

Open access • Posted Content • DOI:10.1101/682617

The common neoantigens in colorectal cancer are predicted and validated to be presented or immunogenic — Source link \square

Liang Z, Qin L, Lingli Chen, Wei Li ...+11 more authors

Institutions: Dali University, Chinese Academy of Sciences

Published on: 26 Jun 2019 - bioRxiv (Cold Spring Harbor Laboratory)

Related papers:

- A method of screening highly common neoantigens with immunogenicity in colorectal cancer based on public somatic mutation library
- A New Pipeline to Predict and Confirm Tumor Neoantigens Predict Better Response to Immune Checkpoint Blockade.
- Unique true predicted neoantigens (TPNAs) correlates with anti-tumor immune control in HCC patients
- Mutation-Derived Neoantigens for Cancer Immunotherapy.
- A synDNA vaccine delivering neoAg collections controls heterogenous, multifocal murine lung and ovarian tumors via robust T cell generation.

1	The common neoantigens in colorectal cancer are predicted and
2	validated to be presented or immunogenic
3	Zhaoduan Liang ^{a,b*} , Lili Qin ^{a,b,c*} , Lei Chen ^{a,b} , Wenhui Li ^{a,b} , Chao Chen ^{a,d,f} , Yaling
4	Huang ^{a,b} , Le Zhang ^{a,d,f} , Songming Liu ^{a,d,f} , Si Qiu ^{a,f} , Yuping Ge ^{a,b} , Wenting Peng ^{a,b,d} ,
5	Xinxin Lin ^{a,f} , Xuan Dong ^{a,b} , Xiuqing Zhang ^{a,b,f} and Bo Li ^{a,e,f#}
6	^a BGI-Shenzhen, Shenzhen 518083, China
7	^b China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
8	^c College of Basic Medicine, Dali University, Dali 671000, China
9	^d BGI Education Center, University of Chinese Academy of Sciences, Shenzhen,
10	518083, China
11	^e BGI-GenoImmune, BGI-Shenzhen, Wuhan, 430079, China
12	^f BGI-GenoImmune, BGI-Shenzhen, Shenzhen 518083, China
13	*these authors contributed equally to this article.
14	#Corresponding author: libo@genomics.cn ; Tel: +86-1868-067-9919
15	
16	
17	
18	
19	
20	
21	
22	
	1

23 ABSTRACT

Colorectal cancer (CRC) is a malignant cancer with high incidence and mortality in 24 25 the world, as the result of the traditional treatments. Immunotherapy targeting 26 neoantigens can induce durable tumor regression in cancer patients, but is almost 27 limited to individual treatment, resulting from the unique neoantigens. Many shared 28 oncogenic mutations are detected, but whether the common neoantigens can be 29 identified in CRC is unknown. Using the somatic mutations data from 321 CRC 30 patients combined with a filter standard and 7 predicted algorithms, we screened and 31 obtained 25 HLA-A*11:01 restricted common neoantigens with high binding affinity (IC50<50 nM) and presentation score (>0.9). Except the positive epitope 32 33 KRAS_G12V₈₋₁₆, 11 out of 25 common neoantigens were proved to be naturally 34 processed and presented on constructed K562 cell surface by mass spectroscopy (MS), and 11 out of 25 common neoantigens specifically induced in vitro pre-stimulated 35 cytotoxic lymphocyte (CTL) to secrete IFN-y. However, only 2 out of 25 common 36 37 neoantigens were simultaneously presented and immunogenic. Moreover, using 38 cell-sorting technology combined with single-cell RNA sequencing, the immune 39 repertoire profiles of C1orf170_S418G₄₁₃₋₄₂₁ and KRAS_G12V₈₋₁₆-specific CTL were clarified. Therefore, common neoantigens with presentation and immunogenicity 40 41 could be found in CRC, which would be developed as the universal targets for CRC 42 immunotherapy.

43

44 KEYWORDS: colorectal cancer; neoantigen; common; presentation; immunogenicity

45 Introduction

46	Colorectal cancer (CRC) is the third commonest diagnosed malignant cancer and
47	the second leading cause of cancer death in the world [1]. In 2018, more than 1.8
48	million new cases of CRC and almost 881 thousand cases of CRC-interrelated death
49	occurred in the world [1], and the global burden of CRC is estimated to reach over 2.2
50	million new cases and 1.1 million cancer deaths by 2030 [2]. Traditionally surgical
51	resection can cure the early stage of CRC, but about 50% of patients ultimately die of
52	distant metastases. While chemotherapy, radiation therapy and targeted therapy can
53	extend overall survival, less than 15% of patients with metastatic CRC survive
54	beyond 5 years [3]. Therefore, the novel and more effective therapeutic approaches
55	for CRC are necessary to develop.
56	In the recent years, based on a better knowledge of the complex interactions
57	between the immune system and the tumor microenvironment, immunotherapy has
58	become a novel effective and promising therapeutic strategy for cancer, and its
59	efficacy is widely tested by CRC model. The vast majority of CRC patients with
60	deficient mismatch repair (dMMR) or highly microsatellite instable (MSI-H) benefit
61	from immune checkpoint inhibitors, which is not effective in other CRC patients with
62	proficient MMR (pMMR) or microsatellite stable (MSS) [4]. Patients with CRC do
63	not respond to autologous tumor lysate DC (ADC) and peptide vaccines [4]. T cells,
64	which are engineered to express an affinity-enhanced T-cell receptor (TCR) or an
65	antibody-based chimeric antigen receptor (CAR) targeting tumor associated antigens
66	(TAAs), such as carcinoembryonic antigen (CEA) [5, 6] and human epidermal growth

67	factor receptor-2 (HER2) [7], regress metastatic CRC, but simultaneously mediate
68	severe autoimmunity in patients. These results highlight the importance of identifying
69	tumor specific antigens, which optimally discriminate tumor and normal tissues, for
70	improving the efficacy and safety of adoptive T-cell therapy for CRC.
71	Compared with TAAs, which lowly express in some normal cells but
72	overexpress in tumor cells [5-7], mutated tumor-specific antigens (TSAs) arise from
73	the somatic mutations in protein-coding regions of tumor cells, and are exclusively
74	present in malignant cells and not produced by normal tissues [8]. The accumulated
75	mutations in cancers include nonsynonymous, nonsense, indel and frame shift, and are
76	classified into driver mutations, which involve in uncontrolled cell growth and tumor
77	metastasis, and passenger mutations, which may not contribute to the tumorigenic
78	phenotype, but increase immunogenicity [9]. Through the antigen presentation system,
79	peptides, which contain the mutant sites and are called neoantigens, can be presented
80	on the surface of tumor cells by major histocompatibility complex (MHC) molecules,
81	then recognized by T cells to lead robust anti-metastatic CRC activity [10].
82	Furthermore, T-cell responses elicited by neoantigens are not subject to host central
83	tolerance in the thymus and also bring fewer toxicities deriving from autoimmune
84	reactions to normal cells [11]. The highly individual neoantigens actualize the
85	personalized cancer immunotherapies, but limited the development of "one fits all"
86	pharmacologic solutions [11].
87	It has been shown that some cancers with high tumor mutational burden (TMB)
88	possess a set of common neoantigens owing to the microsatellites [11]. The presence

89	of microsatellite instability has been found in approximately 15-20% CRC, and
90	dMMR CRC has a high TMB, which is far higher than the standard value [4].
91	Furthermore, driver mutations possess only 8% CD8+T-cell neo-epitopes, while
92	passenger mutations possess 92% CD8 ⁺ T-cell neo-epitopes and 100% CD4 ⁺ T-cell
93	neo-epitopes [9]. HLA-A*11:01 allele has high prevalence in US Caucasians,
94	Asian-Americans and China [12] (http://www.allelefrequencies.net/). Therefore, we
95	hypothesized that targeting the common neoantigens, comprising driver mutations and
96	passenger mutations and restricted by HLA-A*11:01, not only improved the efficacy,
97	safety and adoption of CRC immunotherapy, but also reduced the cost and time of
98	CRC clinical treatment. In the present study, we predicted the HLA-A*11:01
99	restricted common neoantigens from the somatic mutations data of 321 patients with
100	CRC and validated their presentation and immunogenicity, which would become the
101	new targets for CRC immunotherapy.
102	
103	Materials and methods
104	Cell lines
105	The TAP-deficient T2 cell line (CRL-1992), K562 cell line (CCL-243) and
106	HEK-293 cell line (CRL-1573) were purchased from the American Type Culture
107	Collection (ATCC), and respectively maintained in Iscove's Modified Dulbecco's
108	Medium (IMDM, Gibco), RPMI-1640 medium (Gibco) and Dulbecco's Modified
109	Eagle's Medium (DMEM, Gibco) with 10% fetal bovine serum (FBS; Hyclone) at
110	$37^\circ C$ in a humidified 5% CO_2 incubator. T2 cell line and K562 cell line were

111 retrovirally transduced with retrovirus encoding HLA-A*11:01. Cells were authenticated by HLA genotyping, tested for mycoplasma by PCR method, and 112 113 maintained in medium no more than 2 months from each thaw. Human peripheral blood was obtained from anonymous healthy donors who had signed informed 114 115 consents. Peripheral blood mononuclear cells (PBMCs) were isolated by 116 Ficoll-Hypaque gradient centrifugation and maintained in RPMI-1640 medium supplemented with 10% FBS at 37 °C in a humidified 5% CO₂ incubator. The study 117 was approved and conducted by Institutional Review Board of Beijing Genomics of 118 119 Institute (BGI)-Shenzhen (No. BGI-IRB18142).

