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Abstract. This paper is a study of the combinatorics of unconditionally secure 
secrecy and authentication codes, under the assumption that each encoding rule is 
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bounds on the number of encoding rules required in order to obtain maximum 
levels of security. Some constructions are also given for codes which have the 
minimum number of encoding rules. These constructions use various types of 
combinatorial designs. 
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1. Authentication and Secrecy 

This paper is a study of the combinatorics of  secrecy and authent icat ion codes. We 

are interested in the unconditional, or theoretical, security provided by such codes. 

That  is, we assume that any opponents  have unlimited computa t ional  resources. 

The theory of  uncondit ional  secrecy is due to Shannon  [16]. More  recently, 

Simmons has developed an analogous theory of  uncondi t ional  authenticat ion [17], 

[19], [203, [21]. 

By the combinatorics of codes, we are referring to two aspects. First, the bounds 

on the security of the codes and on the min imum sizes of  codes attaining specified 

levels of  security are combinatorial  in nature and/or  are proved by combinator ia l  

(i.e., counting) arguments. Second, the construct ions for "good"  codes which meet 

the various bounds  with equality make essential use of combinator ia l  designs. This 

will become evident in the rest of the paper. Fo r  a general refernce on design theory, 

we ment ion  [13. 

We use the model  of a secrecy system developed by Shannon  in [163, updated to 

include authentication, as described in [11]. In  this model ,  there are three partici- 

pants: a transmitter, a receiver, and an opponent. The transmitter  wants  to com- 

municate some information to the receiver using a public communica t ions  channel. 

The source state (or plaintext) is encrypted to obtain the message (ciphertext), which 
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Fig. 1. Shannon's  model  of a general secrecy system. 

is sent through the channel. An encoding rule (or key) e defines the message e(s) to 

be sent to communica te  any source state s. Each  encoding rule will be a one- to-one 

function from the source space to the message space. We assume the transmitter has 

a key source from which he obtains a key. Pr ior  to any messages being sent, this 

key is communica ted  to the receiver by means of  a secure channel. Figure 1 shows 

our  model, taken from [11]. 

We use the following notation. Let Se be a set of  k source states, let ~ be a set of  

v messages, and let 8 be a set of  b encoding rules. As stated above, each encoding 

rule is a one- to-one function from 6 a to ~ ' .  I t  is useful to think of  a code as being 

represented by a b x k matrix, where the rows are indexed by encoding rules, the 

columns are indexed by source states, and the entry in row e and column s is. e(s). 

We call this matrix the encoding matrix. For  any encoding rule e e 8, define M(e) = 

{e(s): s ~ re}, i.e., the set of  valid messages under  encoding rule e. For  an encoding 

rule e, and a set of messages M c_ M(e), define fe(M) = S if {e(s): s ~ S} = M, that  

is, fe(M) is set of source states which are encrypted  to the set of messages M under  

encoding rule e. 

Assume that  the same key is used to encrypt  up to L consecutive source states, 

where L is some fixed positive integer. We make  the following simplifying assump- 

tions, which are not  strictly necessary, but  which avoid some difficulties in the 

mathematical  analysis. First, we assume that  the L source states that occur are all 

distinct. Second, we ignore the order  in which the messages are sent through the 

channel, and the order in which the cor responding  source states occur. Hence, we 

refer only to sets of L messages or  source states occurr ing (as opposed to sequences). 

Finally, for any i < L, we assume that  there is some probabil i ty distribution on the 

set of  i subsets of  source states, so that  any set of  i source states has a nonzero  

probabil i ty of  occurring. Given a set of  i source states S, we denote by p(S) the 

probabil i ty that the source states in S are the i source states that occur. 

We should note that other researchers have considered the order  in which 

messages and source states occur (this is the model  used in [4], [11], [12], and [15-1). 

In such a model, we would speak of  sequences of  messages observed in the channel  

corresponding to sequences of  source states. Of  course, for L = 1, the two models 

are equivalent, but  for L > 1, there are impor tan t  differences. 

First, we consider the proper ty  of  secrecy. Assume an opponent  observes i ( < L) 
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distinct messages being sent over the communicat ion channel using the same 

encoding rule. Although he knows that the same encoding rule is being used to 

transmit the i messages, he does not know what that encoding rule is. Our  goal is 

that the opponent be unable to determine any information regarding the i source 

states from the i messages he has observed. This concept is made precise as follows. 

We say that a code has perfect L-fold secrecy if, for every L' < L, for every set M' 

of L' messages observed in the channel, and for every set Sz of L' source states, we 

have the p(Sz[M 1) = p(S 1). That  is, the conditional probability distribution on the 

L'  source states after observing a set of L'  messages in the channel is the same as 

the a priori probability distribution on the L' source states. 

Example 1.1. A code having k = 4 source states, v = 4 messages, and b = 4 en- 

coding rules, and which achieves perfect onefold secrecy. Use each encoding rule 

with probability 1/4. 

S 1 S 2 S 3 S 4 

ez 1 2 3 4 

ez 2 1 4 3 

e 3 3 4 1 2 

e4 4 3 2 1 

An important  consideration in the construction of a code is the number of 

encoding rules. For, the encoding rule is information that must be communicated 

using a secure channel. If there are b encoding rules, then logz b bits of key must be 

communicated. Hence, it is clear that we want to minimize b. In general, b may 

depend on v, k, and the level of secrecy required. Having proved a lower bound on 

b as a function of these other parameters, we would want to find constructions for 

codes where the number of encoding rules meets, or is close to, the lower bounds. 

These are the main objectives in this paper. 

The following is a lower bound required on the number of encoding rules required 

in a code having perfect L-fold secrecy. We prove this bound in Section 2. 

Theorem 2.1. I f  a code achieves perfect L-fold secrecy, then 

The above theorem is a straightforward generalization of the well-known result 

of Shannon [16] that a code achieving perfect onefold secrecy must have at least as 

many  keys as source states. Let us say that a code achieving L-fold secrecy is optimal 

if 

As an example, we mention the Vernam one-time pad ['28], which is an optimal 

onefold secrecy code. In Section 2 we construct some optimal twofold and threefold 
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secrecy codes using a type of combinatorial  design called a perpendicular array. 

Conversely, we show that optimal L-fold secrecy codes can be constructed only in 

this fashion. 

Next, we extend the model of  the secrecy system to include authentication in the 

same way as Massey did in [11]. As before, an opponent  observes i distinct messages 

which are sent using the same encoding rule. However, the opponent  now has the 

ability to introduce new messages into the channel and/or to modify existing 

messages. Assume the opponent  places a message m' into the channel by either of 

these methods, where m' is distinct from the i messages already sent. His goal is to 

have m' accepted as authentic by the receiver. That  is, if e is the encoding rule being 

used, then the opponent is hoping that m' = e(s) for some source state s. In [11] 

Massey calls this a spoofing a t tack  of order i. This problem was first studied in [6]. 

The special case i = 0 and i = 1 were analyzed by Simmons in [17], [19], and [20]. 

The case i = 0 is called the impersonat ion game, and the case i = 1 is called the 

subst i tu t ion game. More recently, several other researchers have studied these cases; 

see, for example, [2], [11], [5], and [25]. Less is known about  the cases i > 2; some 

results can be found in [5], [15], [26], and [27]. 

Given the probability distributions on the source states described above, the 

receiver and transmitter will choose a probabili ty distribution for ~, called an 

encoding s trategy .  It is assumed that the opponent  knows the encoding strategy 

being used. Once the transmitter/receiver have chosen encoding strategies, we can 

calculate, for each i > 0, a probabili ty denoted Pd~, which is the probabili ty that the 

opponent  can deceive the transmitter/receiver with a spoofing attack of order i. The 

following lower bound on Pd~ can be proved. 

Theorem [11, p. 12]. In  an authent ica t ion  code with k source s ta tes  and v messages,  

Pd, > (k --  i)/(v --  i). 

