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Abstract. This paper is a study of the combinatorics of unconditionally secure
secrecy and authentication codes, under the assumption that each encoding rule is
to be used for the transmission of some number L of successive messages. We obtain
bounds on the number of encoding rules required in order to obtain maximum
levels of security. Some constructions are also given for codes which have the
minimum number of encoding rules. These constructions use various types of
combinatorial designs.
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1. Authentication and Secrecy

This paper is a study of the combinatorics of secrecy and authentication codes. We
are interested in the unconditional, or theoretical, security provided by such codes.
That is, we assume that any opponents have unlimited computational resources.
The theory of unconditional secrecy is due to Shannon [16]. More recently,
Simmons has developed an analogous theory of unconditional authentication [17],
(197, [20], [21].

By the combinatorics of codes, we are referring to two aspects. First, the bounds
on the security of the codes and on the minimum sizes of codes attaining specified
levels of security are combinatorial in nature and/or are proved by combinatorial
(i.e., counting) arguments. Second, the constructions for “good” codes which meet
the various bounds with equality make essential use of combinatorial designs. This
will become evident in the rest of the paper. For a general refernce on design theory,
we mention [1].

We use the model of a secrecy system developed by Shannon in {16], updated to
include authentication, as described in [11]. In this model, there are three partici-
pants: a transmitter, a receiver, and an opponent. The transmitter wants to com-
municate some information to the receiver using a public communications channel.
The source state (or plaintext) is encrypted to obtain the message (ciphertext), which
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Fig. 1. Shannon’s model of a general secrecy system.

is sent through the channel. An encoding rule (or key) e defines the message e(s) to
be sent to communicate any source state s. Each encoding rule will be a one-to-one
function from the source space to the message space. We assume the transmitter has
a key source from which he obtains a key. Prior to any messages being sent, this
key is communicated to the receiver by means of a secure channel. Figure 1 shows
our model, taken from {11].

We use the following notation. Let & be a set of k source states, let # be a set of
v messages, and let & be a set of b encoding rules. As stated above, each encoding
rule is a one-to-one function from & to . It is useful to think of a code as being
represented by a b x k matrix, where the rows are indexed by encoding rules, the
columns are indexed by source states, and the entry in row e and column s is.e(s).
We call this matrix the encoding matrix. For any encoding rule e € &, define M(e) =
{e(s): s e &}, i.e., the set of valid messages under encoding rule e. For an encoding
rule ¢, and a set of messages M < M(e), define f,(M) = S if {e(s): se S} = M, that
is, f,(M) is set of source states which are encrypted to the set of messages M under
encoding rule e.

Assume that the same key is used to encrypt up to L consecutive source states,
where L is some fixed positive integer. We make the following simplifying assump-
tions, which are not strictly necessary, but which avoid some difficulties in the
mathematical analysis. First, we assume that the L source states that occur are all
distinct. Second, we ignore the order in which the messages are sent through the
channel, and the order in which the corresponding source states occur. Hence, we
refer only to sets of L messages or source states occurring (as opposed to sequences).
Finally, for any i < L, we assume that there is some probability distribution on the
set of i subsets of source states, so that any set of i source states has a nonzero
probability of occurring. Given a set of i source states S, we denote by p(S) the
probability that the source states in S are the i source states that occur.

We should note that other researchers have considered the order in which
messages and source states occur (this is the model used in [4],[11],[12], and [15]).
In such a model, we would speak of sequences of messages observed in the channel
corresponding to sequences of source states. Of course, for L = 1, the two models
are equivalent, but for L > 1, there are important differences.

First, we consider the property of secrecy. Assume an opponent observes i (< L)
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distinct messages being sent over the communication channel using the same
encoding rule. Although he knows that the same encoding rule is being used to
transmit the i messages, he does not know what that encoding rule is. Our goal is
that the opponent be unable to determine any information regarding the i source
states from the i messages he has observed. This concept is made precise as follows.
We say that a code has perfect L-fold secrecy if, for every L’ < L, for every set M’
of L' messages observed in the channel, and for every set S; of L’ source states, we
have the p(S,|M,) = p(S,). That is, the conditional probability distribution on the
L’ source states after observing a set of L' messages in the channel is the same as
the a priori probability distribution on the L’ source states.

Example 1.1. A code having k = 4 source states, v = 4 messages, and b = 4 en-
coding rules, and which achieves perfect onefold secrecy. Use each encoding rule
with probability 1/4.

Sy S, 83 Sa
e, 1 2 3 4
e, 2 1 4 3
e 3 4 1 2
€4 4 3 2 1

An important consideration in the construction of a code is the number of
encoding rules. For, the encoding rule is information that must be communicated
using a secure channel. If there are b encoding rules, then log, & bits of key must be
communicated. Hence, it is clear that we want to minimize b. In general, b may
depend on v, k, and the level of secrecy required. Having proved a lower bound on
b as a function of these other parameters, we would want to find constructions for
codes where the number of encoding rules meets, or is close to, the lower bounds.
These are the main objectives in this paper.

The following is a lower bound required on the number of encoding rules required
in a code having perfect L-fold secrecy. We prove this bound in Section 2.

Theorem 2.1. If a code achieves perfect L-fold secrecy, then

k
b> .
The above theorem is a straightforward generalization of the well-known result

of Shannon [16] that a code achieving perfect onefold secrecy must have at least as
many keys as source states. Let us say that a code achieving L-fold secrecy is optimal

lf ()

As an example, we mention the Vernam one-time pad [28], which is an optimal
onefold secrecy code. In Section 2 we construct some optimal twofold and threefold
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secrecy codes using a type of combinatorial design called a perpendicular array.
Conversely, we show that optimal L-fold secrecy codes can be constructed only in
this fashion.

Next, we extend the model of the secrecy system to include authentication in the
same way as Massey did in [ 11]. As before, an opponent observes i distinct messages
which are sent using the same encoding rule. However, the opponent now has the
ability to introduce new messages into the channel and/or to modify existing
messages. Assume the opponent places a message m’ into the channel by either of
these methods, where m’ is distinct from the i messages already sent. His goal is to
have m’ accepted as authentic by the receiver. That is, if e is the encoding rule being
used, then the opponent is hoping that m’ = e(s) for some source state s. In [11]
Massey calls this a spoofing attack of order i. This problem was first studied in [6].
The special case i = 0 and i = 1 were analyzed by Simmons in [17], {19], and [20].
The case i = 0 is called the impersonation game, and the case i = 1 is called the
substitution game. More recently, several other researchers have studied these cases;
see, for example, [2], [11], [5], and [25]. Less is known about the cases i > 2; some
results can be found in [5], [15], [26], and [27].

Given the probability distributions on the source states described above, the
receiver and transmitter will choose a probability distribution for &, called an
encoding strategy. It is nssumed that the opponent knows the encoding strategy
being used. Once the transmitter/receiver have chosen encoding strategies, we can
calculate, for each i > 0, a probability denoted Pd;, which is the probability that the
opponent can deceive the transmitter/receiver with a spoofing attack of order i. The
following lower bound on Pd; can be proved.

