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We characterize the combinatorial structure of conditionally-i.i.d. sequences of negative binomial processes
with a common beta process base measure. In Bayesian nonparametric applications, such processes have
served as models for latent multisets of features underlying data. Analogously, random subsets arise from
conditionally-i.i.d. sequences of Bernoulli processes with a common beta process base measure, in which
case the combinatorial structure is described by the Indian buffet process. Our results give a count analogue
of the Indian buffet process, which we call a negative binomial Indian buffet process. As an intermediate
step toward this goal, we provide a construction for the beta negative binomial process that avoids a repre-
sentation of the underlying beta process base measure. We describe the key Markov kernels needed to use
a NB-IBP representation in a Markov Chain Monte Carlo algorithm targeting a posterior distribution.
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1. Introduction

The focus of this article is on exchangeable sequences of multisets, that is, set-like objects in
which repetition is allowed. Let 2 be a complete, separable metric space equipped with its Borel
o-algebra A and let Z4 := {0, 1,2, ...} denote the non-negative integers. By a point process
on (22, A), we mean a random measure X on (£2, .A) such that X (A) is a Z,-valued random
variable for every A € A. Because (2, A) is Borel, we may write

X=> "6y (1.1)

k<k

for a random element « in Z, := Z, U {co} and some — not necessarily distinct — random ele-
ments y1, y2, ... in . We will take the point process X to represent the multiset of its unique
atoms y, with corresponding multiplicities X {yx}. We say X is simple when X{y;} =1 for all
k <k, in which case X represents a set.

In statistical applications, latent feature models associate each data point y, in a dataset with a
latent point process X, from an exchangeable sequence of simple point processes, which we de-
note by (X,)nen := (X1, X2, ...). The unique atoms among the sequence (X, ),cN are referred
to as features, and a data point is said to possess those features appearing in its associated point
process. We can also view these latent feature models as generalizations of mixture models that
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allow data points to belong to multiple, potentially overlapping clusters [2,10]. For example, in an
object recognition task, a model for a dataset consisting of street camera images could associate
each image with a subset of object classes — for example, “trees”, “cars”, and “houses”, etc. —
appearing in the images. In a document modeling task, a model for a dataset of news articles
could associate each document with a subset of topics — for example, “politics”, “Europe”, and
“economics”, etc. — discussed in the documents. Recent work in Bayesian nonparametrics utiliz-
ing exchangeable sequences of simple point processes have focused on the Indian buffet process
(IBP) [7,10], which characterizes the marginal distribution of the sequence (X)), When they
are conditionally-i.i.d. Bernoulli processes, given a common beta process base measure [11,24].

If the point processes (X,)neN are no longer constrained to be simple, then data points can
contain multiple copies of features. For example, in the object recognition task, an image could
be associated with two cars, two trees, and one house. In the document modeling task, an article
could be associated with 100 words from the politics topic, 200 words from the Europe topic,
and 40 words from the economics topic. In this article, we describe a count analogue of the IBP
called the negative binomial Indian buffet processes (NB-IBP), which characterizes the marginal
distribution of (X,,),en When it is a conditionally i.i.d. sequence of negative binomial processes
[3,28], given a common beta process base measure. This characterization allows us to describe
new Markov Chain Monte Carlo algorithms for posterior inference that do not require numerical
integrations over representations of the underlying beta process.

1.1. Results

Let ¢ > 0, let E() be a non-atomic, finite measure on €2, and let IT be a Poisson (point) process
on 2 x (0, 1] with intensity

(ds,dp) > cp~ (1 = p)*~ 1 dpBy(ds). (1.2)

As this intensity is non-atomic and merely o -finite, IT will have an infinite number of atoms al-
most surely (a.s.), and so we may write IT = Zj‘;] 8(y;,b;) for some a.s. unique random elements
b1,by,...in (0, 1] and yy, y2, ... in Q. From II, construct the random measure

o0

B:=) bjsy,. (1.3)

j=1

which is a beta process [11]. The construction of B ensures that the random variables
B(Ay), ..., B(Ay) are independent for every finite, disjoint collection Ay, ..., Ay € A, and B
is said to be completely random or equivalently, have independent increments [14]. We review
completely random measures in Section 2.

The conjugacy of the family of beta distributions with various other exponential families car-
ries over to beta processes and randomizations by probability kernels lying in these same expo-
nential families. The beta process is therefore a convenient choice for further randomizations, or
in the language of Bayesian nonparametrics, as a prior stochastic process. For example, previous
work has focused on the (simple) point process that takes each atom y; with probability b; for
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every j > 1, which is, conditioned on B, called a Bernoulli process (with base measure B) [24].
In this article, we study the point process

X::Z;‘jéw’ (1.4)
j=1

where the random variables {1, £2, . .. are conditionally independent given B and
gjlbj ~NB(r, b)), jeN, (1.5)

for some parameter r > 0. Here, NB(r, p) denotes the negative binomial distribution with pa-
rameters r > 0, p € (0, 1], whose probability mass function (p.m.f.) is
. . (r); 7 r

NB(z;r, p) := Tp 1-p), 7€ly, (1.6)
where (a), :=a(a+1)---(a+n—1) with (a)g := 1 is the nth rising factorial. Note that, condi-
tioned on B, the point process X is the (fixed component) of a negative binomial process [3,28].
Unconditionally, X is the ordinary component of a beta negative binomial process, which we
formally define in Section 2.

Conditioned on B, construct a sequence of point processes (X, ),eN that are i.i.d. copies of
X. In this case, (X;),eN is an exchangeable sequence of beta negative binomial processes, and
our primary goal is to characterize the (unconditional) distribution of the sequence. This task is
non-trivial because the construction of the point process X in equation (1.4) is not finitary in the
sense that no finite subset of the atoms of B determines X with probability one. In the case of
conditionally-i.i.d. Bernoulli processes, the unconditional distributions of the measures remain in
the class of Bernoulli processes, and so a finitary construction is straightforwardly obtained with
Poisson (point) processes. Then the distribution of the sequence, which Thibaux and Jordan [24]
showed is characterized by the IBP, may be derived immediately from the conjugacy between
the classes of beta and Bernoulli processes [11,13,24]. While conjugacy also holds between the
classes of beta and negative binomial processes [3,28], the unconditional law of the point process
X is no longer that of a negative binomial process; instead, it is the law of a beta negative binomial
process.