Following Massey [11], we say that the authentication code is L-fo ld  secure 

against  spoof ing i f  Pd~ = (k - i)/(v - i) for 0 <_ i _< L. We refer to this bound as the 

combinator ial  bound, since it does not take into account the probability distribu- 

tions on the source states and encoding rules. Other lower bounds on Pd~ can be 

proved, which depend on the entropies of these probability distributions. Given a 

particular code, these entropy bounds measure how "efficiently" information is 

being sent through the channel. We do not discuss these bounds in this paper, 

instead we refer to [2], [20], and [25]. 

Define an (Ls, LA)-Code to be a code which achieves perfect Ls-fold secrecy and 

is LA-fold secure against spoofing. If we want a code to have secrecy and authenti- 

cation, then we would most likely require that L s be close to L A. The cases L s = LA 

and Ls = LA + 1 are both very natural special cases to study. These (L s, L s - 1)- 

codes are probably most natural to consider when the opponent can introduce new 

messages into the channel but cannot modify existing messages. For, under these 

assumptions, the receiver would ignore any messages received after he has received 

L s messages in the channel. If  the opponent  can also modify existing messages, then 

it is of interest to study (Ls, Ls)-codes. In these two cases, we have lower bounds on 

the number  of encoding rules required in any such code, as follows. 
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Theorem [26, Theorem 2]. I f  a code  ach ieves  per fec t  Ls - fo ld  s ecrecy  

(L s - 1)-fold secure  agains t  spoof ing,  then  

b >_ L s  

and  is 

Theorem 4.1. I f  a code achieves  per fec t  L s - f o l d  s ec recy  and  is L s - f o ld  secure  aga ins t  

spoo f ing  f o r  any  source  probab i l i t y  d i s t r ibu t ion ,  then  

b >  L s  k - -  Ls"  

An (L s, LA)-code, where Ls = LA or L s = L A d- 1, is op t ima l  if the number  of 

encoding rules meets the appropr ia te  lower bound  with equality. Construct ions 

have been given for infinite classes of  opt imal  (1, 0)-codes in [5], for optimal 

(2, 1)-codes in [26], and for nearly opt imal  (3, 2)-codes in [27]. These construct ions 

are reviewed in Section 3, and some const ruct ions  are also given for optimal and 

near-opt imal  (Ls, Ls)-codes in Section 4. 

Example 1.2. An optimal (2, 1)-code having k = 5 source states, v = 5 messages, 

and b = 10 encoding rules. Use each encoding rule with probabili ty 1/10. 

S 1 S 2 S 3 S 4 S 5 

e I 1 2 3 4 5 
e z 2 3 4 5 1 

e 3 3 4 5 1 2 

e, 4 5 1 2 3 

e 5 5 1 2 3 4 

e 6 l 3 5 2 4 

e 7 2 4 1 3 5 

e 8 3 5 2 4 1 

e 9 4 1 3 5 2 

elo 5 2 4 1 3 

The next topic we address in this paper  is authent icat ion w i t h o u t  secrecy. We note 

that  there are applications where we require a code that provides authentication, 

but secrecy cannot  be tolerated. For  example, this si tuation arose in the authenti-  

cation of da ta  to verify compliance with a nuclear  weapons test ban treaty [18]. 

Hence, we define a code to have per f ec t  d i sc losure  if any message m observed in 

the channel determines a unique source state s. (Sometimes the term Cartesian is 

used to describe this situation.) In  terms of  probabi l i ty  distributions, we require that 

p(s lm)  = 1 and p(s lm ' )  = 0 i fm '  ¢ m. 

It  is easy to see that a code with perfect disclosure cannot  be even onefold secure 

against spoofing. We therefore prove in Section 5 the following lower bound  on P d  i 

for codes with perfect disclosure. 
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Theorem 5.1. I f  a code has perfect disclosure, then Pd o > k/v. Moreover,  i f  

Pd o = k/v, then Pd L > k/v for  any L > O. 

We then prove the following bound on the number of encoding rules. 

Theorem 5.2. I f  a code has perfect disclosure, and Pdi = k/v for  0 < i < L - 1, then 

b > (v/k) TM. 

Then we give constructions for codes that meet these bounds and do so with the 

minimum number of encoding rules. 

Example 1.3. A perfect disclosure code having k = 4 source states, v = 12 mes- 

sages, and b = 9 encoding rules, for which Pdo = Pdl  = 1/3. Use each encoding rule 

with probability 1/9. 

$I $2 $3 S4 

e 1 1 4 7 10 

e 2 1 5 8 11 

e 3 1 6 9 12 

e4 2 4 8 12 

e 5 2 5 9 10 

e 6 2 6 7 11 

e~ 3 4 9 11 

es 3 5 7 12 

e 9 3 6 8 I0  

The bounds we give in this paper are all combinatorial, in the sense that they are 

independent of the various probability distributions involved. Moreover, most of 

the codes we construct in this paper attain the desired level of secrecy and/or  security 

against spoofing for an arbitrary source probability distribution. (Unless otherwise 

stated, any code in this paper will have this property). This is clearly a very desirable 

property, since we might not even know the source probability distribution, for 

example. 

With regard to secrecy codes, we prove in Section 2 that a code having perfect 

L-fold secrecy for some f i x e d  source probability distribution will also achieve 

perfect L-fold secrecy for any source probability distribution. For  codes providing 

secrecy and authentication, the situation is more complex. In fact, it is easier to 

design codes if the source states are known to be equiprobable. For  example, 

suppose we consider a code that achieves perfect onefold secrecy and is onefold 

secure against spoofing. If this is to be true for an arbitrary source probability 

distribution, then at least v(v - 1)/(k - 1) encoding rules are required, by Theorem 

4.1. However, if the source states are known to be equiprobable, then we can achieve 

the same security from a code having only v ( v -  1 ) / ( k ( k -  1)) encoding rules, 

provided a suitable design exists (Theorem 6.4). Constructions for authentication/ 

secrecy codes for equiprobable source distributions are presented in Section 6. 
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We give an example to illustrate the effect of source probability distribution on 

the deception probabilities of an authentication code. 

Example 1.4. A code having k = 2 source states, v = 3 messages, and b = 3 en- 

coding rules, each used with probabili ty 1/3. Assume the source probability distri- 

bution is p(sl) = 6, p(s2) = 1 - 6, where 6 _> 1/2. Then Pdo = 2/3 for any value of 

6. However, Pd~ depends on 6, as follows. If  1 or 3 is observed in the channel, then 

the opponent succeeds with probabili ty 1/2. However, if 2 is the message in the 

channel, then the opponent can deceive the transmitter/receiver with probability 

6 (>_ 1/2) by substituting message 3. The probabili ty of observing 1, 2, and 3 are 

respectively 26/3, 1/3, and 2(1 - 6)/3. Hence, Pdl = (1 + 6)/3, which exceeds 1/2 

(unless 3 = 1/2). 

S 1 S 2 

el i 2 
e2 1 3 
e 3 2 3 

Next, let us mention the attributes of the codes we study in this paper  in relation 

to the taxonomy of authentication schemes Simmons has given in [23]. In the 

terminology of Simmons's taxonomy, we are studying codes that are uncondition- 

ally secure, both with and without secrecy, but without arbitration. All the codes in 

this paper are unconditionally secure, but in a given application it may be sufficient 

to use codes which offer only computational security. Computat ional  security is 

when the security is based on the assumed difficulty of solving some problem, e.g., 

RSA [14] is based on the infeasibility of factoring large integers. Finally, we note 

that the codes described in this paper  require that the transmitter and receiver trust 

each other, since either one can cheat the other in various ways. Simmons has 

constructed authentication codes in [22] which include an arbiter who can deter- 

mine with high probability when one of the transmitter or receiver is cheating (see 

also [3]). 

For  descriptions of authentication and secrecy codes in relation to other aspects 

of cryptography, we refer to [11], [12], and [24]. 

2. Secrecy Codes and Perpendicular Arrays 

The following theorem generalizes Shannon's  basic result that a code which achieves 

perfect onefold secrecy must satisfy b >_ k. 

Theorem 2.1. I f  a code achieves perfect L-fold secrecy, then 
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Proof. Let eo be any encoding rule and let M 1 ~ M(eo), I Mll = L. Let S 1 be any 

set of L source states. Assume there is no encoding rule et such that S~ = fe,(M1). 

