Fqp , perform en-

coding procedure of network coding scheme in every

intermediate node. In the sink, the received message

is y = T ⋅ x' + TZ→ y ⋅ Z. In the sink, perform the de-

coding algorithm of network coding ðx0Þd ¼ T̂
−1

� y .
Perform the list decoding of subspace code Ω and get

a list of solutions xd which may have more than C/2

positions different from the real solution x. Perform

L1 optimization of John Wright’s scheme based on xd

and get x0. Select the first ksymbols of x0 as κ. The

so-called L1 Optimization and List Decoding of
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Subspace Codes (L1OLDSC) Algorithm is illustrated

in Algorithm 1.

Algorithm 1 (L1OLDSC) Algorithm

Step 1 Set involved parameters in L1 optimization according the
Eqs. (5) and (6).

Step 2 In real field Fqp , add n − k zeros to κ behind of it, to form x0 ∈
Rn × 1. Get y ∈ R(m + n) × 1 based on Equation x = A × x0.
Step 3 x' = G ⋅ x where G ¼ Fqp

C�m is the generating matrix of a
subspace code Ω.
Step 4 In a finite field Fqp , perform encoding procedure of network
coding scheme in every intermediate node. In the sink, the received
message is y = T ⋅ x' + TZ→ y ⋅ Z.
Step 5 In the sink, perform the decoding algorithm of network coding
ðx0Þd ¼ T̂

−1
� y.

Step 6 Perform the list decoding of subspace code Ω and get a list of
solutions xd which may have more than C/2 positions different from the
real solutionx.
Step7 Perform L1 optimization of John Wright’s scheme based on
xd and get x0.
Step 8 Select the first k symbols of x0 as κ.

3.3 The notes on Algorithm 1

There are some notes on Algorithm 1. As long as the

error rate is deceased less than 100% (not equal 100%),

we can apply the L1 minimization methods in [30] to

perform error correction.

The first note is that the overall information rate is

very low. The original information is wrapped twice. The

inner code is the L1 optimization, and the outer code is

the subspace code. However, because the propagated

error in network coding is very difficult, there are no

other valid methods to solve this problem. Our method

is of theoretical value.

The second note is why we choose to do the decoding

of network coding scheme. A potential choose is to omit

this step and we can perform the list decoding of

subspace on y other than ðx0Þd ¼ T̂
−1

� y . In the sense of

Hamming distance, y and ðx0Þd ¼ T̂
−1

� y are almost 100%

polluted. In the sense of subspace distance, ðx0Þd ¼ T̂
−1

� y
will not be 100% polluted and this is an advantage

for the error correction in random network coding.

In x
0
¼ T̂

−1
� y−T̂

−1
� TZ→y � ðZ−L � x

0
Þ , the propagated

error is T̂
−1

� TZ→y � ðZ−L � x
0
Þ which will not pollute

100% of ðx0Þd ¼ T̂
−1

� y. However, if we adopt y other

than ðx0Þd ¼ T̂
−1

� y , the errors will pollute 100% of

the received packets even if the subspace distance is

adopted. T ⋅ x' is a multiple to x', and this will

introduce more “pollutions” than what is introduced

to (x')d by T̂
−1

� TZ→y � ðZ−L � x
0
Þ in the sense of

subspace distance. T ⋅ x' is a multiple style pollution,

and T̂
−1

� TZ→y � ðZ−L � x
0
Þ is the pollution coming

from the addition operation. Therefore, we should

not omit the procedure about decoding of network

coding.

The third note is what the parameter combinations

of m and n are. The good parameter combinations are

m = 800 and n = 200. However, if m is big, we have to

offer a big C which is bigger than m. In real

environment, there is usually no such big C. Therefore,

it is better to choose a small m, but small m will lead

to the decline of the effectiveness about John Wright’s

scheme. We can take a compromise between the

effectiveness of John Wright’s scheme and a small C.

This point will not decline the theoretical significance

of our scheme.

The fourth note is that is it better to reorganize

y ∈ Rm × 1 to y
0
∈RC�m

C , and then send these divided

groups through network with network coding many

times. The size of packets in one group C can be

smaller than m. That is to say, the max flow min

cut will not be limited by m and can be small.

Therefore, our model can have generality. However,

in this case, how many errors introduced to the received

packets is unknown because reorganization will introduce

new errors. If the new errors introduced by the

reorganization will not pollute all the received packets in

the sense of subspace distance, the reorganization will be

worthy, or not, it is more harm than good. In this

document, we will not consider the reorganization and we

will just focus on the theoretical significance of this

model and omitted the details.

The fifth note is what is the metric of L1 minimization

in John Wright’s scheme. The metric is Hamming metric

other than subspace distance adopted in the “outer

code” which performs list decoding of subspace codes.

