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The CLUE system represents an unprecedented effort to leverage several academic and 

government research institutions to help guide NOAA’s operational environmental modeling 

efforts at the convection-allowing scale.

THE COMMUNITY LEVERAGED 
UNIFIED ENSEMBLE (CLUE) IN 
THE 2016 NOAA/HAZARDOUS 

WEATHER TESTBED SPRING 
FORECASTING EXPERIMENT

ADAM J. CLARK, ISRAEL L. JIRAK, SCOTT R. DEMBEK, GERRY J. CREAGER, FANYOU KONG, 

KEVIN W. THOMAS, KENT H. KNOPFMEIER, BURKELY T. GALLO, CHRISTOPHER J. MELICK, MING XUE, 

KEITH A. BREWSTER, YOUNGSUN JUNG, AARON KENNEDY, XIQUAN DONG, JOSHUA MARKEL, 

MATTHEW GILMORE, GLEN S. ROMINE, KATHRYN R. FOSSELL, RYAN A. SOBASH, JACOB R. CARLEY, 

BRAD S. FERRIER, MATTHEW PYLE, CURTIS R. ALEXANDER, STEVEN J. WEISS, JOHN S. KAIN, 

LOUIS J. WICKER, GREGORY THOMPSON, REBECCA D. ADAMS-SELIN, AND DAVID A. IMY

T
 he National Severe Storms Laboratory (NSSL)  

 and Storm Prediction Center (SPC) coorganize  

 annual Spring Forecasting Experiments (SFEs), 

which are conducted in NOAA’s Hazardous Weather 

Testbed (HWT) at the National Weather Center 

in Norman, Oklahoma, for five weeks during the 

climatological peak of the severe weather season. 

The SFEs are designed to test emerging concepts 

and technologies for improving the prediction of 

hazardous convective weather with the primary 

goals of accelerating the transfer of promising 

new tools and concepts from research to opera-

tions, inspiring new initiatives for operationally 

relevant research, and identifying and document-

ing sensitivities and performance characteristics of 

state-of-the-art experimental convection-allowing 

modeling (CAM) systems. Over the last decade, 

the SFEs have emerged as an international resource 

for developing and evaluating the performance of 

new CAM systems, and major advances have been 

made in creating, importing, processing, verifying, 

and extracting unique hazardous weather fields 

while providing analysis and visualization tools 

including probabilistic information, for these large 

and complex datasets. For example, during the 2010 

experiment (Clark et al. 2012), in addition to provid-

ing a 26-member, 4-km grid-spacing CAM-based 

ensemble, the Center for Analysis and Prediction 

of Storms (CAPS) at the University of Oklahoma 

provided a 1-km contiguous U.S. (CONUS) domain 

forecast that required over 10,000 computing cores. 

In the 2015 SFE (Gallo et al. 2017), six unique and 
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independently designed CAM-based ensembles 

were contributed by CAPS, the National Center for 

Atmospheric Research (NCAR), NSSL, SPC, and the 

Air Force Weather Agency (AFWA; now called the 

557th Weather Wing). Figure 1 provides a summary 

of CAMs examined since 2007, along with a timeline 

of CAM guidance milestones.

Through the SFEs, much has been learned about 

how to utilize and configure CAMs and CAM en-

sembles, and since 2007 the number of CAM systems 

(including ensembles) examined in the HWT has 

increased dramatically. Meanwhile, new technolo-

gies and physical understanding have been migrated 

to the SPC, enhancing the timeliness and accuracy 

of their severe weather forecasts. Despite these ad-

vances, progress toward identifying optimal CAM 

ensemble configurations has been inhibited because 

HWT collaborators have independently designed 

contributed CAM systems, which makes it difficult to 

attribute differences in performance characteristics. 

For example, during the 2015 SFE, CAPS and NSSL 

contributed mixed- and single-physics ensembles, 

respectively, but because of other differences in the 

configurations (e.g., initial condition perturbations, 

data assimilation, grid spacing, domain size, and 

model version), the impacts of single versus mixed-

physics configurations could not be isolated. Thus, 

after the 2015 SFE it was clear to SFE leaders that more 

controlled experiments were needed. Furthermore, 

around the same time period, the international 

University Corporation for Atmospheric Research 

Community Advisory Committee for the National 

Centers for Environmental Prediction (UCACN) 

Model Advisory Committee, which is charged with 

developing recommendations for a unified NOAA 

modeling strategy to advance the United States to 

world leadership in numerical modeling, released a 

comprehensive set of recommendations1 that included 

the following: 1) the NOAA environmental modeling 

community requires a rational, evidence-driven ap-

proach toward decision-making and modeling system 

development; 2) a unified collaborative strategy for 

model development across NOAA is needed; and 

3) NOAA needs to better leverage the capabilities of 

the external community. Thus, in the spirit of these 

recommendations, organizers of the HWT SFEs made 

a major push to coordinate efforts among its large 

group of collaborators in 2016. Specifically, instead 

of each group providing a separate, independently 

designed CAM-based ensemble, all groups agreed 

on a set of model specifications so that the simula-

tions contributed by each group could be viewed as 

one large, carefully designed “superensemble.” This 

design facilitated a number of controlled experi-

ments geared toward finding optimal configuration 

strategies for CAM ensembles and has been termed 

the Community Leveraged Unif ied Ensemble 

(CLUE, hereafter). The superensemble concept has 

been used in previous works for tropical cyclone, 

weather, climate, and seasonal prediction systems 

(e.g., Krishnamurti et al. 1999; Palmer et al. 2004; 

Krishnamurti et al. 2016 and references therein), 

but has yet to be applied within a CAM ensemble 

framework. However, the philosophy behind the 

CLUE design is different from these previous works 

on superensembles. Specifically, the CLUE has a more 

coordinated design with goals that are more focused 

on identifying impacts of different ensemble design 

strategies, rather than generating a single “best” fore-

cast from independent ensemble datasets.

1 The full report is available at www.ncep.noaa.gov/director 

/ucar_reports/ucacn_20151207/UMAC_Final_Report 

_20151207-v14.pdf.
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The CLUE system represents an unprecedented 

effort to leverage several academic and govern-

ment research institutions to help guide NOAA’s 

operational environmental modeling efforts. In 

future SFEs, the CLUE will be reconfigured based 

on results from previous years, advances in technol-

ogy, and feedback from the operational and research 

communities. Furthermore, the CLUE framework 

will help test initial convection-allowing versions 

of the Finite Volume Cubed Sphere Model (FV3; 

Putman and Lin 2007) developed at NOAA’s Geo-

physical Fluid Dynamics Laboratory. The FV3 has 

been selected as the dynamic core to replace the 

Global Forecast System (GFS) model as part of the 

Next Generation Global Prediction System (NGGPS; 

www.weather.gov/sti/stimodeling_nggps) program 

FIG. 1. (a) Stacked bar graph indicating the number of unique CAMs used each year since 2007 in the HWT SFEs. 

The different colors denote the number of models contributed by the different agencies. A legend is provided at 

the top left. Abbreviations are defined as follows: CLUE, Community Leveraged Unified Ensemble; SPC, Storm 

Prediction Center; NCAR, National Center for Atmospheric Research; UKMET, Met Office; NASA SPORT, 

National Aeronautics and Space Administration Short-term Prediction Research and Transition Center; AFWA, 

Air Force Weather Agency; GSD, Global Systems Division of NOAA’s Earth System Research Laboratory; 

EMC, NOAA’s Environmental Modeling Center; NSSL, National Severe Storms Laboratory; and CAPS, Center 

for Analysis and Prediction of Storms. (b) Timeline of CAM guidance milestones at the HWT since 2007.
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and FV3 is envisioned as the eventual foundation for 

NOAA’s regional models and ensemble systems. This 

will require much research, development, and testing 

to ensure that FV3 performs equal to or better than 

existing regional short-term forecasting systems.

This article describes the design of the 2016 

CLUE system and the eight specific experiments 

that were conducted within the CLUE framework. 

Additionally, as an example of the research enabled 

by the CLUE framework, results are presented from 

one of the experiments that examined the impact of 

using single versus multicore CAM ensemble con-

figurations.