Then p ( S I l M ~ ) =  0 ~ p(S1). Hence, we do not have perfect L-fold secrecy. Con- 

sequently, there are at least ( k )  encoding rules e such that M1 _c M(e). Therefore, 

[] 

We can construct codes which meet the above bound with equality using a type 

of combinatorial design known as a perpendicular array. A perpendicular array 

PA~( t ,k ,v )  is a 2 . ( ~ )  x k array, A, of the symbols  {l . . . . .  v}, which satisfies the 

following properties: 

(i) Every row of A contains k distinct symbols. 

(ii) For  any t columns of A, and for any t distinct symbols, there are precisely 2 

rows r of A such that the t given symbols all occur in row r in the given t 

columns. 

For  t > 2, it is easy to see that the property (i) is implied by the other assumptions. 

For information on PAs see [7], [9-1, and [13]. 

In using PAs to construct secrecy codes, the following result is important. 

Theorem 2.2 [9, Theorem 1.1]. Assume 0 < t' < t and 

Then, a PAz(t, k, v) is also a PAa,,)(t', k, v), where 

Hence, 

() 2- ---=0 modulo t . 
t '  t '  

Proof. Let A be a PAx(t, k, 0, and name the columns by 1 . . . . .  k. Let Y be any set 

of t' distinct symbols. For any set J '  of t' columns, define I(J')  to be the number of 

rows of A in which the symbols in Y are all contained in the columns in J'. We 

obtain some linear equations in the I(J') as follows. For  any set J of t columns, we 

get an equation 

I(J') = 2" . 
j ,  ~ j ,  lJ,l=t, t '  

In this way we get (~ )  equations in ( ~ )  unknowns. If 
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then the system has the unique solut ion 

C:::)/C,) 
for every J ' .  Consequently,  A is a PAx(c)(t', k, v), where 2(t ' )  is as above.  [] 

We can now prove  that  secrecy codes can be obta ined  f rom PAs. 

Theorem 2.3. I f  there exists a PAx(t, k, v), where k > 2t - 1, then there is a code for 

k source states with v messages and 2 . ( : )  encoding ruIes, which achieves perfect t-fold 

secrecy. 

Proof. Let A be a PA,(t ,  k, v). We cons t ruc t  an encoding rule from each row r of 

A: for each row r = (x I . . . . .  xk), and for each source state s (1 < s N k), define 
/ \ 

Use each encoding rule with probabi l i ty  1 / 2 " ( : ) .  er(S) = X s. 
\ - /  

It  is necessary only to prove that  we have perfect f - fo ld  secrecy for all t '  < t. Since 

k > 2 t -  1, w e h a v e  

C) C) - -  t '  ; 

hence A is a PAx(c)(f, k, v), by T h e o r e m  2.2. Therefore,  any set of t '  messages 

corresponds  equally often to every possible set of t '  source states. It is now an easy 

computa t ion  that  for every set S~ of t '  source states, and  for every set M x of t '  

messages, we have p(S 11M1) = p(S1). Fo r  

p(MIISO'p(S1) 
p(S 1 I M 1) = (by Bayes '  theorem) 

P(Mt)  

(2(t')/b). p(S~) 

~, p(e)" p(fe(M~)) 

( 2(t')/b) " p(S~ ) 

~ (1/b).p(S) 
{$_~5a: IS[=t' } {e: S=fMM,)} 

(2(t')/b)'p(S1) 

(1/b).2(t') 

= p ( S 1 ) ,  

as desired. This completes the proof.  [] 

We note  that  the condit ion k > 2t - 1 in Theo rem 2.3 is necessary, as shown by 

the following example.  

Example  2.1. The following is a P A l ( l ,  4, 4) and also a PAl(3,  4, 4), but  it is not  a 

PAx(2, 4, 4) for any 2. Hence, it provides  perfect onefold secrecy, but it does not  
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provide perfect twofold secrecy: 

1 2 3 4 

2 t 4 3 

3 4 1 2 

4 3 2 1 

Observe that the secrecy code constructed from a PA (via Theorem 2.3) is optimal 

if and only if2 = 1 and k = v. In fact, the existence of an optimal L-fold secrecy code 

implies the existence of a PAl(L, k, k) (in the case L = 1, this was noted by Shannon 

[16, p. 681]). 

Theorem 2.4. Assume there is an optimal L-fold secrecy code for  k source states. 

Then there is a PAl(L, k, k). 

Proof. Let e o be any encoding rule and let M1 ~ M(eo), ]Mtl = L. Let S~ be any 

set of L source states. As in the proof of Theorem 2.1, there is at least one encoding 

rule et such that St = fe,(Mt). In order for 

there must be exactly one such encoding rule. Consequently, M, ~ M(e) for all (L  k )  

encoding rules. Now, there are (Lk) different L-subsets of messages which are 

contained in M(eo). Each of these occurs in L encoding rules. On the other hand, 

each of the ( k )  encoding rules contains (Lk) different L-subsets of messages. It 

follows that M(eo) = M(e) for every encoding rule e, and that the encoding matrix 

is a PAt(L, k, k) on the symbols in M(eo). [] 

Hence, the arrays PAl(t, v, v) are of interest. Such arrays are known to exist as 

follows. 

Theorem2.5.  Fora l l i n t egersv  > 1, t h e r e i s P A l ( 1 ,  v ,v ) .Hence ,  f o r a l l v  >_ 1, there 

is an optimal code for  v source states having perfect onefold secrecy. 

Proofi Any Latin square of order v is a PAt(l ,  v, v). [] 

Let us give a brief description of the Vernam one-time pad 1-28] in this setting. 

Assume the source space 5e consists of all binary n-tuples (so k = 2"). Given any 

binary n-tuple w, define an encoding rule ew by ew(s) = w + s, where addition is 

componentwise addition modulo 2. Note that a message m is decoded by the same 

method: s = w + m. We have that b = 2 " =  k. It is not difficult to see that the 
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encoding matrix is a Latin square of order 2", i.e., a PAl( l ,  2", 2n). Of  course, this 

particular Latin square makes encoding and decoding very easy. 

Theorem 2.6. For any odd prime power q >_ 3, there is a PAl(2, q, q). Hence, for all 

such q, there is an optimal code for q source states having perfect twofold secrecy. 

Proofi This is a construction of Mullin et al. [13, Corollary 2.5]. Let g be a 

primitive element in the Galois field GF(q). For  0 < i <  ( q -  3)/2 and for all 

x ~ GF(q), define a row 

X X + g i  X + g i + l  X + gi+2 X + gi+3 . . .  X q-gi+q-2.  

It is easy to check that the resulting array is a PA~(2, q, q). []  

Some examples with t > 3 come from homogeneous permutat ion groups. A 

permutation group G is said to have degree n if it acts on a set, say S, of n symbols. 

Group  G is defined to be t-homogeneous if, for all t-subsets $1, $2 - S, there are the 

same number  of  permutations rce G such that ($1) = = S 2. The number  of such 7r 
/ \ 

must be I G I / ( n ) .  It is clear that if we write down the permutations in a t-homoge- 

neous group of degree n as the rows of an array, then we obtain a PA, as follows. 

Theorem 2.7 [27, p. 10]. Assume G is a t-homogeneous permutation group of 

degree n. Then there is a PAx(t, n, n), where 

Theorem 2.8 [27, Lemma 3.43. There exists a PAl(3, v, v) for v = 8 and 32. 