Theorem [11, p. 12]. In an authentication code with k source states and v messages,
Pd; = (k — i)/(v —i).

Following Massey [11], we say that the authentication code is L-fold secure
against spoofing if Pd; = (k — i)/(v — i) for 0 < i < L. We refer to this bound as the
combinatorial bound, since it does not take into account the probability distribu-
tions on the source states and encoding rules. Other lower bounds on Pd; can be
proved, which depend on the entropies of these probability distributions. Given a
particular code, these entropy bounds measure how “efficiently” information is
being sent through the channel. We do not discuss these bounds in this paper,
instead we refer to [2], [20], and [25].

Define an (Lg, L,)-code to be a code which achieves perfect Lg-fold secrecy and
is L -fold secure against spoofing. If we want a code to have secrecy and authenti-
cation, then we would most likely require that Ly be close to L. The cases Lg = L,
and Lg = L, + 1 are both very natural special cases to study. These (Lg, Lg — 1)-
codes are probably most natural to consider when the opponent can introduce new
messages into the channel but cannot modify existing messages. For, under these
assumptions, the receiver would ignore any messages received after he has received
L messages in the channel. If the opponent can also modify existing messages, then
it is of interest to study (Lg, Lg)-codes. In these two cases, we have lower bounds on
the number of encoding rules required in any such code, as follows.
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Theorem [26, Theorem 2]. If a code achieves perfect Lg-fold secrecy and is
(Ls — 1)-fold secure against spoofing, then

b (L)

Theorem 4.1. Ifa code achieves perfect Lg-fold secrecy and is Lg-fold secure against
spoofing for any source probability distribution, then

b> v 'v——LS.
Ls/ k—Lg

An (Lg, Ly)-code, where Lg= L, or Lg= L, + 1, is optimal if the number of
encoding rules meets the appropriate lower bound with equality. Constructions
have been given for infinite classes of optimal (1, O)-codes in [5], for optimal
(2, 1)-codes in [26], and for nearly optimal (3, 2)-codes in [27]. These constructions
are reviewed in Section 3, and some constructions are also given for optimal and
near-optimal (Lg, L¢)-codes in Section 4.

Example 1.2. An optimal (2, 1)-code having k = 5 source states, v = 5 messages,
and b = 10 encoding rules. Use each encoding rule with probability 1/10.

5y S, S3 S, Ss
e 1 23 4 5
g 2 3 4 5 1
e, 3 4 5 1 2
e 4 5 1 23
es 5 1 2 3 4
o6 1 3 5 2 4
e, 2 4 1 3 5
e 3 s 2 4 1
e 4 1 3 5 2
e 52 4 1 3

The next topic we address in this paper is authentication without secrecy. We note
that there are applications where we require a code that provides authentication,
but secrecy cannot be tolerated. For example, this situation arose in the authenti-
cation of data to verify compliance with a nuclear weapons test ban treaty [18].

Hence, we define a code to have perfect disclosure if any message m observed in
the channel determines a unique source state s. (Sometimes the term Cartesian is
used to describe this situation.) In terms of probability distributions, we require that
p(sim)y =1 and p(s|m’) = 0if m" # m.

It is easy to see that a code with perfect disclosure cannot be even onefold secure
against spoofing. We therefore prove in Section 5 the following lower bound on Pd;
for codes with perfect disclosure.
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Theorem 5.1. If a code has perfect disclosure, then Pdy > k/v. Moreover, if
Pd, = k/v, then Pd; > k/v for any L = 0.

We then prove the following bound on the number of encoding rules.

Theorem 5.2. If a code has perfect disclosure, and Pd; = kjvfor0 <i < L — 1, then
b > (v/k)-*1.

Then we give constructions for codes that meet these bounds and do so with the
minimum number of encoding rules.

Example 1.3, A perfect disclosure code having k = 4 source states, v = 12 mes-
sages, and b = 9 encoding rules, for which Pd, = Pd, = 1/3. Use each encoding rule
with probability 1/9.

S;  S; 83 S
e, 1 4 1 10
g 15 8 1
es 1 6 9 12
ee 2 4 8 12
es 2 5 9 10
e 2 6 7 11
e 3 4 9 11
s 3 5 1 12
e, 3 6 8 10

The bounds we give in this paper are all combinatorial, in the sense that they are
independent of the various probability distributions involved. Moreover, most of
the codes we construct in this paper attain the desired level of secrecy and/or security
against spoofing for an arbitrary source probability distribution. (Unless otherwise
stated, any code in this paper will have this property). This is clearly a very desirable
property, since we might not even know the source probability distribution, for
example.

With regard to secrecy codes, we prove in Section 2 that a code having perfect
L-fold secrecy for some fixed source probability distribution will also achieve
perfect L-fold secrecy for any source probability distribution. For codes providing
secrecy and authentication, the situation is more complex. In fact, it is easier to
design codes if the source states are known to be equiprobable. For example,
suppose we consider a code that achieves perfect onefold secrecy and is onefold
secure against spoofing. If this is to be true for an arbitrary source probability
distribution, then at least v(v — 1)/(k — 1) encoding rules are required, by Theorem
4.1. However, if the source states are known to be equiprobable, then we can achieve
the same security from a code having only v(v — 1)/(k(k — 1)) encoding rules,
provided a suitable design exists (Theorem 6.4). Constructions for authentication/
secrecy codes for equiprobable source distributions are presented in Section 6.
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We give an example to illustrate the effect of source probability distribution on
the deception probabilities of an authentication code.

Example 14. A code having k = 2 source states, v = 3 messages, and b = 3 en-
coding rules, each used with probability 1/3. Assume the source probability distri-
bution is p(s,) = 6, p(s,) = 1 — 6, where 6 > 1/2. Then Pd, = 2/3 for any value of
6. However, Pd; depends on &, as follows. If 1 or 3 is observed in the channel, then
the opponent succeeds with probability 1/2. However, if 2 is the message in the
channel, then the opponent can deceive the transmitter/receiver with probability
0 (>1/2) by substituting message 3. The probability of observing 1, 2, and 3 are
respectively 26/3, 1/3, and 2(1 — 6)/3. Hence, Pd, = (1 + 9)/3, which exceeds 1/2
(unless 6 = 1/2).

Sy Sz
e, 1 2
2, 1 3
N 3

Next, let us mention the attributes of the codes we study in this paper in relation
to the taxonomy of authentication schemes Simmons has given in [23]. In the
terminology of Simmons’s taxonomy, we are studying codes that are uncondition-
ally secure, both with and without secrecy, but without arbitration. All the codes in
this paper are unconditionally secure, but in a given application it may be sufficient
to use codes which offer only computational security. Computational security is
when the security is based on the assumed difficulty of solving some problem, e.g.,
RSA [14] is based on the infeasibility of factoring large integers. Finally, we note
that the codes described in this paper require that the transmitter and receiver trust
each other, since either one can cheat the other in various ways. Simmons has
constructed authentication codes in [22] which include an arbiter who can deter-
mine with high probability when one of the transmitter or receiver is cheating (see
also [3]).