CLUE CONFIGURATION. The idea for the 

CLUE system was formulated in fall of 2015. At this 

time, plans were already in place for several groups 

of collaborators to contribute model data to the 2016 

SFE through NOAA-funded research-to-operations 

projects. For example, NCAR and CAPS had proj-

ects funded by NOAA’s Oceanic and Atmospheric 

Research (OAR) Office of Water and Air Quality 

(OWAQ), and the University of North Dakota (UND) 

had a project funded by the National Weather Service 

Research to Operations Initiative. While the model 

runs NSSL contributed to the CLUE were not sup-

ported by a specific grant, the Texas Advanced Com-

puting Center (TACC) provided generous computing 

resources for their contribution. Since participation in 

the CLUE would require work beyond that outlined 

in their already-existing projects, leaders from each 

group of collaborators were approached individually 

to gauge whether they had the resources and will-

ingness to participate. Fortunately, because of the 

mutually beneficial research that the CLUE system 

would enable, along with the potential to provide 

evidence to help optimize NOAA’s first operational 

CAM-ensemble configuration, all collaborators were 

eager and willing to participate.

The CLUE configuration was formulated by con-

sidering some basic research questions, such as how to 

optimize CAM-ensemble configurations and how to 

build around each collaborator’s already existing plans 

for model data contributions. Ultimately, the CLUE 

was designed to have 66 members: 35 contributed by 

CAPS, 15 by NSSL, 10 by NCAR, 5 by the UND, and 

1 from the Earth System Research Laboratory/Global 

Systems Division (ESRL/GSD). The runs were conduct-

ed on several different high-performance computing 

systems. CAPS used TACC’s Stampede system and the 

University of Tennessee’s National Institute for Com-

putation Science’s (NICS) Darter system, NSSL used 

TACC’s Lonestar5 system, NCAR used the Yellowstone 

supercomputer, UND used TACC’s Stampede system, 

and ESRL/GSD used NOAA’s Jet system.

All members were initialized at 0000 UTC on 

weekdays with forecasts to 36 h using 3-km grid spac-

ing over a CONUS domain. Members included the 

Advanced Research version of the Weather Research 

and Forecasting (WRF-ARW) Model (Skamarock 

et al. 2008), as well as the Nonhydrostatic Multiscale 

Model on the B grid (NMMB; Janjić and Gall 2012). 

The CAPS, UND, and NSSL members all shared a set 

of common model versions, domain specifications 

(including vertical levels), physics parameterizations, 

and postprocessing methods. The ESRL/GSD member 

was a developmental version of the High Resolution 

Rapid Refresh (HRRR) model (Benjamin et al. 2016) 

run to 36 h, which had a slightly different domain than 

the other members. The NCAR members also had a 

slightly different domain and used a 1-yr-older version 

of WRF, which was necessary because their members 

were from an already established ensemble system 

whose configuration was based on extensive testing 

and verification (Schwartz et al. 2015a). The NCAR 

group did not want to risk introducing changes to their 

system by adhering exactly to the CLUE specifications, 

since it could introduce unwanted systematic biases. 

Despite some minor differences in the NCAR and 

ESRL/GSD members, postprocessing was standardized 

across all ensemble subsets (described later).

The basic strategy in designing the CLUE was to 

formulate several subsets of up to 20 members that 

could be used to test specific configuration strategies 

in controlled experiments. Ten unique subsets were 

formulated, with CAPS contributing five subsets, NSSL 

two, and ESRL/GSD, NCAR, and UND each contribut-

ing one. Some experiments utilized combinations of 

these subsets. These subsets are described as follows:

1) core (CAPS)—Nine WRF-ARW members were 

designed to account for as many error sources 

as possible. The control member used initial 

conditions (ICs) and lateral boundary conditions 

(LBCs; 3-h updates) from 12-km grid-spacing 

North American Mesoscale Forecast System 

(NAM) analyses and forecasts, respectively. 

Radar ref lectivity and velocity data and other 

traditional data, including surface observations 

and rawinsondes, were assimilated into the ICs 

using the Advanced Regional Prediction System 

(ARPS) three-dimensional variational data as-

similation (3DVAR; Xue et al. 2003; Gao et al. 

2004) and cloud analysis (Xue et al. 2003; Hu et al. 

2006) system. The other core subset members 

also used ARPS-3DVAR, but IC perturbations 
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were derived from evolved (through 3 h) pertur-

bations of 2100 UTC initialized members of the 

National Centers for Environmental Prediction 

(NCEP) Short-Range Ensemble Forecast (SREF) 

system (Du et al. 2006) and added to the control 

member ICs, with corresponding SREF forecasts 

used for LBCs. Mixed physics were implemented 

in the core subset using various combinations 

of microphysics and planetary boundary layer 

(PBL)/turbulence schemes.

2) s-phys-rad (CAPS)—Ten WRF-ARW members 

(including the control member of core) were 

configured the same as core but used a single set 

of physics.

3) caps-enkf (CAPS)—Ten WRF-ARW members 

used the same set of physics and LBCs as core, 

but with ICs that were derived from an ensemble 

Kalman filter (EnKF) system.

4) caps-nmmb-rad (CAPS)—A single NMMB run 

used the same ICs/LBCs as the core control mem-

ber.

5) caps-nmmb (CAPS)—Five NMMB members 

had the same ICs/LBCs as five of the s-phys-rad 

members but did not use ARPS-3DVAR (i.e., a 

“cold start” was used).

6) s-phys-norad (NSSL)—Ten WRF members were 

the same as s-phys-rad, but without ARPS-

3DVAR (i.e., cold start).

7) nssl-nmmb (NSSL)—Five NMMB members were 

configured the same as the caps-nmmb members, 

except they shared a different set of the s-phys-rad 

ICs/LBCs.

8) HRRR36 (ESRL/GSD)—A development version 

of the HRRR was configured to provide 36-h 

forecasts. The HRRR is a 3-km grid-spacing, 

ARW-based model that is initialized hourly and 

provides 18-h forecasts.

9) ncar-enkf (NCAR)—Ten WRF members used sin-

gle physics and ICs/LBCs derived from NCAR’s 

Data Assimilation Research Testbed (DART; 

Anderson et al. 2009) software (Schwartz et al. 

2015a).

10) mp (UND)—Five WRF members had the same 

ICs/LBCs as the core control member, but with 

different microphysics parameterizations in each 

member.

Table 1 provides a summary of the specifications 

for each CLUE subset, and further details including 

specifications for every member can be found in the 

online supplement (https://doi.org/10.1175/BAMS 

-D-16-0309.2).

CLUE EXPERIMENTS. The design of CLUE 

allowed for eight unique experiments, which are 

described as follows:

1) ARW versus NMMB—A direct comparison of 

the subjective and objective skill of ARW and 

NMMB dynamic cores was conducted. These 

TABLE 1. Summary of CLUE subsets. IC/LBC perturbations labeled SREF indicate that IC perturbations 

were extracted from members of NCEP’s SREF system and added to 0000 UTC NAM analyses. In subsets 

with “yes” indicated for mixed physics, the microphysics and turbulence parameterizations were varied, 

except for subset mp, which only varied the microphysics. Note that the control member of the core en-

semble was also used as the control member in the mp and s-phys-rad ensembles. Thus, although the total 

number of members adds to 67, there were 66 unique members. Further, one member planned for the 

core subset was not ready for real-time implementation; thus, only nine core members were actually run. 

The HPC column provides the names of the high-performance computers used for each set of simulations. 

The agencies that maintain each system are given in the text.

CLUE subset

No. of 

members

IC/LBC 

perturbations

Mixed 

physics?