Existing constructions for beta negative binomial processes truncate the number of atoms in
the underlying beta process and typically use slice sampling to remove the error introduced by
this approximation asymptotically [3,19,23,28]. In this work, we instead provide a construction
for the beta negative binomial process directly, avoiding a representation of the underlying beta
process. To this end, note that while the beta process B has a countably infinite number of atoms
a.s., it can be shown that B is still an a.s. finite measure [11]. It follows as an easy consequence
that the point process X is a.s. finite as well and, therefore, has an a.s. finite number of atoms,
which we represent with a Poisson process. The atomic masses are then characterized by the
digamma distribution, introduced by Sibuya [21], which has p.m.f. (for parameters r, 6 > 0)
given by

1 (r); Z—l
Y(r+6)—vy(©) (r+0),

where ¥ (a) :=TI"'(a)/ T'(a) denotes the digamma function. In Section 3, we prove the following:

digamma(z; r, 0) := , z>1, (1.7)
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Theorem 1.1. Let Y be a Poisson process on (2, A) with finite intensity
ds = c[(c +r) — ¥ (©)]Bo(ds), (1.8)

that is, Y =Y y_, 8y, for a Poisson random variable k with mean c[y(c +r) — W(c)]go(Q)
and i.i.d. random variables (yi)keN, independent from k, each with distribution By/Bo(S2). Let
(¢k)keN be an independent collection of i.i.d. digamma(r, ¢) random variables. Then

d K
XD ady,, (1.9)
k=1

where X is the beta negative binomial process defined in equation (1.4).

With this construction and conjugacy (the relevant results are reproduced in Section 4), char-
acterizing the distribution of (X, ),cn is straightforward. However, in applications we are only
interested in the combinatorial structure of the sequence (X,),eN, that is, the pattern of sharing
amongst the atoms while ignoring the locations of the atoms themselves. More precisely, for
every n € N, let H,, :=Z" \ {0"} be the set of all length-n sequences of non-negative integers,
excluding the all-zero sequence. Elements in H,, are called histories, and can be thought of as
representations of non-empty multisets of [n] := {1, ...,n}. For every h € H,, let M}, be the
number of elements s € 2 such that X ;{s} = A(j) for all j <n. By the combinatorial structure
of a finite subsequence X|,} := (X1, ..., X;;), we will mean the collection (Mp,),c3, of counts,
which together can be understood as representations of multisets of histories. These counts are
combinatorial in the following sense: Let ¢: (22, A) — (2, .4) be a Borel automorphism on
(2, A), that is, a measurable permutation of  whose inverse is also measurable, and define the
transformed processes X;p =Xjo ¢_1, for every j < n, where each atom s is repositioned to
¢ (s). The collection (M},)pc3, s invariant to this transformation, and it is in this sense that they
only capture the combinatorial structure. In Section 4, we prove the following.

Theorem 1.2. The probability mass function of (Mp)pery, 1S

P{My =mp:h € H,} (1.10)

n

B (CT)ZhEHn mp, |:F(S(h))1"(c+nr) 1—[ (F)h(j):|Mh

exp(—cT[¥(c+nr) — ¥ (0)]) 1_[

= o mn! pgi L Dletnr+5h) 54 h())!

j=1

where S(h) :=Y .. h(j),foreveryh € H,,and T := LN?O(Q) > 0.

jsn

As one would expect, equation (1.10) is reminiscent of the p.m.f. for the IBP, and indeed
the collection (M), is characterized by what we call the negative binomial Indian buffet
process, or NB-IBP. Let beta-NB(r, o, 8) denote the beta negative binomial distribution (with
parameters r,a, § > 0), that is, we write Z ~ beta-NB(r, «, 8) if there exists a beta random
variable p ~ beta(a, 8) such that Z|p ~ NB(r, p). In the NB-IBP, a sequence of customers enters
an Indian buffet restaurant:
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e The first customer
— selects Poisson(cy [ (c +r) — ¥ (c)]) distinct dishes, taking digamma(r, ¢) servings of
each dish, independently.
e Forn > 1, the (n 4 1)st customer
— takes beta-NB(r, Sy, k, ¢ + nr) servings of each previously sampled dish k; where S, i is
the total number of servings taken of dish k by the first n customers;
— selects Poisson(cy[¥(c + (n + 1)r) — ¥ (c + nr)]) new dishes to taste, taking
digamma(r, ¢ + nr) servings of each dish, independently.

The interpretation here is that, for every h € H,, the count M}, is the number of dishes k
such that, for every j < n, customer j took i(j) servings of dish k. Then the sum S(%) in
equation (1.10) is the total number of servings taken of dish k by the first n customers. Because
the NB-IBP is the combinatorial structure of a conditionally i.i.d. process, its distribution, given
in Theorem 1.2, must be invariant to every permutation of the customers. We can state this
property formally as follows.

Theorem 1.3 (Exchangeability). Letr w be a permutation of [n] := {1, ...,n}, and, for h € H,,,
note that the composition h ot € H,, is given by (h o w)(j) = h(w(j)), for every j <n. Then

d
(Miner, = Mhor)net,- (1.11)

The exchangeability of the combinatorial structure and its p.m.f. in equation (1.10) allows us
to develop Gibbs sampling techniques analogous to those originally developed for the IBP [7,
17]. In particular, because the NB-IBP avoids a representation of the beta process underlying the
exchangeable sequence (X,),eN, these posterior inference algorithms do not require numerical
integration over representations of the beta process. We discuss some of these techniques in
Section 5.

2. Preliminaries

Here, we review completely random measures and formally define the negative binomial and beta
negative binomial processes. We provide characterizations via Laplace functionals and conclude
the section with a discussion of related work.