After the list decoding of subspace codes, there are

some finite subspace or rank difference between the list

solution and the real solution. The number of difference

rank between the list solution and the real solution are

in direct proportion to L. There is an empirical rule that

a low-rank matrix is usually sparse. Taking advantage of

this property, we can perform L1 minimization to re-

cover the original message after the list decoding of sub-

space codes which commits the low-rank characteristics.

If there is no step of list decoding of subspace codes, the

matrix which corresponds to the message will not be of

low rank in the sense of subspace distance and therefore

will not be sparse in Hamming metric. Therefore, the

two decoding procedures about list decoding based on

subspace distance and L1 minimization based on

Hamming distance are all needed.

4 Numerical results and discussions
In this section, numerical results are presented to further

examine and verify the analytical results mentioned above.
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The results include issues which are how the original

errors spread, the effect of L1 optimization, and optimal

parameters to increase the information rate. We make an

additional discussion to end this section.

4.1 The original error propagation in the sense of

hamming distance

For non-coherent networks, in T̂
−1

� TZ→y � ðZ−L � x
0
Þ ,

we only can select T̂
−1

other than TZ→ Y ⋅ (Z − Ly) in the

sink. In the sink, we construct the matrix T after re-

ceiving C coding vector. Thus, T is an exogenous vari-

able. Naturally, T̂
−1

is also an exogenous variable.

With the size of coding field becoming bigger, the

number of nonzero components in T̂
−1

� TZ→y � ðZ−L � x
0
Þ

will be fast equal to C. That is to say, the propagate errors

pollute all the received messages in the sink. We will

investigate how the original error spread in non-

coherent network through the experiment. Assume

wrðT̂
−1

� TZ→y � ðZ−L � x
0
ÞÞ ¼ C , which is also the

worst situation. With the above means, the errors will

be propagated to the whole network.

Figure 1 shows, if randomly selecting coefficients of

the local coding kernel, the received messages are nearly

all polluted. But when the size of network coding field is

smaller than 7, some received messages are not polluted.

Theoretically, the bigger the size of the coding finite

field, the more the chance that a symbol in this field is

nonzero. Therefore, T̂
−1

will be very dense if the size of

coding field is big.

Through the above experiments, we can see the

situation about the error spread in the network coding is

serious. Especially, in random network coding, the

propagated error T̂
−1

� TZ→Y � ðZ−L � x
0
Þ always pollutes

all the received messages when the coding field is bigger

than 7. Thus, we have to face such pessimistic fact and

propose an effective method to confront such situation.

4.2 The original error propagation in the sense of

subspace distance

For non-coherent networks, if the subspace distance is

adopted, the propagated error will not be polluted 100%

of the received packets which is better than Hamming

distance. In Fig. 2 we investigate the propagated way of

errors in the sense of subspace distance. In the above

section, we have analyzed the propagation of errors in

the sense of subspace distance. Figure 2a shows the case

with a smaller C while Fig. 2b shows the case with a big-

ger C. It shows that, compared with Hamming metric,

subspace distance has more advantage. In the sense of

subspace distance, the error propagation is alleviated

considerably.

4.3 The effect of L1 optimization in network random coding

We will investigate the performance of the Algorithm 1.

‖x0‖ is on behalf of the sparseness of vector x0. In

Fig. 1 The spread of errors in the sense of Hamming distance

Fig. 2 The spread of errors in the sense of subspace distance.

Legend (‘M= 100’, ‘M= 200’, ‘M= 400’, ‘M= 800’)
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Algorithm 1, if the components of the original

uncompressible messages κ have no zeroes, ‖x0‖ = k/n.

Most of the parameters are the same with the

simulation in [30]. The parameters are as follows: υ =

0.05, δ = 0.25, and m ∈ {100, 200, 400, 800}. We have

not got any channel to get the original implement

details of [30]. Because some implement details may

be different, our effectiveness is just a little worse.

However, the whole trend is the same.

In Fig. 3, ‖x0‖ = 1 and we can see that the percentage

of successful recovery and the fraction of corrupted

errors are in inverse proportion. When m increases, the

correcting fraction τ also increase and almost

approaches 1. This point is surprising and attractive. It

can be naturally adopted to correct the dense

propagated errors in network coding, even 0.95 density

errors can be recovered. However, the successful

correction fraction is not satisfactory when error

density is high, for example, 0.95. But we can increase

the m to increase the successful correction ratio.

Generally, when m = 800 and the fraction of errors is

0.6, the fraction of successful correction approaches 1.

This certainly can meet the need in real

communication. However, ‖x0‖ = 1 also means a low

information rate here. However, when the fraction of

corrupted errors is 100%, this algorithm cannot recover

the original uncompressible messages. Especially, when

the fraction of propagated errors is 100%, we can also

correct it sometimes.