Data 

assimilation

Model 

core Agency HPC

core 10 (9) SREF Yes ARPS-3DVAR ARW CAPS Stampede

s-phys-rad 10 SREF No ARPS-3DVAR ARW CAPS Stampede

caps-enkf 10 EnKF (CAPS) Yes EnKF (CAPS) ARW CAPS Darter

caps-nmmb-rad 1 None No ARPS-3DVAR NMMB CAPS Stampede

caps-nmmb 5 SREF No Cold start NMMB CAPS Stampede

s-phys-norad 10 SREF No Cold start ARW NSSL Lonestar5

nssl-nmmb 5 SREF No Cold start NMMB NSSL Lonestar5

HRRR36 1 None No RAP-GSI/DFI ARW ESRL/GSD Jet

ncar-enkf 10 EnKF (DART) No EnKF (DART) ARW NCAR Yellowstone

mp 5 None Yes ARPS-3DVAR ARW UND Stampede
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direct comparisons were possible because 10 

pairs of NMMB and ARW members within the 

caps-nmmb and nssl-nmmb, and s-phys-norad, 

subsets had different model cores but shared 

the same ICs/LBCs. The optimal dynamic core 

for CAM applications is still an open question. 

NMMB is known to be more computationally ef-

ficient than ARW, but ARW has been preferred by 

severe weather forecasters and the severe weather 

research community because of its more realistic 

depiction of storm structure and evolution.

2) Multicore versus single-core ensemble design—

Three ensembles were compared to test the 

effec tiveness of single-core versus multicore 

configurations. The first ensemble used five ARW 

and five NMMB members from the s-phys-norad 

and nssl-nmmb subsets, respectively; the second 

used the 10 ARW members from the s-phys-norad 

subset; and the third used 10 NMMB members 

from the caps-nmmb and nssl-nmmb subsets. 

The effectiveness of multicore (or multimodel) 

ensemble configuration strategies has been dem-

onstrated for seasonal [e.g., the North American 

Multimodel Ensemble (NMME); Kirtman et al. 

(2014)], medium-range [e.g., the North American 

Ensemble Forecast System (NAEFS); Candille 

(2009)], and short-range (e.g., the SREF; Du 

et al. 2006) forecasting applications. The use of 

multiple models with different but equally valid 

methods for initialization and integration helps 

to better sample the range of future states than 

a single modeling system. Although the Storm 

Scale Ensemble of Opportunity (SSEO; Jirak et al. 

2012) has been shown to be a skillful multimodel 

CAM ensemble, the multimodel strategy has not 

been tested for CAM applications in controlled 

experiments. Furthermore, given the push toward 

model core unification that will better focus 

model development efforts (e.g., UCAR 2015), it is 

preferred that a future operational CAM ensemble 

will be single core. Thus, it is important to quan-

tify how much skill (if any) is sacrificed from a 

single-core configuration within the context of a 

controlled experiment.

3) Single physics versus multiphysics—Two ensembles 

with the same set of perturbed ICs/LBCs were com-

pared to test the impact of single versus multiphys-

ics. One ensemble, core, used varied turbulence 

and microphysics schemes, while another, s-phys-

rad, used a common set of physics. Although past 

SFEs have quantified the error growth from varied 

physics within a perfect analysis framework (i.e., 

nonperturbed ICs/LBCs; e.g., Clark et al. 2010b), 

there has not been an experiment designed in 

the SFE to examine the impact of varied physics 

with perturbed ICs/LBCs in a CAM ensemble. 

Furthermore, while multiple physics schemes have 

been shown to increase spread, leading to improved 

forecast skill (e.g., Stensrud et al. 2000; Hacker et al. 

2011; Berner et al. 2011, 2015), there are theoretical 

and practical disadvantages to multiphysics ap-

proaches, including the resource-intensive need to 

develop and maintain multiple parameterizations, 

as well as the introduction of systematic biases (e.g., 

Jankov et al. 2017). Thus, it is important to quantify 

the gain in skill (if any) from using multiphys-

ics. Future SFEs will explore whether stochastic 

physics perturbations (e.g., Jankov et al. 2017 and 

references therein) in a single-physics ensemble 

can match or exceed the spread and skill from the 

multiphysics approach.

4) Comparison of ensembles with and without radar 

data assimilation—Two single-physics ensembles 

with perturbed ICs/LBCs were identically config-

ured, except one, s-phys-rad, used ARPS-3DVAR 

to assimilate radar data and other observations in 

all members, while another, s-phys-norad, used a 

cold start in all members. Previous studies have 

documented the impact of radar data assimila-

tion by comparing deterministic models with 

and without radar data assimilation (e.g., Kain 

et al. 2010; Stratman et al. 2013), finding that the 

positive impact of the assimilation is strongest 

within the first 3–6 h of the forecast but can last 

up to 12 h. However, these comparisons have not 

been conducted within an ensemble framework 

to determine the time length and magnitude of 

the positive impact of radar assimilation.

5) 3DVAR versus EnKF data assimilation strate-

gies—The core, caps-enkf, and ncar-enkf subsets 

were compared. Although it is much more compu-

tationally expensive than 3DVAR, the EnKF data 

assimilation method is advantageous because it 

provides flow-dependent background error covari-

ances that result in higher correlations between the 

model state and observed variables (e.g., Johnson 

et al. 2015). Despite the theoretical advantages to 

EnKF, subjective and objective comparisons of 

CAM ensembles from past SFEs did not find that 

those using EnKF performed any better than other 

data assimilation methods (Jirak et al. 2015). Thus, 

more work is needed to optimize EnKF for CAM 

ensemble applications. However, this experiment 

was not as controlled as the others, because aspects 

of the subset of configurations other than the data 

assimilation methods also differed.
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6) GSD radar versus CAPS radar assimilation—Two 

methods for assimilating radar data were com-

pared. One used ARPS-3DVAR and the other used 

the Digital Diabatic Filter Initialization (DDFI; 

Benjamin et al. 2016) system used in the HRRR. It 

was planned to include a core member configured 

the same as HRRR36, but using the ARPS-3DVAR 

system to generate the ICs. Because of time con-

straints, the core member planned for this ex-

periment was not ready for implementation in real 

time. Thus, this experiment was not conducted.

7) Microphysics sensitivities—Using the five mem-

bers of the mp subset, the impact of different 

microphysics parameterizations on forecast storm 

structure and evolution was examined. This 

exper iment has been conducted in SFEs since 

2010 (e.g., Clark et al. 2012, 2014), and through the 

participation of microphysics scheme developers 

each year, parameterizations have been improved 

and valuable interactions have occurred with 

forecasters and modelers.

8) Ensemble size experiment—A comparison of en-

sembles with equal contributions of NMMB and 

ARW members using 2, 4, 6, 10, and 20 members 

was conducted to examine the impact of en-

semble size. The ensembles used combinations of 

members from the caps-nmmb, nssl-nmmb, and 

s-phys-norad subsets. While very large ensembles 

(e.g., hundreds of members) would be ideal if 

computational expense were not an issue, the “op-

timal” ensemble size is generally considered one in 

which only relatively small gains are achieved by 

adding additional members. Using a 50-member 

CAM-ensemble, Schwartz et al. (2014) found that 

only small gains in precipitation forecast skill are 

attained after about 20 members and argue that 

in an operational setting with limited computa-

tional resources, sizes greater than 10 would be 

difficult to justify. Clark et al. (2011) also found 

that a CAM ensemble of around 10 members has 

similar quantitative precipitation forecast (QPF) 

skill to larger ensembles and point out that the 

optimal number of members varies as a function 

of forecast length and spatial scale.

CLUE POSTPROCESSING. In past SFEs, the 

members from each of the unique CAM ensembles 

contributed to the HWT were postprocessed2 by each 

collaborator using their own software. Furthermore, 

some collaborators, such as CAPS, provided separate 

sets of postprocessed files containing ensemble-

derived fields (e.g., probabilities, ensemble maximum, 

and ensemble mean). Thus, ingesting the datasets into 

the HWT workstations required different procedures 

to account for different file formats, fields, and grids. 

Furthermore, combining ensemble members from 

different contributors was cumbersome and rarely 

done, since it required an extra regridding step be-

fore computing any ensemble-derived field. Thus, 

standardizing the postprocessing procedure was one 

of the most important aspects of the CLUE since it 

streamlined the workflow and allowed for consistent 

postprocessed fields, visualization, and verification.

