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[1] The augmented Noah land surface model described in the first part of the two‐part series
was evaluated here over global river basins. Across various climate zones, global‐scale tests
can reveal a model’s weaknesses and strengths that a local‐scale testing cannot. In addition,
global‐scale tests are more challenging than local‐ and catchment‐scale tests. Given
constant model parameters (e. g., runoff parameters) across global river basins, global‐scale
tests are more stringent. We assessed model performance against various satellite and
ground‐based observations over global river basins through six experiments that mimic a
transition from the original Noah LSM to the fully augmented version. The model shows
transitional improvements in modeling runoff, soil moisture, snow, and skin temperature,
despite considerable increase in computational time by the fully augmented Noah‐MP
version compared to the original Noah LSM. The dynamic vegetation model favorably
captures seasonal and spatial variability of leaf area index and green vegetation fraction. We
also conducted 36 ensemble experiments with 36 combinations of optional schemes for
runoff, leaf dynamics, stomatal resistance, and the b factor. Runoff schemes play a dominant
and different role in controlling soil moisture and its relationship with evapotranspiration
compared to ecological processes such as the b factor, vegetation dynamics, and stomatal
resistance. The 36‐member ensemble mean of runoff performs better than any single
member over the world’s 50 largest river basins, suggesting a great potential of land‐based
ensemble simulations for climate prediction.
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1. Introduction

[2] The Noah land surface model (LSM) has been used
not only in short‐term weather forecasting, but also in intra-
seasonal to interannual climate predictions and downscaling
of global climate model (GCM) projections. Its coupling with
Global Forecast System (GFS) for operational weather and
climate predictions by the National Centers for Environ-

mental Prediction (NCEP) requires testing the Noah LSM at a
global scale and a longer time scale. Most of previous Noah
testing efforts have been focused at local scales [e.g., Chen
et al., 1997] (hereinafter Chen97) or continental U.S. at a
shorter time scale [Ek et al., 2003; Mitchell et al., 2004].
While Niu et al. [2011] describe the augmented Noah LSM
with multiple parameterization options (Noah‐MP) and the
testing results at local scales and a shorter time scale, this
second paper focuses on testing Noah‐MP and a recent ver-
sion of the Noah LSM (Noah V3) at a global scale. Across
various climate zones, global‐scale testing can reveal models’
weaknesses and strengths that a local‐scale testing cannot.
For instance, many previous local‐ and regional‐scale studies
revealed that Noah V3 produces a shallower snowpack [Ek
et al., 2003; Pan et al., 2003; Mitchell et al., 2004; Livneh
et al., 2010]. But as we will show in section 3.4, Noah V3
does not always produce shallower snow everywhere. It
simulates too much snow in high‐latitude river basins from
forming excessive frost on the snow surface. In addition,
global‐scale tests are more challenging than local‐ and
regional‐scale tests. Given constant model parameters (e.g.,
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runoff parameters) across global river basins, global‐scale
tests are more stringent.
[3] Noah‐MP increases the model complexity over Noah

V3 due mainly to the model structural change, i.e., separating
the vegetation canopy from the ground surface. But for global
applications, these changes are necessary to solve the critical
problems in Noah V3, such as, overestimation of runoff, too
dry deep soil (due to free drainage), too impermeable frozen
soil, and too rapid ablation of snow, etc. To solve these
problems, one can either use simple ways, e.g., modifying
a single formulation for parameterizing a physical process
or calibrating model parameters, or pursuing more complex,
physically based approaches. The former may improve a
model’s performance for a specific application, a specific
variable, or a specific local site, but not universally for all
variables and global applications. Of course, these more
physically based schemes would involve new parameters
and optimization of these new parameters. However, a more
physically based scheme can alter the sensitivity behavior of
a model to its parameters, facilitating optimization of model
parameters. For instance, the snow scheme in Noah‐MP is
much more sensitive to model parameters that alter snow
surface energy budgets than did Noah V3 [Niu et al., 2011].
For instance, one of the major causes of the rapid snowmelt
problem in Noah V3 is the inaccurate simulation of snow
temperature, resulting in too long a duration of snow tem-
perature being at melting point and lower cold content
[Niu et al., 2011]. Noah V3’s surface layer is actually a bulk
layer of topsoil, snow, and the vegetation canopy. For such
a layer structure, it is difficult to accurately compute snow
temperature and the ground heat flux, which is regarded as
the forcing of the thermal state of the snowpack. Thus, Noah‐
MP first modified the model’s structure for more accurately
computing surface energy balance that controls the ground
heat flux and snow temperature. The solution improves snow
simulation globally both at midlatitudes and high latitudes
as we will show in section 3.4.
[4] The multiple options of schemes for various processes

in Noah‐MP enable us to explore multimodel ensemble
simulations. Model‐based ensemble simulations are different
from parameter‐based ensemble simulations in two aspects:
(1) parameter‐based ensembles are model‐dependent; ensem-
bles executed by perturbing parameters in a simple model
(e.g., a bucket model) may not embrace ensembles based on
a more complex model (e.g., models including vegetation
dynamics) and (2) perturbing parameters in a linear formu-
lation (e.g., the Noah b factor for stomatal resistance shown in
Figure 1 ofNiu et al. [2011]) may be different from perturbing
parameters in a nonlinear formulation (e.g., the SSiB b
factor). Model‐based ensembles may provide a wider range
of ensembles, if combined with parameter‐based ensembles.
But the total numbers of ensembles would be super‐large and
not practical.
[5] The main purpose of this paper is to assess if Noah‐MP

that includes the proposed solutions (or augmentations) to the
critical problems for hydrological simulations in Noah V3
can be efficient globally. At the same time, we preliminarily
explore if ensembles of a limited number of selected models
can improve runoff simulations over global 50 river basins.
Section 2 describes the data sets used in this paper. Section 3
shows the model’s improvements over the world’s largest
river basins. In section 4, we use a 36‐member ensemble

simulation as an example to show the multiphysics model’s
potential for identification of critical processes and ensem-
ble simulation of global runoff. Section 5 summarizes the
paper.