For descriptions of authentication and secrecy codes in relation to other aspects
of cryptography, we refer to [11], [12], and [24].

2. Secrecy Codes and Perpendicular Arrays

The following theorem generalizes Shannon’s basic result that a code which achieves
perfect onefold secrecy must satisfy b > k.

Theorem Z.1. If a code achieves perfect L-fold secrecy, then

()
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Proof. Let ¢, be any encoding rule and let M, < M(ey), |IM,| = L. Let S; be any
set of L source states. Assume there is no encoding rule e; such that §; = f, (M,).
Then p(S,|M,) = 0 # p(S,). Hence, we do not have perfect L-fold secrecy. Con-

k .
sequently, there are at least < L) encoding rules e such that M, = M({e). Therefore,

b=(4) -

We can construct codes which meet the above bound with equality using a type
of combinatorial design known as a perpendicular array. A perpendicular array

PA,(t,k,v) is a l(l:) x k array, A, of the symbols {1,...,v}, which satisfies the
following properties:

(i) Every row of A contains k distinct symbols.

(i) For any t columns of 4, and for any ¢ distinct symbols, there are precisely 4
rows r of A such that the ¢ given symbols all occur in row r in the given ¢
columns.

Fort > 2, it is easy to see that the property (i) is implied by the other assumptions.
For information on PAs see [7], [9], and [13].
In using PAs to construct secrecy codes, the following result is important.

Theorem 2.2 [9, Theorem 1.1]. Assume 0 <t <t and

(9=()

Then, a PA{(t, k, v) is also a PA ,,(t', k, v), where

s 4 [V t
l-(v B t) =0 modulo<t,>.
t—1t t

Proof. Let A be a PA,(t, k, v), and name the columns by 1,..., k. Let Y be any set
of t’ distinct symbols. For any set J* of t' columns, define I(J’) to be the number of
rows of 4 in which the symbols in Y are all contained in the columns in J'. We
obtain some linear equations in the I(J’) as follows. For any set J of ¢t columns, we

get an equation
—t
Y )= 1-(” )
yedy)=r t—t

k
In this way we get (T) equations in (t’) unknowns. If

(=)

Hence,
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then the system has the unique solution

n_ (vt t
e

for every J'. Consequently, A is a PA,,(t’, k, v), where A{t) is as above. 0
We can now prove that secrecy codes can be obtained from PAs.

Theorem 2.3. If there exists a PA,(t, k, v), where k > 2t — 1, then there is a code for

v . . 3
k source states with v messages and A - < t) encoding rules, which achieves perfect t-fold
secrecy.

Proof. Let 4 be a PA,(t, k, v). We construct an encoding rule from each row r of
A: for each row r =(x,,...,x,), and for each source state s (1 < s < k), define

e,(s) = x,. Use each encoding rule with probability 1/4- (:)

It is necessary only to prove that we have perfect t'-fold secrecy for all ¢’ < ¢. Since

k > 2t — 1, we have
(k) <k>
= I
t t

hence A is a PA,,,(t', k, v), by Theorem 2.2. Therefore, any set of t' messages
corresponds equally often to every possible set of ¢” source states. It is now an easy
computation that for every set S; of ¢’ source states, and for every set M, of ¢’
messages, we have p(§,|M,) = p(S,). For

p(S;IM;) = P(M1S,)- P(5:) (by Bayes’ theorem)

p(My)
(Ae)/b)- p(S,)
Y. ple)p(f(M)))

{e: M1§M(e)}

(A(")/b) - p(S;)
(1/b)- p(S)

[SS&F:1S|=1") {e: S=f(M})}
(A(£)/b) p(S,)
(1/b)- A(t")
=p(Sy),
as desired. This completes the proof. |

We note that the condition k > 2t — 1 in Theorem 2.3 is necessary, as shown by
the following example.

Example 2.1. The following is a PA,(1, 4, 4) and also a PA (3,4, 4), butitisnota
PA,(2, 4, 4) for any A. Hence, it provides perfect onefold secrecy, but it does not
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provide perfect twofold secrecy:

1 2 3 4
2 t 4 3
3 4 1 2
4 3 2 1

Observe that the secrecy code constructed from a PA (via Theorem 2.3) is optimal
ifand onlyif 1 = 1 and k = v. In fact, the existence of an optimal L-fold secrecy code
implies the existence of a PA (L, k, k) (in the case L = 1, this was noted by Shannon
[16, p. 6817).

Theorem 2.4. Assume there is an optimal L-fold secrecy code for k source states.
Then there is a PA (L, k, k).

Proof. Let ¢, be any encoding rule and let M; = M(ey), {M,| = L. Let S, be any
set of L source states. As in the proof of Theorem 2.1, there is at least one encoding
rule e; such that §; = f, (M;). In order for

()

. k
there must be exactly one such encoding rule. Consequently, M, < M(e) for all < L)
. kY . .
encoding rules. Now, there are (L) different L-subsets of messages which are

. . [k .
contained in M(ey). Each of these occurs in L encoding rules. On the other hand,

k k
each of the <L> encoding rules contains ( L) different L-subsets of messages. It

follows that M{(e,) = M(e) for every encoding rule e, and that the encoding matrix
isa PA (L, k, k) on the symbols in M(e,). O

Hence, the arrays PA,(t, v, v) are of interest. Such arrays are known to exist as
follows.

Theorem 2.5. For all integers v > 1, there is PA, (1, v, v). Hence, for all v > 1, there
is an optimal code for v source states having perfect onefold secrecy.

Proof. Any Latin square of order v is a PA, (1, v, v). a

Let us give a brief description of the Vernam one-time pad [28] in this setting.
Assume the source space % consists of all binary n-tuples (so k = 2"). Given any
binary n-tuple w, define an encoding rule e, by e,(s) = w + s, where addition is
componentwise addition modulo 2. Note that a message m is decoded by the same
method: s = w + m. We have that b = 2" = k. It is not difficult to see that the
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encoding matrix is a Latin square of order 2°, ie., a PA (I, 2", 2"). Of course, this
particular Latin square makes encoding and decoding very easy.

Theorem 2.6. For any odd prime power q > 3, there is a PA (2, q, q). Hence, for all
such gq, there is an optimal code for q source states having perfect twofold secrecy.

Proof. This is a construction of Mullin et al. [13, Corollary 2.5]. Let g be a
primitive element in the Galois field GF(g). For 0 <i <(q — 3)/2 and for all
x € GF(q), define a row

i+3

X x+g x+g™ x+g"% x+g x 4 giti2,

It is easy to check that the resulting array is a PA,(2, g, ). O

Some examples with ¢ > 3 come from homogeneous permutation groups. A
permutation group G is said to have degree n if it acts on a set, say S, of n symbols.
Group G is defined to be t-homogeneous if, for all t-subsets S, S, < S, there are the
same number of permutations 7 € G such that (S;)* = S,. The number of such n

n . . . S
must be |G|/ (t) It is clear that if we write down the permutations in a t-homoge-

neous group of degree n as the rows of an array, then we obtain a PA, as follows.