To standardize the postprocessing, NSSL worked 

closely with scientists at the Developmental Testbed 

Center (DTC) and NCEP’s Environmental Modeling 

Center (EMC) to modify the most recent version of 

the Unified Post-Processor (UPP) software, which 

is maintained by the DTC (information on the most 

recent version is available at www.dtcenter.org/upp 

/users/index.php). The UPP was modified to output 

a set of 107 fields from each CLUE member in grid-

ded binary (grib2) format over a 3-km grid-spacing 

CONUS domain. The fields match the two-dimen-

sional fields output by the operational HRRR and were 

chosen because of their relevance to a broad range of 

forecasting needs, including aviation, severe weather, 

and precipitation. Additional output fields, which 

were requested by NCEP’s Weather Prediction Center 

(WPC), SPC, and Aviation Weather Center (AWC), 

were also included. This special version of the UPP 

was distributed by NSSL to collaborators in February 

2016 to allow time for testing and implementation. All 

contributors were asked to supply all 107 fields but were 

also allowed to add additional diagnostics based on 

their own research interests. The online supplement 

contains a table listing all postprocessed fields.

CLUE RESULTS. Given the sheer volume of data 

composing the CLUE, it is impossible to present results 

in this article from each of the experiments. Addition-

ally, active research is still being conducted to examine 

several of the CLUE datasets. For example, DTC Visitor 

Program projects (www.dtcenter.org/visitors/) are 

currently under way, examining the value of radar data 

assimilation using object-based verification methods, 

as well as the impact of mixed physics in the CLUE. 

Preliminary findings and results from the 2016 SFE, in-

cluding some preliminary CLUE results, can be found 

in Clark et al. (2016). It is important to recognize that 

annual HWT assessment activities typically include 

2 Postprocessing refers to the procedure used to convert raw 

model output to standard grids and pressure levels, as well 

as to compute diagnostic quantities (e.g., convective available 

potential energy and storm relative helicity).
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a combination of subjective and objective evaluation 

methods (Kain et al. 2003), which together provide a 

more complete picture of the potential utility of new 

forecast techniques in an operational environment. 

However, given the space limitations, this section will 

focus on results from the single versus multicore CLUE 

experiments as an example of the research enabled 

within the CLUE framework.

Single versus multicore experiment: Severe weather 

verif ication. Objective verification of four ensemble 

subsets was conducted for severe weather occurrence, 

which included 1) NMMB, a 10-member, single-

physics NMMB ensemble with perturbed ICs/LBCs; 

2) ARW, a 10-member, single-physics ARW ensemble 

with the same perturbed ICs/LBC as NMMB; 3) 

MIX
10-mem

, a combination of five of the NMMB and 

ARW members; and 4) MIX
20-mem

, a combination of 

all 10 NMMB and ARW members. Complete datasets 

from these ensembles were analyzed for each day 

the SFE operated (24 days; 2 May–3 June, excluding 

weekends/holidays).

To verify severe weather (defined as a tornado, dam-

aging winds, or large hail), ensemble-derived severe 

weather probabilities were computed by considering 

extreme values of hourly maximum updraft helicity 

(UH; e.g., Kain et al. 2010) as severe storm proxies 

following the “surrogate severe” approach outlined by 

Sobash et al. (2011, 2016b). This approach has been in-

creasingly utilized for verifying CAM-based forecasts 

of severe weather (e.g., Schwartz et al. 2015a,b; Sobash 

et al. 2016a; Gallo et al. 2016; Loken et al. 2017; Dawson 

et al. 2017). The basic idea behind the surrogate severe 

approach is that “extremes” in simulated storm diag-

nostics are strongly correlated with observed severe 

weather. However, given the inherent uncertainty 

associated with convection forecasts at 12–36-h lead 

times, coarsened grids and spatial smoothing must 

be applied to account for timing and displacement 

errors. Furthermore, the skill and reliability of sur-

rogate severe forecasts are heavily dependent on the 

threshold or percentile chosen to represent extremes, 

as well as the amount of smoothing applied. Thus, in 

the methods described below, a range of UH thresholds 

and smoothing levels are chosen, which are known 

to produce reliable forecasts based on previous work.

For application of the surrogate severe approach, 

the maximum UH at each grid point was computed 

FIG. 2. SSPFs (shaded) using σ = 80 km and p = 0.99 for ensemble forecasts initialized at 0000 UTC 9 May 2016 and 

valid over forecast hours 13–36 for the ensemble subsets (a) ARW, (b) NMMB, (c) MIX
10-mem

, and (d) MIX
20-mem

. 

(e)–(h) As in (a)–(d), respectively, but for 10 May 2016. Locations of storm reports are overlaid with a legend 

indicating the type of report at the bottom left. The thick black contour indicates the area within 40 km of any 

storm report.
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over the 24-h period 1200–1200 UTC (forecast hours 

13–36) for each ensemble member. Then, for each 

member, these maximum UH values were remapped 

onto the 81-km NCEP 211 grid by assigning each 

81-km grid box the maximum value of UH out of 

all 3-km grid points within the 81-km boxes. This 

methodology is consistent with the SPC operational 

day 1 convective outlook, which provides categorical 

and probabilistic forecasts for the 1200–1200 UTC 

time period and represents severe weather threats 

within 25 mi (~40 km) of a point. Next, severe weather 

probabilities [hereafter, surrogate severe probabilistic 

forecasts (SSPFs)] were computed by finding the ratio 

of members with UH greater than or equal to a speci-

fied percentile p and then applying a two-dimensional 

Gaussian filter to these ratios. The UH percentiles 

were computed separately for the set of members 

in each ensemble subset with the same model core 

using the distribution of UH values from the 81-km 

grids over all 24 cases. The percentiles, rather than 

thresholds, were used to avoid giving more weight 

to ensemble members with climatologically higher 

values of UH in the computation of SSPFs. In this 

dataset, the NMMB tended to have slightly higher UH 

than ARW (e.g., at p = 0.99, the UH values in NMMB 

and ARW were 152 and 141 m2 s–2, respectively).

The percentiles from 0.80 to 0.998 in increments 

of 0.02 (100 unique percentiles) were examined, and 

for each percentile, a range of standard deviations σ in 

the Gaussian filter from 40 to 300 km in increments of 

5 km were tested (i.e., 53 unique σ values). Physically, 

1σ can be thought of as the radius containing 68% of 

the Gaussian kernel weights. Thus, for each case and 

ensemble subset, there were 100 × 53 = 5,300 sets of 

SSPFs. Examples of these SSPFs using σ = 80 km and 

p = 0.99 for 9 and 10 May 2016 along with the verify-

ing storm reports are shown in Fig. 2. To verify the 

SSPFs, preliminary observed storm reports from SPC 

(accessible at www.spc.noaa.gov/climo/reports/) were 

mapped onto the same 81-km grid as the SSPFs. Any 

grid box with one of more reports over the 1200–1200 

UTC time period was assigned 1 while boxes with 

zero reports were assigned 0. Verification metrics 

were computed over the masked area displayed in 

Fig. 3, which was chosen to limit verification to land 

and near-coastal areas, as well as to eliminate the 

Intermountain West, where storm reports and pre-

cipitation estimates are not as reliable.

Three metrics are used for objective verification. 

1) Area under the relative operating characteristic 

curve (AUC; Mason 1982) is computed by plot-

ting the probability of detection (POD) versus the 

FIG. 3. Area over which verification metrics were computed.
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probability of false detection (POFD) for a range of 

probabilistic thresholds (herein, 2% and 5%–95% in 

increments of 5% are used). The area under the curve 

connecting each POD–POFD pair is computed us-

ing a trapezoidal approximation (e.g., Wandishin 

et al. 2001). The AUC measures the ability of the 

forecast system to discriminate between events and 

nonevents. A value of 1.0 is considered a perfect 

AUC, while 0.5 and below is considered to have no 

skill. 2) Fractions skill score (FSS; Roberts and Lean 

2008) is calculated by computing the mean-square 

error (MSE) of the SSPFs relative to “practically per-

fect” observations (e.g., Hitchens et al. 2013), which 

are constructed by applying a Gaussian filter with 

σ = 120 km to the 81-km grid of storm reports. The 

MSEs of the SSPFs are normalized by a worst-case 

reference forecast and subtracted from 1.0 to get 

the FSS [see Eqs. (3)–(5) in Sobash et al. (2011)]. The 

FSS ranges from 0 (no skill) to 1 (perfect forecast). 