120

121 Mutation selection and epitope prediction

122The somatic mutations data of 321 patients with CRC from China-Colorectal

123 Cancer Project (COCA-CN, https://icgc.org/icgc/cgp/73/371/1001733) in ICGC

124 (International Cancer Genome Consortium) database (http://icgc.org) were

downloaded and further analyzed. In briefly, missense variants that caused amino acid

126 changes in coding regions were filtered according to a standard, in which the

127 frequency of single-nucleotide variants (SNVs) was over 5 out of 321 patients and

128 insertions or deletions (InDels) was over 2 out of 321 patients. After obtaining the list

129 of the tumor-specific mutant proteins, we extracted the peptide sequences around the

130 mutated sites. As MHC class I molecules bind to peptides 9-10 amino acids in length

131 with the highest affinity [13], peptides were extracted *in silico* from 19 amino acids

sequences, with 9 amino acids upstream and 9 amino acids downstream of mutated

133	amino acids, and 19 sets of 9-mer or 10-mer sequence containing mutated site from
134	each mutated protein were identified and predicted by algorithms. Wild-type peptides
135	with the same length as mutated peptides were extracted as references. The potential
136	binding affinity between extracted peptides and HLA-A*11:01 allele was analyzed
137	simultaneously by NetMHC-4.0 [14], NetMHCpan-3.0 [15], NetMHCpan-4.0 [16],
138	PSSMHCpan-1.0 [13], PickPocket-1.0 [17] and SMM [18]. Results were exhibited as
139	predicted equilibrium binding constants of IC50 (50% inhibitory concentration, nM),
140	in which strong binders meant the predicted binding affinity IC50 values were less
141	than 50 nM, and weak binders were that of 50-500 nM [19]. Moreover, we used our
142	software Epitope Presentation Integrated prediCtion (EPIC) [20], with a fixed
143	expression value 4 Transcripts Per Kilobase Million (TPM) as inputs, to predict the
144	presentation of extracted peptides, in which the results were shown by the scores of
145	highest presentation probability. These mutant peptides with strong binding capacity
146	and high score of presentation probability were selected as potential neoantigens.
147	
148	The construction of putative neoantigens transduced K562 cells (HLA-A*11:01 ⁺)
149	Six predicted neoantigens were linked into a tandem neoantigen as previously
150	described [21]. Briefly, six predicted neoantigens, which each had 27 amino acids
151	with the mutation at position 14, were connected by a start linker (GGSGGGGSGG),
152	middle linkers (GGSGGGGGGGG) and an end linker (GGSLGGGGGG). The N
153	terminal of a tandem neoantigen was successively linked with the kozak sequence

154 (GCCACC) and the signal peptide sequence (SPMRVTAPRTLILLLSGALALTET

155	WAGS), and the C terminal was linked with the MHC class I trafficking signal
156	(MITD) sequence (IVGIVAGLAVLAVVVIGAVVATVMCRRKSSGGKGGSYSQA
157	ASSDSAQGSDVSLTA) and termination codon. The tandem minigene DNA
158	fragment coding the above sequence was synthetized and cloned into lentiviral
159	expressing vector pLVX (CMV-EF1a-ZsGreen-P2A-Bsd; provided by Viraltherapy
160	Technologies Ltd, Wuhan, China). Lentiviral particles encoding tandem minigenes
161	were produced from HEK-293 cells, which were simultaneously transduced with
162	packaging constructs (RRE, REV and VSVG (invitrogen)) and the expressing vector,
163	and infected mono HLA-A*11:01 allelic K562 cells. Positive K562 cells were
164	selected by Blasticidine S hydrochloride (5 μ g/ml, Sigma) and detected through the
165	percentage of reporter gene ZsGreen.
166	
167	The preparation of MHC Class I bound peptides
168	MHC-I peptidomes were obtained from mono HLA-A*11:01 allelic K562 cells
169	transduced with putative neoantigens as described previously [22]. In brief, 1×10^9
170	cells were dissociated using lysis buffer (0.25% sodium deoxycholate, 1% n-octyl
171	glucoside, 100 mM PMSF and protease inhibitors cocktail in phosphate buffer saline
172	(PBS)) at 4 °C for 60 min. Lysate were further cleared by centrifugation at 14,000 g
173	for 30 min. Cleared lysate were purified with anti-pan-HLA class I complexes

- antibody (clone W6/32), which was covalently bound Protein-A Sepharose CL-4B
- beads (GE Healthcare). Beads were washed with Tris-HCl buffer containing NaCl.
- 176 The MHC-I molecules were eluted at room temperature using 0.1 N acetic acid.

177	Eluate was loaded on Sep-Pak tC18 cartridges (Waters, 100 mg). The C18 cartridges
178	were first washed with 0.1% TFA, then with 0.1% TFA containing 30% ACN to
179	separate peptides from MHC-I complexes. Eluate was concentrated to 20 μ l using
180	vacuum centrifugation. Finally, 5 μ l of sample was used for Parallel Reaction
181	Monitoring (PRM) mass analysis.

182

183 Peptide validation by mass spectroscopy (MS) analysis with PRM

184 Peptides were separated by a nanoflow HPLC (15 cm long, 75 µm inner diameter column with ReproSil-Pur C18-AQ 1.9 µm resin) and coupled on-line to a 185 Fusion Lumos mass spectrometer (Proxeon Biosystems, Thermo Fisher Scientific) 186 with a nanoelectrospray ion source (Proxeon Biosystems). Peptides were eluted with a 187 188 linear gradient of 5-80% buffer B (98% ACN and 0.1% FA) at a flow rate of 500 nl/min over 3 hours. Data of each injection was acquired using a corresponding 189 transition list (data not shown). Full scan MS spectra were acquired at a resolution of 190 6,000 at 350-1,400 m/z with a target value of 4×10^5 ions. MS/MS resolution was 191 192 60,000 at 150-2,000 m/z, and higher collisional dissociation (HCD) was employed for 193 ion fragmentation. The interpretation of MS data was performed with Skyline. To 194 validate a peptide which could be presented by MHC-I complex, the following criteria 195 were considered: i) the variation of retention time between precursor ions was less 196 than 3 min; ii) the pattern and retention time were matched between synthetic peptide and target peptide for no less than 5 product ions. 197

198

199 The preparation of tetramer of peptide-MHC complex

200	Peptides (Table 1) and HLA-A*11:01-restricted KRAS G12V ₈₋₁₆
201	(VVGAVGVGK) as positive peptide were synthesized from GenScript (Nanjing,
202	China), with purity greater than 98% by mass spectroscopy. Peptide-MHC tetramers
203	were generated as previously described [23]. In briefly, Peptides (400 μ M) were
204	mixed with Flex-T TM HLA-A*11:01 Monomer UVX (Biolegend), then subjected to
205	UV light for 30 min on ice. The MHC monomers exchanged with peptides were
206	tetramerized in the presence of allophycocyanin (APC) conjugated streptavidin (BD
207	Biosciences) for 30 min at 37 °C, then the reaction was stopped by PBS containing
208	D-Biotin (500 μ M) and NaN ₃ (10%), then kept at 4 °C overnight for use.
209	
210	The generation of mature dendritic cells (mDCs)
210 211	<i>The generation of mature dendritic cells (mDCs)</i> Monocytes (CD14 positive) were positively selected using CD14 MicroBeads
210 211 212	The generation of mature dendritic cells (mDCs) Monocytes (CD14 positive) were positively selected using CD14 MicroBeads (Miltenyi Biotec) from PBMCs of healthy donors as the manufacturer's protocol, and
210 211 212 213	 The generation of mature dendritic cells (mDCs) Monocytes (CD14 positive) were positively selected using CD14 MicroBeads (Miltenyi Biotec) from PBMCs of healthy donors as the manufacturer's protocol, and cultured in CellGenix[™] DC media (CellGenix) supplemented with 2% human serum
210 211 212 213 214	 The generation of mature dendritic cells (mDCs) Monocytes (CD14 positive) were positively selected using CD14 MicroBeads (Miltenyi Biotec) from PBMCs of healthy donors as the manufacturer's protocol, and cultured in CellGenix[™] DC media (CellGenix) supplemented with 2% human serum albumin (HSA, CSL Behring L.L.C.), granulocyte-macrophage colony stimulating
 210 211 212 213 214 215 	 The generation of mature dendritic cells (mDCs) Monocytes (CD14 positive) were positively selected using CD14 MicroBeads (Miltenyi Biotec) from PBMCs of healthy donors as the manufacturer's protocol, and cultured in CellGenix[™] DC media (CellGenix) supplemented with 2% human serum albumin (HSA, CSL Behring L.L.C.), granulocyte-macrophage colony stimulating factor (GM-CSF, 100 ng/ml; PeproTech) and interleukin 4 (IL-4, 100 ng/ml;
 210 211 212 213 214 215 216 	 The generation of mature dendritic cells (mDCs) Monocytes (CD14 positive) were positively selected using CD14 MicroBeads (Miltenyi Biotec) from PBMCs of healthy donors as the manufacturer's protocol, and cultured in CellGenix[™] DC media (CellGenix) supplemented with 2% human serum albumin (HSA, CSL Behring L.L.C.), granulocyte-macrophage colony stimulating factor (GM-CSF, 100 ng/ml; PeproTech) and interleukin 4 (IL-4, 100 ng/ml; PeproTech) for 5 days. On day 6, immature DCs were stimulated to mature by
 210 211 212 213 214 215 216 217 	 The generation of mature dendritic cells (mDCs) Monocytes (CD14 positive) were positively selected using CD14 MicroBeads (Miltenyi Biotec) from PBMCs of healthy donors as the manufacturer's protocol, and cultured in CellGenixTM DC media (CellGenix) supplemented with 2% human serum albumin (HSA, CSL Behring L.L.C.), granulocyte-macrophage colony stimulating factor (GM-CSF, 100 ng/ml; PeproTech) and interleukin 4 (IL-4, 100 ng/ml; PeproTech) for 5 days. On day 6, immature DCs were stimulated to mature by TNF-α (10 ng/ml; PeproTech), IL-6 (50 ng/ml; PeproTech), IL-1β (10 ng/ml;
 210 211 212 213 214 215 216 217 218 	 The generation of mature dendritic cells (mDCs) Monocytes (CD14 positive) were positively selected using CD14 MicroBeads (Miltenyi Biotec) from PBMCs of healthy donors as the manufacturer's protocol, and cultured in CellGenix[™] DC media (CellGenix) supplemented with 2% human serum albumin (HSA, CSL Behring L.L.C.), granulocyte-macrophage colony stimulating factor (GM-CSF, 100 ng/ml; PeproTech) and interleukin 4 (IL-4, 100 ng/ml; PeproTech) for 5 days. On day 6, immature DCs were stimulated to mature by TNF-α (10 ng/ml; PeproTech), IL-6 (50 ng/ml; PeproTech), IL-1β (10 ng/ml; PeproTech), Prostaglandin E2 (500 ng/ml; Sigma) and Poly(I:C) (10 µg/ml;
 210 211 212 213 214 215 216 217 218 219 	 The generation of mature dendritic cells (mDCs) Monocytes (CD14 positive) were positively selected using CD14 MicroBeads (Miltenyi Biotec) from PBMCs of healthy donors as the manufacturer's protocol, and cultured in CellGenix[™] DC media (CellGenix) supplemented with 2% human serum albumin (HSA, CSL Behring L.L.C.), granulocyte-macrophage colony stimulating factor (GM-CSF, 100 ng/ml; PeproTech) and interleukin 4 (IL-4, 100 ng/ml; PeproTech) for 5 days. On day 6, immature DCs were stimulated to mature by TNF-α (10 ng/ml; PeproTech), IL-6 (50 ng/ml; PeproTech), IL-1β (10 ng/ml; PeproTech), Prostaglandin E2 (500 ng/ml; Sigma) and Poly(I:C) (10 µg/ml; InvivoGen) for 2 days. After harvest, mDCs were pulsed with peptides (1 µg/ml,
 210 211 212 213 214 215 216 217 218 219 220 	 The generation of mature dendritic cells (mDCs) Monocytes (CD14 positive) were positively selected using CD14 MicroBeads (Miltenyi Biotec) from PBMCs of healthy donors as the manufacturer's protocol, and cultured in CellGenixTM DC media (CellGenix) supplemented with 2% human serum albumin (HSA, CSL Behring L.L.C.), granulocyte-macrophage colony stimulating factor (GM-CSF, 100 ng/ml; PeproTech) and interleukin 4 (IL-4, 100 ng/ml; PeproTech) for 5 days. On day 6, immature DCs were stimulated to mature by TNF-α (10 ng/ml; PeproTech), IL-6 (50 ng/ml; PeproTech), IL-1β (10 ng/ml; PeproTech), Prostaglandin E2 (500 ng/ml; Sigma) and Poly(I:C) (10 µg/ml; InvivoGen) for 2 days. After harvest, mDCs were pulsed with peptides (1 µg/ml, Table 1 and KRAS G12V₈₋₁₆) in FBS-free RPMI-1640 medium for 4 hours at 37 °C,