Proof. The groups AGL(1, 8) and AFL(1, 32) are 3-homogeneous (see, for ex- 

ample, [1]). Hence, they give rise to PAs with 2 = 1. []  

Example 2.2. A PAl(3, 8, 8). Develop the following rows modulo 7: 

x 0 1 2 3 4 5 6 

0 x 3 6 1 5 4 2 

1 3 x 4 0 2 6 5 

2 6 4 x 5 1 3 0 

3 1 0 5 x 6 2 4 

4 5 2 1 6 x 0 3 

5 4 6 3 2 0 x 1 

6 2 5 0 4 3 1 x 

The above three theorems provide examples of optimal L-fold secrecy codes when 

L = 1, 2, and 3. It  seems that no examples are known when L >_ 4. We have the 

following infinite class of PA3(3, v, v). 
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Theorem 2.9 [27, Theorem 3.5]. There exists a PA3(3, q + 1, q + 1) for all prime 

powers q - 3 modulo 4. Hence, for all such q, there is a code for q + 1 source states 

with (q3 _ q)/2 encoding rules, having perfect threefold secrecy. 

Proof. The group PSL (2, q) is 3-homogeneous of degree q + 1 ifq is a prime power 

and q = 3 modulo 4 (see [1]). Hence, it gives rise to PA with 2 = 3. [] 

We also have two examples of PA~(4, v, v). 

Theorem 2.10 [27, p. 12]. There exists a PA4(4, v, v) for v = 9 and 33. 

Proof. The groups PGL(2, 8) and PFL(2, 32) are both 4-homogeneous (see [1]), 

and yield the desired PAs. []  

Finally, we prove that a code which achieves perfect L-fold secrecy for some 

particular source probability distribution will do so for an arbitrary source prob- 

ability distribution. 

Theorem 2.11. Assume a code achieves perfect L-fold secrecy for a given source 

probability distribution Po. Then the same code achieves perfect L-fold secrecy for an 

arbitrary source probability distribution pl. 

Proofi Let p denote the probability distribution on the encoding rules. The condi- 

tion for perfect L-fold secrecy (with respect to probability distribution Po) is that, 

for every L' < L, for every set M~ of L' messages observed in the channel, and for 

every set S~ of L' source states, we have that po(SIlMt) = po(S~). By Bayes' theorem, 

this is equivalent to p0(Mt) = po(M~lS1), or that 

E p(e)'po(fe(M 1)) = Y" p(e). (*) 

We want to prove an analogous equality with respect to probability distribution 

Pl. We compute the following: 

p(e).po(f~(M t)) = ~ p l (S) ~ p(e) 
{e: M, _ M(e)} {S c_ 5.a: ISI=L "} {e: S=fe(Mt)} 

= ~" pl(S) ~ p(e).po(f~(M~)) (by(*)) 
{S ~6a: IS[=L'} {e: Mt c M(e)} 

= 1" ~, p(e) (by(*)) 
{e: St =f.(Mt)} 

as desired. This completes the proof. []  

3. Codes Providing Authentication and Secrecy:/,A = Ls - 1 

In this section we investigate the existence of (t, t - 1)-codes (i.e., L A = L s -- 1). 

First, let us prove the combinatorial lower bound on Pd i. 
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Theorem 3.1 [11, p. 12]. In an authentication code with k source states and v 

messages, Pd  i >_ (k - i)/(v - i). 

Proof.  Let  xj (1 < j < i + 1) be distinct messages (i > 0). Assume an opponen t  

observes the i messages xj (1 < j < i) in the channel,  and  then sends xi+ 1. Denote  

the probabi l i ty  that  the message x~+l is accepted by the receiver as authent ic  by 

payoff(xi+l). Then  

~, p ( e ) ' p ( { s l  . . . . .  s,} = {f~(xt) . . . . .  f~(x,)}) 

payoff(xi+ 1) = (e: x~,x2 ......... ~ M(e)} 
E p ( e ) ' p ( { s l  . . . . .  S,} = {f~(xl) . . . . .  f~(x,)}) " 

{e: x l , x 2 , . . . , x i  e M(e)} 

I t  follows that  

payoff(Xi+x) = k -- i. 
. . . .  ~{~, ....... } 

Hence, there must  be some xi+ 1 such that  payoff(x~+t) > (k - i)/(v - i). F o r  every 

set of  i messages {xj: 1 <__ j <_ i}, determine such an x~+l. This defines a subst i tut ion 

s trategy in which the t ransmit ter /receiver  can be deceived with probabi l i ty  at least 

(k - i)/(v - i). [] 

Next,  we prove  a lower bound on the n u m b e r  of  encoding rules required in an 

(Ls, Ls - 1)-code. 

Theorem 3.2 [26, Theorem 2]. I f  a code achieves perfect Ls-fold secrecy and is 

(L s - 1)-fold secure against spoofing, then 

(v) 
b_> Ls 

Proof.  Let  M1 be a set of i < L s - 1 messages which are valid under  a par t icular  

encoding rule. Let x be any message not  in M 1. Assume there is no encoding rule 

under  which all messages in M 1 w {x} are  valid. Then  a slight modif icat ion of the 

p roof  of  Theo rem 3.1 shows that  we would have Pdi > (k - i)/(v - i), a contradic-  

tion. Hence,  it follows that  every Ls-subset  of messages is valid under  at least one 

encoding rule. Now,  the code has perfect Ls-fold secrecy. Hence,  the p roo f  of 

Theo rem 2.1 states that  if an Ls-subset of  messages is valid under  some encoding 

( ) encoding rules (corresponding k to every rule, then it must  be valid under  at least Ls 

possible set of L s source states). 

We now count  pairs of  the form (e, M1), where e e 8, IM1] = Ls, and M 1 ~_ M(e).  

If  we choose e first, and then M t, we see tha t  the n u m b e r  of  such pairs  is exactly 

( k ) . O n t h e o t h e r h a n d ,  s u p p o s e w e c h o o s e M l ,  a n d t h e n e .  S e t M l c a n b e  
b" Ls  

(;) chosen in Ls ways• Then,  for each M z ,  there are at least choices for e. Hence, 
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  orefore there are at least Ls Ls 

• > o r  b >  . [ ]  
b Ls Ls Ls _ Ls 

We saw in the last section that  perpendicular  arrays PAx(t, k, v) yielded codes 

having t-fold secrecy. If we employ a PA that  enjoys an extra property,  the code 

constructed from a PAx(t, k, v) will also be (t - 1)-fold secure against spoofing, and 

hence will give rise to a (t, t - 1)-code. This motivates the following definition. A 

PAx(t, k, v), A, is said to be an authentication PA (and is denoted APAz(t, k, v)) if 

the following proper ty  holds: 

for any t '  < t - 1, and for any t '  + 1 distinct symbols x i (1 < i < t '  + 1), 

we have that among all the rows of A which contain all the symbols 

x~ (1 < i < t '  + 1), the t '  symbols xl (1 < i < t ') occur in all possible 

subsets of t' columns equally often. 

It can be shown (see Theorem 2.3 of  [27]) that an APAz(t, k, v) is also an 

APA~,,)(t', k, v) for all t '  _< t. Hence,  by T heo rem 2.2, a necessary condi t ion for the 

existence of an APA~(t, k, v) is that  

2 ( t ' +  1 ) . ( t  ,+k 1 ) - 0  m o d u l o ( ~ )  

for all t', 0 _< t' _< t - 1. We also observe that  if v > 2t - 1, then a PAx(t, v, v) is an 
APA. 

The following result was proved by Stinson and Teirlinck in Theorem 2.4 of [27]. 

Theorem 3.3. I f  there exists an APAz(t, k, v), then there is a (t, t - 1)-code for k 
/ \  

so.r  s eswh    so.esao   v  .co .. .les  heco eis optimal if  and 
only if  2 = I. 

P r o o f i  Let A be an APAx(t, k, v). Cons t ruc t  the code as in Theorem 2.2. We need 

only verify that Pd~ = (k - i)/(v - i), 0 < i _< t - 1. Let x~ (1 < i < t '  + 1) be distinct 

messages (0 < t' < t - 1). Assume an opponen t  observes the t '  messages x i (1 < i < 

t') in the channel, and then sends Xc+l. His chance of successful decept ion is 

calculated to be 

p(e) 'p({sl  . . . . .  se} = {f~(x~) . . . .  ,f~(x,,)}) 

Z p(e)'p({s~ . . . . .  s,,} = {f~(xa) . . . . .  f,(x,,)}) 
{e: x t , x 2  .. . . .  xt ,  e M(e)} 

p({s~ . . . . .  S,,} = { L ( x l )  . . . . .  L(x , , )} )  
= {e: x l , x2 , . . . , x t ,+  16M(e)}  

p({s~ . . . . .  s,,} = { L ( x ~ ) , . . . , L ( x , , ) }  ) ( s i n c e p ( e ) i s c o n s t a n t ) .  