3) The reliability component of the Brier score (BS
rely

; 

Brier 1950; Murphy 1973) is computed by taking the 

squared difference of the probabilities within speci-

fied bins and their corresponding observed frequen-

cies [see Eq. (2) in Atger (2003)]. The BS
rely

 essentially 

measures how closely the points within a reliability 

diagram follow the perfect reliability line, where the 

squared error for each point is weighted according 

to the number of forecasts within each probability 

bin. Lower BS
rely

 indicates increasing reliability, 

with BS
rely

 = 0 indicating perfect reliability. These 

three metrics were chosen because they are very well 

known and provide complementary information 

on discriminating ability (AUC), forecast accuracy 

(FSS), and reliability (BS
rely

).

Each skill metric for each ensemble is presented 

as a function of σ and the UH percentile in Fig. 4. 

The metrics behave quite differently in terms of 

where the best scores fall within the σ–UH per-

centile phase space. AUC has the highest scores 

at relatively low σ values (60–100 km) and UH 

percentiles (0.82–0.86), FSS maximizes at higher σ 

(150–180 km) and UH percentiles (0.92–0.94), and 

BS
rely

 is best at the highest σ (240–300 km) and UH 

percentiles (0.95–0.96). For reference, in each panel 

in Fig. 4, the UH percentile at which the number 

of surrogate severe storm reports is approximately 

equal to the number of observed severe reports 

over all cases is shown by the turquoise dashed line 

(p = 0.974; i.e., bias = 1.0). Thus, AUCs maximize 

at UH percentiles associated with biases well above 

1.0. In fact, the biases at these lower ranges of UH 

percentiles range from 6.0 to 7.8 (not shown). The 

high biases associated with the maximum AUCs 

are not surprising because AUC does not account 

for bias or reliability. Furthermore, for rare-event 

forecasts, increasing the number of forecast events 

almost always acts to increase the POD more than 

the POFD, thereby increasing the AUC, because 

correct negatives so heavily weight the POFD. For 

FSS and BS
rely

, the scores maximize at UH percentiles 

closer to bias = 1.0 than AUC. For BS
rely

, it may seem 

intuitive that the best reliability would occur when 

bias = 1.0; however, underdispersion causes prob-

abilities to be too high, and the additional spatial 

uncertainty provided by a bias slightly higher than 

1.0 along with very strong smoothing apparently 

achieves the best reliability.

For AUC and FSS, the MIXED
10-mem

 and MIXED
20-mem

 

have slightly higher maximum scores than ARW and 

NMMB, which are very similar to each other. The 

best BS
rely

 values are nearly identical among the four 

ensembles. To evaluate whether any of the differences 

in maximum scores were significant, the resampling 

approach of Hamill (1999) was utilized and it was 

found that none of the differences between ensembles 

were significant at α = 0.05. Thus, although the mul-

ticore approach has slightly higher scores than the 

single-model approach for severe weather forecasting, 

a larger sample is necessary to determine whether 

these differences can be attributed to more than just 

randomness. Continuation of CLUE-related experi-

ments in subsequent years will contribute to larger 

data samples and lead to more robust statistical results.

Single versus multicore experiment: QPF verif ication. 

Similar to severe weather, accurate precipitation fore-

casting is notoriously difficult for numerical weather 

prediction (NWP) models (e.g., Carbone et al. 2002; 

Roebber et al. 2004), but CAM-based systems have 

led to major improvements in QPFs over convection-

parameterizing models (e.g., Clark et al. 2009, 2010a, 

2012; Weisman et al. 2008; Iyer et al. 2016). In many 

ways, QPF verification is simpler than severe weather, 

because more reliable and higher-resolution observa-

tional precipitation datasets exist (e.g., NCEP’s Stage 

IV dataset), and QPFs are directly output from models 

and thus do not require surrogates like severe weather. 

Although these differences allow QPF verification to 

be reliably performed at higher spatial and temporal 

resolution than severe weather, to compare QPF and 

severe weather performance, verification is per-

formed at the same scale as severe weather. Follow-up 

work will perform QPF verification at higher spatial 

and temporal resolution.

To perform QPF verification analogously to se-

vere weather, 24-h accumulated precipitation from 
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NCEP’s 4-km grid-spacing Stage IV dataset (Lin and 

Mitchell 2005; Nelson et al. 2016) was remapped onto 

the NCEP 211 grid using the maximum 24-h pre-

cipitation amount from all 4-km Stage IV grid points 

within each 81-km NCEP 211 grid box. Then, the pre-

cipitation amount that resulted in the same number 

of observed severe weather events was found, which 

was 2.69 in. (1 in. = 2.54 cm). In other words, the 

total number of 81-km grid boxes with an observed 

severe weather report was equal to the total number 

of 81-km grid boxes in which the maximum observed 

precipitation was 2.69 in. or greater. Then, maximum 

24-h accumulated QPFs from each ensemble member 

were remapped onto the 81-km grid in the same man-

ner as UH, and heavy rainfall probabilities were also 

computed similarly to UH.

Figure 5 shows that all the precipitation skill met-

rics computed using the 2.69-in. threshold were no-

ticeably higher than those for UH; thus, these CAM 

ensembles provide more skillful forecasts of extreme 

FIG. 4. AUC as a function of σ and UH percentile for the ensembles (a) ARW, (b) NMMB, (c) MIXED
10-mem

, and 

(d) MIXED
20-mem

. (e)–(h) As in (a)–(d), respectively, but for FSS. (i)–(l) As in (a)–(d), respectively, but for BS
rely

. 

In each panel, a blue × marks the best score, which is indicated in the text; the vertical dashed turquoise line 

marks the UH percentile at which bias = 1 (i.e., the number of surrogate severe reports approximately matches 

the number of observed reports). In (i)–(l), the reliability diagrams are shown corresponding to σ and UH 

percentile at which BS
rely

 is minimized.
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rainfall than severe weather. Also, the multicore 

systems (MIXED
10-mem

 and MIXED
20-mem

) had better 

AUC, FSS, and BS
rely

 results than the single-core sys-

tems, but as with UH, none of the differences between 

the single- and multicore subsets were statistically 

significant. There are also noticeable differences in 

σ and the rainfall percentiles at which the metrics are 

maximized. Namely, relative to UH, there is a shift 

toward higher percentiles (biases closer to 1.0) and 

smaller σ (i.e., less smoothing) for QPF. The reason 

for this shift is not clear, but it is speculated that it is 

because of differences in the spatial characteristics of 

heavy rainfall and severe weather. However, further 

work is needed for substantiation.

CONCLUDING REMARKS. The 2016 SFE 

marks year 17 of annual SFEs organized by the SPC 

and NSSL, which aim to accelerate the advancement 

of new technologies and concepts from research 

to operations for improving hazardous convective 

weather prediction. Since 2004, a main focus of SFEs 

has been on evaluating performance characteristics 

of CAMs, as well as making advances in creating, 

importing, processing, verifying, and extracting 

unique hazardous weather fields, as well as providing 

analysis and visualization tools for CAMs. With in-

creasing numbers of CAMs contributed to SFEs every 

year, and the strong community call for evidence-

driven decision-making as EMC and the modeling 

FIG. 5. As in Fig. 4, but for 24-h precipitation forecasts.
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community configure the first generation of opera-

tional CAM-based ensemble prediction systems, a 

major initiative was started during the 2016 SFE to 

coordinate and standardize the CAM contributions 

from each of our external collaborators, so that each 

group of CAMs could be considered part of one large 

ensemble termed the Community Leveraged Unified 

Ensemble (CLUE).

The CLUE was designed to enable up to eight dif-

ferent controlled experiments focused on optimizing 

CAM ensemble configurations. Results from one of 

these experiments—single versus multicore ensemble 

design—were reported upon herein, while research is 

in progress for several other CLUE experiments. For 

the single versus multicore results, objective metrics 

for severe weather forecast skill indicated small differ-

ences in forecast skill, with multicore systems having 

slightly higher scores than those for a single core. 