2. Data Sets

[6] The data sets used in this study include global atmo-
spheric forcing, vegetation and soil types, satellites retrievals
of green vegetation fraction (GVF), leaf area index (LAI), and
terrestrial water storage (TWS) change, ground‐based mea-
surements of soil moisture over Illinois, global runoff esti-
mates, and North America snow water equivalent (SWE) and
snow depth estimates.

2.1. Atmospheric Forcing

[7] We used a 1° × 1°, 3‐hourly, near‐surface meteoro-
logical data set processed by the Global Land Data Assimi-
lation System (GLDAS) [Rodell et al., 2004] to drive the
model during the period 1980–2006. These include a spatially
and temporally downscaled version of NOAA Climate Pre-
dictions Center’s Merged Analysis of Precipitation (CMAP)
[Xie and Arkin, 1997] and satellite based shortwave and
longwave radiation. Other forcing fields are air temperature,
air pressure, specific humidity, and wind speed based on
NCEP reanalysis.

2.2. Vegetation and Soil Data

[8] We used the USGS 30 arc‐second global vegetation
type, the hybrid STATSGO/FAO soil texture data sets, and
0.144° monthly 5 year GVF climatology derived by Gutman
and Ignatov [1998] of National Environmental Satellite, Data,
and Information Service (NESDIS) from AVHRR‐based
NDVI as model inputs. We used 1° annual mean 2 m air
temperature as the lower boundary condition for soil tem-
perature. All the data sets are maintained by the Research
Application Laboratory (RAL) of NCAR and are available at
http://www.rap.ucar.edu/research/land/technology/lsm.php.
[9] We upscaled the high resolution vegetation and soil

type data to 1°, as consistent with the atmospheric forcing
data, using most predominant types. We aggregated the
0.144° monthly GVF data to 1° data using area‐weighted
average. Because the GVF data over boreal forest in winter-
time are unreasonably low (K. Mitchell, personal communi-
cation, 2007), we replaced the wintertime GVF data over
boreal forest grids with their annual mean values.

2.3. Illinois Soil Moisture

[10] We used soil moisture data from Illinois, USA
[Hollinger and Isard, 1994] for its continuity and high quality.
This data set consists of total soil moisture measured at
19 stations from 1981 to June, 2004, measured with the neu-
tron probe technique and calibrated with gravimetric obser-
vations. The data are measured at 11 soil layers, the top 10 cm
and then every 20 cm layer (e.g., 10–30 cm, 30–50 cm, etc.)
down to a depth of 2 m. The data set is accessible
through the Global Soil Moisture Databank (GSMDB)
[Robock et al., 2000] at http://www.ipf.tuwien.ac.at/insitu/.
We aggregated the data into two layers, top 1 m and top
2 m, over the entire State of Illinois at a monthly interval
using all the 19 stations data whenever the data were avail-
able at a station.
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2.4. Grace Terrestrial, Water Storage Change

[11] We used the RL04 GRACE solutions released by the
Center for Space Research (CSR), The University of Texas
at Austin in this study to evaluate model performance in
estimating terrestrial water storage change. GRACE terres-
trial water storage change (DS) data were filtered following
Chen et al. [2006] by first removing longitudinal stripes
and then applying a 500 km Gaussian filter. To avoid mis-
interpretation due to leakage error, which is significant over
coastal river basins and those whose adjacent river basins
show oppositeDS variations, we filtered model outputs in the
same way. The accuracy of GRACE DS is mainly related to
the atmospheric and oceanic mass change corrections pro-
duced by numerical models [Seo et al., 2006]. A recent study
by Schmidt et al. [2008] showed that RL04 improved its
accuracy as compared with the first release of GRACE
solutions, by a factor of 2, reducing the error to 24–30 mm.

2.5. MODIS LAI

[12] We used the Boston University MODIS (version 5)
0.25° monthly LAI products (2000 March to 2008 May)
[Myneni et al., 2002] to evaluate the model’s ability to predict
LAI. The LAI product is retrieved from surface reflec-
tance measured by the moderate resolution imaging spec-
troradiometer (MODIS) aboard the TERRA platform, based
on the physics of radiative transfer in vegetation canopies.
The LAI products were evaluated at several field sites which
are representative of six structural biomes [Myneni et al.,
2002]. The data set is available at ftp://primavera.bu.edu/
pub/datasets/MODIS/MOD15_BU/C5/LAI/data/. We aggre-
gated the 0.25° data to 1°.

2.6. University of New Hampshire–Global Runoff Data
Center Runoff

[13] We used the University of New Hampshire–Global
Runoff Data Center (UNH‐GRDC) data set. It provides
monthly gridded climatological runoff composite fields,
which are runoff outputs from a water balance model that is
driven by observed meteorological data. The total amount of
estimated runoff is then corrected with runoff fields that are
disaggregated from the observed river discharges. Although
a no‐time delay assumption is applied when the gauge‐
observed discharge is distributed uniformly over a catchment,
the resulting runoff fields over a large river basin approxi-
mate the real runoff, especially in river basins that contain a
sufficiently dense network of streamflow gauges. The UNH‐
GRDC data set preserves the accuracy of the observed dis-
charge measurements and maintains the spatial and temporal
distributions of the simulated runoff, thereby providing
the “best estimate” of terrestrial runoff over large domains
[Fekete et al., 2002; B. M. Fekete, C. J. Vörösmarty, and
W. Grabs, Global composite runoff fields based on observed
river discharge and simulated water balances (version 1.0),
2000, http://www.grdc.sr.unh.edu].

2.7. Canadian Meteorology Center Snow Depth
and SWE

[14] We used the daily snow depth and SWE (1979–1996)
at 0.25° resolution over North America (NA) for AMIP‐2
(Second AtmosphericModel Intercomparison Project) [Brown
et al., 2003]. The data set is maintained at the Canadian

Meteorology Center (CMC). The gridded snow depth com-
bines in situ daily observations from about 8,000 U.S.
cooperative stations and Canadian climate stations and ‘first‐
guess’ fields with an optimum interpolation scheme, which is
employed operationally at CMC. The ‘first‐guess’ fields were
produced by a simple snow accumulation, aging and melt
model driven by 6‐hourly air temperature and precipita-
tion from the European Centre for Medium‐range Weather
Forecasting (ECMWF) ERA‐15 Reanalysis with extensions
from the Tropical Ocean and Global Atmospheric Program
(TOGA) operational data archive. The gridded snow depth
and estimated SWE agreed well with available independent
in situ and satellite data over midlatitude regions.