2.1. Completely random measures

Let M(L2, A) denote the space of o-finite measures on (€2, .4) equipped with the o-algebra
generated by the projection maps u +— wu(A) for all A € A. A random measure £ on (22, .A)
is a random element in M (€2, A), and we say that & is completely random or has independent
increments when, for every finite collection of disjoint, measurable sets Ay, ..., A, € A, the
random variables £(A1), ..., £(A,) are independent. Here, we briefly review completely random
measures; for a thorough treatment, the reader should consult Kallenberg [12], Chapter 12, or the
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classic text by Kingman [14]. Every completely random measure £ can be written as a sum of
three independent parts

E=E+) DS+ Y ps  as., @2.1)

seA (s,p)en

called the diffuse, fixed, and ordinary components, respectively, where:

1. E is a non-random, non-atomic measure;

2. A C Q is a non-random countable set whose elements are referred to as the fixed atoms
and whose masses 1, i3, ... are independent random variables in R, (the non-negative real
numbers);

3. n is a Poisson process on 2 x (0, co) whose intensity [E7 is o -finite and has diffuse pro-
jections onto €2, that is, the measure (En)(- x (0, c0)) on €2 is non-atomic.

In this article, we will only study purely-atomic completely random measures, which therefore
have no diffuse component. It follows that we may characterize the law of & by (1) the distribu-
tions of the atomic masses in the fixed component, and (2) the intensity of the Poisson process
underlying the ordinary component.

2.2. Definitions

By a base measure on (£2, .A), we mean a o -finite measure B on (2, A) such that B{s} < 1 for
all s € Q. For the remainder of the article, fix a base measure By. We may write

Bo=DBo+ ) byss 22)
SEA

for some non-atomic measure Eo; a countable set A C 2; and constants I;l, l;z, ...1in (0, 1].1 As
discussed in the Introduction, a convenient model for random base measures are beta processes,
a class of completely random measures introduced by Hjort [11]. For the remainder of the article,
let c: 2 — R4 be a measurable function, which we call a concentration function (or parameter
when it is constant).

Definition 2.1 (Beta process). A random measure B on (2, A) is a beta process with concen-
tration function ¢ and base measure By, written B ~ BP2(c, By), when it is purely atomic and
completely random, with a fixed component

Y0 B Fbeta(c()by. ()1 —by)), 2.3)
SEA

and an ordinary component with intensity measure

(s, dp) > c(s)p~ 1 (1 — p)*©~1dpBo(ds). (2.4)

INote that we have relaxed the condition on IN?O (in the Introduction) to be merely o -finite.
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It is straightforward to show that a beta process is itself a base measure with probability one.
This definition of the beta process generalizes the version given in the introduction to a non-
homogeneous process with a fixed component. Likewise, we generalize our earlier definition of
a negative binomial process to include an ordinary component.

Definition 2.2 (Negative binomial process). A point process X on (2, A) is a negative binomial
process with parameter r > 0 and base measure By, written X ~ NBP(r, By), when it is purely
atomic and completely random, with a fixed component

Y08 O CNB(rby), 2.5)
SEA

and an ordinary component with intensity measure

(ds, dp) — r81(dp)By(ds). (2.6)

The fixed component in this definition was given by Broderick ef al. [3] and Zhou et al. [28]
(and by Thibaux [25] for the case r = 1). Here, we have additionally defined an ordinary com-
ponent, following intuitions from Roy [20].

The law of a random measure is completely characterized by its Laplace functional, and this
representation is often simpler to manipulate: From Campbell’s theorem, or a version of the
Lévy—Khinchin formula for Borel spaces, one can show that the Laplace functional of X is

fr>E[e X = exp|:— /(1 - g—f(s>)r§0(ds)} I1 [%} , 2.7)
— Se )

seh

where f ranges over non-negative measurable functions and X (f) := f f(s)X(ds).
Finally, we define beta negative binomial processes via their conditional law.

Definition 2.3 (Beta negative binomial process). A random measure X on (2, A) is a beta
negative binomial process with parameter r > 0, concentration function ¢, and base measure By,
written

X ~BNBP(r, ¢, By),
if there exists a beta process B ~ BP(c, By) such that

X|B ~ NBP(r, B). 2.8)

This characterization was given by Broderick et al. [3] and can be seen to match a special
case of the model in Zhou et al. [28] (see the discussion of related work in Section 2.3). It is
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straightforward to show that a beta negative binomial process is also completely random, and
that its Laplace functional is given by

1— " =
E[eX] = exp[_/[1 _ (ﬁ) i|c(s)p_1(] e deo(ds)]

1 _ r _ -
<1 f ( e ) beta(p: c(s)bs. ¢(s)(1 = by)) dp.

seA

(2.9)

for f:Q — R, measurable, where we note that the factors in the product term take the form of
the Laplace transform of the beta negative binomial distribution.

2.3. Related work

The term “negative binomial process” has historically been reserved for processes with negative
binomial increments — a class into which the process we study here does not fal — and these pro-
cesses have been long-studied in probability and statistics. We direct the reader to Kozubowski
and Podgérski [15] for references.

One way to construct a process with negative binomial increments is to rely upon the fact
that a negative binomial distribution is a gamma mixture of Poisson distributions. In particular,
similarly to the construction by Lo [16], consider a Cox process X directed by a gamma process
G with finite non-atomic intensity. So constructed, X has independent increments with negative
binomial distributions. Like the beta process (with a finite intensity underlying its ordinary com-
ponent), the gamma process has, with probability one, a countably infinite number of atoms but
a finite total mass, and so the Cox process X is a.s. finite as well. Despite similarities, a com-
parison of Laplace functionals shows that the law of X is not that of a beta negative binomial
process. Using an approach directly analogous to the derivation of the IBP in [10], Titsias [26]
characterizes the combinatorial structure of a sequence of point processes that, conditioned on G,
are independent and identically distributed to the Cox process X. See Section 4 for comments.
This was the first count analogue of the IBP; the possibility of a count analogue arising from beta
negative binomial processes was first raised by Zhou et al. [28], who described the distribution
of the number of new dishes sampled by each customer. Recent work by Zhou, Madrid and Scott
[29], independent of our own and proceeding along different lines, describes a combinatorial
process related to the NB-IBP (following a re-scaling of the beta process intensity).