Theorem 2.7 [27, p. 10]. Assume G is a t-homogeneous permutation group of
degree n. Then there is a PA,(t, n, n), where

1= lG]/('Z).

Theorem 2.8 [27, Lemma 3.4]. There exists a PA,(3, v, v) for v = 8 and 32.

Proof. The groups AGL(l, 8) and AT'L(l, 32) are 3-homogeneous (see, for ex-
ample, [1]). Hence, they give rise to PAs with 1 = 1. O

Example 2.2. A PA,(3, 8, 8). Develop the following rows modulo 7:

x 01 2 3 456
0 x 3 61 5 4 2
1 3 x 4 0 2 6 5
26 4 x 5130
3105 x 6 2 4
4 521 6 x 0 3
546 3 20 x 1
6 2 50 4 3 1 x

The above three theorems provide examples of optimal L-fold secrecy codes when
L =1, 2, and 3. It seems that no examples are known when L > 4. We have the

following infinite class of PA4(3, v, v).
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Theorem 2.9 [27, Theorem 3.5]. There exists a PA;(3,q + 1, g + 1) for all prime
powers q = 3 modulo 4. Hence, for all such g, there is a code for q + 1 source states
with (¢> — q)/2 encoding rules, having perfect threefold secrecy.

Proof. The group PSL (2, ¢)is 3-homogeneous of degree g + 1if gis a prime power
and g = 3 modulo 4 (see [1]). Hence, it gives rise to PA with 1 = 3. O

We also have two exampies of PA (4, v, v).
Theorem 2.10 [27, p. 12]. There exists a PA,(4, v, v) for v = 9 and 33.

Proof. The groups PGL(2, 8) and PT'L(2, 32) are both 4-homogeneous (see [1]),
and yield the desired PAs. O

Finally, we prove that a code which achieves perfect L-fold secrecy for some
particular source probability distribution will do so for an arbitrary source prob-
ability distribution.

Theorem 2.11. Assume a code achieves perfect L-fold secrecy for a given source
probability distribution p,. Then the same code achieves perfect L-fold secrecy for an
arbitrary source probability distribution p,.

Proof. Let p denote the probability distribution on the encoding rules. The condi-
tion for perfect L-fold secrecy (with respect to probability distribution p,) is that,
for every L’ < L, for every set M, of L’ messages observed in the channel, and for
every set S, of L’ source states, we have that p,(S;|M,) = py(S,). By Bayes’ theorem,
this is equivalent to py(M,) = po(M,|S;), or that

p@) polfeM) = X ple). (*)

{e: M S M(e)} {e:S1=S (M)}

We want to prove an analogous equality with respect to probability distribution
p.. We compute the following:

Yo op@plfM)= Y p(S Y pl

{e: M S M(e)} {Ss&:Is|=L} {e:S=T(Mp)}
= > n® ¥ plpfM)) (by()
{S=&:|S|=L"} {e: My S M(e)}
=1 ¥ ple) (by()

{e: S =T (M)}
as desired. This completes the proof. O
3. Codes Providing Authentication and Secrecy: L, = Lg — 1

In this section we investigate the existence of (t, ¢ — 1)-codes (ie, L, = Lg— 1).
First, let us prove the combinatorial lower bound on Pd;.
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Theorem 3.1 [11, p. 12]. In an authentication code with k source states and v
messages, Pd; > (k — i)/(v — i).

Proof. Let x; (1 < j<i+ 1) be distinct messages (i > 0). Assume an opponent
observes the i messages x; (1 < j < i) in the channel, and then sends x;,,. Denote
the probability that the message x;., is accepted by the receiver as authentic by
payoff(x,.,). Then

p@):p({s1,....5:} = {folx1),.... L(x)})

_ E; X 13X 2seu0s Xit] eM(e)}

payollii.,) = oy PO P10 = () o))

{e: xy.x2,...,x; € M(e)

It follows that
¢{Z payoff(x;,,) = k — i.
Xie1E{X),000s Xx;
Hence, there must be some x;,, such that payoff(x;,,) = (k — i)/(v — i). For every
set of i messages {x;: | < j < i}, determine such an x;,,. This defines a substitution
strategy in which the transmitter/receiver can be deceived with probability at least
(k — v —0). O

Next, we prove a lower bound on the number of encoding rules required in an
(Lg, Lg — 1)-code.

Theorem 3.2 [26, Theorem 2]. If a code achieves perfect Ls-fold secrecy and is
{Lg — 1)-fold secure against spoofing, then

b (L>

Proof. Let M, be aset of i < Ly — 1 messages which are valid under a particular
encoding rule. Let x be any message not in M,. Assume there is no encoding rule
under which all messages in M, U {x} are valid. Then a slight modification of the
proof of Theorem 3.1 shows that we would have Pd; > (k — i)/(v — i), a contradic-
tion. Hence, it follows that every Lg-subset of messages is valid under at least one
encoding rule. Now, the code has perfect Lg-fold secrecy. Hence, the proof of
Theorem 2.1 states that if an Lg-subset of messages is valid under some encoding

rule, then it must be valid under at least ( LI,(

) encoding rules (corresponding to every
S,

possible set of Lg source states).
We now count pairs of the form (¢, M,), wheree € &, |M,| = Lg,and M, < M(e).
If we choose e first, and then M,, we see that the number of such pairs is exactly

k
b-( L > On the other hand, suppose we choose M,, and then e. Set M, can be
S

k )
chosen in ( [lj > ways. Then, for each M, , there are at least <L ) choices for e. Hence,
S S
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k
there are at least ( pairs (e, M,). Therefore,
LS LS

()= (0)E) o o= () .

We saw in the last section that perpendicular arrays PA,(t, k, v) yielded codes
having t-fold secrecy. If we employ a PA that enjoys an extra property, the code
constructed from a PA,(t, k, v) will also be (¢t — 1)-fold secure against spoofing, and
hence will give rise to a (t, t — 1)-code. This motivates the following definition. A
PA,(t, k, v), A, is said to be an authentication PA (and is denoted APA (¢, k, v)) if
the following property holds:

forany:' <t — l,andforanyt’ + ldistinctsymbolsx; (1 <i <t + 1),
we have that among all the rows of 4 which contain all the symbols
x; (1 i<t +1), the ¢’ symbols x; (1 <i<t') occur in all possible
subsets of ¢’ columns equally often.

It can be shown (see Theorem 2.3 of [27]) that an APA,(t k, v) is also an
APA;(t', k, v) for all t” < t. Hence, by Theorem 2.2, a necessary condition for the
existence of an APA,(t, k, v) is that

A + 1)'<t, f_ 1) =0 modulo (i)

forallt’,0 <t <t — 1. We also observe that if v > 2t — 1, then a PA,(t, v, v) is an
APA,
The following result was proved by Stinson and Teirlinck in Theorem 2.4 of [27].