3. Improvements Over the Baseline Model

[15] We conducted one experiment with the baseline model,
Noah V3, and six experiments with six different combinations
of optional schemes described in Table 1. We designed these
experiments to mimic transitional improvements from Noah V3
to the fully augmented version that includes all the mod-
ifications described by Niu et al. [2011]. For all the six
experiments, we selected the same options for the follow-
ing four processes: (1) the b factor using the Noah type,
(2) radiation transfer using the modified two‐stream approx-
imation, (3) snow surface albedo using the CLASS type, and
(4) partitioning precipitation into rainfall and snowfall using
Jordan’s [1991] scheme. The experiments differ in options
for other six processes. Table 1 lists the seven experiments
and their corresponding selected schemes. All the experi-
ments used the same soil type and vegetation type data sets
(in section 3.2) to determine soil thermal and hydraulic
parameters and vegetation optical and physiological para-
meters that are defined in look‐up tables. EXP6 with
dynamic vegetation scheme predicted LAI and GVF, while
the rest used prescribed monthly LAI and NESDIS GVF
data. All the seven experiments were run for 27 years
(1980–2006) driven by the GLDAS forcing data at 1° res-
olution. All the experiments were initialized with the same
arbitrary, globally constant thermal and hydrological con-
ditions. Vegetation canopy temperature and ground surface
temperature are initialized at 287 K. The 4 L soil tempera-
tures, from the top to the bottom, are 274, 278, 282, and
286K respectively. The 4 L soil moistures are 60% of
porosity. The depth to water table was initialized at 2.5 m.
Snow depth and SWE are 0.0 m, although the integration
was started in winter. For EXP6, leaf and stem carbon mass
are both initialized at 50 g m−2. Because we focused on
short‐term leaf dynamics, carbon mass stored in wood, root,
and soil is given arbitrarily at a relatively low level. The leaf
mass can reach an equilibrium state after a growing season.
Thus, the spin‐up time for leaf mass and LAI is not a major
concern. Considering the spin‐up time for soil moisture and
groundwater is much longer, we excluded the first 3 year
(1980–1982) results in the following analyses (note that the
use of Kbot in Niu et al.’s [2007] equation (7) instead of Ka

greatly reduces the time to reach an equilibrium state of soil
moisture and groundwater). We averaged model outputs
from 1983–2006 to form a basic climatology, while varying
the time period to average model outputs to match the periods
over which observational data are available (e.g., for snow, the
averaging period is 1983–1996).
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3.1. Global Surface Energy and Water Budgets

[16] Table 2 presents global averages of land surface
energy and water budgets. Experiments with the augmented
version (EXP1– EXP6) produced greater net solar radiation,
total net radiation, latent heat, ET, and less runoff than
Noah V3 does (Table 2). EXP6 (with dynamic vegetation)
produces 3 to 4 W m−2 lower net solar radiation than other
five runs with prescribed phonology, mainly because EXP6
produces lower LAI and GVF over boreal forest regions in
wintertime, exposing more snow surface to solar radiation.
Table 2 also includes GSWP phase‐2 (GSWP2; baseline run)
12‐model mean values of surface energy andwater budgets as
a reference. The results from EXP1 to EXP6 are comparable
to the surface fluxes from GWSP2, although the precipitation
used in the GSWP2 baseline run (827 mm/year) was over-
corrected for the wind‐caused gauge undercatch of snowfall
in cold regions [Zhao and Dirmeyer, 2003].
[17] EXP6 produces 16 W m−2 more net solar radiation

than Noah V3 over arid and semiarid regions, mainly because
surface albedo for barren surfaces in EXP6, which is a
function of soil color, surface soil moisture, and wave band
(visible and near‐infrared) and around 0.30 on average, is
lower than that in Noah V3, which is prescribed at 0.38
(Figure 1a). Over cold regions, EXP6 produces lower net
solar radiation than Noah V3 does due mainly to its higher
snow surface albedo and a longer snow season than Noah V3.
The differences in net solar radiation between EXP6 and
Noah V3 are partly balanced by the differences in net long-
wave radiation (upward positive) (Figure 1b). As a net result,
the global averaged net radiation from EXP6 (73 Wm−2) is

5 Wm−2 more than that from Noah V3 (68 Wm−2) (Table 2).
Over arid and semiarid regions, EXP6 results inmore sensible
heat (Figure 1c) and latent heat fluxes (as indicated from ET
in Figure 1d) than Noah V3 to further balance the residual
differences in net radiation. EXP6 simulates more ET over
most land areas by more than 100 mm/year over the majority
of land areas. However, over tropical Amazon River and
Congo River basins, EXP6 produces more sensible heat
(Figure 1c) and less ET (Figure 1d) than Noah V3 does. This
change is mainly attributed to the use of differentCH schemes
as indicated from the difference between EXP2 and EXP3
(Table 2). Due mainly to the use of d0 in the M‐O scheme,
EXP3 produces greater sensible heat than EXP2 does over
tropical rain forests and boreal forests (figures not shown).
The use of d0, which is over 10 m in the forest regions, in the
M‐O scheme greatly enhances CH and hence sensible heat
fluxes. To balance the increase in sensible heat, latent heat
(or ET) decreases (Figure 1d). The modeled runoff shows an
opposite pattern to that of ET to balance the water budgets.
EXP6 produces less soil water in the top 2 m soil due partly to
the increased ET over most land areas except for the Amazon
River basin, east Siberia, Northwest U.S., and central Canada,
where EXP6 shows slightly higher soil moisture with less ET.