Finally, we note that another negative binomial process without negative binomial increments
was defined on Euclidean space by Barndorff-Nielsen and Yeo [1] and extended to general spaces
by Grégoire [9] and Wolpert and Ickstadt [27]. These measures are generally Cox processes on
(2, A) directed by random measures of the form

ds — v(t,ds)G(dr),
Ry

where G is again a gamma process, this time on R, and v is a probability kernel from 2 to R,
for example, the Gaussian kernel.
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3. Constructing beta negative binomial processes

Before providing a finitary construction for the beta negative binomial process, we make a few
remarks on the digamma distribution. For the remainder of the article, define A.¢ := ¥ (6 +
r) — (@) for some r,0 > 0. Following a representation by Sibuya [21], we may relate the
digamma and beta negative binomial distributions as follows: Let Z ~ digamma(r, 6) and define
W := Z — 1, the latter of which has p.m.f.

P(W = w) = 0hr0) "' =

. beta-NBw: -, 1,0),  weZs. 3.1)
w41

Deriving the Laplace transform of the law of W is straightforward, and because E[e'V] =

¢'E[e~"#], one may verify that the Laplace transform of the digamma distribution is given by

W, o(t) i=E[e"?] =1 —Arje‘/[l - (%) :|p_1(1 —pfldp. (32

The form of equation (3.1) suggests the following rejection sampler, which was first proposed
by Devroye [6], Proposition 2, Remark 1: Let r > 0 and let (U,),en be an i.i.d. sequence of
uniformly distributed random numbers. Let

Yonen = beta-NB(r, 1,0),

and define  := inf{n € N: max{r, 1} - U, < Qiq} Then

Y, + 1~ digamma(r, ),

and

max{r, 1}

TG+ —y@l

En < max{r, r '}

En
With digamma random variables, we provide a finitary construction for the beta negative bi-

nomial process. The following result generalizes the statement given by Theorem 1.1 (in the
Introduction) to a non-homogeneous process, which also has a fixed component.

Theorem 3.1. Let r > 0, and let ¥ := (9;)se4 be a collection of independent random variables
with

9y ~ beta-NB(r, c(s)bs, c(s)(1 — by)), s € s. (3.3)
Let Y be a Poisson process on (2, A), independent from ¥, with (finite) intensity

ds > ([ (c(s) +7) — ¥ (c(s)) ] Bo(ds). (3.4)
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Write Y =Y i _, 8, for some random element k in Z and a.s. unique random elements
Y1, V2, ... in Q, and put F := 0o (k, y1, ¥2, ...). Let ({j) jen be a collection of random variables
that are independent from ¥ and are conditionally independent given F, and let

¢j|F ~ digamma(r, c(y;)), jeN. (3.5)
Then
K
X= Z Deds + Z ¢;8,; ~BNBP(r, c, By). (3.6)
sEA j=1
Proof. We have
K
Ef[e—X(f)] — l_[ E[e—l%:f(S)] x 1_[ E-F[e_fjf()/j)]’ (3.7)
seA j=1

for every f:Q — R, measurable. For s € Q, write g(s) = W, (s)(f(s)) for the Laplace trans-
form of the digamma distribution evaluated at f (s), where W, ¢ (¢) is given by equation (3.2). We
may then write

[[E [e 97 =TTstn- (3.8)

Then by the chain rule of conditional expectation, complete randomness, and Campbell’s theo-
rem,

E[e—X(f)] = 1_[ E[e_ﬂxf(‘?)] % exp[—/ (1 — g(s))c(s))»r,c(s)go(ds)] 3.9
Q

SEA

_ l_[ [f(m> beta(p; c(s)bs, c(s)(1 — l;s)) dp] (3.10)

1-— r ~ o~
xexp[— / [1—(17%) }c(s)p H1=p 1cums?o(dw],
(0,11x —pe’r

which is the desired form of the Laplace functional. ]

A finitary construction for conditionally-i.i.d. sequences of negative binomial processes with
a common beta process base measure now follows from known conjugacy results. In particular,
for every n € N, let X[, := (X1, ..., X;;). The following theorem characterizes the conjugacy
between the (classes of) beta and negative binomial processes and follows from repeated appli-
cation of the results by Kim [13], Theorem 3.3 or Hjort [11], Corollary 4.1. This result, which
is tailored to our needs, is similar to those already given by Broderick et el. [3] and Zhou et al.
[28], and generalizes the result given by Thibaux [25] for the case r = 1.
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Theorem 3.2 (Hjort [11], Zhou et al. [28]). Let B ~ BP.(c, By) and, conditioned on B, let
(Xn)nen be a sequence of i.i.d. negative binomial processes with parameter r > 0 and base
measure B. Then for every n € N,

c 1
B|X[,1]NBPE<C,1, C_BO+_Sn>, (3.11)

n Cn

where Sy :=Y 7| Xi and cy(s) := c(s) + Sp{s} + nr, for s € Q.

Remark 3.1. Tt follows immediately that, for every n € N, the law of X, conditioned on
X1, ..., Xp is given by

1
Xot1|X (] ~BNBP(r, s — By + —S,,). (3.12)

Cn Cn

We may therefore construct this exchangeable sequence of beta negative binomial processes
with Theorem 3.1.

4. Combinatorial structure

We now characterize the combinatorial structure of the exchangeable sequence X[, in the case
when ¢ > 0 is constant and By(= §0) is non-atomic. In order to make this precise, we introduce
a quotient of the space of sequences of integer-valued measures. Let n € N and for any pair
U:=U,...,Uy)and V := (Vq, ..., V) of (finite) sequences of integer-valued measures, write
U ~ V when there exists a Borel automorphism ¢ on (£2, A) satisfying U; = V; o ¢! for every
Jj <n.ltis easy to verify that ~ is an equivalence relation. Let [[U]] denote the equivalence class
containing U. The quotient space induced by ~ is itself a Borel space, and can be related to the
Borel space of sequences of Z.-valued measures by coarsening the o -algebra to that generated
by the functionals

Mu(Ut,..., Uy i=#{s € Q:Vj <n,Ujlsy=h(j)},  heHnj<n, @1

where #A denotes the cardinality of A, and #H,, :=Z" \ {0"} is the space of histories defined in
the Introduction. The collection (M},);e7¢, of multiplicities (of histories) corresponding to X[,
also defined in the Introduction, then satisfies Mj;, = M, (X[,) for every h € H,,. The collection
(Mp)per, thus identifies a point in the quotient space induced by ~. Our aim is to characterize
the distribution of (M), for every n € N.