and used as the antigen presented cells. The maturity of DCs was determined through

the morphology and the phenotype of the expressions of CD80, CD83, CD86, CD11c

and HLA-DR.

224

225 The induction of neoantigen-specific cytotoxic lymphocyte (CTL)

CD8⁺T cells were positively enriched using CD8 MicroBeads (Miltenvi Biotec) 226 227 from PBMCs of healthy donors as the manufacturer's protocol, stimulated by mDCs pre-loaded with peptides at a 4:1 ratio, and maintained in HIPPTM-T009 medium 228 (Bioengine) in the presence of 2% autoserum and IL-21 (30 ng/ml, PeproTech) in a 229 37 °C 5% CO₂ incubator for 12 days. On day3, the co-culture system was 230 supplemented with IL-2 (5 ng/ml, PeproTech), IL-7 (10 ng/ml, PeproTech) and IL-15 231 (10 ng/ml, PeproTech), which were repeated every 2-3 days. After 12-day culture, the 232 233 pre-stimulated CD8⁺T cells were re-stimulated with same peptide-pulsed mDCs as 234 above and incubated for another 12 days.

235

236 Enzyme-linked immunospot (ELISPOT) assay for IFN- γ

IFN- γ ELISPOT assay strip plate which was pre-coated with anti-human IFN- γ mAb (1-D1K, Mabtech) was washed with PBS and blocked with RPMI-1640 containing 10% FBS. CTLs were co-cultured with T2 cells pre-pulsed with or without peptides (10 µg/ml) in the above pre-treated ELISPOT plate for 24 hours. Each sample was set with repetition. Plate was rinsed with PBS, then added with alkaline phosphatase (ALP) labeled anti-human IFN- γ mAb (7-B6-1-ALP, 1:200; Mabtech) for 2 hours. After rinsing, 5-Bromo-4-chloro-3-indolyl phosphate/Nitro blue tetrazolium

244	(BCIP/NBT, Mabtech) was used to develop the immune-spot according to the
245	manufacturer's protocol. Spots were imaged and counted by an ELISPOT Reader
246	(BioReader 4000, BIOSYS). Positive response was judged according to that the
247	number of specific spots was more than 10 and at least two-fold greater than that of
248	negative control [24].

- 249
- 250 Fluorescence-activated cell sorting (FACS)
- 251 Cells were collected, washed and resuspended in PBS containing 2% FBS
- 252 (FACS buffer). Cells were stained with fluorescent dye conjugated antibodies for 15
- 253 min at 4 °C. PE conjugated anti-CD8 antibody, APC conjugated pMHC tetramer,
- APC conjugated anti-CD86 antibody, PE conjugated anti-CD83 antibody, PE
- conjugated anti-CD80 antibody, APC conjugated anti-CD11c antibody, PE
- conjugated anti HLA-DR antibody, and isotype matched antibodies were used in this
- study and purchased from BD Biosciences. After washing twice in FACS buffer,
- 258 Cells were analyzed using a FACSAria II(BD Biosciences) with live cell gating based
- 259 on 4',6-diamidino-2-phenylindole (DAPI) exclusion, and CD8⁺pMHC tetramer⁺ cells
- 260 were sorted for single-cell RNA sequencing. The data were analyzed using FlowJo
- software (Tree Star).
- 262
- 263 The analysis of neoantigen-specific T-cell receptor repertoire by single-cell RNA
 264 sequencing
- According to the manufacturer's protocol of Chromium[™] Single Cell V(D)J

266	Reagent Kits (10x Genomics, Inc.), sorted CD8 ⁺ pMHC tetramer ⁺ T cells were
267	partitioned and captured into the Gel Bead in Emulsion (GEM) through the rapid and
268	efficient microfluidics technology of the Chromium [™] single-cell controller (10x
269	Genomics, Inc.). Single cell and the Gel Bead were lysed in the GEM, then the
270	contents of the GEM were incubated in the Reverse Transcription-Polymerase Chain
271	Reaction (RT-PCR) to generate full-length, and mRNA transcripts were barcoded on
272	their poly A-tails. Barcoded cDNA molecules were pooled after GEMs being broken,
273	and full-length $V(D)J$ segments from TCR cDNA were enriched by PCR
274	amplification and constructed as a library for Illumina [®] -ready sequencing. TCR
275	repertoire and paired TCR were analyzed by the Cell Ranger [™] analysis pipelines.
276	The gene usage was assigned using the IMGT nomenclature.
277	
278	Results
279	The selection of mutant candidate peptides
280	In order to analyze the potential common neoantigens of CRC in China, which
281	derived from driver mutations or passenger mutations, we ultimately collected 3,500
282	SNVs, of which the frequency was over 5 out of 321 patients, and 191 InDels, of
283	which the frequency was over 2 out of 321 patients, from the somatic mutation data of

- 284 321 CRC patients from COCA-CN in ICGC database on August 29, 2018. Both
- 285 9-10-mer mutant epitope candidates and reference peptides were extracted from
- 286 19-amino acid length, with 9 amino acids upstream and 9 amino acids downstream of
- the 3,691 mutant sites. A total of 60,169 epitopes of SNV and 6,891 epitopes of Indels

288	were generated and predicted the binding affinity with HLA-A*11:01 allele by
289	NetMHC-4.0, NetMHCpan-3.0, NetMHCpan-4.0, PSSMHCpan-1.0, PickPocket-1.0
290	and SMM simultaneously. As a result, 56 mutant epitopes were selected as the IC50
291	value of predicted binders was less than 50 nM by at least three software packages,
292	and the smallest affinity predicted value during three softwares was taken as the
293	affinity predicted score of the peptide-MHC complex (Table 1 and data not shown).
294	Furthermore, the algorithm EPIC, which was an effective, flexible and publicly
295	available HLA-I presented epitope prediction method, was used to evaluate the
296	probability of presentation of 56 mutant epitopes with strong binding affinity. The
297	EPIC score value of 25 out of 56 mutant epitopes was more than 0.9, which meant
298	that the probability of predicted epitope being presented by MHC was absolutely high
299	(Table 1). Finally, 25 mutant epitopes related to 25 somatic mutations of 21 genes
300	were selected as peptide candidates, and assessed their presentation and
301	immunogenicity (Table 1). Moreover, during the 21 genes, we found that <i>RNF43</i> gene
302	was a tumor suppressor gene, CTNNB1 gene was an oncogene, and the remaining
303	genes had not been identified as tumor-associated genes, which also encoded potential
304	neoantigens by CRC, in Cancer Gene Census database
305	(https://cancer.sanger.ac.uk/census) (Table 1).
306	