3.2. Runoff

[18] We compared the modeled monthly runoff climatol-
ogy to the GRDC estimates. Because of the balance of pre-
cipitation with the sum of ET and runoff, evaluation of runoff
can be regarded as an indirect way of evaluating ET. Noah V3
produces 388 mm/year runoff (Table 2), about 38.5% more

Table 1. Experiments With Different Combinations of Schemesa

�liq max,i Frozen soil permeability CH Runoff rs Leaf Dynamics

Noah V3 Koren99 Koren99 Chen97 Schaake96 Jarvis Off
EXP 1b Koren99 Koren99 Chen97 Schaake96 Jarvis Off
EXP 2 NY06 NY06 Chen97 Schaake96 Jarvis Off
EXP 3 NY06 NY06 M‐O Schaake96 Jarvis Off
EXP 4 NY06 NY06 M‐O SIMGM Jarvis Off
EXP 5 NY06 NY06 M‐O SIMGM Ball‐Berry Off
EXP 6 NY06 NY06 M‐O SIMGM Ball‐Berry On

aKoren99, Koren et al. [1999]; NY 06, Niu and Yang [2006]; Chen97, Chen et al. [1997]; Schaake96, Schaake et al. [1996].
bAlthough using the same selected processes, EXP1 differs from Noah V3 in many other aspects, such as shortwave and longwave radiation schemes,

sensible and latent heat flux formulations, and the skin temperature solution.

Table 2. Global (60°S–90°N) 10 Year (1986–1995) Area‐Weighted Averages of Land Surface Energy and Water Budgetsa

Sa W/m2 La W/m2 Rnet W/m2 H W/m2 LE W/m2 P mm/a ET mm/a R mm/a Rs mm/a Rb mm/a

Noah‐V3 133 65 68 37 30 769 376 388 84 305
EXP1b 141 65 76 38 37 769 460 308 98 211
EXP2 141 65 76 38 37 769 463 305 64 241
EXP3 140 64 77 43 33 769 416 352 69 283
EXP4 140 64 77 42 34 769 422 347 93 254
EXP5 140 64 77 42 34 769 422 347 93 254
EXP6 137 64 73 37 34 769 430 339 91 248
EN36c 139 64 75 41 34 769 421 347 121 226
GSWP2d 142 68 74 35 37 827 471 322 119 203

aSa, net solar radiation; La, net longwave radiation (positive upward); Rnet, net radiation; H, sensible heat; LE, latent heat; P, precipitation; ET,
evapotranspiration; R, runoff; Rs, surface runoff; and Rb, base flow.

bLake points are excluded in experiments from EXP1 to EXP6 (which compute lake surface temperature and ET) for comparison with Noah V3 (without
lake).

cEnsemble mean of the 36 experiments (see section 5).
dGSWP2: Global Soil Wetness Project phase‐2 12‐model mean, which is available at http://hydro.iis.u‐tokyo.ac.jp/GLASS/GSWP2/ICC_Report01.html.

The 12 model’s results are averaged regardless of imbalance of water or energy of any model.
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than the GRDC estimate (280 mm/year). The six experiments
(EXP1–EXP6) produce less runoff (305–352 mm/year) than
Noah V3, but still 9–26% more than the GRDC estimates.
Over the 50 global river basins, which cover most of the land
area but excluding Greenland, EXP1–EXP6 produces 4.2–
23.1% more runoff than GRDC estimates (see the legend of
Figure 4c). Considering that industrial and agricultural water
use and increased surface water evaporation from man‐made
reservoirs may reduce global runoff by 20–25% [Vörösmarty
et al., 2004], the total amount of runoff modeled by EXP1–
EXP6 appears to be in a plausible range. EXP2 (using
Chen97’s CH scheme) simulates 47 mm/year (16.8% rela-
tive to GRDC) less runoff than EXP3 (using the M‐O CH

scheme). This significant difference suggests the important
role of the surface exchange coefficient in controlling the total
amount of runoff. Because of the limited accuracy of GRDC
estimates, we cannot conclude that Chen97 is superior to
M‐O scheme.
[19] Noah V3 produces more runoff than GRDC estimates

over most land areas including arid and semiarid regions,
midlatitude wet regions (e.g., eastern U.S., southern China,
and Europe), cold regions (e.g., west Siberia), and the tropical
Congo River basin by up to 200 mm/year. Noah V3 simulates
less runoff in the tropical Amazon River basin and slightly
less along the boreal forest band in Canada, the corner of
the Northwest U.S., and southern Tibet (Figure 2a). EXP6
reduces the biases produced by Noah V3 in most regions
except for the tropical Congo River basin and southern Tibet
(Figure 2b). However, the bias reduction appears insufficient
in Northern Eurasia, Alaska, and southern South America
(Figure 2c). The residual biases can be attributed to many

factors, such as limited accuracy of atmospheric forcing data
and GRDC runoff estimates (e.g., over the Congo River basin
and southern Tibet), inadequate representation of processes
(e. g., z0h = z0m in the M‐O scheme), and/or globally constant
runoff parameters and other model parameters (e.g., ground
surface roughness length is globally set to 0.01 m). Some key
parameters should be calibrated when applying the model to
a specific river basin.
[20] We also evaluated the seasonal variations and annual

magnitude of runoff in 24 selected river basins, representing
four different climate zones of cold, midlatitude, tropical,
and arid regions (Figure 3). We averaged the modeled runoff
over these catchments using a global 1° river basin mask data
set [Graham et al., 1999]. For rivers in cold region, EXP6
consistently improves runoff simulation in terms of timing
and amplitude mainly because of the more permeable frozen
soil and the improvements in the simulations of snow cover
processes (see section 4.4). However, in midlatitude and
tropical river basins, the results are mixed. EXP6 improves
the simulation of total amount of runoff over the Dabube,
Yangtze, and Mississippi rivers but worsens the simulation
in the Ganges River of North India. In most tropical rivers,
the total amount of runoff increases (Figure 2). The increase
favors the simulation in the Amazon River basin, but not
others. In arid regions, both runoff seasonality and magnitude
are improved (Figure 3).
[21] We used Taylor diagrams [Taylor, 2001] to compare

seasonality of modeled runoff in terms of phase (measured by
correlation coefficient between simulation and observation)
and amplitude (measured by standard deviation of simulation
normalized by that of the observation) for all the seven