Let 7 € H,,, and define "H,,(ﬁ)l :={h € Hpy1:VYj <n,h(j) = h(j)} to be the collection of

histories in H,41 that agree with 72 on the first z entries. Then note that
Mp= Y My,  heH,, (4.2)

heHEf#)l
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that is, the multiplicities (M;)pey,,, at stage n + 1 completely determine the multiplicities
(Mp) ke, at all earlier stages. It follows that

P{My, =mp:h € Hpt1} =P{Mp=mpn:h e Hy,}
4.3)
X P{My =mp:h € Hpp1 | My =mp:h € Hyl,

where mp =) hen ™ MMh for h € H,,. The structure of equation (4.3) suggests an inductive proof
n+1

for Theorem 1.2.

4.1. The law of M, for h € H4

Note that H; is isomorphic to N and that the collection (Mp)jc3, counts the number of atoms
of each positive integer mass. It follows from Theorem 1.1 and a transfer argument [12], Propo-
sitions 6.10, 6.11 and 6.13, that there exists:

1. aPoisson random variable x with mean cT A, ., where T := EO(Q) < 00;
2. ani.i.d. collection of a.s. unique random elements y1, y2, ... in Q;
3. ani.id. collection (¢;) jen of digamma(r, ¢) random variables;

all mutually independent, such that

K
X = ZQSW a.s.
j=1

It follows that
Mhz#{j §K:§j=h(l)} a.s., forh e Hy, 4.4)
and k =, My a.s. Therefore,

P{My, =mp:h € Hi}

=P{K= 3 mh}P{Mhzmh:h€H1’K= 3 mh}.

heH, heH,

4.5)

Because {1, {2, ... are i.i.d., the collection (M}),c7¢, has a multinomial distribution conditioned
on its sum «. Namely, M}, counts the number of times, in « independent trials, that the multiplic-
ity k(1) arises from a digamma(r, ¢) distribution. In particular,

P{Mh =mpu:h GH]‘KZ Z mh}
heH,
4.6)

(ZhEH] mh)‘ . mp
= digamma(hi(1);r, c .
TTrere, (ma) hgl[ ( )]



The combinatorial structure of beta negative binomial processes 2313
It follows that

P{My, =mp:h € Hi}

- 4.7)
T heH | Mh
= % exp(—cT Arc) 1_[ [digamma(h(l); r, c)mh].
I1 (mp!) '
het, : heH,
4.2. The conditional law of M}, for h € H 11
Let S, :=3_; X;. Recall that s(h) := 3, _, ii(j) for h € H,,. We may write
My,
Su= Y D 5w, 4.8)
heH, j=1

for some collection w := (g, j) e, jeN Of a.s. distinct random elements in €2. It follows from
Remark 3.1, Theorem 1.1, and a transfer argument that there exists:

a Poisson random variable x with mean c¢T Ay c4n/;

an i.i.d. collection of a.s. unique random elements yy, y», ... in €, a.s. distinct also from w;
an i.i.d. collection (¢) jen of digamma(r, ¢ + nr) random variables;

for each i € H,,, an i.i.d. collection (¥, ;) jen of random variables satisfying

el o e

U5, ~ beta-NB (r, s(h),c+ nr) for j e N;

all mutually independent and independent of X|,,, such that

Xpp1= ) Zﬁh, on; +Z;, y,  as. 4.9)

heH, j=1

Conditioned on X, the first and second terms on the right-hand side correspond to the fixed
and ordinary components of X, 1, respectively. Let

7O .

O = {h e Hurr:h(j)=0,j <n} (4.10)

be the set of histories /4 for which 4 (n + 1) is the first non-zero element. Then, with probability
one,

My=#{j<i:tj=h(n+ 1)}  forheH

o @.11)

and

My =#{j <Mp:0pj=h(+1)}  forheH,andheH,. (4.12)
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By the stated independence of the variables above, we have

P{My =mp:h € Hyp1 M =mp:h e H,)
. . (4.13)
=P{My=mp:h e M} ] B{My=mn:h e H?, 1My = mp}.
heH,

Let ”H,:H = Uhe%z ’H,(E_)l. For every h € 7—?,,, the random variables 19@1,1.9;1,2,.. 5 are. 1.i.d.,
and therefore, conditioned on My, the collection (M) hen® has a multinomial distribution. In
n+1

particular, the product term in equation (4.13) is given by

D)
[T B{My=mu:h e 12, 1My = m)
heH,
_ lhep, (mnt).

=Thoe D H [beta-NB(h(n + 1); 7, S(h) — h(n + 1), ¢ +nr)™"].
heHn+l :

+
hEH;1+]

The p.m.f. of the beta negative binomial distribution is given by

("): Bz +e.r +p)
B(a,B)

for positive parameters r, «, and 8, where B(«, 8) := ['(@)T'(8)/'(x + B) denotes the beta
function. We have thatk =) hen© Mj, a.s., and therefore
n+1

beta-NB(z; r, o, B) = 7€y, (4.14)

P{Mh =mp:h e 7‘[,(1(3,’)_1}

ZP{K: )3 mh} (4.15)

heM,),

XP{Mhzmh:hG’H’(g)_llcz Z mh}.
heH©

n+1

Because ¢, 2, ... are i.i.d., conditioned on the sum «, the collection (M},) hen© has a multino-
n+1

mial distribution, and so

}P’{Mh =mp:h e?—[fﬁzl K= Z mh}
he’HSﬂl

| (4.16)

(Zheﬂs?_l mp)!