{e: x l , x 2 , . . . , x , ,  e M(e)} 
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Now,  the n u m e r a t o r  of this expression is equal  to 

,~(t' + 1). 
t ' + l  t' ' 

since the PA is an APA. Also, the d e n o m i n a t o r  is equal  to 2(t')." Hence,  the 

probabi l i ty  of  decept ion is 

2(t"~- l ) ' ( t , k+  l ) (t' + l ) ' ( t ,  k l ) )  ( s ince2( t ,  + l) t ' + l b y T h e o r e m 2 . 2  ) 

k -  t I 

l ) - t ' "  

Hence,  Pd c = (k - t')/(v - t'), as desired. [ ]  

Let  us now consider the existence of APAs. In T h e o r e m  6.2 of  [5], some construc-  

t ions are given for opt imal  (1, 0)-codes using generalized quadrangles.  We observe 

now that  an opt imal  (1, 0)-code for k source states with v messages exists whenever  

k<_v. 

Theorem 3.4. For all v > k >_ 1, there exists an APAx(1, k, v). Hence an optimal 

(1, O)-code for  k source states with v messages exists. 

Proof. Let the first row of the PA be 1 2 3 " "  k. The  obta in  v - 1 further rows 

by developing modulo  v. [ ]  

The following theorem summarizes known results concerning APA 1 (2, k, v) when 

k = 3 or  5 (see [26] and [27]). 

Theorem 3.5. There exists an APA 1 (2, 3, v) i f  and only if v >_ 7 is odd. There exists 

an APAI(2,  5, v ) / f  v --- 1 or 5 modulo  10, v _> 11, v ¢ 15 [10]. 

The following infinite class of  APAs was cons t ruc ted  in [7]. 

Theorem 3.6. There exists an APAI(2,  k, q) if k is odd and q - 1 modu lo  2k is a 

prime power. Hence, there exists an optimal (2, 1)-code with k source states and q 

messages for  all such k and q. 

Proof. Let 09 be a primitive element in the finite field GF(q),  and let ~ = co tq-1)/k. 

F o r  each i = 1 . . . . .  (q - 1)/2k, for each j = 0, . . . ,  k - 1, and for each/3 ~ GF(q), 

define a row 

/3 + coi~ j 13 + coi~ l+j /3 + e~i~ 2+~ .. .  /3 + o~ic~ k-1+i. 

The  resulting a r ray  is an APA~(2, k, q). [ ]  
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Note  that  Example 1.2 is obtained from the above construction.  

We remarked earlier that a PAz(t, v, v) is an APA if v > 2t - 1. Hence,  we have 

the following results from the PAs constructed in Theorems 2.8-2.10. 

Theorem 3.7. There exists an APAI(3,  v, v) for  v = 8 and 32. There exists an 

APA3(3, q + I, q + I) for  all prime powers q -- 3 modulo  4, q > 7. There exists  an 

APA4(4, v, v ) for  v = 9 and 33. 

Of course, codes where the number  of messages equals the number  of source states 

(v = k) are of no practical use for authenticat ion,  since the probabil i ty of deception 

is 1. We build codes with more  messages than source states by means of a recursive 

construct ion using t-designs. A t-design S~(t, k, v) is a set of k-subsets (called blocks) 

of a v-set, such that  every t-subset occurs in exactly 2 blocks. 

Theorem 3.8 [27, Theorem 3.2]. Assume there is a t-design S~.(t, k, v) and an 

APA~(t, k, k). Then there is an APAa.~,(t, k, v). 

Proof. For  each block in the Sa,(t, k, v), construct  an APAx(t, k, k). The  union of  

all these APA~(t, k, k) is an APA~.~,(t, k, v). [ ]  

We use a class of 3-designs known as inversive geometries in our  recursive 

construction. An inversive geometry is a 3-design $1(3, q + 1, qa + 1), which exists 

for all pr ime powers q and for all d >_ 1 (see [29] or [1]). Hence, we obtain 

Theorem 3.9 [27, Theorem 3.5]. For any prime power q - 3 modulo  4 (q _> 7), and 

for  any d >_ 1, there exists an APA3(3, q + 1, qa + 1). Hence, a (3, 2)-code with q + 1 

source states, qd + 1 messages, and (q3a _ qn)/2 encoding rules exists. 

Theorem 3.9 allows us to construct  a (3, 2)-code for as many  source states as 

desired (by taking q large enough), and incorporat ing any desired level of  authenti-  

cation security. For  the resulting code has Pd i approximately  equal  to 1/q d-t 

(i = 0, i, 2), which can be made arbitrari ly small by taking d large enough.  

We also obtain the following. 

Theorem 3.10 [27, Theorem 3.6]. For any d > 1, there exists an APAI(3,  8, 7 a + 1) 

and an APA x (3, 32, 31 d + 1), and hence an optimal (3, 2)-code with q + 1 source states 

and qa _1_ 1 messages, for  q = 7 or 31. 

Finally, we prove the following partial  converse to Theorem 3.3. 

T h e o r e m  3.11.  I f  there exists a code for  k source states with v messages and ( ~ )  

encoding rules which achieves perfect Ls-fold secrecy and is (L s -- 1)-fold secure 

against spoofing for  an arbitrary source probability distribution, and k >_ 2t - 1, then 

there is an APAI( t  , k, v). 
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Proof. F r o m  the proof  of  Theorem 3.2, we can see that  every set of t messages 

cor responds  to every set of t source states exactly once, since 

Hence, the encoding matrix is a PAl( t ,  k, v). Since k _> 2t - 1, the PAd(t, k, v) is also 

a PA~w)(t', k, v), for I _< t' <_ t. 

We must  show that  the PA is an APA. Since the encoding matr ix  is a PAl( t ,  k, v), 

every encoding rule must  be used with equal  probabi l i ty  in order  to at tain perfect 

secrecy. Now,  let x i (1 < i < t '  + 1) be distinct messages (0 < t' <_ t - 1). Assume 

an opponen t  observes the t '  messages xi (1 <_ i < t') in the channel, and then sends 

Xc+~. As in Theorem 3.3, his chance of successful decept ion is calculated to be 

~, p ( { s t , . . . ,  so} = (f~(x~) . . . . .  fe(xc)}) 
{e: x l . x z  . . . . .  xt,+ 1 ~ M(e)} 

Z p({s~ . . . . .  so} = {f~(xl) . . . . .  f~(x,,)}) ' 
{e: x l  , x  2 . . . . .  x t, • M(e)} 

and the denomina to r  is equal to 2(t ')  since the a r ray  is a PAa¢c)(t', k, v). 

Since this probabi l i ty  of deception is (k - t')/(v - t'), the numera to r  is deter- 

mined, i.e., 

p({sl . . . . .  so} = {f~(xx) . . . . .  f~(xc)}) = ).(t ').(k - t')/(v - t'). 
{e: x l , x 2  . . . . .  xt.+l e M(e)} 

This must  be true for every source probabi l i ty  distr ibution.  Hence, it follows that  

in the encoding rules in the above  summat ion ,  the t '  symbols  xi (1 _< i < t ')  occur 

in all possible subsets of t '  columns equally often. Thus,  the PA is an APA. [ ]  

4. Codes Providing Authentication and Secrecy: L A = L s 

Next,  we turn our  at tention to (t, t)-codes (i.e., LA = Ls). First, we prove  a lower 

bound on the n u m b e r  of encoding rules when it is required that  the code at tain the 

desired levels of security for an arb i t ra ry  source probabi l i ty  distribution. 

Theorem 4.1. I f  a code achieves perfect Ls-fold secrecy and is Ls-fold secure against 

spoofing for an arbitrary source probability distribution, then 

b >_ Ls k _  Ls .  