Theorem 3.3. If there exists an APA,(t, k, v), then there is a (t,t — 1)-code for k

v
source states with v messages and A ( ) encoding rules. The code is optimal if and
onlyif 1=1. t

Proof. Let 4 be an APA (¢, k, v). Construct the code as in Theorem 2.2. We need
only verify that Pd; = (k — i)/(v —i},0 < i<t — 1. Letx;(1 £i <t + 1)bedistinct
messages (0 < t' <t — 1). Assume an opponent observes the t' messages x; (1 < i <
t'} in the channel, and then sends x,.,,. His chance of successful deception is
calculated to be

p@) p({sy;-ns0} = {felxr)s- -, folx)})

Le.- XfsX 25000 Xprgy € M(e)}

| p(e)'P({sla“"st’} = {fe(xl)a---’f;(xt')})

{e: Xy, X200 % € M(e)

P({Sl,...,S,:} = {f;(xl)""’.fe(xt’)})

. {e:xy,%2,..., %41 € M(€)}

p({SU' o sst’} = {fe(xl)’ .. "fe(xr’)})

{e: X3, X240005Xps eM(e)}

(since p{e) is constant).
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Now, the numerator of this expression is equal to

k
wen (%))

since the PA is an APA. Also, the denominator is equal to A(¢'). Hence, the
probability of deception is

k
A(t’o+1)-( ) (t’+1)-< )
’ ’ At + 1 "+1
LY ), (since v+ )=t +t’ by Theorem 2.2)

k k At
i(t’)'(t,> (v—1t) <t> )

k-t
To—t
Hence, Pd,, = (k — t')/(v — t'), as desired. O

Let us now consider the existence of APAs. In Theorem 6.2 of [5], some construc-
tions are given for optimal (1, 0)-codes using generalized quadrangles. We observe
now that an optimal (1, 0)-code for k source states with v messages exists whenever
k<o

Theorem 34. For all v >k > 1, there exists an APA; (1, k, v). Hence an optimal
(1, 0)-code for k source states with v messages exists.

Proof. Let the first row of the PAbe 1 2 3 --- k. The obtain v — 1 further rows
by developing modulo v. O

The following theorem summarizes known results concerning APA (2, k, v) when
k = 3 or 5 (see [26] and [27]).

Theorem 3.5. There exists an APA (2, 3, v) if and only if v > 7 is odd. There exists
an APA (2, 5,v)if v =1 or 5modulo 10, v > 11, v # 15 [10].

The following infinite class of APAs was constructed in [7].

Theorem 3.6. There exists an APA(2, k, q) if k is odd and q = 1 modulo 2k is a
prime power. Hence, there exists an optimal (2, 1)-code with k source states and q
messages for all such k and q.

Proof. Let w be a primitive element in the finite field GF(g), and let & = @9V,
Foreachi=1,...,(g — 1)/2k, foreach j=0, ..., k — 1, and for each g € GF(g),
define a row

B + wiaj ﬂ + Cl)id1+j ﬂ + wia2+j ﬂ + wiak—1+‘i.

The resulting array is an APA, (2, k, g). O
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Note that Example 1.2 is obtained from the above construction.
We remarked earlier that a PA,(t, v, v) is an APA if v > 2t — 1. Hence, we have
the following results from the PAs constructed in Theorems 2.8-2.10.

Theorem 3.7. There exists an APA,(3,v,v) for v =28 and 32. There exists an
APAL(3, 9 + 1, g + 1) for all prime powers ¢ = 3 modulo 4, ¢ > 7. There exists an
APA (4, v, v) for v =9 and 33.

Of course, codes where the number of messages equals the number of source states
(v = k) are of no practical use for authentication, since the probability of deception
is 1. We build codes with more messages than source states by means of a recursive
construction using t-designs. A t-design S,(t, k, v} is a set of k-subsets (called blocks)
of a v-set, such that every z-subset occurs in exactly 4 blocks.

Theorem 3.8 [27, Theorem 3.2]. Assume there is a t-design S,.(¢, k, v) and an
APA,(t, k, k). Then there is an APA . ,.(t, k, v).

Proof. For each block in the S,.(t, k, v), construct an APA,(t, k, k). The union of
all these APA,(t, k, k) is an APA.,.(t, k, v). O

We use a class of 3-designs known as inversive geometries in our recursive
construction. An inversive geometry is a 3-design §,(3, ¢ + 1, ¢¢ + 1), which exists
for all prime powers g and for all d > I (see [29] or [1]). Hence, we obtain

Theorem 3.9 [27, Theorem 3.5]. For any prime power q = 3 modulo 4 (g > 7), and
forany d > 1, there exists an APA5(3, g + 1, ¢° + 1). Hence, a (3, 2)-code with q + 1
source states, q° + 1 messages, and (¢>** — q°)/2 encoding rules exists.

Theorem 3.9 allows us to construct a (3, 2}-code for as many source states as
desired {by taking q large enough), and incorporating any desired level of authenti-
cation security. For the resulting code has Pd; approximately equal to 1/g%7!
(i =0, 1, 2), which can be made arbitrarily small by taking d large enough.

We also obtain the following.

Theorem 3.10 [27, Theorem 3.6]. Foranyd > 1, there exists an APA,(3,8,7¢ + 1)
and an APA (3, 32, 31¢ + 1), and hence an optimal (3, 2)-code with q + 1 source states
and q* + 1 messages, for g = 7 or 31.

Finally, we prove the following partial converse to Theorem 3.3.

. v
Theorem 3.11. If there exists a code for k source states with v messages and (t)

encoding rules which achieves perfect Lg-fold secrecy and is (Lg — 1)-fold secure
against spoofing for an arbitrary source probability distribution, and k > 2t — 1, then
there is an APA,(t, k, v).
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Proof. From the proof of Theorem 3.2, we can see that every set of t messages
corresponds to every set of ¢t source states exactly once, since

()

Hence, the encoding matrix is a PA (¢, k, v). Since k > 2t — 1, the PA, (¢, k, v) is also
aPA,,(t kuv)forl<t'<t.

We must show that the PA is an APA. Since the encoding matrix is a PA, (¢, k, v),
every encoding rule must be used with equal probability in order to attain perfect
secrecy. Now, let x; (1 <i <t’ + 1) be distinct messages (0 <t' <t — 1). Assume
an opponent observes the t' messages x; (1 < i < t’) in the channel, and then sends
X, +1- As in Theorem 3.3, his chance of successful deception is calculated to be

P({s1 - 8o} = {felxs)s oo os felx)})

{erx1,x2, 0000 Xp 41 e M(e)}

p({sl’ "'551’} = {fe(xl)> -*wfe(xr’)}) ’

{e:x1,%x3,..5 X € M(e)}
and the denominator is equal to A(¢') since the array is a PA;,,(t’, k, v).
Since this probability of deception is (k — ¢')/(v — t'), the numerator is deter-
mined, i.e.,

P51 5} = {fulk1) oo fulxe)}) = A(E)-(k = )0 = 1)

{e: X1, %2000 Xp 1y € M(@)}
This must be true for every source probability distribution. Hence, it follows that
in the encoding rules in the above summation, the " symbols x; (1 < i < t’) occur
in all possible subsets of ¢’ columns equally often. Thus, the PA is an APA. O

4. Codes Providing Authentication and Secrecy: L, = Lg

Next, we turn our attention to (¢, t)-codes (i.e., L, = Lg). First, we prove a lower
bound on the number of encoding rules when it is required that the code attain the
desired levels of security for an arbitrary source probability distribution.