=Tl di h(n+1);r,c+nr)""].
HheH;Oil(mh!) [ 1gamma( (n );r, ¢ nr) ]

hEHﬁ)l
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It follows that

P{My =mp:h e Hpt1|Mp=mp:h e H,)

Z ) Mmp
(CT)\r,c—&-nr) hH

o mp)!
Qe ®, mn)

exp(_CT)”r,c+nr)

(4.17)
[T [betaNB(r(1+1):r. S(h) = h(n + 1), ¢ +nr)™ ]

+
hEHn+l

[Tren, (mnh)
nhGHLl (mp!)

© mpy)!
(ZhEHn-H )

X—
[ .o (my!)
Mt heM),

[digamma(h(n +1); 7, c + nr)mh].

Proof of Theorem 1.2. The proof is by induction. The p.m.f. P{M}, = m;,:h € H;} is given
by equation (4.7), which agrees with equation (1.10) for the case n = 1. The conditional p.m.f.
P{My =mp:h € Hpt1|Mp, =mp: h € H,} is given by equation (4.17). By the inductive hypoth-
esis, the p.m.f. P{My = mp:h € H,} is given by equation (1.10). Then by equation (4.3), we
have

P{Mp =mp:h € Hyt1}
(CT)(ZHEH" ") (¢T c+nr)(zhe7";(z(21 " ( n+1 )
= : exp

—cT E Arc+(j—Dyr
| | ’
[Thewt,, mnt) Hhe?—ti‘ﬁl (mp!) o

n

< I] B(S(h)—h(n+1),c+nr)]_[m (4.18)
: L%
heH, J=

mp
x beta-NB(h(n + 1); r, S(h) — h(n + 1), c + nr):|

X l_[ [digamma(h(n +1);r,c+ nr)]mh.

et

+

In the first product term on the right-hand side of equation (4.18), note that, forevery h € ', |,

B(S(h) —h(n+1),c+nr) ]_[ %}}()j')beta-NB(h(n +1;r, S(h) —h(n+1),c+nr)
Jj=1 '

n+1
=B(S(h).c+ @+ r)[]

j=1

(Mn)
h(H
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In the second product term, note that

1_[ [digamma(h(n +1);r,c+ nr)]mh

e
= -1 ey -
= ]_!0) |:)\r,c+nr m[ﬁ’(h(n +1,c+(n+ l)r)i|
heHnH
—(, @ mn) " . y
e [B(h(’“r D.c+@m+Dr) ][] h(j()J') :
he?—tfloll i |

(V]

where for the last equality, we have used the fact that h(j) =0 forevery j <nand h e H, 7.

Note that 3 ey, mn+ 22, ;0 Mh =3 9, Mn- Then equation (4.18) is equal to
" n+1 "

(cT)ZhEHnH i n+1
o my &P\ T vt in —v(e+ G = r)]
eHpt1 !

j=1
(4.19)

n+1 np
P

heHnt1 Jj=1

Noting that Z?:}[w(c 4+ jr)— v+ (G —Dr)]=v¢¥(c+ (n+ )r) — ¥(c), we obtain the
expression in equation (1.10) for n + 1, as desired. O

By construction, equation (1.10) defines the finite-dimensional marginal distributions of the
stochastic process (Mp) e, With index set Hoo := |, cry Hn- The exchangeability result given
by Theorem 1.3 then follows from the exchangeability of the sequence X|,).

5. Applications in Bayesian nonparametrics

In Bayesian latent feature models, we assume that there exists a latent set of features and that
each data point possesses some (finite) subset of the features. The features then determine the
distribution of the observed data. In a nonparametric setting, exchangeable sequences of sim-
ple point processes can serve as models for the latent sets of features. Similarly, exchangeable
sequences of point processes, like those that can be constructed from beta negative binomial pro-
cesses, can serve as models of latent multisets of features. In particular, atoms are features and
their (integer-valued) masses indicate multiplicity. In this section, we develop posterior inference
procedures for exchangeable sequences of beta negative binomial processes.
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5.1. Representations as random arrays/matrices

A convenient way to represent the combinatorial structure of an exchangeable sequence of point
processes is via an array/matrix W of non-negative integers, where the rows correspond to point
processes and columns correspond to atoms appearing among the point processes. Informally,
given an enumeration of the set of all atoms appearing in X[, the entry W; ; associated with the
ith row and jth column is the multiplicity/mass of the atom labeled j in the ith point process X;.

More carefully, fix n € N and let (M},),e3, be the combinatorial structure of a sequence
X1, ..., X, of conditionally i.i.d. negative binomial processes, given a shared beta process base
measure with concentration parameter ¢ > 0 and non-atomic base measure By of finite mass 7.
Let k := Zhe?—l,, M, be the number of unique atoms among X[,). Then W is an n x « array
of non-negative integers such that, for every h € H,,, there are exactly M}, columns of W equal
to h, where & is thought of as a length-n column vector. Note that W will have no columns when
k=0.

All that remains is to order the columns of W. Every total order on #, induces a unique
ordering of the columns of W. Titsias [26] defined a unique ordering in this way, analogous
to the left-ordered form defined by Griffiths and Ghahramani [10] for the IBP. In particular,
for h,h' € H,, let < denote the lexicographic order given by: & < k' if and only if h =/’ or
h(n) < I (n), where 7 is the first coordinate where & and h’ differ. We say W is left-ordered
when its columns are ordered according to <. Because there is a bijection between combinatorial
structures (M), e, and their unique representations by left-ordered arrays, the probability mass
function of W is given by equation (1.10).

Other orderings have been introduced in the literature: If we permute the columns of W uni-
formly at random, then W is the analogue of the uniform random labeling scheme described by
Broderick, Pitman and Jordan [4] for the IBP. Note that the number of distinct ways of ordering
the x columns is given by the multinomial coefficient

K!
Hhe?-t,, Mp!

where the denominator arises from the fact that there are M}, indistinguishable columns for every
history & € H,. The following result is then immediate:

5.1

Theorem 5.1. Let W be a uniform random labeling of (Mp,)pen, described above, let w € Z:'_Xk
be an array of non-negative integers with n rows and k > 0 non-zero columns, and for every
j<kletsj:=>"7_|wj bethe sum of column j. Then

n

k k . .
P{W = w) = (CkT) exp(—cT [ (c +nr) =y (©]) [ ] |:l"(s])l"(c Seh | D } (5.2)
j=1

! L(sj+c+nr) Pl w;, ;!