Proof.  Using an argument  similar to the p r o o f  of  T h e o r e m  3.2, we see that  every 

set of  L s + 1 messages is valid under  at  least one encoding rule, and every set of L s 

messages encodes every possible set of Ls source states. Let  M 1 be a set of L s 

messages which is valid under  some encoding rule eo, and  denote  $1 = feo(M1). 

Assume the source probabi l i ty  dis tr ibut ion is such that  p(S1) = 1 - e, for some e 

close to 0. Define E' = {e: {e(s): s ~ $1 } = Ma }, In order  that  the code be L-fold 

secure against  spoofing for the given source probabi l i ty  distribution, it must  be the 
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case that, for every message x ~ M1, there is an encoding rule e ~ E' under which x 

is valid. Hence, I E' I > (v - Ls) / (k  - Ls). 

The stated bound on b now follows by counting triples of the form (e, $1, M1), 

where e(Sx) = M1.  If we pick e, and then $1, then M~ is determined uniquely. Hence, 

b- ( k t On the other hand, if the number of such triples is exactly \ L s / "  we pick M1, 

then S~, and then e, we see that the number of such triples is at least 

v k v -  

(,s) Ls" []  

Remark .  In Theorem 5.3 of[5]  it was claimed that if an (Ls, LA)-code exists, where 

Ls < LA + 1, then 

v k k 1) 
However, the proof of this bound given in [5] is incorrect. We have three 

observations: 

(1) In the case L s = LA, we have shown in Theorem 4.1 that the bound (**) does 

hold if the security is required for an arbitrary source probability distribution. 

However, the proof of (**) given in [5] does not make use of any assumption 

about the source probability distribution. In Section 6, we construct (1, 1)- 

codes for equiprobable source distributions where the number of encoding 

rules is less than the bound (**) by a factor ofk. Hence, the extra assumption 

that the code be secure for an arbitrary source probability distribution is 

a necessary assumption in this case. 

(2) In the case L s = L A + 1, the bound (**) reduces to the bound proved in 

Theorem 3.2. Here, it is unnecessary to make any assumptions regarding the 

source probability distribution. 

(3) In the cases L s < LA, we do not know if the bound (**) is valid or not. 

A (t, t)-code for an arbitrary source probability distribution is defined to be optimal  

if the number of encoding rules meets the bound of Theorem 4.1 with equality. We 

give a construction for (t, t)-codes for arbitrary source probability distributions, 

which generalizes a construction for (1, 1)-codes due to Stinson [25, Corollary 3.11]. 

The construction also uses t-designs. 

Theorem 4,2. I f  there is a PAx(t, k, k) and an Sx,(t + 1, k, v), where k >_ 2t - 1, then 

there is a (t, t)-code fo r  k source states,  f o r  an arbi trary  source probabil i ty  distribution, 

having v messages  and 

encoding rules. 

Proof. For  every block B of the Sx,(t + 1, k, v), construct a PAz(t, k, k) on the 

points in B. Any S~,(t + 1, k, v) is also an Sx,,(t, k, v), where 2" = (2'(v - t))/(k - t). 
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Hence,  this produces  a PAz.z..(t, k, v), and  the result ing code has perfect t-fold 

secrecy, since k >_ 2t - 1. Also, the n u m b e r  of  encoding rules is 

k - t  

It remains to verify that  the code is t-fold secure against  spoofing. The  code is 

(t - 1)-fold secure against spoofing, by  Theo rems  3.3 and 3.8. So, to prove  the code 

is t-fold secure against  spoofing, let x~ (1 _< i _< t + 1) be distinct messages. Assume 

an opponen t  observes the t messages xl (1 _< i _ t) in the channel,  and then sends 

xt+~. In a similar fashion as T h e o r e m  3.3, it can be p roved  that  his chance 

of successful deception is 2 / 2 "  = (k - t)/(v - t). Hence, Pd, = (k - t)/(v - t), as 

desired. [ ]  

No te  that  the code constructed above  is op t imal  if and only if2 = 2' = 1. We can 

apply  this theorem to get infinite classes of  op t imal  (1, 1)-codes for a rb i t ra ry  source 

probabi l i ty  distributions. 

Theorem 4.3 [-25, Corol lary 3.11]. A s s u m e  there is an $1(2, k, v). Then there is an 

opt imal  (1, 1)-code f o r  an arbi trary source probabi l i t y  distribution,  with k source s ta tes  

and v messages.  

Proof.  We have noted that a PAl ( l ,  k, k) exists for all k. [ ]  

As an illustration, we can apply this result using projective geometries (see [1]). 

If  we take the lines of the projective geome t ry  of order  q and dimension d as blocks, 

we obta in  a design St(2, q + 1, (qe*t - 1)/(q - 1)). These are known to exist (for all 

d > 1) whenever q is a prime power. Hence,  we have 

Theorem 4.4. For  all prime powers  q and f o r  all d >_ 2, there is an optimal (1, 1)-code 

f o r  an arbi trary  source probabil i ty  dis tr ibut ion,  with q + 1 source  s tates  and (qd+l _ 1)/ 

( q -  I) messages.  

We also obtain  a class of(2, 2)-codes for an a rb i t ra ry  source probabi l i ty  distribu- 

tion, where the number  Of encoding rules is twice the opt imal  value. The  construc-  

t ion makes  use of  or thogonal  arrays,  which we now define. An orthogonal  array  

OA(k, v) is a v 2 x k array, A, of the symbols  { 1 . . . .  , v}, which satisfies the following 

property:  

for any t columns ct, . . . ,  ct of  A, and for any  t distinct symbols x x . . . . .  

x, ,  there is a unique row r of  A such tha t  x i occurs in column ci of  row 

r, f o r l  <_i<_t.  

F o r  any prime power  q, it is well known  tha t  there is an OA(q, q) with the p roper ty  

that  it constains q different "cons tan t"  rows, each of which contains one symbol  q 

times. (This ar ray  can be constructed f rom an affine plane of order  q, which is a 

2-design $1(2, q, q2).) If these q rows are removed,  then we have a PA2(2, q, q). 
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Theorem 4.5. For any Mersenne prime q, there is a (2, 2)-code for an arbitrary 

source probability distribution, with q + 1 source states, qa + 1 messages, and 

(qd + 1)(qd)(qd _ 1)/(q -- 1) encoding rules. 

Proof.  Since q + 1 = 2", for some n, there is an  OA(q + t, q + I). An S~(3, q + 1, 

qa + 1) is an inversive geometry.  Apply  T h e o r e m  4.2. [ ]  

Also, we construct  an opt imal  (2, 2)-code whenever  a Fe rma t  pr ime exists. 

Theorem 4.6. For any Fermat prime q = 2 n + 1, there is an optimal (2, 2)-code for 

an arbitrary source probability distribution, with q source states and (q - 1)d.+ 1 

messages. 

Proof.  T h e r e i s a P A l ( 2 ,  q, q); and an S1(3, q, (q - -  1 )  d d -  1) exists since q -- 1 = 2his 

a pr ime power.  Apply Theorem 4.2. [ ]  

Finally, we prove  a weak converse to T h e o r e m  4.2. 

Theorem 4.7. I f  there exists a code for k source states with v messages and 

t t 

encoding rules which achieves perfect t - fold secrecy and is t-fold secure against 

spoofing for an arbitrary source probability distribution, then there is an Sa(t + 1, k, v), 

where 

Proof.  Let  M1 be a set of t messages, and let x ~ M1. Let  S~ be any set of t source 

states, and define E' = {e: {e(s): s ~ $1 } = MI  }. F r o m  the p roof  of  Theo rem 4.1, in 

order  to have 

k - t '  

it mus t  be the case that  IE'l = (v - Ls)/(k -- Ls). Also, x must  occur  in exactly one 

encoding rule in E'. It follows that  the rows of the encoding matr ix  form a (t + 1)- 

design Sa(t + 1, k, v), where 

We note  that  the existence of the code hypothes ized in T h e o r e m  4.7 n e e d  not 

imply  the existence o f a  (t + 1)-design Sl(t  + 1, k, v). F o r  an APAI(2 ,  3, v) gives rise 

to a (2, 1)-code, which is certainly a (1, 1)-code. The  n u m b e r  of  encoding rules, 2 ' 

is indeed equal  to 

3 1 
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However,  there exist APAI(2,  3, v) for v -= 5 modu lo  6, v _> 11 (Theorem 3.5); 

whereas it can be shown by an e lementary count ing  a rgument  that an $1(2, 3, v) 

does not  exist if v - 5 modulo  6. 