Theorem 4.1. If a code achieves perfect Lg-fold secrecy and is Lg-fold secure against
spoofing for an arbitrary source probability distribution, then

b> ( v )‘v —Lg '
Lg) k— Lg
Proof. Using an argument similar to the proof of Theorem 3.2, we see that every
set of Lg + 1 messages is valid under at least one encoding rule, and every set of Lg
messages encodes every possible set of Lg source states. Let M; be a set of Lg
messages which is valid under some encoding rule e,, and denote S, = f, (M,).
Assume the source probability distribution is such that p(S;) = 1 ~ ¢, for some &

close to 0. Define E' = {e: {e(s)}: s € S;} = M, }, In order that the code be L-fold
secure against spoofing for the given source probability distribution, it must be the
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case that, for every message x ¢ M|, there is an encoding rule ¢ € E’ under which x
is valid. Hence, |E'| > (v — Lg)/(k — Lg).

The stated bound on b now follows by counting triples of the form (e, S,, M,),
where e(S;) = M,. If we pick e, and then §;, then M, is determined uniquely. Hence,

k
the number of such triples is exactly b-< L > On the other hand, if we pick M,,

S
then S,, and then e, we see that the number of such triples is at least

v k\ v—Lg
. . . D
Ls LS k - Ls
Remark. InTheorem 5.3 of [5] it was claimed that if an (L, L, )-code exists, where

Lg< L, + 1, then
v k k
b= <LA + 1>.<LS>/<LA + 1>. ()

However, the proof of this bound given in [5] is incorrect. We have three
observations:

(1) Inthe case Ly = L,, we have shown in Theorem 4.1 that the bound (*x) does
hold if the security is required for an arbitrary source probability distribution.
However, the proof of (xx) given in [5] does not make use of any assumption
about the source probability distribution. In Section 6, we construct (1, 1)-
codes for equiprobable source distributions where the number of encoding
rules is less than the bound (**) by a factor of k. Hence, the extra assumption
that the code be secure for an arbitrary source probability distribution is
a necessary assumption in this case.

(2) In the case L= L, + 1, the bound (*x) reduces to the bound proved in
Theorem 3.2. Here, it is unnecessary to make any assumptions regarding the
source probability distribution.

(3) In the cases Ly < L,, we do not know if the bound (+#) is valid or not.

A (t, t)-code for an arbitrary source probability distribution is defined to be optimal
if the number of encoding rules meets the bound of Theorem 4.1 with equality. We
give a construction for (¢, t}-codes for arbitrary source probability distributions,
which generalizes a construction for (1, 1)-codes due to Stinson [25, Corollary 3.11].
The construction also uses t-designs.

Theorem 4.2. If thereisa PA,(t, k, k)and an S;.(t + 1, k, v), where k > 2t — 1, then
there is a (t, t)-code for k source states, for an arbitrary source probability distribution,

having v messages and
M—1 (v
k—t t

Proof. For every block B of the S,.(t + 1, k, v), construct a PA,(t, k, k) on the
points in B. Any S;.(t + 1, k, v) is also an S;.(t, k, v), where 1" = (A'(v — ¢))/(k — 1).

encoding rules.
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Hence, this produces a PA_ ;.(t, k, v), and the resulting code has perfect ¢-fold
secrecy, since k > 2t — 1. Also, the number of encoding rules is

M’(v—t)_(v
k—t t)

1t remains to verify that the code is ¢-fold secure against spoofing. The code is
(t — 1)-fold secure against spoofing, by Theorems 3.3 and 3.8. So, to prove the code
is t-fold secure against spoofing, let x; (1 < i <t + 1) be distinct messages. Assume
an opponent observes the ¢t messages x; (1 < i < t) in the channel, and then sends
X,+;- In a similar fashion as Theorem 3.3, it can be proved that his chance
of successful deception is A'/A” = (k — t)/(v — t). Hence, Pd, = (k — t)/(v — t), as
desired. O

Note that the code constructed above is optimal ifand only if A = ' = 1. We can
apply this theorem to get infinite classes of optimal (1, 1)-codes for arbitrary source
probability distributions.

Theorem 4.3 [25, Corollary 3.11]. Assume there is an S,(2, k, v). Then there is an
optimal (1, 1)-code for an arbitrary source probability distribution, with k source states
and v messages.

Proof. We have noted that a PA (1, k, k) exists for all k. O

As an illustration, we can apply this result using projective geometries (see [1]).
If we take the lines of the projective geometry of order g and dimension 4 as blocks,
we obtain a design S,(2, g + 1, (g*** — 1)/(g — 1)). These are known to exist (for all
d > 1) whenever g is a prime power. Hence, we have

Theorem 4.4.  For all prime powers q and for alld > 2, there is an optimal (1, 1)-code
for an arbitrary source probability distribution, with q + 1 source states and (g*** — 1)/
(g—1) messages.

We also obtain a class of (2, 2)-codes for an arbitrary source probability distribu-
tion, where the number of encoding rules is twice the optimal value. The construc-
tion makes use of orthogonal arrays, which we now define. An orthogonal array
OA(k, v)is a v* x k array, A, of the symbols {1, ..., v}, which satisfies the following

property:

for any ¢t columns ¢y, ..., ¢, of A, and for any ¢t distinct symbols x,, ...,
X,, there is a unique row r of A such that x; occurs in column ¢; of row
r(forl <i<t

For any prime power g, it is well known that there is an OA(g, ¢) with the property
that it constains g different “constant™ rows, each of which contains one symbol ¢
times. (This array can be constructed from an affine plane of order g, which is a
2-design S, (2, g, q%).) If these g rows are removed, then we have a PA,(2, ¢, g).
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Theorem 4.5. For any Mersenne prime q, there is a (2, 2)-code for an arbitrary
source probability distribution, with q + 1 source states, q° + 1 messages, and
(g% + 1)(g%)(q* — D)/(g — 1) encoding rules.

Proof. Since g + 1 = 2% forsome n, thereisan OA(g + 1,9+ 1). An S,(3,9 + 1,
q° + 1) is an inversive geometry. Apply Theorem 4.2. |

Also, we construct an optimal (2, 2)-code whenever a Fermat prime exists.

Theorem 4.6. For any Fermat prime q = 2" + 1, there is an optimal (2, 2)-code for
an arbitrary source probability distribution, with q source states and (g — 1)* + 1
messages.

Proof. ThereisaPA,(2, q, g);andanS,(3, q, (g — 1)* + 1)existssinceq — 1 = 2"is
a prime power. Apply Theorem 4.2. O

Finally, we prove a weak converse to Theorem 4.2.