Figure 1. EXP6minus Noah V3 (averaged over 1983–2006) (a) net solar radiation, (b) net longwave radi-
ation (positive upward), (c) sensible heat, (d) ET, (e) runoff, and (f) top 2 m soil water.
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experiments. Figure 4a shows, for each experiment, the
area‐weighted average of the correlation coefficients and
normalized standard deviations obtained at six cold river
basins. The area‐weighted average correlations and normal-
ized standard deviations for six arid river basins and the
50 largest river basins are presented in Figures 4b and 4c,
respectively. In midlatitude and tropical river basins, the
average metrics for each experiment are very close and
overlapped (not shown), indicating EXP6 maintained Noah
V3’s performance over these regions. In cold‐region river
basins, Noah V3 shows on average a lower correlation and
greater amplitude because of its earlier runoff peaks induced
by more impermeable frozen soil as represented in the model.
EXP1 shows the same level of correlation and even greater
amplitude than Noah V3 because of the stronger snowmelt
in springtime. EXP2 greatly reduced the amplitude by virtue
of a more permeable frozen soil. EXP3 further improves the
average correlation by changing the CH scheme to one that
produces a longer snow season due to decreases in sublima-
tion from snow surfaces in melting seasons (figures not
shown). An unconfined aquifer below the soil column plays
a buffering effect on the freely drained soil water, and in such
a way, EXP4 alleviates the higher amplitude produced
by EXP3. EXP5 using the Ball‐Berry scheme of stomatal

resistance does not show much improvement against EXP4
with the Jarvis stomatal resistance scheme. EXP6 with the
dynamic vegetation shows a little improvement over EXP5
in the average correlation. In arid regions, the experiments
with the augmented version (EXP1–EXP6) show significant
improvements against the baseline model in both average
standard deviation and correlation (magnitude and seasonal-
ity), but small differences between each other. Because
almost a half of the world’s largest 50 river basins are affected
by frozen soil and snow cover, the model performance aver-
aged over global 50 river basins shows a pattern similar to that
for the six cold region river basins.

3.3. Soil Moisture

[22] We evaluated modeled soil moisture against observa-
tions made in Illinois (Figure 5). Noah V3 simulates fairly
well the top 2 m soil moisture, in terms of mean state and
variability, but produces wetter top 1m soil with lower vari-
ability. EXP6 maintains Noah V3’s capability to simulate the
top 2 m soil moisture (a slightly greater variability though)
and improves the simulation of the top 1 m soil moisture,
especially the variability. EXP6 still produces drier soil dur-
ing the 1988 summer drought. An experiment using CLM
factor (e.g., EN5 in Table 3) further improved the simulation

Figure 2. Differences of annual runoff climatology (averaged from 1983 to 2006) (a) Noah V3 minus
GRDC, (b) EXP6 minus Noah V3, and (c) EXP6 minus GRDC.
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of soil moisture during the 1988 summer drought without
degrading other year’s simulation (Figure 5). The CLM‐ or
SSiB‐b factor uses higher wilting point (converted from the
wilting matrix potential, i.e., −150 m) for loam and clay [Niu
et al., 2011, Figure 3] and facilitates ceasing transpiration for
dry soil conditions, and thus saving soil water under drought
conditions.
[23] We compared modeled runoff against GRDC runoff

monthly climatology, as an indirect way to evaluate ET over
this region (Figure 6). Noah V3 produces less ET and thus
greater runoff than EXP6 does. Compared to GRDC estimates,

Noah V3 produces too much runoff, indicating that the weaker
ET is unfavorable. EXP6 and Noah V3 produce almost the
same level of top 2 m soil moisture, despite the much greater
ET produced by EXP6. This can be mainly attributed to
groundwater buffering effect included in EXP6, which facil-
itates maintaining soil moisture and ET during dry seasons.

3.4. Snow

[24] Noah V3 and EXP6 produce very similar geographical
distributions of SWE over Northern Hemisphere in February
(Figures 7a and 7b). However, Noah V3 simulates more snow

Figure 3. Monthly runoff climatology (averaged from 1983 to 2006) modeled by Noah V3 and EXP6 in
comparison with GRDC runoff estimates in 24 selected river basins representing four different climate
zones (top to bottom rows are for cold, midlatitude, tropical, and arid regions). Also shown at the upper left
corner of each panel are the relative model biases [(model–observed)/observed] for Noah V3 and EXP6 in
sequence.

Figure 4. Statistics of the monthly runoff climatology (averaged from 1983 to 2006) for the seven experi-
ments. The correlation coefficient and normalized standard deviation for each experiment are basin‐area‐
weighted averages over (a) six cold region river basins, (b) six arid region river basins, and (c) 50 global
largest river basins. Also shown in the legends are relative biases ([model–observation]/observation in per-
centage) of the modeled runoff.
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mass in most high‐latitude regions but less over southern
melting regions including Europe, the Middle East, and
midlatitude North America than EXP6 does (Figure 7c).
[25] We compared the modeled SWE and snow depth

simulated by Noah V3 and EXP6 against CMC estimates
over the eight largest North American river basins (Figures 8a
and 8b). Noah V3 simulates slightly more SWE over two
high‐latitude river basins (the Mackenzie and Yukon) but
much less SWE over the other six river basins than CMC
SWE (Figure 8a). EXP6 agrees well with CMC SWE over
most of the river basins except for the mountainous Columbia
and Colorado River basins, where EXP6 produces less snow.
In both the catchments, precipitation (or snowfall) may be
underestimated [Pan et al., 2003] due to gauge undercatch
errors [Adam and Lettenmaier, 2003; Adam et al., 2006].
Overall, EXP6 with the multilayer structure, which facilitates
representations of ground heat flux, retention, percolation,
and refreezing of melt liquid water within the snowpack,
and snow densification processes, improves the simulation of
snowmelt and hence the simulations of snow mass over these
river basins. Snowmelt occurs only during midday when
snowpack temperature reaches the melting point. Thus, the
diurnal cycle of snow layer temperatures, controlled by the
net energy input into a snowpack, i.e., ground heat flux, is
critical for snowmelt. Ground heat flux is further affected by
surface energy budgets and their associated parameters (e.g.,
SCF, snow surface albedo, snow surface roughness length,
and vegetation’s cover fraction and interception capacity).
Sensitivity experiments (figures not shown) indicate that all
these factors may affect snow simulation in the augmented
version. EXP1 and EXP2, which uses Chen97’s CH scheme,
produces greater sublimation and thus slightly less snowmass
in midlatitude river basins, while the other three runs (EXP3,
EXP4, and EXP5) produces almost the same snow mass as
EXP6 does.
[26] Noah V3 simulates smaller snow density than that of

