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Abstract 

Earlier work on using constrained search to locate objects in cluttered scenes 
showed that the expected search is quadratic in the number of features, if all the 
data comes from one object, but is exponential if spurious data is included. Con- 
sequently, many methods terminate search once a "good" interpretation is found. 
Here, we show that correct termination procedures can reduce the exponential search 
to quartic. This analysis agrees with empirical data for cluttered object recognition. 
These results imply that one must select subsets of the data likely to have come 
from one object, before finding a corresponden'ce between data and model features. 

Constrained tree search [e.g. 6,7,10], which identifies data/model  feature pairings con- 
sistent with a rigid coordinate transformation, is a common approach to object recognition 
and localization in noisy cluttered environments. Formal analysis of these methods [2] 
shows that  if all of the data  are known to have come from one Object; the expected amount 
of search is quadratic, while if spurious data is allowed, the expected search is exponential. 

Hence, a hard part of recognition is isolating, from the spurious data, a subset likely 
to belong to one object. While grouping methods (e.g. generalized Hough transform, or 
[9,8]) can reduce the search space size [4], they cannot, in general, select sets of data 
features all from one object, without also encurring a high false positive rate [4]. 

An alternative is to terminate the search [e.g. 1,6,7,9] once a measure of an interpre- 
ta t ion ' s  "goodness" (fraction of th e object accounted for) exceeds some threshold. The 
threshold can be set based on Scene clutter and model size [5], so that  no false positive 
solutions are expected. Here, we show how termination reduces the expected search. 

1. T h e  c o n s t r a i n e d  search  m o d e l  
Constrained search finds pairings of geometric data and model features, consistent 

with a rigid model transformation. To find feature matches, we search an interpretation 
tree depth-first. Nodes at the first level of the tree match the first data feature to each 
model feature, or to the null character indicating the data feature is not part of the object. 
Each node then branches to m + 1 other nodes, where the next data  feature is matched to 
each model feature or the null character, and so on, so that  a level n node and its ancestors 
define a matching of the first n data  features. We search the tree depth first, testing each 
node's consistency with unary and binary constraints [6,7] based on properties like length, 
relative orientation and relative separation of features. Any constraint involving the null 
character is always consistent. If any other constraint is false, we backtrack. If we reach 
a leaf, we verify the data/model  pairings by solving for a rigid transformation and testing 
that it maps all the model features into their matched data features. If so, we save the 
interpretation, backtrack and continue, until all interpretations are found. 

tResearch funded in part by ONR URI grant N00014-86-K-0685, in part by NSF Grant !RI-8900267, 
and in part by DARPA under Army contract DACA76-85-C~0010 and ONR contract N00014-85-K-0124. 



553 

2. P r e v i o u s  resu l t s  
Empirically [6,7], this method is very efficient when all the data features are known to 

come from one object. With spurious data, however, the method slows down considerably. 
If sets of data/model  pairings consistent with similar model transformations are isolated 
before the search, efficiency improves. If termination is added, the method improves even 
more. Some of these empirical observations are supported by formal analysis [2]: 

• If all s data features lie on one object with m equal size features, the noise is small, 
and the data  is uniformly distributed, then the expected search is bounded by 

m 2 <_No <_m 2+ares .  

• If only c of the s sensory features lie on an object and the other conditions above 
hold, then the expected search is bounded above and below by expressions of order 

O(N~) = m[l + 7]" + ms2C + Sm6 + m~s2[ l + #]c and o(N~) = m2 ¢ + ms.  

Here, a, % 5, # are constants that depend on the object and the sensor noise, % # < 1. 
Hence, constrained search is polynomial (quadratic) when all of the data is known to 
come from a single object, but is exponential when spurious data is included. Here, we 
consider theeffects of heuristic search termination in reducing the exponential cost. 

3. S e t t i n g  up  t h e  formal  t e r m i n a t i o n  m o d e l .  
The probability that  matching the i th data and the I th model feature is consistent is 

1 if i ~ I is correct, or if I is the null character, 
qi,1 = pl otherwise. 

The probability that  the matches i ~ I, j ~ J are consistent is 

1 if i ~ I , j  ~ J is correct, or if either I or J are the null character, 
qi,j;I,J = P2 otherwise. 

Given a partial interpretation at a search tree node, the probability of consistency is [2]: 

H qi,I H qi,j;I,J. 
i i#j 

Given these definitions, one can derive an explicit expression for the expected number of 
nodes in the tree [3]. For the case of terminating the search once the number of actually 
matched data features in a valid interpretation exceeds a predetermined threshold, some 
messy manipulations (which in the interest of space are deferred to [3]) give: 

P r o p o s i t i o n  1: Given a uniform distribution of correct data features among the 
spurious, with density 6 = c/s,  m model features, s data  features and a termination 
threshold t, and since p2 = (~ /m)  2 [2], the expected amount of search is bounded by 

( "/ (1_,, 
N <_ + ¢ ° + ' # J ° - '  1 + (t - + ,7 'o/ ( t  - 1) 1 - 

_ , , (3-~)t  \ 
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where 

m 

j0 = [a2 _ l J, 

a = ( s - t + 2 ) ( ½ - 2 1 -  ) - 2 ~ ( ½ - 1 ) ,  

= (~ - 3)~, 

= m p l - S  p~ ~ , 

io = [(~ - 3)~ - 11, 

f = s - t - ~  +1 
36--62 2 

. = m p l - ' p ~  I 

Corollary 1.1: The expected search is of order: 

~( ~)~< ~/~°~-~ o(N)=mS-c and o ( g ) = m t s  c 1+ a 2 . 