Theorem 4.7. If there exists a code for k source states with v messages and

v .u—t
t) k—t

encoding rules which achieves perfect t-fold secrecy and is t-fold secure against
spoofing for an arbitrary source probability distribution, then there is an S;(t + 1, k, v),

where
iz (")
t

Proof. Let M, be a set of ¢t messages, and let x ¢ M,. Let S, be any set of t source
states, and define E' = {e: {e(s)}: s € S, } = M, }. From the proof of Theorem 4.1, in

order to have
vy v—t
b= . s
(z) k—1t

it must be the case that [E'| = (v — Lg)/(k — Lg}. Also, x must occur in exactly one
encoding rule in E’. It follows that the rows of the encoding matrix form a (¢t + 1)-

design S,(t + 1, k, v), where
(2
A= . O
t

We note that the existence of the code hypothesized in Theorem 4.7 need not
imply the existence of a (t + 1)-design S, (¢t + 1, k, v). For an APA, (2, 3, v) gives rise

to a (2, 1)-code, which is certainly a (1, 1)-code. The number of encoding rules, ; ,

is indeed equal to
vy v—1
1) 3-1°
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However, there exist APA,(2, 3, v) for v = 5modulo 6, v > 11 (Theorem 3.5);
whereas it can be shown by an elementary counting argument that an §,(2, 3, v)
does not exist if v = 5 modulo 6.

5. Codes Providing Authentication Without Secrecy

As mentioned in the introduction, a code with perfect disclosure cannot be even
one-fold secure against spoofing. In general, we have the following lower bounds
on Pd, for such codes.

Theorem 5.1.  If a code has perfect disclosure, then Pd, > k/v. Moreover, if Pd, =
k/v, then Pd; > k/v for any L > 0.

Proof. By Theorem 3.1, Pd, > k/v. Assume that Pd, = k/v. In order that the code
has perfect disclosure, there must be v/k possible messages encoding each possible
source state. Then an argument similar to that used in the proof of Theorem 3.1
shows that Pd; > kfvforany L > 0. |

The following example illustrates that we can sometimes decrease the probability
Pd; at the expense of increasing the probability Pd,, at least for some source
probability distributions.

Example 5.1. The following code has v =9 messages, k = 3 source states, b = 16
encoding rules, and has perfect disclosure.

S, S35
e, 1 2 6
e, 1 3 6
e, 1 4 6
e, 1 5 6
es 1 2 7
e 1 3 7
e, 1 4 7
eg 1 5 7
ey 1 2 8
e 1 3 8
ey, 1 4 8
€, 1 5 8
ey 1 2 9
e, 1 3 9
es 1 4 9
€6 1 5 9

Assume the source distribution is p(s;) = 98/100, p(s,) = 1/100, p(s;) = 1/100, and
each encoding rule is used with probability 1/16. Then Pd, =1 (>k/v), since
message 1 is always accepted as authentic. However,

98 1 1 1

._+____-1+-—__'1=§— (<k/U).

Pd, = 156'3* 100 100 = 200
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Theorem 5.2. If a code has perfect disclosure, and Pd; = kfv for 0 <i < L, then
b > (v/k)EH1,

Proof. For0 <i< L + 1, we prove that every set of i messages corresponding to
different source states is valid under at least one encoding rule. Since there are v/k
messages corresponding to each encoding rule, this implies b > (v/k)**!. First, if
i = 0, then every message must be valid under at least one encoding rule (otherwise,
Pd, > k/v). As an induction hypothesis, assume that every set of i (>0) messages
corresponding to different source states is valid under at least one encoding rule. In
order that Pd; = k/v, the result must be true for every set of i + 1 messages corre-
sponding to different source states. By induction, the result is true for sets of L + 1
messages. d

A perfect disclosure code for which Pd, = k/v for 0 < i < L, and in which b =
(v/k)“*1, is said to be optimal. We can construct optimal perfect disclosure codes
using transversal designs, which we now define. A transversal design TD, (¢, k, n) is
a triple (X, ¥, &), where X is a set of kn points, 4 is a partition of X into k groups
of n points each, and of is a set of An‘ blocks, each of which meets each group in a
point, such that every ¢t-subset of points from distinct groups occurs in exactly 4
blocks.

We have the following construction, which was first given in the case t = 2 and
A = 11in [2]. The special case of this construction using TD, (2, g + 1, g) was in fact
the first construction given in the literature for authentication codes; see [6]. The
verifications are routine, so we omit them.

Theorem 5.3. If there exists a transversal design TD,(t, k, n), then there is a perfect
disclosure code for k source states, having kn messages and in‘ blocks, and for which
Pd; = 1/n(=k/v) for 0 <i <t — 1. The code is optimal if and only if A = 1.

We also have the following (partial) converse to Theorem 5.3.

Theorem 5.4. Assume there is an optimal perfect disclosure code for k source states,
having v messages and (v/k) encoding rules, and for which Pd; = kjv forO <i <t — 1.
Then there exists a transversal design TD, (¢, k, n), where n = v/k.

Proof. As in the proof of Theorem 5.2, every set of t messages corresponding to ¢
different source states occurs in at least one encoding rule. In order that b = (v/kY,
“at least” must be “exactly.” It is then easy to see that we have a TD,(t, k,n). O

We now mention a family of transversal designs that are useful in the construction
of Theorem 5.3.

Theorem 5.5 [8, Lemma 3.5]. For any prime power q and for any t < q, there is a
TD, (¢, g + 1, q). Hence, there is an optimal perfect disclosure code for q + 1 source
states, having q* + q messages and q' encoding rules, and for which Pd; = 1/q for
O0<i<t—-1
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Proof. Let f be a primitive element of GF(g). For any t-tuple («o, ..., 2,—y) of
elements of GF(q), define a row

t— —1

11 1 -1
o Gy 2 9 Bl Y o o N g fT
J=0 =0

j=0 i=0

The resulting array is a TD,(t, q + 1, 9). d

The result gives us optimal codes where the same encoding rule can be used up
toq — 1 times. Contrast this with the families of codes in the previous sections where
the only known infinite families of optimal (or near-optimal) codes allowed the same
encoding rule to be used at most two or three times.

Finally, we give a construction for perfect disclosure codes from transversal
designs having k > n + 1.

Theorem 5.6 [25, Theorem 3.7]. For any prime power q and for any d > 2, there is
a TD,-2(2, (q* — 1)/(q — 1), q). Hence, there is a perfect disclosure code for (q* — 1)/
(g — 1) source states, having q(q* — 1)/(q — 1) messages and q* encoding rules, and
Jor which Pd; = 1/q for i = 0 and 1.

6. Authentication Codes for Equiprobable Source Distributions

In this section we give some constructions for (1, 1)-codes when the source states
are independent and equiprobable. Prior to doing that, however, we consider codes
providing authentication, with no secrecy assumptions. The following lower bound
on the number of encoding rules applies to any authentication code, regardless of
the source distribution. It was first proved by Massey [11] and Schobi [15].