Additionally, a 20-member mixed-core ensemble per-

formed almost identically to a 10-member mixed-core 

ensemble. None of the differences were statistically 

significant, but with only 24 cases, significance would 

likely require a larger sample size.

For precipitation verification, probabilistic QPFs 

were found to be more skillful than those for se-

vere weather when the verification was performed 

similarly. Additionally, the mixed-core ensembles 

had slightly better objective metrics for QPF than 

the single-core ensembles. Future work is planned to 

perform the precipitation verification from the mul-

ticore versus single-core ensemble design experiment 

at higher spatial and temporal resolution.

HWT has a long and productive history of bring-

ing together different parts of the research, operation-

al, and academic meteorological communities to work 

collaboratively in a real-time simulated forecasting 

environment, focusing on severe weather forecasting 

problems. We envision continuing the CLUE system 

in subsequent experiments, and there is ample rea-

son to believe that it can further enhance effective 

engagement between the modeling and operational 

communities, as well as provide important scientific 

evidence necessary for informed decision-making, 

so that future U.S. hazardous weather prediction 

capabilities are the best possible.
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A
 ll Community Leveraged Unified Ensemble  

 (CLUE) members were initialized weekdays at  

 0000 UTC with 3-km grid spacing covering a 

contiguous U.S. (CONUS) domain. Members of the 

Advanced Research version of the Weather Research 

and Forecasting (WRF) Model (ARW) had 1,680 

grid points in the east–west direction, 1,152 grid 

points in the north–south direction, and 51 vertical 

levelsES1 with a model top of 50 hPa and used the 

Rapid Radiative Transfer Model (RRTM; Mlawer 

et al. 1997) for general circulation models (RRTMG; 

Iacono et al. 2008) for short- and longwave radia-

tion. All Nonhydrostatic Multiscale Model on the 

B grid (NMMB) members have 1,568 grid points 

in the east–west direction, 1,120 grid points in the 

north–south direction, and 50 vertical levels with a 

model top of 50 hPa and use the RRTM short- and 

longwave radiation. Depending on the CLUE subset, 

forecast lengths range from 36 to 60 h. Specifications 

for the members within each subset are detailed in 

Tables ES1–ES10.

Developmental Testbed Center (DTC) Unified 

Post-Processor (UPP) software was used to output 

a set of 107 fields from each CLUE member, which 

are listed in Table ES11. Additionally, the Center 

for Analysis and Prediction of Storms (CAPS) and 

National Severe Storms Laboratory (NSSL) output 

six additional experimental diagnostics that are 

listed in Table ES12.

ES1 WRF-ARW sigma levels are set to the following values: 1.0, 

0.998, 0.994, 0.987, 0.975, 0.959, 0.939, 0.916, 0.892, 0.865, 

0.835, 0.802, 0.766, 0.727, 0.685, 0.64, 0.592, 0.542, 0.497, 

0.4565, 0.4205, 0.3877, 0.3582, 0.3317, 0.3078, 0.2863, 0.267, 

0.2496, 0.2329, 0.2188, 0.2047, 0.1906, 0.1765, 0.1624, 0.1483, 

0.1342, 0.1201, 0.106, 0.0919, 0.0778, 0.0657, 0.0568, 0.0486, 

0.0409, 0.0337, 0.0271, 0.0209, 0.0151, 0.0097, 0.0047, and 

0.0.
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TABLE ES1. Specifications for the core members of the CLUE that use the ARW, mixed-physics param-

eterizations, perturbed initial conditions (ICs) and lateral boundary conditions (LBCs), and radar data 

assimilation using Advanced Regional Prediction System (ARPS) three-dimensional variational data 

assimilation (3DVAR). The 12-km North American Mesoscale Forecast System (NAM) analysis and fore-

cast are referred to as NAMa and NAMf, respectively. Here, 3DVAR refers to ARPS 3DVAR and cloud 

analysis. The 13-km Rapid Refresh (RAP) model analysis is RAPa. In the IC column, the model names 

appended with “pert” refer to perturbations extracted from a 16-km grid-spacing SREF member. For 

members core03–10, entries in the BC column refer to SREF member forecasts. The core02 member 

was not ready for real-time implementation; thus, it was not run in real time. Microphysics parameter-

izations include Thompson et al. (2004), the Predicted Particle Properties scheme (P3; Morrison and 

Milbrandt 2015), Milbrandt and Yau (2005a,b), and Morrison et al. (2009); planetary boundary layer 

parameterizations include Mellor–Yamada–Janjić (MYJ; Mellor and Yamada 1982; Janjić 2002), Mellor–

Yamada–Nakanishi–Niino (MYNN; Nakanishi 2000, 2001; Nakanishi and Niino 2004, 2006), and Yonsei 

University (YSU; Noh et al. 2003); and land surface models (LSMs) included the Noah model (Chen and 

Dudhia 2001) and the Rapid Update Cycle (RUC; Smirnova et al. 1997, 2000).

Member IC BC Microphysics LSM PBL Model

core01 NAMa + 3DVAR NAMf Thompson Noah MYJ ARW

core02 RAPa + 3DVAR GFSf Thompson RUC MYNN ARW

core03 core01 + arw-p1_pert arw-p1 P3 Noah YSU ARW

core04 core01 + arw-n1_pert arw-n1 Milbrandt–Yau Noah MYNN ARW

core05 core01 + arw-p2_pert arw-p2 Morrison Noah MYJ ARW

core06 core01 + arw-n2_pert arw-n2 P3 Noah YSU ARW

core07 core01 + nmmb-p1_pert nmmb-p1 Milbrandt–Yau Noah MYNN ARW

core08 core01 + nmmb-n1_pert nmmb_n1 Morrison Noah YSU ARW

core09 core01 + nmmb-p2_pert nmmb-p2 P3 Noah MYJ ARW

core10 core01 + nmmb-n2_pert nmmb-n2 Thompson Noah MYNN ARW

TABLE ES2. Specifications for the s-phys-rad members of the CLUE that use the ARW dynamic core, 

single physics, perturbed ICs and LBCs, and radar data assimilation using ARPS 3DVAR. The core01 

member is repeated from Table ES1 because it is also the control member of the s-phys-rad ensemble 

subset.

Member IC BC Microphysics LSM PBL Model

core01 NAMa + 3DVAR NAMf Thompson Noah MYJ ARW

s-phys-rad02 core01 + arw-p1_pert arw-p1 Thompson Noah MYJ ARW

s-phys-rad03 core01 + arw-n1_pert arw-n1 Thompson Noah MYJ ARW

s-phys-rad04 core01 + arw-p2_pert arw-p2 Thompson Noah MYJ ARW

s-phys-rad05 core01 + arw-n2_pert arw-n2 Thompson Noah MYJ ARW

s-phys-rad06 core01 + arw-p3_pert arw-p3 Thompson Noah MYJ ARW

s-phys-rad07 core01 + nmmb-p1_pert nmmb-p1 Thompson Noah MYJ ARW

s-phys-rad08 core01 + nmmb-n1_pert nmmb-n1 Thompson Noah MYJ ARW

s-phys-rad09 core01 + nmmb-p2_pert nmmb-p2 Thompson Noah MYJ ARW

s-phys-rad10 core01 + nmmb-n2_pert nmmb-n2 Thompson Noah MYJ ARW
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TABLE ES3. Specifications for the caps-enkf members of the CLUE. For these members, a 3-km Grid-

point Statistical Interpolation analysis system–ensemble Kalman filter (GSI–EnKF) system was initial-

ized at 1800 UTC each day, which assimilated the RAP/High Resolution Rapid Refresh (HRRR) GSI data 

stream hourly (except satellite data) from 1800 to 0000 UTC over the CONUS domain. Radar data 

were assimilated every 15 min from 2300 to 0000 UTC using the CAPS EnKF system. The ensemble 

consists of 40 ARW members with initial perturbations and mixed-physics options to provide input for 

the EnKF ensemble analyses. Each member uses Thompson microphysics, although with varied param-

eter settings. A nine-member ensemble forecast (run for 60 h) follows using the final EnKF analyses at 

0000 UTC employing the same multiphysics configurations as are used for the core members. In addi-

tion, one deterministic forecast from the ensemble mean analysis at 0000 UTC is also produced.