307 The expression of predicted peptides from constructed K562 cells

T cells attacking targeted cells mainly depends on that TCR recognize T-cell
epitopes, which are expressed, naturally processed and presented by MHC molecules

310	on the cell surface [24]. In order to improve the probability of the predicted epitopes
311	being presented by MHC class I, the predicted peptides were linked into the tandem
312	minigenes, and fused with N-terminal leader peptide and C-terminal MITD, which
313	have been proved to strongly improve the presentation of MHC class I and class II
314	epitopes [25]. The assembled base sequences were cloned into the multiple clone site
315	(MCS) of lentiviral vector (Figure 1(a)), which were operated by CMV promoter and
316	tracked by a reporter gene ZsGreen. As a result, we constructed five tandem-minigene
317	stably transfected K562 cell lines with mono HLA-A*11:01 allele. CRC-1-K562 cells
318	contained the minigenes of GLCE_V533I, C1orf170_S418G, MUC3A_I29T,
319	CCRL2_F179Y, KIAA1683_M313T and KLHL40_N345S; CRC-2-K562 cells
320	contained the minigenes of MUC3A_S175P, RNF43_I47V, SYNE2_A2395T,
321	TLR10_I369L, ANKRD36C_N1571S and IYD_F231I; CRC-3-K562 cells contained
322	the minigenes of SSX5_E19Q, MUC3A_S326T, ARHGEF11_H1427R,
323	CTNNB1_T41A, LILRB5_L605F and EIF2A_T92S; CRC-4-K562 cells contained
324	the minigenes of TMPRSS15_P732S, MUC6_P2049L, TMEM185B_A42G,
325	UNC93A_M403T, MUC3A_Q31H and FSIP2_R1288Q; CRC-5-K562 cells
326	contained the minigenes of TMEM185B_A42G, UNC93A_M403T, MUC3A_Q31H,
327	FSIP2_R1288Q, FSIP2_T184NX and KRAS_G12V (Table 2 and Figure 1(b)). In
328	present study, we selected KRAS_G12V, which is accepted as a common oncogenic
329	mutation and has been proved to be presented by HLA-A*11:01 allele on the basis of
330	T-cell response to KRAS_G12V positive target cells [12], as a positive control of
331	presentation and immunogenicity. In Figure 1(b), the vast majority of

332	tandem-minigene stably transfected K562 cell lines expressed reporter gene ZsGreen,
333	and the range of the expression rate was 85-93%, which was determined by FACS
334	and indirectly reflected the constructed tandem minigenes were expressed in K562
335	cells.
336	
337	The identification of MHC Class I presented epitopes from constructed K562 cells
338	by MS
339	In order to verify the predicted epitopes could be naturally processed and
340	presented by cells, we employed an immunoproteomics approach to enrich the
341	immunopeptidome of constructed K562 cells with mono HLA-A*11:01 allele. In this
342	approach, MHC-I restricted peptides were isolated and analyzed with MS. Targeted
343	MS assays with PRM were developed and characterized using stringent search criteria,
344	and resulted in 12 epitopes, including KRAS_G12V ₈₋₁₆ , GLCE_V533I ₅₂₆₋₅₃₅ ,
345	$MUC3A_I29T_{28\text{-}36}, KLHL40_N345S_{341\text{-}349}, MUC3A_S175P_{172\text{-}181}, RNF43_I47V_{46\text{-}54}, MUC3A_S175P_{172\text{-}181}, MUC3A_S175P_{172\text{-}$
346	IYD_F231I ₂₂₉₋₂₃₇ , MUC3A_S326T ₃₁₉₋₃₂₇ , ARHGEF11_H1427R ₁₄₂₇₋₁₄₃₅ ,
347	CTNNB1_T41A ₄₁₋₄₉ , FSIP2_R1288Q ₁₂₈₅₋₁₂₉₃ and FSIP2_T184NX, were confirmed to
348	be presented by constructed K562 cells and shown as the mirror plot by PDV (Figure
349	2(a-1))[26].
350	
351	The analysis of predicted neoantigens activating CTL to secrete IFN- γ in vitro
352	T cells targeting mutations can be detected from tumor infiltrating lymphocytes

353 (TILs), peripheral memory lymphocytes of cancer patients and peripheral naïve

354	lymphocytes of healthy donors [12, 27]. However, except mouse model, PBMCs from
355	healthy donors were easier obtained to determine the immunogenicity of the predicted
356	neoantigens, comparing to that from patients. To test whether the predicted
357	neoantigens had the characteristic of stimulating CTL to secrete IFN- γ , we used
358	peptide-pulsed mDCs to co-culture with the bulk CD8 ⁺ T cells isolated from
359	HLA-A*11:01 ⁺ healthy donors for twice in the presence of cytokines, which was
360	supposed to expand neoantigen-reactive CTL. Then CTL were re-stimulated by the
361	corresponding peptide-pulsed T2 cells in the IFN- γ ELISPOT plate. Under inverted
362	phase contrast microscope of 40× object lens, monocytes isolated from PBMCs were
363	observed to display as small round cells, and gradually stretch and adhere the plastic
364	surface of the culture plate on day1(Figure 3(a)). On day8 after the stimulation of a
365	cytokine cocktail for 2 days, mature DCs were exhibited as irregularly large round
366	and suspension cells with blunt, elongate dendritic processes as previously reported
367	(Figure 3(a)) [28, 29]. Furthermore, the phenotype of mature DCs was analyzed by
368	FACS for testing the expression of co-stimulatory molecules and maturation markers.
369	Figure 3(b) showed that more than 98% of DCs expressed CD86, CD80, CD11c and
370	HLA-DR, but a relatively low proportion of mature DC cells expressed CD83
371	(71.5%), of which the maturation level of DCs was basically reached the international
372	criteria level [30]. After being re-stimulated with T2 cells, which were respectively
373	pre-loaded with epitopes of KRAS_G12V ₈₋₁₆ , C1orf170_S418G ₄₁₃₋₄₂₁ ,
374	KIAA1683_M313T_{311-319}, SSX5_E19Q_{12-20}, TMEM185B_A42G_{42-51} and

375 UNC93A_M403T₄₀₂₋₄₁₀, CTL largely secreted IFN- γ , which was manifested by the

376	formation of more than 10 times spots on IFN- γ ELISPOT plate compared with the
377	negative control (Figure 4(a) and (b)). In addition, these epitopes of
378	GLCE_V533I ₅₂₆₋₅₃₅ , CCRL2_F179Y ₁₇₄₋₁₈₃ , ANKRD36C_N1571S ₁₅₇₁₋₁₅₇₉ ,
379	MUC3A_S326T_{319-327}, ARHGEF11_H1427R_{1427-1435} and MUC6_P2049L_{2044-2053} also
380	respectively and positively activated CTL to produce low level of IFN- γ , in which the
381	spot number was more than 10 and two-fold greater than that of negative control
382	(Figure 4(a) and (b)). The number of spot mediating by the remainder peptides almost
383	equated that of the negative control, which signified that those peptides did not
384	stimulate CTL to express IFN- γ (Figure 4(a) and (b)). Totally, except the positive
385	control peptide KRAS_G12V ₈₋₁₆ , 11 out of 25 predicted peptides could activate CTL
386	to secrete IFN- γ in vitro and had immunogenicity, which was proved by PBMCs from
387	only one healthy donor, and the positive rate was 44% (11/25).
388	
389	The immune repertoire profiles of epitope-specific CTL from single-cell RNA
390	sequencing
391	To determine whether epitope-specific CTL were expanded by peptide-pulsed
392	mDCs to the degree of sorting, we selected 6 peptides of KRAS_G12V ₈₋₁₆ ,
393	C1orf170_S418G ₄₁₃₋₄₂₁ , KIAA1683_M313T ₃₁₁₋₃₁₉ , SSX5_E19Q ₁₂₋₂₀ ,
394	TMEM185B_A42G ₄₂₋₅₁ and UNC93A_M403T ₄₀₂₋₄₁₀ , which strongly activated CTL
395	to secrete IFN- γ (Figure 4(a) and (b)), to prepare tetramer-APC, and stained the bulk
396	CTL with tetramer-APC and CD8-PE simultaneously. We found that the range of the
397	frequency of the epitope-specific CTL after being co-cultured was 0.22-7.08% (Figure

398	5(a)). Based on the ability of inducing T cells to secrete IFN- γ , we selected to sort
399	KRAS_G12V ₈₋₁₆ -specific CTL and C1orf170_S418G ₄₁₃₋₄₂₁ -specific CTL by FACS
400	(Figure 5(b)), of which the sorted cells were single-cell sequenced to determine T-cell
401	receptor repertoires.
402	For T-cell receptor repertoires recognizing HLA-A*11:01 presented
403	C1orf170_S418G ₄₁₃₋₄₂₁ , a total of 9,243 cells (exactly GEM) were finally estimated
404	from 17,800 sorted cells, and 14,042 TCR α chain and 9,346 TCR β chain amino acid
405	sequences were respectively obtained, of which 8,826 pairs of TCR were produced.
406	TCR α repertoire was preferentially biased toward usage of TRAV29DV5 gene
407	(55.38%) and TRAV35 gene (37.35%) (Figure 6(a)), which corresponding mainly
408	rearranged with TRAJ54 (99.88%) and TRAJ29 (Figure 6(b), and data not shown).
409	The length distribution of CDR3 α was preferentially restricted to 12 mer (55.64%)
410	and 15 mer (39.09%) (Figure 6(c)), and the motif of 12-mer and 15-mer CDR3 α was
411	respectively highly conserved as CAASGGAQKLVF (Figure 6(g)) and
412	CAGLLYNSGNTPLVF (Figure 6(h)), which was consistent with that of
413	TRAV29DV5-TRAJ54 and TRAV35-TRAJ29. The gene usage of TCR β repertoire
414	was highly biased TRBV27 gene (87.47%) (Figure 6(d)), which mainly rearranged
415	with TRBJ1-5 (99.91%) (Figure 6(e)). The length distribution of CDR3 β was highly
416	restricted to 15 mer (88.04%) (Figure 6(f)), and the motif of 15-mer CDR3 β was
417	highly conserved as CASSRDRGSNQPQHF (Figure 6(i)), which was consistent with
418	that of TRBV27-TRBJ1-5. There were 298 diversities in the 8,826 TCR α /TCR β pairs,
419	but two clones accounted for a large proportion in the repertoire. 53.2% (4,694/8,826)