Theorem 6.1. If a code is L ,-fold secure against spoofing, then

o2(0,50)) ()

Proof. As in the proof of Theorem 3.2, any set of L, -+ 1 messages is valid under
at least one encoding rule. The bound follows. |

k
Note that this bound is less than the bound of Theorem 4.1 by a factor of ( >,
k A
and less than the bound of Theorem 3.2 by a factor of ( Lo+ 1).
A

As with other codes, the term optimal is used if the number of encoding rules
meets the lower bound with equality. Optimal codes can sometimes be constructed
if the source probability distribution is known to be equiprobable. We have the
following construction, given by Schobi [15] and De Soete [5].

Theorem 6.2. Assume there is a t-design S,(t, k, v). Then there is an authentication

v\ /(k
code for k equiprobable source states, having v messages and - <t> / (t) encoding

rules, that is (t — 1)-fold secure against spoofing.
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Proof. Order each block of the t-design arbitrarily, and take these ordered blocks
as encoding rules. First, we verify that Pd,_; =(k — ¢+ 1)/{v —t + 1). Let x;
{1 € i < 1) be distinct messages, and assume an opponent observes the t — 1 mes-
sages x; (1 < i <t — 1)in the channel, and then sends x,. His chance of successful
deception is calculated to be

(o oo P& P({S1s -vvs Se=1} = {Sfelx1)s ooy folxion))).
}P(e)'p({sl, S = ) )]

{1 x1, X2, X1 € M(e)

_ [{e:xy,..., x, € M(e)}|
|{E: Xiseeey Xpm1 € M(e)}[

(since p(e) is constant and the source states are equiprobable)

k=t
To—t+ 1

Now, to see that Pd; = (k — i)/(v — i) for 0 < i <t — 2, note that, for any ¢’ < t, an
S,(t, k, v) is also an S,.(t', k, v) for some A" |

Conversely, we prove the following result.

Theorem 6.3. Assume there is an authentication code for k equiprobable source
k
states, having v messages and (l;) / (t) encoding rules, that is (t — 1)-fold secure

against spoofing. Then there is a t-design S,(t, k, v).

Proof. In order to attain equality in the bound of Theorem 6.1, every set of ¢
messages must be valid under exactly one encoding rule. O

In general, a code constructed from a t-design using Theorem 6.2 will not provide
perfect (t — 1)-fold secrecy. However, in the case t = 2, we can also obtain perfect
onefold secrecy with the same number of encoding rules, provided that v — 1 =0
modulo k(k — 1), as follows.

Theorem 6.4. Assume thereisan S, (2, k, v), wherev — 1 = 0 modulo k(k — 1). Then
there is an optimal (1, 1)-code for k equiprobable source states, having v messages and
v(v — 1)/(k(k — 1)) encoding rules.

Proof. It is necessary to order every block of the S, (2, k, v), such that every point
occurs in each possible position in exactly (v — 1)/{(k(k — 1)) blocks. Clearly, a
necessary condition for this to be possible is » — 1 = 0 modulo k(k — 1), since every
point occurs in exactly (v — 1)/(k — 1) blocks. The condition is also sufficient, as
follows. Let the design S, (2, k, v) have point set X and block set /. Construct a
bipartite graph, having bipartition (X, 27), where x4 is an edge ifand only if x € 4
(x € X, A € o). Clearly, it suffices to find an edge-colouring of this graph using k&
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colours, so that each vertex 4 € & is adjacent to one edge of each colour, and each
vertex x € X is adjacent to {v — 1)/(k(k — 1)) edges of each colour. But this can be
done by first “splitting” each vertex x into (v — 1)/(k(k — 1)) vertices, each having
degree k, and then finding a proper edge-colouring of the resulting k-regular bipar-
tite graph using k colours. Finally, use the edge-colouring to impose an ordering on
each block, and then take these ordered blocks as the encoding rules, using each
with equal probability. O

Hence, using projective geometries, we obtain the following.

Theorem 6.5. For all prime powers q and for all even d > 2, there is an optimal
(1, 1)-code for an equiprobable source probability distribution with q + 1 source states,
having (q*** — 1)/(g — 1) messages.

Proof. The projective geometry yields a design S;(2, ¢ + 1, (¢*™ — D)/(g — 1)). If
d is even, then v — 1 = 0 modulo k(k — 1). Apply Theorem 6.4. O

In the case d = 2, it is particularly convenient to construct the code. For, it is well
known that the design S, (2, g + 1, ¢*> + g + 1) can be constructed by developing a
single “base block” modulo ¢ + q + 1 (see, for example, Theorem 6.2 of [1]). Such
a design is said to be cyclic. This automatically yields perfect secrecy without
recourse to the technique used in the proof of Theorem 6.4.

Example 6.1. A (1, l)-code for k = 3 equiprobable source states, having v =7
messages, and b = 7 encoding rules, constructed from a cyclic §,(2, 3, 7). Use each
encoding rule with probability 1/7.

ey 1 2 4
e, 2 3 5
e 3 4 6
e, 4 5 7
es 5 6 1
e 6 7 2
e; 7 1 3
7. Summary

We summarize the main classes of codes constructed in this paper. Secrecy codes
are studied in Section 2. The basic construction for t-fold secrecy codes uses a
perpendicular array PA,(t, k, v), where k > 2t — 1. The optimal situation is to have
a PA (t,v,v) (v = 2t — 1). Unfortunately, examples of these are known only for
t = 1, 2, and 3, and infinite classes are known to exist only for ¢t = 1 and 2.

Perfect disclosure authentication codes are considered in Section 5. To obtain
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Table 1. Some optimal and near-optimal classes of (Lg, L, )-codes.

(Lg, L) k v b Optimal? Authority
(1,0) Anyinteger Any integer >k v Yes Theorem 3.4
LYy qg+1 P +q+1 @+qg+Dg+) Yes Theorem 4.4

(@=2)
(2,1) Anyoddinteger ¢=1mod2k q(qg — 1)/2 Yes Theorem 3.6
2,2) gq+1 ¢ +1 (g% + (g*)g + 1) 2 x optimal Theorem 4.5
q a Mersenne d=2)
prime
2.2 q P —-2q+2 (q* — 29 + 2)(9)(q — 1)*/Z Yes Theorem 4.6
g a Fermat d=2)
prime
(3,2 q+1 > +1 (q° - q%)/2 3 x optimal Theorem 3.9
g = 3 modulo 4 d=2)

such a code, we employ a transversal design TD,(t, &, v). This yields a code where
Pd; = k/vfor 0 < i <t — 1. For authentication purposes, we would want k/v to be
very small. The number of encoding rules is optimal if 1 = 1. Fortunately, optimal
codes can be constructed for any value of ¢t (Theorem 35.5).

Next, in Table 1, we give a brief summary of the optimal and near-optimal classes
of (Lg, L,)-codes we constructed in Sections 3 and 4. These are all codes for an
arbitrary source distribution. In Table 1, q denotes a prime power.

Finally, codes for equiprobable source distributions are studied in Section 6.
Here, an optimal code which is (¢t — 1)-fold secure against spoofing can be con-
structed from an S, (t, k, v). In the case of codes which are onefold secure against
spoofing, the code obtained from an S, (2, k, v) can also provide perfect secrecy if
v — 1 = 0 modulo k(k — 1).
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