the CMC estimates as indicated from Figures 8a and 8b. For
such a reason, Noah V3 produces much greater snow depth
in the two high‐latitude rivers (the Mackenzie and Yukon)
and less snow depth than CMC snow depth (but in a closer
agreement with the CMC snow depth than with the CMC
SWE) in the other six rivers (Figure 8b). EXP6modeled snow
density agrees fairly well with that of the CMC estimates, as
indicated from the same degree of agreement (between model

and the CMC) for SWE with that for snow depth (Figures 8a
and 8b).
[27] Noah V3 produces more snow mass than EXP6 in

most high‐latitude river basins (Figure 9). The greater SWE
simulated by Noah V3 is mainly because of greater frost
(negative ET) being formed on the snow surface during deep
winter. Noah V3 also produces greater sublimation (positive
ET) from the snow surface in springtime than EXP6 does,
conducing to faster depletion of the thicker snowpack during
the melting season.
[28] Snow mass on the ground is a major contributor to

seasonal variations of the total water storage over high lati-
tude river basins. To compare with GRACE DS estimates
more strictly, we filtered the model outputs of snowmass, soil
water, and groundwater using the same filtering algorithm as
Chen et al. [2006]. Compared to GRACE estimates of TWS
change, Noah V3 shows much greater amplitude, while
EXP6 shows closer agreement in terms of amplitude and
correlation. This indicates that the greater snow mass and
excessive frost fall modeled by Noah V3 over high‐latitude
river basins are undesirable.

3.5. Skin Temperature

[29] The modeled skin temperature is evaluated against
GOES‐EAST estimates of land surface skin temperature.
GOES skin temperature was demonstrated reliable through
comparison with Oklahoma ARM/CART (Atmospheric
Radiation Measurement/Cloud and Radiation Test bed)

Figure 5. Modeled soil moisture averaged over Illinois by Noah V3, EXP6, and EN5 (see Table 3) in
comparison with observations for top 1 m and top 2 m soil.

Table 3. The First Group of 12 Experiments and Their

Corresponding Options of Schemes

Experiment Dynamic Vegetation rs b Runoff Schemes

EN1 On Ball‐Berry Noah SIMGM
EN2 On Ball‐Berry Noah SIMTOP
EN3 On Ball‐Berry Noah Schaake96
EN4 On Ball‐Berry Noah BATS
EN5 On Ball‐Berry CLM SIMGM
EN6 On Ball‐Berry CLM SIMTOP
EN7 On Ball‐Berry CLM Schaake96
EN8 On Ball‐Berry CLM BATS
EN9 On Ball‐Berry SSiB SIMGM
EN10 On Ball‐Berry SSiB SIMTOP
EN11 On Ball‐Berry SSiB Schaake96
EN12 On Ball‐Berry SSiB BATS
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ground‐based measurements [Mitchell et al., 2004]. To
closely compare to the GOES estimates, we used the modeled
surface radiative temperature (T rad), and T rad = (Lup /s)

1/4,
where Lup is the sum of upwelling longwave radiation fluxes
from each of the surface components including the vegetation
canopy, vegetated ground, and bare ground.
[30] Noah V3 shows a significant cold bias in arid Western

U.S. (Figure 10). EXP2 (using Chen97’s CH scheme) shows
the same level of cold bias. EXP3 (using theM‐OCH scheme)
greatly improves the simulation, and EXP6 further improves

the simulation but the temperature is slightly lower than the
GOES retrieval. EXP6a (EXP6 but with the M‐O scheme
being changed back to Chen97’s scheme) shows the same
cold bias as Noah V3 does, further confirming the impor-
tant role of CH in controlling land skin temperature. Under
a neutral condition, the M‐O scheme [Niu et al., 2011]
(equation (16)) should produce greater CH than Chen97 [Niu
et al., 2011] (equation (15)) does by taking into account the
zero‐displacement height and a greater z0h. However, Chen97
produced greater CH than the M‐O scheme because of the

Figure 6. Modeled ET and runoff averaged over Illinois by Noah V3 and EXP6 in comparison with
GRDC runoff monthly climatology (OBS).

Figure 7. The 24 year averaged (1983–2006) February SWE (mm) from (a) EXP6, (b) Noah V3, and
(c) the difference between EXP6 and Noah V3.
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different stability correction and the additional effects of
planetary boundary layer (PBL) height on friction velocity. A
greater CH means more efficient ventilation of the land sur-
face and greater cooling of the land surface during summer
daytime.

[31] Noah V3 uses its surface energy balance equation to
compute the overall skin temperature of the combined soil
and vegetation without iteration, while EXP6 separately
computes skin temperatures of the bare ground, vegetation
canopy, and vegetated ground using energy balance equations

Figure 8. Monthly (a) SWE climatology and (b) snow depth (averaged from 1983 to 1996) modeled by
Noah V3 and EXP6 in comparison with the CMC data.

Figure 9. Modeled monthly (top) SWE, (middle) ET, and (bottom) anomaly of total water storage (fil-
tered) in comparison with GRACE estimates over four large high‐latitude river basins (from 2002 to
2006). Also shown in the lower left corner are of the bottom panels are correlation coefficients for Noah
V3 and EXP6, in order, with GRACE.
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for each of the surface components with iterations. Addi-
tionally, EXP6 differs from Noah V3 in many other aspects,
such as formulations of surface energy fluxes and repre-
sentations of hydrological processes. The experiments indi-
cate that CH is the most important factor for modeling land
skin temperature. Chen97 should be able to improve the
simulation in Western U.S. by further reducing z0h (by cali-
brating the “C” parameter in equation (15) [Niu et al., 2011];
see also the discussion by Chen97). However, to maintain the
simulation in Eastern U.S., a more elaborate parameterization
of distributed z0h should be applied (X. Zeng, personal
communication, 2010). The M‐O scheme has a potential to
further improve the simulation by also accounting for the
different roughness length for heat from that for momentum
as considered by Chen97.