420 T cells (named as Clonotype1) expressed TRAV29DV5-TRAJ54 and

421	TRAV35-TRAJ29 containing TCRα and TRBV27-TRBJ1-5 cont	aining TCRβ, and
-----	---	------------------

422 31.6% (2,786/8,826) T cells (named as Clonotype2) expressed

423 TRAV29DV5-TRAJ54 containing TCRα and TRBV27-TRBJ1-5 containing TCRβ

424 (Table 3).

425 For T-cell receptor repertoires recognizing HLA-A*11:01 presented

426 KRAS_ $G12V_{8-16}$, a total of 12,530 cells (exactly GEM) were finally estimated from

427 21,000 sorted cells, and 11,137 TCR α chain and 13,126 TCR β chain amino acid

428 sequences were respectively obtained, of which 10,559 pairs of TCR were produced.

429 TCR α and β repertoires respectively used immunodominant TRAV8-3 gene (81.69%)

430 (Figure 7(a)), which mainly rearranged with TRAJ20 (99.69%) (Figure 7(b)), and

431 TRBV11-2 gene (83.35%) (Figure 7(d)), which mainly rearranged with TRBJ2-7

432 (99.81%) (Figure 7(e)). The length distribution of CDR3 α and CDR3 β was

433 respectively highly restricted to 10 mer (81.88%) (Figure 7(c)) and 14 mer (86.4%)

434 (Figure 7(f)). The motif of 10-mer CDR3 α and 14-mer CDR3 β was respectively

435 conserved as CASNDYKLSF (Figure 7(g)), which was consistent with that of

436 TRAV8-3-TRAJ20, and CASSLDGVSYEQYF (Figure 7(h)), which was consistent

437 with that of TRBV11-2-TRBJ2-7. There were 1,610 diversities in the 10,559

438 TCR α /TCR β pairs, but two clones accounted for a large proportion in the repertoire.

439 80.5% (8,499/10,559) T cells (named as Clonotype1) expressed TRAV8-3-TRAJ20

440 containing TCR α and TRBV11-2-TRBJ2-7 containing TCR β , and 14.3%

441 (1,515/10,559) T cells (named as Clonotype2) expressed TRBV11-2-TRBJ2-7

442 containing TCR β but were not detected TCR α (Table 3). Our results revealed that the 443 dominant clone represented the usage genes and the CDR3 motifs of the TCR 444 repertoire.

The data that support the findings of this study have been deposited in the CNSA
(https://db.cngb.org/cnsa/) of CNGBdb with accession code CNP0000518.

447

448 Discussion

Cancer immunotherapy emerges as a very promising therapeutic approach for 449 450 tumors. Different from chemotherapy, radiotherapy and targeted therapy, which directly target tumors, targeting the immune system offers the potential for durable 451 activity and long-lasting survival outcomes [31]. It is widely accepted that anti-tumor 452 immunity is especially mediated by the responses of tumor-specific T cells, which can 453 454 effectively delete the primary tumor lesions and protest against metastases [31, 32]. T 455 cells utilize TCR to recognize the short-peptide antigens bound in the groove of MHC 456 molecules, and discriminate self and non-self, in which the short and cytosol-derived peptides mainly determine the specificity of the T cell-dependent immune response 457 [33, 34]. 458

During their carcinogenesis and progression, tumors usually obtain numerous somatic mutations. Mutant genes are translated into proteins and presented on cell surface by MHC, which result in arising neoantigens [11]. Neoantigens are uniquely produced by tumor cells, not totally found in normal tissues, and unparalleled tumor biomarkers [11]. Based on T cells recognizing neoantigens are not subject to thymic

464	selection and central tolerance, neoantigen specific T cell with high-avidity is very
465	likely to exist in the human body [8, 11]. Whole exome sequencing and RNA
466	sequencing combined with bioinformatic pipelines make the reality of disclosing
467	tumor-specific alterations with single nucleotide resolution and predicting neoantigens
468	for cancer immunotherapy [35]. After pinpointing missense mutations and gene
469	expression levels, peptides are assessed using various algorithms to predict binding
470	affinity to MHC or presentation on MHC [20]. However, the vast majority of
471	predicted neoantigens fail to turn up in tumors, and a handful is found to elicit T-cell
472	responses [36]. Using five kinds of cancer patient-derived PBMCs, Chizu et al. only
473	identified one immunogenic peptide from 26 mutant epitopes, which were predicted
474	by NetMHC4.0 algorithm to have strong-binding capacity to HLA-A*24:02 [9].
475	Using four kinds of healthy donor-derived T cells, Stronen et al. showed T-cell
476	reactivity toward 3-5 of 20 neoantigens, which were predicted by NetMHC3.2 or
477	netMHCpan2.0 algorithm to have high predicted binding to HLA-A*02:01[37]. In a
478	small group of patients with stages III and IV melanoma, Ott et al. demonstrated only
479	16% neoantigens, which were predicted by NetMHCpan-2.4 algorithm, were
480	recognized by CD8 ⁺ T cells [38]. Zhang et al. found a significant T-cell response in
481	two of nine neoantigens for one breast cancer patient, and one of eight neoantigens for
482	the other two patients with breast cancer, in which neoantigens were predicted by
483	NetMHC-3.2 algorithm [39]. Therefore, we considered that none of the current
484	algorithms was perfect, and it was necessary to simultaneously use multiple
485	algorithms to increase the accuracy of peptide binding affinity prediction. In the

present study, we respectively used peptide-MHC binding-affinity prediction

486

487	algorithms, including NetMHC-4.0, NetMHCpan-3.0, NetMHCpan-4.0,
488	PSSMHCpan-1.0, PickPocket-1.0 and SMM, and EPIC algorithm that predicted
489	epitope presentation to evaluate the extracted peptides. Finally, we selected 25
490	candidate peptides, which simultaneously met the conditions of the frequency of SNV
491	being over 5 out of 321 patients and InDel being over 2 out of 321 patients, IC50
492	value being less than 50 nM by at least three software packages and EPIC score value
493	being more than 0.9 (Table 1), to assay their characteristics of presentation and
494	inducing cytotoxic T cells. We found that 11 out of 25 (44%) predicted epitopes were
495	proved to be presented by HLA-A*11:01 allele through MS (Figure 2), and 11 out of
496	25 (44%) predicted epitopes induced specific CTL to secrete IFN- γ through ELISPOT
497	assay (Figure 4), and 20 out of 25 (80%) predicted epitopes could either be presented
498	or have immunogenicity (Figure 2 and Figure 4). However, it was a pity that, except
499	the positive epitope (KRAS_G12V_{8-16}), only 2 out of 25 (8%) predicted epitopes were
500	analyzed not only to be endogenously expressed in tumor cells, but also to induce a
501	T-cell response (Figure 2 and Figure 4).
502	At present MS based appreach is the relatively unbiased methodology to

At present, MS-based approach is the relatively unbiased methodology to identify the repertoire of peptides, which are naturally processed and presented by MHC molecules *in vivo*, from human cancer cell lines, tumors and healthy tissues and body fluids [40]. Although the use of MS-based immunopeptidomics would reduce the false positive number of predicted *in silico* neoantigens, and ensure highly accurate and reliable assignment of neoantigen's sequences, neoantigens have not

508	been regularly and sensitively disclosed by MS compared with TAAs [35, 40]. Based
509	on the limited sensitivity, the false negative neoantigens that are naturally presented
510	but not detected by MS are expected for immunopeptidomics. Due to the reports that
511	relatively large biological samples, abundance of proteins containing specific
512	sequences, expression in mono-allelic cells, proteasomal processing and the MITD
513	trafficking signal for siting in endolysosomal compartments are important facts for
514	discovering the presented peptides [22, 25, 40, 41], Five tandem minigenes, which
515	each encoded six neo-antigenic peptides, was operated by CMV promoter and linked
516	with the MITD trafficking signal at the C terminal (Figure 1(a)), were constructed and
517	transfected into HLA-A*11:01 mono-allelic K562 cells. We found that over 85%
518	HLA-A*11:01 mono-allelic K562 cells highly expressed the tandem minigenes
519	(Figure 1(b)), and used 1×10^9 cells to extract and purify the peptides, which were
520	followed by analysis with a mass spectrometer. Finally, except the positive epitope
521	(KRAS_G12V ₈₋₁₆), we confirmed that 11 out of 25 predicted neoantigens were
522	naturally processed and presented by HLA-A*11:01 allele, in which the positive rate
523	was up to 44% (11/25) (Figure 2). However, the remaining neo-peptides were not
524	detected in our system. Recently, Muhammad Ali et al. proved that minimizing the
525	formation of irrelevant immunogenic peptides could increase the targeted epitopes to
526	bind HLA, and the order of arranged epitopes in the tandem minigene was involved in
527	the efficiency of antigen presentation [27]. In our present study, the predicted
528	neoantigens in the tandem minigene each had 27 amino acids with the mutation at
529	position 14 (Table 2), which may result in the formation of other high-affinity