5. Codes Providing Authentication Without Secrecy 

As ment ioned  in the introduct ion,  a code with perfect disclosure cannot  be even 

one-fold secure against  spoofing. In  general, we have the following lower bounds  

on Pdl for such codes. 

Theorem 5.1. I f  a code has perfect disclosure, then Pd o > k/v. Moreover,  i f  Pd o = 

k/v, then Pd z >_ k/v for  any L > O. 

Proof. By Theorem 3.1, Pd o > k/v. Assume that Pdo = k/v. In order that the code 

has perfect disclosure, there must  be v/k possible messages encoding each possible 

source state. Then  an argument  similar to that  used in the proof of Theorem 3.1 

shows that Pd L >_ k/v for any L > 0. [ ]  

The following example illustrates that  we can sometimes decrease the probabi l i ty  

Pdl  at the expense of increasing the probabi l i ty  Pdo, at least for some source 

probabi l i ty  distributions.  

Example 5.1. The following code has v = 9 messages, k = 3 source states, b = 16 

encoding rules, and  has perfect disclosure. 

Sl $2 $3 

e 1 1 2 6 
e 2 1 3 6 
e 3 1 4 6 
e 4 1 5 6 
e 5 1 2 7 
e 6 1 3 7 
e 7 1 4 7 
e 8 1 5 7 
e 9 1 2 8 
exo 1 3 8 

ell t 4 8 
e12 1 5 8 
e13 1 2 9 
el4 1 3 9 
els 1 4 9 

e16 1 5 9 

Assume the source dis t r ibut ion is p(sl)  = 98/100, p(Sz) = 1/100, p(s3) = 1/100, and  

each encoding rule is used with probabi l i ty  1/16. Then  Pd o = 1 (>k/v) ,  since 

message 1 is always accepted as authentic.  However,  

98 1 1 1 53 ( <  k/v). 
Pdl  = 1 - ~ ' 4  + ] - ~  "1 + 1--00 "1 = 2 0 0  
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Theorem 5.2. I f  a code has perfect disclosure, and Pdi = k/v for 0 <_ i <_ L, then 

b >_ (v/k) L+I. 

Proof. For  0 < i < L + 1, we prove that every set of i messages corresponding to 

different source states is valid under at least one encoding rule. Since there are v/k 

messages corresponding to each encoding rule, this implies b > (v/k) L+I. First, if 

i = 0, then every message must be valid under at least one encoding rule (otherwise, 

Pd o > k/v). As an induction hypothesis, assume that every set of i (>  0) messages 

corresponding to different source states is valid under at least one encoding rule. In 

order that Pd~ = k/v, the result must be true for every set of i + 1 messages corre- 

sponding to different source states. By induction, the result is true for sets of L + 1 

messages. []  

A perfect disclosure code for which Pdi = k/v for 0 < i < L, and in which b = 

(v/k) L+I, is said to be optimal. We can construct optimal perfect disclosure codes 

using transversal designs, which we now define. A transversal design TDx(t, k, n) is 

a triple (X, if, d ) ,  where X is a set of kn points, ff  is a partition of X into k groups 

of n points each, and ~¢ is a set of 2n t blocks, each of which meets each group in a 

point, such that every t-subset of points from distinct groups occurs in exactly 2 

blocks. 

We have the following construction, which was first given in the case t = 2 and 

2 = 1 in [2]. The special case of this construction using TDI  (2, q + 1, q) was in fact 

the first construction given in the literal~ure for authentication codes; see [6]. The 

verifications are routine, so we omit them. 

Theorem 5.3. I f  there exists a transversal design TDx(t, k, n), then there is a perfect 

disclosure code for k source states, having kn messages and 2n' blocks, and for which 

Pd i = 1/n ( = k/v) for 0 <_ i <_ t - i. The code is optimal if  and only if 2 = 1. 

We also have the following (partial) converse to Theorem 5.3. 

Theorem 5.4. Assume there is an optimal perfect disclosure code for k source states, 

having v messages and (v/k) t encoding rules, and for which Pdi = k/v for 0 < i <_ t - 1. 

Then there exists a transversal design T D  1 (t, k, n), where n = v/k. 

Proof. As in the proof of Theorem 5.2, every set of t messages corresponding to t 

different source states occurs in at least one encoding rule. In order that b = (v/k) t, 

"at least" must be "exactly." It  is then easy to see that we have a T D  1 (t, k, n). [] 

We now mention a family of transversal designs that are useful in the construction 

of Theorem 5.3. 

Theorem 5.5 [8, Lemma 3.5]. For any prime power q and for any t <_ q, there is a 

TDI(t ,  q + 1, q). Hence, there is an optimal perfect disclosure code for q + 1 source 

states, having q2 -t- q messages and qt encoding rules, and for which Pdi = 1/q for 

O<<_i<_t -1 .  
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Proof. 

elements of GF(q), define a row 

t -1  t - i  

(~0 0~'--1 2 (~J 2 ~J~J 
j=o j=o 

The resulting array is a TD 1 (t, q + 1, q). 

Let fl be a primitive element of GF(q). For  any t-tuple (~o . . . .  , ~,-1) of 

t - -1  t - - I  

20~J ~2j "'" 2 (XJ fl(q-2)j" 
j=O j r 0  

[]  

The result gives us optimal codes where the same encoding rule can be used up 

to q - 1 times. Contrast this with the families of codes in the previous sections where 

the only known infinite families of optimal (or near-optimal) codes allowed the same 

encoding rule to be used at most two or three times. 

Finally, we give a construction for perfect disclosure codes from transversal 

designs having k > n + 1. 

Theorem 5.6 [25, Theorem 3.7]. For any prime power q and for  any d >_ 2, there is 

a TDqd-~(2, (qd _ 1)/(q -- 1), q). Hence, there is a perfect disclosure code for  (qd _ 1)/ 

(q -- 1) source states, having q(qd _ 1)/(q -- 1) messages and qd encoding rules, and 

for  which Pd i = 1/q for  i = 0 and 1. 

6. Authentication Codes for Equiprobable Source Distributions 

In this section we give some constructions for (1, 1)-codes when the source states 

are independent and equiprobable. Prior to doing that, however, we consider codes 

providing authentication, with no secrecy assumptions. The following lower bound 

on the number of encoding rules applies to any authentication code, regardless of 

the source distribution. It was first proved by Massey [11] and Schobi [15]. 

Theorem 6.1. I f  a code is LA-fold secure against spoofing, then 

) 
b >  L A + I  L A + I  . 

Proof. As in the proof of Theorem 3.2, any set of L A A- 1 messages is valid under 

at least one encoding rule. The bound follows. []  

(k) Note that this bound is less than the bound of Theorem 4.1 by a factor of LA , 

and less than the b°und °f  The°rem 3"2 bY a fact°r °f  (LAk+ 1) '  

As with other codes, the term optimal is used if the number of encoding rules 

meets the lower bound with equality. Optimal codes can sometimes be constructed 

if the source probability distribution is known to be equiprobable. We have the 

following construction, given by Schobi [15] and De Soete [5]. 