3.6. LAI and GVF

[32] Prediction of LAI and GVF is a unique attribute of
EXP6. We compared the model predicted LAI and GVF
against the MODIS LAI and the NESDIS GVF product.
[33] We calibrated some major parameters related to leaf

phenology including maximum carboxylation rate at 298 K
(equation (B7) [Niu et al., 2001]), specific leaf area, growth
respiration fraction, foliage maintenance respiration rate, leaf
turnover rate, leaf death rate due to drought stress and cold
stress for various vegetation types. The resulted global annual

gross primary productivity (GPP) and net primary production
(NPP) of carbon are 143.2 Pg (1015 g) and 62.0 Pg, respec-
tively, slightly larger than other estimates (120 Pg for GPP
and 60 Pg for NPP [Janzen, 2004]) due mainly to the
assumption of saturated nitrogen in the model. The spatial
distributions of LAI and GVF simulations show a favorable
agreement with those of satellite retrievals (Figure 11). Major
ecosystems such as boreal forests and tropical forests are well
simulated. The transition from arid to wet regions is also well
captured by the model, indicating the drought stress and soil
moisture state are also favorably represented in the model.
The modeled GVF showed a wider band of boreal forests,
where GVF is greater than 0.2, due mainly to the too low
NESDIS GVF in wintertime.
[34] Over 24 selected river basins in different climate zones

(cold, midlatitude, tropical, and arid regions), the model
well simulates both LAI (Figure 12) and GVF (Figure 13) in
terms of seasonal variability and interbasin variability. The
model shows a fairly good agreement with satellite retrievals
in midlatitude and arid river basins with a much higher
correlation with satellite retrievals than in tropical regions.
In tropical river basins, the simulated LAI has a quite low
correlation with MODIS LAI, with the lowest correlation
coefficient in the Amazon River basin (−0.88). However,
the modeled GVF shows a much higher correlation with
the NESDIS data over tropical river basins, especially the

Figure 10. Land skin temperature at 2100 UST of 12 July 2004 (a) GOES‐EAST retrieval, (b) modeled by
NoahV3, (c) by EXP2, (d) by EXP3, (e) by EXP6, and (f) modeled by EXP6 but with Chen97’s surface
exchange coefficient scheme.

YANG ET AL.: NOAH‐MP, 2 D12110D12110

11 of 16



basins of the Mekong, Orinoco, and Tocantins rivers. Mod-
eling tropical ecosystems, especially modeling the Amazon
forests, is a challenging task because of the complex response
of vegetation to availabilities of sunlight and water [Saleska
et al., 2007]. Over most of the cold regions, both modeled
LAI andGVF show a delayed spring outburst of leaves. In the
model, the dying process due to cold stress functions all the
year around including springtime. Thus, the newly grown
leaves in spring may die whenever a cold front comes. This
spurious phenomenon as represented by the model can be
partly corrected by decreasing the death rate. But decreasing

the death rate would delay the dying of leaves in fall season.
We suggest that in the future, a timing system should be set up
to the dynamic leaf model, so that the model leaves can dis-
tinguish spring season from fall season.

4. A 36‐Member Physically Based Ensemble
Simulation

[35] The total number of combinations of alternative
schemes for the 10 processes described in section 4 of Niu
et al.’s [2011] work can be up to 4608, representing 4608

Figure 12. Modeledmonthly climatology (averaged over 2001–2006) of LAI in comparison withMODIS
LAI (averaged over 2000–2007) over 24 river basins representing (top to bottom) cold region, midlatitude,
tropical region, and arid region. Also shown in the upper left corner of each panel are, in order, normalized
standard deviation, correlation coefficient, and bias [model – observation].

Figure 11. Model predicted LAI and GVF climatology (averaged from 2001 to 2006) in comparison with
the MODIS LAI and NESDIS GVF.
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models. We selected some critical processes that may more
significantly affect land surface fluxes, especially ET flux.
The interplay of the b and runoff schemes determines a
model’s overall performance [Koster and Milly, 1997]. We
were inspired to select these two processes and two addi-
tional processes: leaf dynamics and stomatal resistance. The
total number of combinations of optional schemes for the four
processes is 36 (note that the dynamic leaf model can only
work with the Ball‐Berry stomatal resistance scheme). The
first group of 12 experiments uses dynamic vegetation and
Ball‐Berry stomatal resistance but vary in the b schemes and
runoff schemes as listed in Table 3. Based on the first group
of experiments, the second group of 12 experiments turns off
the dynamic vegetation model but uses prescribed vegeta-

tion (LAI look‐up table and the monthly NESDIS GVF). The
third group of 12 experiments changes the stomatal resistance
scheme from the Ball‐Berry to the Jarvis type while still
keeping the dynamic vegetation turned off as in the second
group of 12 experiments.
[36] The modeled ET and runoff, averaged over global

landmass for the 24 year period (1983–2006), are well bal-
anced with precipitation (Figure 14a). We also show ET
varying with the top 1m soil moisture averaged over global
land (Figure 14b) and over Illinois (Figure 14c).
[37] Runoff schemes play the most important role in dif-

ferentiating the 36 models in the ET–soil moisture plot. The
four runoff schemes are designated with different colors in
Figure 14. SIMTOP produces thewettest soil and greatest ET;

Figure 14. Relationships between (a) ET and runoff climatology (1983–2006) averaged over global 50
largest river basins, (b) ET and top 1 m soil moisture (1983–2006) averaged over global 50 largest river
basins, and (c) ET and top 1 m soil moisture (1983–2006) over Illinois. Runs with SIMTOP runoff scheme
are green, SIMGM is red, Schaake96 scheme is blue, and BATS runoff scheme is gray. The dashed vertical
line in Figure 14c represents the observed top 1 m soil moisture (averaged over 1983–2003).