530	irrelevant and competitive presented peptides, and were randomly combined in the
531	tandem minigene. Therefore, we considered that the proper length and the appropriate
532	order of desired neoantigens in the tandem minigene may improve the probability of
533	the remaining neo-peptides being detected by MS.
534	The immunogenicity of predicted neoantigens is usually detected through the
535	response of TIL [11, 12]. Moreover, although the frequency of the
536	neoantigen-reactive T cells in the peripheral blood is quiet low compared with that in
537	the tumor sample, neoantigen-specific T cells, which derive from circulating CD8^+
538	memory T cells of cancer patients or circulating CD8 ⁺ naïve T cells of healthy donors,
539	can be enriched after being in vitro co-cultured with the cognate DCs pre-loaded
540	neoantigens, and their response to recognize the corresponding neoantigens can be
541	detected by conventional experimental methods [12, 27, 42]. Therefore, we generally
542	adopted one of the proven methods to detect the immunogenicity of our predicted
543	neoantigens, in which the circulating bulk CD8 ⁺ T cells from one healthy donor were
544	stimulated for two rounds by cognate DCs pre-loaded neoantigens. Except the
545	positive epitope (KRAS_G12V ₈₋₁₆), we found 11 out of 25 (44%) predicted
546	neoantigens that were pre-loaded on T2 cells could induce co-cultured CTL to secrete
547	IFN- γ (Figure 4), and the frequencies of the specific CTL, that produced over 10 folds
548	IFN- γ spots than the negative control, were estimated to range between 0.22% and
549	7.08% (Figure 5(a)). However, most of the presented neoantigens were not detected to
550	be immunogenic in our study. As approximately only one in 10^5 - 10^6 T cells is specific
551	for a given antigen in the lymph node, and circulating CD8 ⁺ memory T cells from

552	healthy donors do not contribute to the production of neoantigen-responsive T cells,
553	to enrich circulating $CD8^+$ naïve T cells from healthy donors before priming can
554	enhance the probability of specific T cells encountering DCs presenting the cognate
555	neoantigen [27, 43]. Based on the donor-dependent variability and sufficient diversity
556	of the human TCR repertoire, several donors need to be screened for identifying the
557	immunogenicity of a novel candidate neoantigen [27]. Therefore, we considered that
558	CTL, which were expanded from $CD8^+$ naïve T cells of other healthy donors, may
559	respond to the remaining immunogenic negative neo-peptides.
560	In conclusion, except the positive epitope (KRAS_G12V ₈₋₁₆), our results
561	revealed several common actual T-cell neo-epitopes of CRC, which would be
562	developed as the universal targets for CRC immunotherapy in the form of vaccines
563	based on peptide, RNA, DNA and DCs and therapies based on adoptive TCR
564	transgenic T cells.
565	
566	Abbreviations
567	CRC, colorectal cancer; dMMR, deficient mismatch repair; MSI-H, highly
568	microsatellite instable; pMMR, proficient mismatch repair; MSS, microsatellite stable;
569	ADC, autologous tumor lysate DC; CAR, chimeric antigen receptor; TAA, tumor
570	associated antigen; CEA, carcinoembryonic antigen; HER2, human epidermal growth
571	factor receptor-2; TSA, tumor-specific antigen; MHC, major histocompatibility

- 572 complex; TMB, tumor mutational burden; TCR, T-cell receptor; PRM, parallel
- 573 reaction monitoring; TIL, tumor infiltrating lymphocyte; MS, mass spectrometry;

574	ATCC, American Type Culture Collection; PBMC, peripheral blood mononuclear
575	cell; ICGC, International Cancer Genome Consortium; COCA-CN, China-Colorectal
576	Cancer Project; InDel, insertions or deletion; EPIC, Epitope Presentation Integrated
577	prediCtion; MITD, MHC class I trafficking signal; CTL, cytotoxic lymphocyte;
578	ELISPOT, enzyme-linked immunospot; FACS, fluorescence-activated cell sorting;
579	GEM, Gel Bead in Emulsion.
580	
581	Acknowledgments
582	We thank Weipeng Hu from BGI-GenoImmune for technical assistance on this study.
583	
584	Funding
585	This work was supported by the National Natural Science Foundation of China under
586	Grant No. 81702826, Science, Technology and Innovation Commission of Shenzhen
587	Municipality under Grant No. JCYJ20170303151334808, and Science, Technology
588	and Innovation Commission of Shenzhen Municipality under Grant No.
589	JCYJ20170817145845968.
590	
591	Disclosure of Interest
592	The authors report no conflict of interest.
593	
594	References
595	1. Bray, F., et al., <i>Global cancer statistics 2018: GLOBOCAN estimates of incidence and</i>

- 596 mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p.
- 597 394-424.
- 598 2. Arnold, M., et al., *Global patterns and trends in colorectal cancer incidence and*
- 599 *mortality.* Gut, 2017. **66**(4): p. 683-691.
- 600 3. Magee, M.S., et al., GUCY2C-directed CAR-T cells oppose colorectal cancer
- 601 *metastases without autoimmunity.* Oncoimmunology, 2016. **5**(10): p. e1227897.
- 602 4. Ciardiello, D., et al., *Immunotherapy of colorectal cancer: Challenges for therapeutic*
- 603 *efficacy.* Cancer Treat Rev, 2019. **76**: p. 22-32.
- 5. Parkhurst, M.R., et al., *T cells targeting carcinoembryonic antigen can mediate*
- 605 *regression of metastatic colorectal cancer but induce severe transient colitis.* Mol Ther,
- 606 2011. **19**(3): p. 620-6.
- 607 6. Zhang, C., et al., *Phase I Escalating-Dose Trial of CAR-T Therapy Targeting CEA(+)*

608 *Metastatic Colorectal Cancers.* Mol Ther, 2017. **25**(5): p. 1248-1258.

- 609 7. Morgan, R.A., et al., *Case report of a serious adverse event following the*
- 610 administration of T cells transduced with a chimeric antigen receptor recognizing
- 611 *ERBB2.* Mol Ther, 2010. **18**(4): p. 843-51.
- 8. Zhou, Z., et al., TSNAD: an integrated software for cancer somatic mutation and
- 613 *tumour-specific neoantigen detection.* R Soc Open Sci, 2017. **4**(4): p. 170050.
- 614 9. Nonomura, C., et al., *Identification of a neoantigen epitope in a melanoma patient with*
- 615 *good response to anti-PD-1 antibody therapy.* Immunol Lett, 2019. **208**: p. 52-59.
- 616 10. Tran, E., et al., T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. N Engl J
- 617 Med, 2016. **375**(23): p. 2255-2262.

- 618 11. Wirth, T.C. and F. Kuhnel, *Neoantigen Targeting-Dawn of a New Era in Cancer*
- 619 *Immunotherapy*? Front Immunol, 2017. **8**: p. 1848.
- 620 12. Cafri, G., et al., *Memory T cells targeting oncogenic mutations detected in peripheral*
- 621 *blood of epithelial cancer patients.* Nat Commun, 2019. **10**(1): p. 449.
- 622 13. Liu, G., et al., PSSMHCpan: a novel PSSM-based software for predicting class I

623 *peptide-HLA binding affinity.* Gigascience, 2017. **6**(5): p. 1-11.

- Nielsen, M., et al., *Reliable prediction of T-cell epitopes using neural networks with novel sequence representations.* Protein Sci, 2003. **12**(5): p. 1007-17.
- 626 15. Nielsen, M. and M. Andreatta, *NetMHCpan-3.0; improved prediction of binding to*
- 627 *MHC class I molecules integrating information from multiple receptor and peptide*
- 628 *length datasets.* Genome Med, 2016. **8**(1): p. 33.
- 629 16. Jurtz, V., et al., *NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction*
- 630 Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J Immunol,
- 631 2017. **199**(9): p. 3360-3368.
- 17. Zhang, H., O. Lund, and M. Nielsen, *The PickPocket method for predicting binding*
- 633 specificities for receptors based on receptor pocket similarities: application to

634 *MHC-peptide binding.* Bioinformatics, 2009. **25**(10): p. 1293-9.

- 635 18. Peters, B. and A. Sette, *Generating quantitative models describing the sequence*
- 636 specificity of biological processes with the stabilized matrix method. BMC
- 637 Bioinformatics, 2005. **6**: p. 132.
- 638 19. Creaney, J., et al., *Strong spontaneous tumor neoantigen responses induced by a*
- 639 *natural human carcinogen.* Oncoimmunology, 2015. **4**(7): p. e1011492.