An array representation makes it easy to visualize some properties of the model. For example,
in Figure 1 we display several simulations from the NB-IBP with varying values of the param-
eters T, ¢, and r. The columns are displayed in the order of first appearance, and are otherwise
ordered uniformly at random. (A similar ordering was used by Griffiths and Ghahramani [10] to
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I S
T=3c=087r=17

Figure 1. Simulated Z -valued arrays from the NB-IBP. Dots are positive entries, the magnitudes of which
determine the size of the dot. The total mass parameter 7 is varied along the top row; the concentration
parameter c is varied along the middle row; the negative binomial parameter r is varied along the bottom
row. See the text for a summary of how these parameters affect the expected number of features in total,
features per row, and feature multiplicities.

introduce the IBP.) The relationship of the model to the values of 7" and ¢ are similar to the char-
acteristics described by Ghahramani, Griffiths and Sollich [7] for the IBP, with the parameter r
providing flexibility with respect to the counts in the array. In particular, the total number of fea-
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tures, k, is Poisson distributed with mean cT [y (c + nr) — ¥ (c)], which increases with T', ¢, and
r. From the NB-IBP, we know that the expected number of features for the first (and therefore,
by exchangeability, every) row is 7. Because of the ordering we have chosen here, the rows are
not exchangeable, despite the sequence X|,} being exchangeable. (In contrast, a uniform random
labeling W is row exchangeable and, conditioned on «, column exchangeable.) Finally, note that
the mean of the digamma(r, ¢) distribution exists for ¢ > 1 and is given by

,
(c=DWr+e)=y(©)

which increases with r and decreases with c. This is the expected multiplicity of each feature
for the first row, which again, by exchangeability, must hold for every row. We may therefore
summarize the effects of changing each of these parameters (as we hold the others constant) as
follows:

(5.3)

e Increasing the mass parameter 7 increases both the expected total number of features and
the expected number of features per row, while leaving the expected multiplicities of the
features unchanged.

e Increasing the concentration parameter ¢ increases the expected total number of features
and decreases the expected multiplicites of the features, while leaving the expected number
of features per row unchanged.

e Increasing the parameter r increases both the expected total number of features and the
expected multiplicities of the features, while leaving the expected number of features per
row unchanged.

These effects can be seen in the first, second, and third rows of Figure 1, respectively. We note
that » has a weak effect on the expected total number of features (seen in the third row of Fig-
ure 1), and ¢ has a weak effect on the expected multiplicities of the features (seen in the second
row of Figure 1). The model may therefore be effectively tuned with 7" and ¢ determining the
size and density of the array, and r determining the multiplicities. The most appropriate model
depends on the application at hand, and in Section 5.3 we discuss how these parameters may be
inferred from data.

5.2. Examples

Latent feature models with associated multiplicities and unbounded numbers of features have
found several applications in Bayesian nonparametric statistics, and we now provide some ex-
amples. In these applications, the features represent latent objects or factors underlying a dataset
comprised of n groups of measurements yi, ..., y,, where each group y; is comprised of D;
measurements y; = (y;,1, ..., yi,p;)- In particular, W; ; denotes the number of instances of ob-
ject/factor j in group i.

These nonparametric latent feature representations lend themselves naturally to mixture mod-
els with an unbounded number of components. For example, consider a variant of the models
by Sudderth et al. [22] and Titsias [26] for a dataset of n street camera images where the la-
tent features are interpreted as object classes that may appear in the images, such as “build-

LL RT3 LTI

ing”, “car”, “road”, etc. The count W; ; models the relative number of times object class j



2320 C. Heaukulani and D.M. Roy

appears in image i. For every i < n, image y; consists of D; local patches y; 1,...,y; p, de-
tected in the image, which are (collections of) continuous variables representing, for example,
color, hue, location in the image, etc. Let « be the number of columns of W, that is, the num-
ber of features. The local patches in image i are modeled as conditionally i.i.d. draws from a
mixture of §; = 27:1 Wi, ; Gaussian distributions, where W; ; of these components are asso-

ciated with feature j. For k = 1,2, ..., let @l(j»k) = (mﬁj’k), Zl.(j’k)) denote the mean and co-
variance of the Gaussian components associated with feature j for image i. Let z; 4 = (j, k)
when y; 4 is assigned to component k < W; ; associated with feature j < «. Conditioned on
0= (@fj’k))ign,jf,(’kswiyj and the assignments z := (z; ¢)i<n,d<D;, the distribution of the mea-
surements admits a conditional density
n Dj
pGIW, 0,2 =[[[[N(iam™, =7). (5.4)

i=ld=1

To share statistical strength across images, the parameters @;J ) are given a hierarchical
Bayesian prior:

oYMV S v(®Y))  forevery i and k, (5.5)
e L Vo for every j. (5.6)

A typical choice for v(-) is the family of Gaussian—inverse-Wishart distributions with feature-
specific parameters @) drawn i.i.d. from a distribution v. Finally, for every image i < n, condi-
tioned on W, the assignment variables z; 1, ..., z;, p, for the local patches in image n are assumed
to form a multivariate P6lya urn scheme, arising from repeated draws from a Dirichlet-distributed
probability vector over {(j, k) : j <«,k < W; ;}. The parameters for the Dirichlet distributions
are tied in a similar fashion to ®. The interpretation here is that local patch d in image i is
assigned to one of the S; instances of the latent objects appearing in the image. The number of
object instances to which a patch may be assigned is specific to the image, but components across
all images that correspond to the same feature will be similar.