If ‖x0‖ = 1, the information rate will very be low. We

will also investigate the performance of Algorithm 1 at

different ‖x0‖. In Fig. 4, ‖x0‖ =m1/2. The high fraction of

successful decoding is at the cost of the low information

rate. If we want to increase the information rate, the

fraction of successful decoding will be down. However,

even when the information rate is higher, L1

optimization also has a surprising high fraction of

corrected errors. In traditional codes, the fraction of

corrected errors is 0.5 at most when the information

rate approaches 0. The fraction of successful decoding is

approximately 0.47. It is also higher than traditional

codes, i.e., to a considerable information rate.

Both ‖x0‖ = 1 and ‖x0‖ =m1/2 are extreme situations. It

would be better to keep a balance between error-

correcting ratio and information rate. It shows, when

‖x0‖ increases, i.e., higher information rate, the fraction

of correction becomes lower. However, the fraction of

correction is also acceptable.

4.4 Set other parameters to increase the information rate

in L1 optimization

In [30], a better parameter about m is as m ∈ {100, 200,

400, 800}. As we say in the above, a bigger m will lead

to a bigger C which is unrealistic. Thus, we want to

investigate the L1 optimization with a smaller m.

Figure 5 is the situation where m ∈ {8, 20, 40, 60, 80}

and ‖x0‖ = 1. Figure 6 is the situation where m ∈ {8, 20,

40, 60, 80} and ‖x0‖ =m1/2. We can see that even if a

smaller m also will achieve a considerable good

effectiveness. Therefore, it is feasible to make our

scheme more generable by using a smaller m.

Fig. 3 Error correction in L1 optimization when ‖x0‖ = 1. Legend (‘M= 100’, ‘M= 200’, ‘M= 400’, ‘M= 800’)
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4.5 Discussions

For the numerical results about how the original errors

spread, they consist with the facts. When the size of the

coding field is big, the randomness will increase. Thus, all

the observations are polluted completely. For the effect of

L1 optimization to increase the fraction of the error

correction, the more the signal is sparse, the higher the

fractions of the error correction are. Even though nearly

all the observations are polluted, numerical results show

our algorithm also can recover the original messages. For

optimal parameters to increase the information rate,

numerical results show m = 800 and n = 200 are the

optimal parameters to correct errors. However, with these

parameters, the rate is low. We can achieve a higher

information rate in some little penalty of the correction

fraction. If the parameters are set suitably, it is possible to

achieve an optimal combination of information rate and

error correction fraction.

We can see that in the sense of subspace distance,

the propagated errors will not pollute 100% of received

packets which is different with the way of Hamming

distance. Therefore, list decoding of subspace has the

chance to perform decoding procedure successfully.

Though the solution is not unique, L1 optimization

Fig. 4 Error correction in L1 optimization when ‖x0‖ =m1/2. Legend (‘M= 8’, ‘M= 20’, ‘M= 40’, ‘M= 60’, ‘M= 80’)

Fig. 5 Error correction in L1 optimization when m ∈ {8, 20, 40, 60, 80}

and ‖x0‖ =m1/2. Legend (‘M= 8’, ‘M= 20’, ‘M= 40’, ‘M= 60’, ‘M= 80’)

Fig. 6 Error correction in L1 optimization when m ∈ {8, 20, 40, 60, 80}

and ‖x0‖ = 1
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can decode and get the unique solution successfully.

Figures 3 and 4 have proven this point.

We can also choose a small m and will not decline the

theoretical significance of our scheme. Figures 5 and 6

prove this point.

Overall, the numerical results and observations in this

section are consistent with our expectations.

5 Conclusions

We propose a new framework about the network error

correction coding in random network coding. The scheme

introduces the combination of L1 optimization method

and list decoding to correct the propagated dense error in

the random network coding. This method overcomes the

shortcoming that the traditional block codes can correct

corrupted errors no more than C/2 in random network

coding. The experiments show our scheme can solve the

error spread problem in random network coding. The

rank code or the subspace code are the best cure methods

to solve the error spread in the random network coding at

present. Whether the rank code or the subspace code,

they just can solve the error spread problem in the

random network where the number of original error is

less than C/2. Our scheme not only can correct the errors

more than C/2 but also can correct errors which just

pollute all the links. Although the information rate is low

when the fraction of errors is near 100%, the information

rate is acceptable if there is a small penalty in the fraction

of successful decoding. Our scheme is also efficient in

time. The decoding time of L1 optimization algorithm is

no more than that of the decoding algorithm about the

traditional block codes. Our scheme outperforms the

existing network error correction coding schemes in

random network coding. The scheme, which is the

combination of L1 optimization and list decoding, has

great significance to applying the network coding theory

to engineering practice.
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