- 640 20. Hu, W., et al., EPIC: MHC-I epitope prediction integrating mass spectrometry derived
- 641 *motifs and tissue-specific expression profiles.* bioRxiv, 2019: p. 567081.
- 642 21. Sahin, U., et al., Personalized RNA mutanome vaccines mobilize poly-specific
- 643 *therapeutic immunity against cancer.* Nature, 2017. **547**(7662): p. 222-226.
- 644 22. Abelin, J.G., et al., *Mass Spectrometry Profiling of HLA-Associated Peptidomes in*
- 645 *Mono-allelic Cells Enables More Accurate Epitope Prediction.* Immunity, 2017. **46**(2):
- 646 p. 315-326.
- 647 23. Rodenko, B., et al., Generation of peptide-MHC class I complexes through
- 648 UV-mediated ligand exchange. Nat Protoc, 2006. 1(3): p. 1120-32.
- 649 24. Yamamiya, D., et al., *Immune responses of human T lymphocytes to novel hepatitis B*650 *virus-derived peptides.* PLoS One, 2018. **13**(6): p. e0198264.
- 651 25. Kreiter, S., et al., *Increased antigen presentation efficiency by coupling antigens to*
- 652 *MHC class I trafficking signals.* J Immunol, 2008. **180**(1): p. 309-18.
- 653 26. Li, K., et al., *PDV: an integrative proteomics data viewer.* Bioinformatics, 2019. 35(7):
- 654 p. 1249-1251.
- 655 27. Ali, M., et al., *Induction of neoantigen-reactive T cells from healthy donors.* Nat Protoc,
- 656 2019. **14**(6): p. 1926-1943.
- 657 28. Setum, C.M., J.R. Serie, and O.D. Hegre, *Dendritic cell/lymphocyte clustering:*
- 658 morphologic analysis by transmission electron microscopy and distribution of
- 659 gold-labeled MHC class II antigens by high-resolution scanning electron microscopy.
- 660 Anat Rec, 1993. **235**(2): p. 285-95.
- 661 29. Steinman, R.M. and Z.A. Cohn, *Identification of a novel cell type in peripheral*

- 662 *lymphoid organs of mice. I. Morphology, quantitation, tissue distribution.* J Exp Med,
- 663 1973. **137**(5): p. 1142-62.
- 66430.Tanyi, J.L., et al., Personalized cancer vaccine effectively mobilizes antitumor T cell
- 665 *immunity in ovarian cancer.* Sci Transl Med, 2018. **10**(436).
- 666 31. Zacharakis, N., et al., *Immune recognition of somatic mutations leading to complete*
- 667 *durable regression in metastatic breast cancer.* Nat Med, 2018. **24**(6): p. 724-730.
- 668 32. Ge, Y., et al., Blockade of PD-1/PD-L1 immune checkpoint during DC vaccination
- 669 *induces potent protective immunity against breast cancer in hu-SCID mice.* Cancer
- 670 Lett, 2013. **336**(2): p. 253-9.
- 671 33. Glatzova, D. and M. Cebecauer, *Dual Role of CD4 in Peripheral T Lymphocytes.* Front
 672 Immunol, 2019. **10**: p. 618.
- 673 34. Koning, D., et al., *CD8+ TCR repertoire formation is guided primarily by the peptide*
- 674 *component of the antigenic complex.* J Immunol, 2013. **190**(3): p. 931-9.
- 675 35. Lancaster, E.M., D. Jablons, and J.R. Kratz, *Applications of Next-Generation*
- 676 Sequencing in Neoantigen Prediction and Cancer Vaccine Development. Genet Test
- 677 Mol Biomarkers, 2019.
- 678 36. *The problem with neoantigen prediction.* Nat Biotechnol, 2017. **35**(2): p. 97.
- 679 37. Stronen, E., et al., *Targeting of cancer neoantigens with donor-derived T cell receptor*
- 680 *repertoires.* Science, 2016. **352**(6291): p. 1337-41.
- 681 38. Ott, P.A., et al., *An immunogenic personal neoantigen vaccine for patients with*

682 *melanoma.* Nature, 2017. **547**(7662): p. 217-221.

683 39. Zhang, X., et al., Breast Cancer Neoantigens Can Induce CD8(+) T-Cell Responses

684	and Antitumor Immunity. Cancer Immunol Res, 2017. 5(7): p. 516-5	523.

- 685 40. Bassani-Sternberg, M. and G. Coukos, *Mass spectrometry-based antigen discovery*
- *for cancer immunotherapy.* Curr Opin Immunol, 2016. **41**: p. 9-17.
- 687 41. Boehm, K.M., et al., *Predicting peptide presentation by major histocompatibility*
- *complex class I: an improved machine learning approach to the immunopeptidome.*
- 689 BMC Bioinformatics, 2019. 20(1): p. 7.
- 690 42. Cohen, C.J., et al., *Isolation of neoantigen-specific T cells from tumor and peripheral*

lymphocytes. J Clin Invest, 2015. **125**(10): p. 3981-91.

- 43. Lin, Q., et al., Visualizing DC morphology and T cell motility to characterize DC-T cell
- *encounters in mouse lymph nodes under mTOR inhibition.* Sci China Life Sci, 2019.

- _ - -

110

Table 1. The list of the common predicted peptide candidates of CRC

Putative neo-epitope	Gene	Mutant	Mutant	Peptide with mutant	Affinity	EPIC score	Role in cancer
		amino acid	frequency	site*	(nM)		
		site					
GLCE_V533I ₅₂₆₋₅₃₅	GLCE	V533I	6 out of 321	STIDESP <mark>I</mark> FK	2.7	0.989077	
C1orf170_S418G ₄₁₃₋₄₂₁	Clorf170	S418G	5 out of 321	SVAGP <mark>G</mark> PNK	21.7	0.974471	
MUC3A_I29T ₂₈₋₃₆	МИСЗА	I29T	6 out of 321	STSQVPFPR	13.8	0.970609	
CCRL2_F179Y ₁₇₄₋₁₈₃	CCRL2	F179Y	5 out of 321	ATLPE <mark>Y</mark> VVYK	4.7	0.968889	
KIAA1683_M313T ₃₁₁₋₃₁₉	KIAA1683	M313T	6 out of 321	ST T TTTPPK	7.9	0.964324	
KLHL40_N345S ₃₄₁₋₃₄₉	KLHL40	N345S	5 out of 321	ASLS <mark>S</mark> QVPK	9.4	0.956861	
MUC3A_S175P ₁₇₂₋₁₈₁	МИСЗА	S175P	6 out of 321	STYPMTTTEK	5.8	0.952998	
RNF43_I47V ₄₆₋₅₄	RNF43	I47V	7 out of 321	AVIRVIPLK	7.8	0.949232	TSG
SYNE2_A2395T ₂₃₈₉₋₂₃₉₈	SYNE2	A2395T	5 out of 321	STQESA T VEK	28.9	0.946256	
TLR10_I369L ₃₆₇₋₃₇₅	TLR10	I369L	5 out of 321	RTLQLPHLK	13.2	0.945037	
ANKRD36C_N1571S ₁₅₇₁₋₁₅₇₉	ANKRD36C	N1571S	5 out of 321	S TMEKCIEK	6.6	0.94484	
IYD_F231I ₂₂₉₋₂₃₇	IYD	F231I	6 out of 321	QV <mark>I</mark> GKIILK	21.4	0.940062	
SSX5_E19Q ₁₂₋₂₀	SSX5	E19Q	5 out of 321	RVGSQIP <mark>Q</mark> K	35.7	0.936871	
MUC3A_S326T ₃₁₉₋₃₂₇	МИСЗА	S326T	7 out of 321	TTLPTTI <mark>T</mark> R	16.1	0.936033	
ARHGEF11_H1427R ₁₄₂₇₋₁₄₃₅	ARHGEF11	H1427R	5 out of 321	RTIEQLTLK	10.8	0.933929	
CTNNB1_T41A ₄₁₋₄₉	CTNNB1	T41A	6 out of 321	ATAPSLSGK	6.9	0.932574	Oncogene
LILRB5_L605F ₆₀₃₋₆₁₁	LILRB5	L605F	5 out of 321	RSFPLTLPR	6.9	0.931333	
EIF2A_T92S ₈₆₋₉₅	EIF2A	T92S	5 out of 321	ATWQPY <mark>S</mark> TSK	12.9	0.931289	
TMPRSS15_P732S ₇₃₂₋₇₄₀	TMPRSS15	P732S	5 out of 321	STDGGPFVK	12	0.930946	
MUC6_P2049L ₂₀₄₄₋₂₀₅₃	MUC6	P2049L	9 out of 321	GTVPPLTTLK	16.5	0.917963	
TMEM185B_A42G ₄₂₋₅₁	TMEM185B	A42G	5 out of 321	G VFAPIWLWK	5.7	0.904248	
UNC93A_M403T ₄₀₂₋₄₁₀	UNC93A	M403T	6 out of 321	STFLCVHVK	4.5	0.903415	
MUC3A_Q31H ₂₈₋₃₆	МИСЗА	Q31H	5 out of 321	SIS <mark>H</mark> VPFPR	14.1	0.901598	
FSIP2_R1288Q ₁₂₈₅₋₁₂₉₃	FSIP2	R1288Q	5 out of 321	SSL <mark>Q</mark> SQLSK	13.8	0.900572	

FSIP2_T184NX	FSIP2	T184NX	2 out of 321	TTLPKFNKK	10.2	0.961067	
711 *: the mutar	nt site was sho	own in bold	and red; TS	G: Tumor Suppre	ssor Gen	e	
712							
713							
714							
715							
716							
717							
718							
719							
720							
721							
722							
723							
724							
725							
726							
727							
728							
729							
730							
731							
732							
733							
734							
735							
736							
737							
738							