Member IC BC Microphysics LSM PBL Model

caps-enkf01 enkf_m01a NAMf Thompson Noah MYJ ARW

caps-enkf02 enkf_mna GFSf Thompson Noah MYNN ARW

caps-enkf03 enkf_m08a arw-p1 P3 Noah YSU ARW

caps-enkf04 enkf_m10a arw-n1 MY Noah MYNN ARW

caps-enkf05 enkf_m17a arw-p2 Morrison Noah MYJ ARW

caps-enkf06 enkf_m23a arw-n2 P3 Noah YSU ARW

caps-enkf07 enkf_m24a nmmb-p1 MY Noah MYNN ARW

caps-enkf08 enkf_m12a nmmb-n1 Morrison Noah YSU ARW

caps-enkf09 enkf_m09a nmmb-p2 P3 Noah MYJ ARW

caps-enkf10 enkf_m6a nmmb-n2 Thompson Noah MYNN ARW

TABLE ES5. Specifications for the caps-nmmb members of the CLUE that use the NMMB dynamic 

core, single physics, IC and LBC perturbations extracted from SREF members, and no-radar data 

assimilation.

Member IC BC Microphysics LSM PBL Model

caps-nmmb01 NAMa + arw-p3_pert arw-p3 Ferrier–Aligo Noah MYJ NMMB

caps-nmmb02 NAMa + nmmb-p1_pert nmmb-p1 Ferrier–Aligo Noah MYJ NMMB

caps-nmmb03 NAMa + nmmb-n1_pert nmmb-n1 Ferrier–Aligo Noah MYJ NMMB

caps-nmmb04 NAMa + nmmb-p2_pert nmmb-p2 Ferrier–Aligo Noah MYJ NMMB

caps-nmmb05 NAMa + nmmb-n2_pert nmmb-n2 Ferrier–Aligo Noah MYJ NMMB

TABLE ES4. Specifications for the caps-nmmb-rad member of CLUE that uses the Nonhydrostatic Mul-

tiscale Model on the B grid (NMMB) dynamic core with radar data assimilation and cloud analysis using 

ARPS 3DVAR with Ferrier–Aligo microphysics (Aligo et al. 2014).

Member IC BC Microphysics LSM PBL Model

caps-nmmb-rad NAMa + 3DVAR NAMf Ferrier–Aligo Noah MYJ NMMB
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TABLE ES6. Specifications for the s-phys-norad members of the CLUE that use the ARW dynamic core, 

single physics, perturbed ICs and LBCs from SREF members, and no-radar data assimilation.

Member IC BC Microphysics LSM PBL Model

s-phys-norad01 NAMa NAMf Thompson Noah MYJ ARW

s-phys-norad02 NAMa + arw-p1_pert arw-p1 Thompson Noah MYJ ARW

s-phys-norad03 NAMa + arw-n1_pert arw-n1 Thompson Noah MYJ ARW

s-phys-norad04 NAMa + arw-p2_pert arw-p2 Thompson Noah MYJ ARW

s-phys-norad05 NAMa + arw-n2_pert arw-n2 Thompson Noah MYJ ARW

s-phys-norad06 NAMa + arw-p3_pert arw-p3 Thompson Noah MYJ ARW

s-phys-norad07 NAMa + nmmb-p1_pert nmmb-p1 Thompson Noah MYJ ARW

s-phys-norad08 NAMa + nmmb-n1_pert nmmb-n1 Thompson Noah MYJ ARW

s-phys-norad09 NAMa + nmmb-p2_pert nmmb-p2 Thompson Noah MYJ ARW

s-phys-norad10 NAMa + nmmb-n2_pert nmmb-n2 Thompson Noah MYJ ARW

TABLE ES7. Specifications for the nssl_nmmb members of the CLUE that use the NMMB dynamic core, 

single physics, IC and LBC perturbations extracted from SREF members, and no-radar data assimilation.

Member IC BC Microphysics LSM PBL Model

nssl-nmmb01 NAMa NAMf Ferrier–Aligo Noah MYJ NMMB

nssl-nmmb02 NAMa + arw-p1_pert arw-p1 Ferrier–Aligo Noah MYJ NMMB

nssl-nmmb03 NAMa + arw-n1_pert arw-n1 Ferrier–Aligo Noah MYJ NMMB

nssl-nmmb04 NAMa + arw-p2_pert arw-p2 Ferrier–Aligo Noah MYJ NMMB

nssl-nmmb05 NAMa + arw-n2_pert arw-n2 Ferrier–Aligo Noah MYJ NMMB

TABLE ES8. Specification for the HRRR36 member of CLUE that uses the ARW dynamic core with 

HRRR physics and data assimilation.

Member IC BC Microphysics LSM PBL Model

HRRR36 RAP GFSf Thompson RUC MYNN ARW
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TABLE ES10. Specifications for the s-phys-norad members of the CLUE that use the ARW dynamic core, 

single physics, perturbed ICs and LBCs from SREF members, and no-radar data assimilation.

Member IC BC Microphysics LSM PBL Model

core01 NAMa + 3DVAR NAMf Thompson Noah MYJ ARW

mp2 NAMa + 3DVAR NAMf Morrison Noah MYJ ARW

mp3 NAMa + 3DVAR NAMf MY Noah MYJ ARW

mp4 NAMa + 3DVAR NAMf P3 Noah MYJ ARW

mp5 NAMa + 3DVAR NAMf WSM6 Noah MYJ ARW

TABLE ES9. Specifications for the ncar-enkf members of the CLUE. This ensemble provides forecasts 

to 48 h and uses the National Center for Atmospheric Research’s (NCAR) Data Assimilation Research 

Testbed (DART) software with ARW, version 3.6.1, and a slightly different horizontal domain than 

other CLUE members. The analysis system is composed of 50 members that are continuously cycled 

using the ensemble adjustment Kalman filter (EAKF; Anderson 2001, 2003). New analyses are pro-

duced every 6 h with 15-km grid spacing. Other specifications include 51 vertical levels with a 50-hPa 

top (same vertical levels as other ARW CLUE members), a horizontal localization of 1,270 km and 

vertical localization of two scale heights, adaptive prior inflation, adaptive localization, sampling error 

correction, and freely evolving soil states. The following observational sources are utilized: Meteoro-

logical Assimilation Data Ingest System (MADIS) Aircraft Communications Addressing and Report-

ing System (ACARS), aviation routine weather reports (METARs), radiosondes, National Centers for 

Environmental Prediction (NCEP) real-time marine data (MARINE), Cooperative Institute for Meso-

scale Meteorological Studies (CIMMS) cloud-track winds, Oklahoma Mesonet, and GPS radio occul-

tation. All members have constant physics, which include Tiedtke (1989) cumulus parameterization, 

Thompson microphysics, MYJ PBL, Noah land surface model, and RRTMG shortwave and longwave 

radiation with aerosol and ozone climatologies. The 10-member forecasts are initialized at 0000 UTC 

daily with ICs provided by downscaled members of 0000 UTC WRF/DART EAKF analyses (described 

above). Perturbed LBCs from GFS forecasts are used. The physics are the same as those from the 

data assimilation system, but without cumulus parameterization (detailed below). Additional informa-

tion on this ensemble can be found in Schwartz et al. (2015).

Member IC BC Microphysics LSM PBL Model

ncar-enkf01 anal01 GEFS01 Thompson Noah MYJ ARW

ncar-enkf02 anal02 GEFS02 Thompson Noah MYJ ARW

ncar-enkf03 anal03 GEFS03 Thompson Noah MYJ ARW

ncar-enkf04 anal04 GEFS04 Thompson Noah MYJ ARW

ncar-enkf05 anal05 GEFS05 Thompson Noah MYJ ARW

ncar-enkf06 anal06 GEFS06 Thompson Noah MYJ ARW

ncar-enkf07 anal07 GEFS07 Thompson Noah MYJ ARW

ncar-enkf08 anal08 GEFS08 Thompson Noah MYJ ARW

ncar-enkf09 anal09 GEFS09 Thompson Noah MYJ ARW

ncar-enkf10 anal10 GEFS10 Thompson Noah MYJ ARW
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TABLE ES11. The set of 107 required output diagnostics for the CLUE members, which are output at hourly 

intervals.