Latent feature representations are also a natural choice for factor analysis models. Canny [5]
and Zhou et al. [28] proposed models for text documents in terms of latent features representing
topics. More carefully, let y; , be the number of occurrences of word v in document i. Condi-
tioned on W and a collection of non-negative topic-word weights © := (6} 1) j<«,v<v, the word
counts are assumed to be conditionally i.i.d. and

K
Yi.o|W, © ~ Poisson <Z W,~,A,~9.,~,v> : (5.7)

j=1

In other words, the expected number of occurrences of word v in document i is a linear sum of a
small number of weighted factors. The features here are interpreted as topics: words v such that
0;,v is large are likely to appear many times. There are a total of « topics that are shared across the
documents. The topic-word weights ® are typically chosen to be i.i.d. Gamma random variates,
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although there may be reason to prefer priors with dependency enforcing further sparsity. This
general setup has been applied to other types of data including, for example, recommendations
[8], where y; , represents the rating a Netflix user i assigns to a film v.

5.3. Conditional distributions

Let W be a uniform random labelling of a NB-IBP as described in Section 5.1. In the applica-
tions described above, computing the posterior distribution of W is the first step towards most
other inferential goals. Existing inference schemes use stick-breaking representations, that is,
they represent (a truncation of) the beta process underlying W. This approach has some advan-
tages, including that the entries of W are then conditionally independent negative binomial ran-
dom variables. On the other hand, the random variables representing the truncated beta process,
as well as the truncation level itself, must be marginalized away using auxiliary variable methods
or other techniques [3,19,23,28]. Here, we take advantage of the structure of the NB-IBP and
do not represent the beta process. The result is a set of Markov (proposal) kernels analogous to
those originally derived for the IBP [7,10].

The models described in Section 5.2 associate every feature with a latent parameter. There-
fore, conditioned on the number of columns «, let ® = (61, ..., 6,) be an i.i.d. sequence drawn
from some non-atomic distribution vg, and assume that the data y admits a conditional density
p(yIW, ®). We will associate the jth column of W with ©;, and so the pair (W, ®) can be seen
as an alternative representation for an exchangeable sequence X[, of beta negative binomial
processes. By Bayes’ rule, the posterior distributions admits a conditional density

p(W,0|y) o« p(y|W, ®) x p(W, ©), (5.8)

where p(W, ®) is a density for the joint distribution of (W, ®). We describe two Markov kernels
that leave this distribution invariant. Combined, these kernels give a Markov chain Monte Carlo
(MCMC) inference procedure for the desired posterior.

The first kernel resamples individual elements W; ;, conditioned on the remaining elements
of the array (collectively denoted by W_g; ;)), the data y, and the parameters ©. By Bayes’ rule,
and the independence of ® and W given «, we have

P{W;,;j =zly, W_¢ ), ©}
(5.9)
o p(y{Wi,j =z}, W_gi j), ©) x P{W; j = 2| W_¢i jy}.

Recall that the array W is row-exchangeable, and so, in the language of the NB-IBP, we may
associate the ith row with the final customer at the buffet. The count W; ; is the number of serv-

ings the customer takes of dish j, which has been served Sﬁ_i) = Zi,# W, ; times previously.
When S;fi) > (0, we have

Wi jIW_q.j) ~ beta-NB(r. S c + (n — D)r). (5.10)

Therefore, we can simulate from the unnormalized, unbounded discrete distribution in equa-
tion (5.9) using equation (5.10) as a Metropolis—Hastings proposal, or we could use inverse
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transform sampling where the normalization constant is approximated by an importance sam-
pling estimate.

Following Meeds et al. [17], the second kernel resamples the number, positions, and values
of those singleton columns j’ such that S ) Simultaneously, we propose a corresponding
change to the sequence of latent parameters ©, preserving the relative ordering with the columns
of W. This corresponding change to ® cancels out the effect of the «! term appearing in the
p-m.f. of the array W. Let J; be the number of singleton columns, that is, let

Ji=#{j <K:Wi;>0and 8\ =0}, (5.11)

which we note may be equal to zero. Because we are treating the customer associated with row
i as the final customer at the buffet, J; may be interpreted as the number of new dishes sampled
by the final customer, in which case, we know that

Ji ~Poisson(cT [ (c +nr) — ¢ (c+ (n — Dr)]). (5.12)

We therefore propose a new array W* by removing the J; singleton columns from the array and
insert J* new singleton columns at positions drawn uniformly at random, where J;* is sampled
from the (marginal) distribution of J; given in equation (5.12). Like those columns that were
removed, each new column has exactly one non-zero entry in the ith row: We draw each non-zero
entry independently and identically from a digamma(r, ¢ + (n — 1)r) distribution, which matches
the distribution of the number of servings the last customer takes of each newly sampled dish.
Finally, we form a new sequence of latent parameters ®* by removing those entries from
® associated with the J; columns that were removed from W and inserting Ji* new entries,
drawn i.i.d. from ve, at the same locations corresponding to the J* newly introduced columns.

Let k* :=« — J; + J7, and note that there were (51) possible ways to insert the new columns.
Therefore, the proposal density is

*

-1
q(W*, 0*|W,0) = (’;,k) Poisson(J;*; cT [y (c + nr) — ¥ (c+ (n — D)r)])
' (5.13)

x l_[ digamma(W;*;; 7, ¢+ (n — 1)r) 1_[ ve (0).
<k 0eO"\0

With manipulations similar to those in the proof of Theorem 1.2, it is straightforward to show that
a Metropolis—Hastings kernel accepts a proposal (W*, ®*) with probability min{1, &*}, where

I CILARCY
POIW,©)

Combined with appropriate Metropolis—Hastings moves that shuffle the columns of W and re-
sample the latent parameters ®, we obtain a Markov chain whose stationary distribution is the
conditional distribution of W and ® given the data y.

Another benefit of the characterization of the distribution of W in (5.1) is that numerically
integrating over the real-valued concentration, mass, and negative binomial parameters c, 7', and

(5.14)
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r, respectively, are straightforward with techniques such as slice sampling [18]. In the particular
case when T is given a gamma prior distribution, say 7 ~ gamma(c, 8) for some positive pa-
rameters « and B, the conditional distribution again falls into the class of gamma distributions.
In particular, the conditional density is

p(TIW, k) o T* T Lexp(—cT [y (c +nr) — ¥ (c)] — BT) (5.15)
oc gamma(T; & + k., B+ cT[Y(c+nr) — ¥ (0)]). (5.16)
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