739

Table 2. The list of the amino acid sequence of mutant minigenes

Constructed K562 cell line	Mutant gene	Amino acid sequence*
CRC-1-K562 cells	GLCE_V533I	NQLQLLSTIDESPIFKEFVKRWKSYLK
	C1orf170_S418G	PRKKKVRFSVAGP <mark>G</mark> PNKPGSGQASARP
	MUC3A_I29T	SPWATGTLSTATSTSQVPFPRAEAASA
	CCRL2_F179Y	LAWVTAILATLPEYVVYKPQMEDQKYK
	KIAA1683_M313T	VSVTLPQTYPAST T TTTPPKTSPVPKV
	KLHL40_N345S	DPAANECYCASLS <mark>S</mark> QVPKNHVSLVTKE
CRC-2-K562 cells	MUC3A_S175P	VTQKPVTTVTSTY P MTTTEKGTSAMTS
	RNF43_I47V	AAVESERSAEQKAVIRVIPLKMDPTGK
	SYNE2_A2395T	ATSDVQESTQESATVEKLEEDWEINKD
	TLR10_I369L	ANNILTDELFKRTLQLPHLKTLILNGN
	ANKRD36C_N1571S	QMKDIEKMYKSGY <mark>S</mark> TMEKCIEKQERFC
	IYD_F231I	SIACGILLAALQV <mark>I</mark> GKIILKELALISF
CRC-3-K562 cells	SSX5_E19Q	AFVRRPRVGSQIP <mark>Q</mark> KMQKHPWRQVCDR
	MUC3A_S326T	PLSTLVTTLPTTITRSTPTSETTYTTS
	ARHGEF11_H1427R	PPSLALRDVGMIF R TIEQLTLKLNRLK
	CTNNB1_T41A	QSYLDSGIHSGAT <mark>A</mark> TAPSLSGKGNPEE
	LILRB5_L605F	SPGPQASPPPPRS <mark>F</mark> PLTLPRCRLLHLK
	EIF2A_T92S	SPKNTVLATWQPY <mark>S</mark> TSKDGTAGIPNLQ
CRC-4-K562 cells	TMPRSS15_P732S	LGLGSGNSSKPIF <mark>S</mark> TDGGPFVKLNTAP
	MUC6_P2049L	ASIHSTPTGTVPP L TTLKATGSTHTAP
	TMEM185B_A42G	PLRLDGIIQWSYW <mark>G</mark> VFAPIWLWKLLVV
	UNC93A_M403T	WEALGFVIAFGYS <mark>T</mark> FLCVHVKLYILLG
	MUC3A_Q31H	WATGTLSTATSIS <mark>H</mark> VPFPRAEAASAVL
	FSIP2_R1288Q	ICPKLHMGFKSSLQSQLSKYTAKIVNI
CRC-5-K562 cells	TMEM185B_A42G	PLRLDGIIQWSYW <mark>G</mark> VFAPIWLWKLLVV
	UNC93A_M403T	WEALGFVIAFGYS <mark>T</mark> FLCVHVKLYILLG

MUC3A_Q31H	WATGTLSTATSIS <mark>H</mark> VPFPRAEAASAVL
FSIP2_R1288Q	ICPKLHMGFKSSL <mark>Q</mark> SQLSKYTAKIVNI
FSIP2_T184NX	LKTRSKITTLPKFNKKNTLRTECC
KRAS_G12V	MTEYKLVVVGA <mark>V</mark> GVGKSALTIQLIQ

740 *: the mutant site was shown in bold and red

Table 3. Top 2 TCR α and β chain pairs from two individual TCR repertoire

neo-epitope	ID of paired TCR	CDR3 sequence	TRV gene	J gene	proportion
C1orf170_S418G ₄₁₃₋₄₂₁	Clonotype1	TRA: CAASGGAQKLVF	TRAV29DV5	TRAJ54	53.2%
		TRA: CAGLLYNSGNTPLVF	TRAV35	TRAJ29	
		TRB: CASSRDRGSNQPQHF	TRBV27	TRBJ1-5	
	Clonotype2	TRA: CAASGGAQKLVF	TRAV29DV5	TRAJ54	31.6%
		TRB: CASSRDRGSNQPQHF	TRBV27	TRBJ1-5	
KRAS_G12V ₈₋₁₆	Clonotype1	TRA: CASNDYKLSF	TRAV8-3	TRAJ20	80.5%
		TRB: CASSLDGVSYEQYF	TRBV11-2	TRBJ2-7	
	Clonotype2	TRA:			14.3%
		TRB: CASSLDGVSYEQYF	TRBV11-2	TRBJ2-7	

Figure 1

_ _ .

843 Figure legends

844	Figure 1. The construction and expression of tandem minigenes encoding predicted
845	neoantigens in K562 cells. (a) The map of the adopted lentiviral vector. The lentiviral
846	vector was gifted and possessed two promoters, of which CMV promoter operated the
847	inserted genes in MCS, and $EF1\alpha$ promoter operated the reporter gene ZsGreen and a
848	screening gene Blasticidine. (b) FACS detected the expression of tandem minigenes
849	in K562 cells. 25 predicted peptides and KRAS_G12V were constructed into five
850	tandem minigenes, packaged into lentivirus and transfected into mono HLA-A*11:01
851	allelic K562 cells, which resulted in five K562 cell lines, including CRC-1-K562 cells,
852	CRC-2-K562 cells, CRC-3-K562 cells, CRC-4-K562 cells and CRC-5-K562 cells,
853	were obtained (Table 2). The blasticidine-resistance K562 cells expressed ZsGreen,
854	which indirectly reflected the expression of predicted peptides and could be directly
855	tested by FACS.
856	
857	Figure 2. Validation of naturally presented neo-epitopes from constructed K562 cells.
858	The mirror plot of mass spectrometry (MS/MS) chromatographs of the synthetic
859	peptides (bottom) versus theirs experimentally identified analogs (top), including (a)
860	KRAS_G12V ₈₋₁₆ , (b) MUC3A_I29T ₂₈₋₃₆ , (c) MUC3A_S175P ₁₇₂₋₁₈₁ , (d)
861	IYD_F231I ₂₂₉₋₂₃₇ , (e) ARHGEF11_H1427R ₁₄₂₇₋₁₄₃₅ , (f) FSIP2_R1288Q ₁₂₈₅₋₁₂₉₃ , (g)
862	GLCE_V533I ₅₂₆₋₅₃₅ , (h) KLHL40_N345S ₃₄₁₋₃₄₉ , (i) RNF43_I47V ₄₆₋₅₄ , (j)
863	MUC3A_S326T ₃₁₉₋₃₂₇ , (k) CTNNB1_T41A ₄₁₋₄₉ , and (l) FSIP2_T184NX, were
864	exhibited.

865	Figure 3. The morphology and the phenotype of mature DCs. (a) The morphology of
866	monocytes and mature dendritic cells. CD14 ⁺ monocytes on day1 and mature
867	dendritic cells on day8 were observed using inverted phase contrast microscope
868	(Nikon ECLIPSE TS100) and imaged under 40× object lens (scale bar=20 μ m). (b)
869	The phenotype of mature dendritic cells. Mature dendritic cells on day8 were
870	collected and stained with fluorescein conjugated antibodies targeting CD11c,
871	HLA-DR, CD86, CD83 and CD80, and the fluorescence signal was detected by
872	FACS.
873	
874	Figure 4. The immune response of CTL to predicted peptide-pulsed T2 cells. (a) The
875	immune-spot diagram of IFN- γ . CTL, which had been co-cultured with
876	peptide-pulsed mDCs, were re-stimulated by peptide-pulsed T2 cells in the
877	IFN- γ ELISPOT plate for 24 hours. The secreted IFN- γ from epitope specific CTL
878	was exhibited as immune spot. There were 25 predicted peptides (Table 1) and a
879	reported positive peptide KRAS_G12V $_{8-16}$ to be tested, and each was in duplicate
880	wells. (b) The statistical number of IFN- γ immune spot from (a). Spots were imaged
881	and counted by an ELISPOT Reader (BioReader 4000, BIOSYS).
882	
883	Figure 5. The proportion of epitope-specific CTL. Top 6 immunogenic peptides of
884	KRAS_G12V ₈₋₁₆ , C1orf170_S418G ₄₁₃₋₄₂₁ , KIAA1683_M313T ₃₁₁₋₃₁₉ ,
885	SSX5_E19Q ₁₂₋₂₀ , TMEM185B_A42G ₄₂₋₅₁ and UNC93A_M403T ₄₀₂₋₄₁₀ were used to
886	prepare pMHC tetramer. CTL, which had been co-cultured with peptide-loaded mDCs

and confirmed to respond to peptide re-stimulation, were stained with CD8-PE and

888	tetramer-APC. The fluorescence signal from cells was analyzed by FACS (a), and the
889	CD8 ⁺ pMHC tetramer ⁺ cells that respectively responded to KRAS_G12V ₈₋₁₆ and
890	C1orf170_S418G ₄₁₃₋₄₂₁ were sorted for single-cell RNA sequencing (b).
891	
892	Figure 6. The characteristics of TCR repertoire recognized HLA-A*11:01 restricted
893	C1orf170_S418G ₄₁₃₋₄₂₁ . The frequency of usage gene of TRAV (a) and TRBV (d).
894	The pie charts showed the top 9 usage genes, and the remaining usage genes were
895	marked as "others". The frequency of all the usage gene of TRAJ rearranged with
896	TRAV29DV5 (b) and TRBJ rearranged with TRBV27 (e). The frequency of length

897 distribution of CDR3 α (c) and CDR3 β (f). The sequence motif of 12-mer CDR3 α (g),

898 15-mer CDR3 α (h) and 15-mer CDR3 β (i).

899

887

900 Figure 7. The characteristics of TCR repertoire recognized HLA-A*11:01 restricted

901 KRAS_G12V₈₋₁₆. The frequency of usage gene of TRAV (a) and TRBV (d). The pie

902 charts showed the top 9 usage genes, and the remaining usage genes were marked as

903 "others". The frequency of all the usage gene of TRAJ rearranged with TRAV8-3 (b)

and TRBJ rearranged with TRBV11-2 (e). The frequency of length distribution of

905 CDR3α (c) and CDR3β (f). The sequence motif of 10-mer CDR3α (g) and 14-mer
906 CDR3β (h).

907