Theorem 6.2. Assume there is a t-design Sx(t, k, v). Then there is an authentication 

s a es code 
\ j / \  t 

rules, that is (t - 1)-fold secure against spoofing. 
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Proof. Order  each block of  the t-design arbitrarily, and take these ordered blocks 

as encoding rules. First, we verify that  Pdt-~ = (k - t + 1)/(v - t + 1). Let x~ 

(1 < i ___ t) be distinct messages, and assume an opponen t  observes the t - 1 mes- 

sages x~ (1 < i < t - 1) in the channel, and then sends x t. His chance of successful 

deception is calculated to be 

p(e). p({s~ . . . . .  s,-t} -- {f~(x~) . . . . .  f , ( x , - x ) } ) .  
{e: x l , x 2  . . . . .  x~ ~ M ( e ) }  

p(e ) . p ( { s  1 . . . . .  s,_~} = {£(x~) . . . .  , £(x,_~)}) '  
{¢:  x l , x  2 . . . . .  x , -  l e M(e)} 

I{e: xl . . . . .  x, ~ M(e)}l 

[{e: xt . . . .  , x~-i ~ M(e)}[ 

(since p(e) is constant  and the source states are equiprobable) 

k - t + l  

v - t + l  

Now, to see that  Pd~ = (k - i)/(v - i) for 0 _< i _< t - 2, note that, for any t '  _< t, an 

Si(t ,  k, v) is also an Si,(t' ,  k, v) for some 2'. [ ]  

Conversely, we prove the following result. 

T h e o r e m  6.3. Assume  there is an authent ica t ion  code f o r  k equiprobable  source 

s t a t e s ' h a v i n g v m e s s a g e s a n d ( V ) / ( k )  t 

against  spoofing. Then  there is a t-design S i (t, k, v). 

Proof i  In order  to attain equality in the bound  of Theorem 6.1, every set of  t 

messages must  be valid under exac t l y  one encoding rule. [ ]  

In general, a code constructed from a t-design using Theorem 6.2 will not  provide 

perfect (t - 1)-fold secrecy. However,  in the case t = 2, we can also obta in  perfect 

onefold secrecy with the same number  Of encoding rules, provided that v - 1 - 0 

modulo  k(k  - i), as follows. 

T h e o r e m  6.4. Assume  there is an S 1 (2, k, v), where  v - 1 - 0 modulo  k(k  - 1). Then  

there is an optimal (1, 1)-code for k equiprobable  source states,  having v messages  and 

v(v - 1)/(k(k - 1)) encoding rules. 

Proof. It is necessary to order  every block of  the S 1 (2, k, v), such that  every point  

occurs in each possible posit ion in exactly ( v -  1 ) / (k (k -  1)) blocks. Clearly, a 

necessary condit ion for this to be possible is v - 1 = 0 modulo  k(k  - 1), since every 

point  occurs in exactly (v - 1)/(k - 1) blocks. The condit ion is also sufficient, as 

follows. Let the design Si (2, k, v) have point  set X and block set d .  Const ruc t  a 

bipartite graph, having bipart i t ion (X, M), where x A  is an edge if and only if x ~ A 

(x ~ X, A ~ d ) .  Clearly, it suffices to find an edge-colouring of  this graph  using k 
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colours,  so that  each vertex A ~ d is adjacent  to one edge of each colour,  and each 

vertex x E X is adjacent  to (v - 1)/(k(k - 1)) edges of  each colour. But this can be 

done  by first "split t ing" each vertex x into (v - 1)/(k(k - 1)) vertices, each having 

degree k, and then finding a proper  edge-colour ing of the resulting k-regular  bipar-  

tite g raph  using k colours. Finally, use the edge-colour ing to impose  an ordering on 

each block, and  then take these ordered blocks as the encoding rules, using each 

with equal probabil i ty.  [ ]  

Hence,  using projective geometries, we obta in  the following. 

Theorem 6.5. F o r  all prime powers  q and f o r  all even d >__ 2, there is an opt imal  

(1, 1)-code f o r  an equiprobable source probabi l i ty  dis tr ibut ion with q + 1 source states,  

having (q~+l _ 1)/(q - 1) messages. 

Proof.  The  projective geometry yields a design S~(2, q + 1, (qd+l _ 1)/(q - 1)). If  

d is even, then v - 1 = 0 modulo  k(k  - 1). Apply  T h e o r e m  6.4. [ ]  

In the case d = 2, it is particularly convenient  to construct  the code. For,  it is well 

k n o w n  that  the design $1(2, q + 1, qZ + q + 1) can be constructed by developing a 

single "base block" modulo  q2 + q + 1 (see, for example,  Theo rem 6.2 of  [1]). Such 

a design is said to be cyclic. This au tomat ica l ly  yields perfect secrecy without  

recourse to the technique used in the p roo f  of T h e o r e m  6.4. 

Example  6.1. A (1, 1)-code for k = 3 equ iprobab le  source states, having v = 7 

messages, and b = 7 encoding rules, const ructed f rom a cyclic $1 (2, 3, 7). Use each 

encoding rule with probabil i ty 1/7. 

S 1 S 2 S 3 

e 1 1 2 4 
e 2 2 3 5 
e 3 3 4 6 
e,, 4 5 7 
e 5 5 6 1 
e 6 6 7 2 
e 7 7 1 3 

7. Summary 

We summar ize  the main  classes of  codes const ructed in this paper.  Secrecy codes 

are studied in Section 2. The basic cons t ruc t ion  for t-fold secrecy codes uses a 

perpendicular  a r ray  PAx(t, k, v), where k > 2t - 1. The  opt imal  si tuation is to have 

a PAl( t ,  v, v) (v > 2t - 1). Unfortunately,  examples  of  these are known  only for 

t = 1, 2, and 3, and infinite classes are known  to exist only for t = 1 and  2. 

Perfect disclosure authenticat ion codes are considered in Section 5. To  obtain 
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Table 1. Some optimal and near-optimal classes of (Ls, LA)-Codes. 

(Ls, LA) k v b Optimal? Authority 

(1, 0) Any integer Any integer >k  v 
(1, 1) q + 1 q2 + q + 1 (q2 + q + 1)(q + 1) 

(2, 1) Any odd integer q -- 1 rood 2k q(q - 1)/2 
(2, 2) q + 1 q2 + 1 (qZ + 1)(q2)(q + 1) 

q a Mersenne 

prime 
(2, 2) q qZ _ 2q + 2 (q2 _ 2q + 2)(q)(q -- 1)z/2 Yes 

q a Fermat 

prime 
(3, 2) q + 1 q2 + 1 ( q 6  _ q2)/2 

q -= 3 modulo 4 

Yes Theorem 3.4 
Yes Theorem 4.4 

(d = 2) 

Yes Theorem 3.6 
2 x optimal Theorem 4.5 

(d = 2) 

Theorem 4.6 
(d = 2) 

3 x optimal Theorem 3.9 

(d = 2) 

such  a code ,  we e m p l o y  a t r ansve r sa l  des ign  TDz( t ,  k, v). Th i s  yields a c o d e  whe re  

Pd  i = k/v  for  0 < i _< t - i .  F o r  a u t h e n t i c a t i o n  pu rposes ,  we w o u l d  w a n t  k/v  to  be  

very  small .  T h e  n u m b e r  of  e n c o d i n g  rules  is o p t i m a l  if 2 = 1. F o r t u n a t e l y ,  o p t i m a l  

codes  can  be  c o n s t r u c t e d  for  any  v a l u e  o f  t ( T h e o r e m  5.5). 

Nex t ,  in T a b l e  1, we give a b r ie f  s u m m a r y  of  the  o p t i m a l  a n d  n e a r - o p t i m a l  classes 

of  (L s, LA)-Codes we c o n s t r u c t e d  in Sec t i ons  3 and  4. These  are  all codes  for  an  

a r b i t r a r y  source  d i s t r ibu t ion .  In  T a b l e  1, q d e n o t e s  a p r i m e  power .  

F ina l ly ,  codes  for  e q u i p r o b a b l e  s o u r c e  d i s t r i bu t i ons  are  s tud ied  in Sec t ion  6. 

Here ,  an  o p t i m a l  code  which  is ( t -  1)-fold secure  aga ins t  spoof ing  can  be con-  

s t ruc ted  f r o m  an  Sl(t ,  k, v). In  the  case  o f  codes  wh ich  are  one fo ld  secure  aga ins t  

spoof ing ,  the c o d e  o b t a i n e d  f rom an  $1 (2, k, v) can  a lso  p r o v i d e  perfec t  secrecy if 

v - 1 - 0 m o d u l o  k(k  - t). 
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