P r o o f i  For both bounds, we identify, then simplify, the dominant terms: 

< ~t ~ < ~+~ (~ : )~ (~ )~ '  ~ o ( g ) = m  s - t + 2 - ~ c  c' O(N)=mt  s - t  2c ] c  - -  "| 

(1) 
Corollary 1.2: If sg 2 < 2m then termination has an expected search of order 

O(N) amts s- and o(N) s 
C ¢ 

4. Implications of the results 
By Cor. 1.1, terminated search need not be polynomial, although it is reduced from 

normal constrained search. Cor. 1.2 implies that if the scene clutter is small enough 
relative to the model size, we do get a polynomial algorithm. When the scene clutter 
increases, however, we need to select (e.g. [9,8,11]) subsets of  data features of size s < 
while still having at least t features from the object in the set. 

This extends earlier results on the role of selection in efficient object recognition. For 
pure constrahned search [2], knowing that all the data features are from a given object 
reduces the expected search to polynomial, but general constrained Search is exponential 
[2]. This suggests that  selection mus t perfectly isolate relevant data subsets, since if even 
one spurious point is included, either an exponential search results, or the entire feature 
subset is rejected. With termination, however, selection can allow an amount of spurious 
data  bounded by the conditions of Cor. 1.2 and still have an efficient search method. 

The constant ~ depends on properties of the object model and the sensor [2]. Since t~ 
increases with increasing data noise, the expected search also increases, and the amount of 
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t h = . 3 m  t .4m I .5m I .6m ]1 Full Search 
Predicted lower bound 1,234 1 ,152  1,069 987 5.4 x 106 
Actual nodes, average case, in theory 1,776- 1 ,635 1,498 1,364 
Predicted upper bound 7,017 8 ,675  9 , 9 9 2  10,969 3.2 × i0 s 
M~edian, using features 2,689 2 ,993  2,605 2,143 
Mean, using features 6,2'2'3 ...... 6,610 9,536 15,340 l0 T 
Deviation, using features 9,440 9,345 30,278 47,872 

Median, using perimeter 6,627 8 ,834  8 , 9 7 7  9,479 
Mean, using perimeter 19,437 16,307 23,297 38,362 107 
Deviation, using perimeter 50,199 34,215 50,062 104,662 

Table 1: 

spurious data tolerable decreases. Typically ~ ~ .2~ where P is the total object perimeter 
(for 2D objects) and D is the image dimension. Given this, the conditions for a polynomial 
search are s < 50m (D/P) 2 so that considerable spurious data is still tolerable. 

4.1 Comparing search results 
We can extend the earlier analysis [2] as follows (proof in [3]): 
P ropos i t ion  2: If the data from a correct interpretation are uniformly distributed 

among the spurious data, then normal constrained search is bounded by 

[ P2 ] c-1 m3s 8 
mS-2 c<Nocc<ms2  c +  [ l + e ] '  1 + ~  + ~ - [ l + p 2 1  ~. |  

c -- -- c I r e  /~2 c 

(2) 

From Cor. 1.2, for small scene clutter, the expected search reduces to order 

3 3 
ms-  < Nterm < rots-. 

c c 

Comparing with Prop. 2, heuristic search termination significantly reduces the search. 

4.2 Cons i s t ency  wi th  real da t a  
We also compare this analysis with real data. Features from a cluttered i m a g e  

were placed in 100 random orderings, and the t~F [6,7] system was for thresholds of 
.3m,.4m, .5m and .6m, where m is the number of model features, and thresholds of 
.3P, .4P, .5P and .6P, where P is the model perimeter, with appropriate measures of an 
interpretation. In this example, m = 20, s = 35, c = 17. Table 1 lists the predicted 
bounds (eqn (1)) and actual number of nodes, statistics for each case, and the predicted 
and observed number of nodes with no termination (eqn (2)). 

Note that the derived bounds on the search correctly contain the actual search. Also, 
the median number of nodes searched, using number of features matched as a termination 
procedure, lies within the predicted bounds and is in close agreement with the actual 
theoretical number. The mean search is higher, as expected, since the analysis assumed a 
uniform distribution of correct data features amoung the spurious. The increase in search 
when more spurious data are among the first features examined is much larger than the 
decrease in search when more of the correct features are among the first few features. 

We also applied RAF to 10 real images, with threshold .3m. Figure I plots (top to bot- 
tom) the predicted upper bound, observed median, predicted actual search, and predicted 
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Figure 1: 

lower bound, based on t00 trials, all as a function of the number of data features. While 
other factors can influence both the actual and predicted search, these graphs demon- 
strate that the predicted number is always between the bounds and is close to the lower 
bound, and that the observed number of nodes closely follows the prediction. 

5. Conclusion 
Heuristic termination of constrained search dramatically reduces the expected search 

in object recognition in cluttered noisy data. To obtain polynomial time algorithms, 
the ratio of scene clutter to object size must be small enough, and this implies that for 
significantly cluttered scenes, a selection method is needed to select out data subsets that 
are likely to include a subset arising from an instance of a known object. Moreover, such 
methods lead to low order polynomial performance, and to fast practical methods. 
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