No. Level/layer Parameter Description

1 Entire atmosphere REFC Composite reflectivity (dB)

2 Cloud top RETOP Echo top (m)

3 Entire atmosphere VIL Vertically integrated liquid (kg m–2)

4 Surface VIS Visibility (m)

5 1,000 m above ground REFD Reflectivity (dB)

6 4,000 m above ground REFD Reflectivity (dB)

7 Surface GUST Wind speed (gust) (m s–1)

8 500 hPa HGT Geopotential height (gpm)

9 500 hPa TMP Temp (K)

10 500 hPa DPT Dewpoint temp (K)

11 500 hPa UGRD U component of wind (m s–1)

12 500 hPa VGRD V component of wind (m s–1)

13 700 hPa HGT Geopotential height (gpm)

14 700 hPa TMP Temp (K)

15 700 hPa DPT Dewpoint temp (K)

16 700 hPa UGRD U component of wind (m s–1)

17 700 hPa VGRD V component of wind (m s–1)

18 850 hPa HGT Geopotential height (gpm)

19 850 hPa TMP Temp (K)

20 850 hPa DPT Dewpoint temp (K)

21 850 hPa UGRD U component of wind (m s–1)

22 850 hPa VGRD V component of wind (m s–1)

23 925 hPa TMP Temp (K)

24 925 hPa DPT Dewpoint temp (K)

25 925 hPa UGRD U component of wind (m s–1)

26 925 hPa VGRD V component of wind (m s–1)

27 1,000 hPa TMP Temp (K)

28 1,000 hPa DPT Dewpoint temp (K)

29 1,000 hPa UGRD U component of wind (m s–1)

30 1,000 hPa VGRD V component of wind (m s–1)

31 400–1,000 hPa above ground MAXUVV Hourly max upward vertical velocity—lowest 400 hPa (m s–1)

32 400–1,000 hPa above ground MAXDVV Hourly max downward vertical velocity—lowest 400 hPa (m s–1)

33 0.5–0.8 sigma layer DZDT Vertical velocity (geometric; m s–1)

34 Mean sea level PRMSL Pressure reduced to MSL (Pa)

35 1,000 hPa HGT Geopotential height (gpm)

36 1,000 m above ground MAXREF Hourly max of simulated reflectivity at 1 km AGL (dB)

37 5,000–2,000 m above ground MXUPHL Hourly max updraft helicity: 2–5 km AGL (m2 s–2)

38 Entire column TCOLG Total column-integrated graupel (kg m–2)

39 Surface LTNG Lightning (—)

40 80 m above ground UGRD U component of wind (m s–1)

41 80 m above ground VGRD V component of wind (m s–1)

42 Surface PRES Pressure (Pa)

43 Surface HGT Geopotential height (gpm)
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TABLE ES11. Continued.

No. Level/layer Parameter Description

44 Surface TMP Temp (K)

45 0 m underground MSTAV Moisture availability (%)

46 Surface WEASD Water equivalent of accumulated snow depth (kg m–2)

47 Surface SNOWC Snow cover (%)

48 Surface SNOD Snow depth (m)

49 2 m above ground TMP Temp (K)

50 2 m above ground SPFH Specific humidity (kg kg–1)

51 2 m above ground DPT Dewpoint temp (K)

52 10 m above ground UGRD U component of wind (m s–1)

53 10 m above ground VGRD V component of wind (m s–1)

54 10 m above ground WIND Wind speed (m s–1)

55 Surface CPOFP Percent frozen precipitation (%)

56 Surface PRATE Precipitation rate (kg m–2 s–1)

57 Surface APCP Total precipitation (kg m–2)

58 Surface WEASD Water equivalent of accumulated snow depth (kg m−2)

59 Surface APCP Precipitation (kg m–2): hourly total

60 Surface WEASD Water equivalent of accumulated snow depth (kg m–2)

61 Surface CSNOW Categorical snow (—)

62 Surface CICEP Categorical ice pellets (—)

63 Surface CFRZR Categorical freezing rain (—)

64 Surface CRAIN Categorical rain (—)

65 Surface VGTYP Vegetation type [integer (0–13)]

66 500–1,000 hPa LFTX Surface lifted index (K)

67 Surface CAPE Convective available potential energy (J kg–1)

68 Surface CIN Convective inhibition (J kg–1)

69 Entire column PWAT Precipitable water (kg m–2)

70 Low-cloud layer LCDC Low-cloud cover (%)

71 Middle-cloud layer MCDC Medium-cloud cover (%)

72 High-cloud layer HCDC High-cloud cover (%)

73 Entire atmosphere TCDC Total cloud cover (%)

74 Cloud base PRES Pressure (Pa)

75 Cloud base HGT Geopotential height (gpm)

76 Cloud ceiling HGT Geopotential height (gpm)

77 Cloud top PRES Pressure (Pa)

78 Cloud top HGT Geopotential height (gpm)

79 Top of atmosphere ULWRF Upward longwave radiation flux (W m–2)

80 Surface DSWRF Downward shortwave radiation flux (W m–2)

81 3,000–0 m above ground HLCY Storm-relative helicity (m2 s–2)

82 1,000–0 m above ground HLCY Storm-relative helicity (m2 s–2)

83 0–6,000 m above ground USTM U component of storm motion (m s–1)

84 0–6,000 m above ground VSTM V component of storm motion (m s–1)

85 0–1,000 m above ground VUCSH Vertical U-component shear (s–1)

86 0–1,000 m above ground VVCSH Vertical V-component shear (s–1)

87 0–6,000 m above ground VUCSH Vertical U-component shear (s–1)
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TABLE ES11. Continued.

No. Level/layer Parameter Description

88 0–6,000 m above ground VVCSH Vertical V-component shear (s–1)

89 180–0 hPa above ground 4LFTX Best (four layer) lifted index (K)

90 180–0 hPa above ground CAPE Convective available potential energy (J kg–1)

91 180–0 hPa above ground CIN Convective inhibition (J kg–1)

92 Surface HPBL Planetary boundary layer height (m)

93 Lifted condensation level HGT Geopotential height (gpm)

94 90–0 hPa above ground CAPE Convective available potential energy (J kg–1)

95 90–0 hPa above ground CIN Convective inhibition (J kg–1)

96 255–0 hPa above ground CAPE Convective available potential energy (J kg–1)

97 255–0 hPa above ground CIN Convective inhibition (J kg–1)

98 Equilibrium level HGT Geopotential height (gpm)

99 255–0 hPa above ground PLPL Pressure of level from which parcel was lifted (Pa)

100 Surface LAND Land cover (0 = sea, 1 = land; proportion)

101 Surface ICEC Ice cover (proportion)

102 250 hPa UGRD U component of wind (m s–1)

103 250 hPa VGRD V component of wind (m s–1)

104 250 hPa HGT Geopotential height (gpm)

105 250 hPa TMP Temp (K)

106 700 hPa VVEL Vertical velocity (m s–1)

107 −10°C REFD Reflectivity (dB)

TABLE ES12. The set of six experimental output diagnostics for the CLUE members contributed by CAPS 

and NSSL, which are output at hourly intervals.

No. Level/layer Parameter Description

1 Surface HAIL1 Max hail size from HAILCAST (mm)

2 Surface HAIL2 Max hail size from Thompson method (mm)

3 3,000–0 m above ground MXUPHL Hourly max updraft helicity: 0–3 km AGL (m2 s–2)

4 5,000–2,000 m above ground MNUPHL Hourly min updraft helicity: 2–5 km AGL (m2 s–2)

5 3,000–0 m above ground MNUPHL Hourly min updraft helicity: 0–3 km AGL (m2 s–2)

6 1 km AGL VVEL Vertical velocity (m s–1)
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