Figure 13. The same as Figure 12 but for GVF in comparison with NESDIS GVF.
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because it seals the soil bottom (i.e., zero‐flux lower boundary
condition), it retains more water in the soil column, which is
first available for ET and then for lateral subsurface runoff.
BATS produces the driest soil and smallest ET; the largest
surface runoff results in the least water infiltrating into the
soil. Schaake96 and SIMGM produce modest soil moisture
and ET between those equipped with BATS and SIMTOP
(Figure 14b); their surface to total runoff ratios are quite
similar and much smaller than those of BATS. SIMGM
produces a slightly wetter soil and more ET than the
Schaake96 scheme because of the implementation of the
buffering effects of aquifers (upward water flow from aqui-
fers to soil in dry season) over the global land (Figure 14b).
However, these effects are more obvious for a smaller region,
e.g., Illinois (Figure 14c). Compared to the long‐term (1983–
2003) average of the observed soil moisture in the State of
Illinois, the SIMGM group shows the best performance.
[38] Although the various b factors appear to show very

different slopes against soil moisture, simulated global
averages of soil moisture and ET by different b groups (e.g.,
EN1, EN5, EN9 using Noah, CLM, and SSiB b factors,
respectively, with dynamic vegetation and SIMGM) show
much smaller differences than those resulting from different
runoff schemes. The degree of impact of the b factor on the
soil moisture–ET relationship should depend on the soil
moisture regime. For instance, over a specific region where

the soil moisture ranges from 0.15 to 0.25 m3/m3 for a clay
soil [Niu et al., 2011, Figure 3c] (the Noah b = 0.0–0.5, while
CLM and SSiB b = 0.0), the b factor should play a more
important role than for global average.
[39] Within a runoff scheme group (e.g., SIMGM), pre-

dicted LAI (by the dynamic vegetation) (e.g., EN5 versus

EN17 under the CLM b factor and EN9 versus EN21 under
the SSiB b factor) produces nonnegligibly different soil
moisture and ET compared to models with prescribed LAI
(Figure 14b). Runs with the Ball‐Berry type and Jarvis type
stomatal resistance schemes behave very similarly under both
CLM‐b (e.g., EN17 versus EN29) and SSiB‐b factors (e.g.,
EN21 versus EN33) but more significantly different under the
Noah b factor (e.g., EN13 and EN25).
[40] We conclude that the runoff schemes are predominant

over the b factor, dynamic vegetation, and stomatal resistance
schemes in controlling globally averaged soil moisture and
ET and their relationship. However, the effects on the soil
moisture and ET relationship may vary with different regions
according to variations in soil moisture regimes and vegeta-
tion conditions. It should be pointed out that the present
implementation does not include the b factor for ground
surface evaporation, although possible options can be made
available based onworks byMahfouf and Noilhan [1991] and
Sakaguchi and Zeng [2009].
[41] Figure 15 shows the statistics of the 36‐member

ensemble mean runoff (denoted by M) in comparison with
those of the first group of 12 runs. Runs with the BATS runoff
scheme (EN4, EN8, and EN12) and Schaake96 scheme (EN3,
EN7, and EN11) show the largest seasonal variations (greater
monthly runoff peaks), while runs with SIMGM (EN1, EN5,
and EN9) show the smallest seasonality. The BATS runoff
scheme shows the largest correlation, while Schaake96 shows
the least correlation. It is promising that the ensemble mean
runoff (averaged monthly runoff of the 36 models) performs
the best (the closest to “REF” in the Taylor plot) with the
largest correlation (0.92) and less seasonal variability than the
BATS and Schaake96 schemes. Runs with the Schaake96
runoff scheme (EN3, EN7, and EN11) appear to degrade
the correlation of the ensemble mean runoff to GRDC esti-
mates, but removing the 9 runs with the Schaake96 runoff
scheme does not show significant improvement for the
new 27‐member ensemble. Due to the limited accuracy of
the monthly GRDC runoff estimates, further demonstrations
should be better conducted over small river basins where
river discharges are recorded more frequently (e.g., daily). To
further improve hydrological simulations, more elaborate
methods to generate the ensemble average should be pursued
[Duan et al., 2007]. It is promising that the 36‐member
ensemble mean of runoff outperforms any single member
over the world’s 50 largest river basins. These results show
the potential not only for physically based ensemble hydro-
logical predictions, but also for land‐based ensemble climate
predictions.

5. Summary

[42] We evaluated the augmented Noah LSM performance
against global and regional observational data sets, including
MODIS LAI, NESDIS GVF, GRDC runoff, GRACE TWS
change, CMC SWE and snow depth, GOES skin tempera-
ture, and Illinois soil moisture measurements. With different
combinations of schemes, we conducted six experiments
to mimic a transition from the original Noah model to the
fully augmented version with dynamic vegetation using
GLDAS atmospheric forcing data. The results show transi-
tional improvements in modeling runoff, snow, soil moisture,
and land skin temperature.

Figure 15. Statistics of the monthly runoff climatology
(1983–2006) of the first group of 12 experiments. The corre-
lation coefficient and normalized standard deviation for each
experiment are basin‐area‐weighted averages over global 50
largest river basins. “M” stands for the statistics of the ensem-
ble mean of the 36 experiments.
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[43] The fully augmented version (EXP6) reduces the
runoff bias produced by Noah V3 over most land areas but
degrades runoff simulation in the tropical Congo River basin
and southern Tibet where observational data, either the
atmospheric forcing or runoff, may be scarce. Over 50 global
river basins, which cover most of the land area but excluding
Greenland, EXP6 produces 18.4% more than GRDC esti-
mates. Considering that industrial and agricultural water use
and increased surface water evaporation from man‐made
reservoirs may reduce global runoff by 20–25% [Vörösmarty
et al., 2004], the total amount of runoff modeled by EXP6
should be in a plausible range. The total amount of runoff is
sensitive to different choices of CH schemes, most signifi-
cantly in forest regions due to the effects of d0 on CH. The
M‐O scheme that includes the effect of d0 on CH should
further take into consideration z0h that is different from z0m as
considered by Chen97. The fully augmented version greatly
improves runoff seasonality over cold‐region river basins due
to the improved representation of frozen soil permeability and
snow cover processes, such as snow albedo, snow sublima-
tion and frost fall, and snowmelt.
[44] The fully augmented version maintains Noah V3′s

capability of simulating the top 2 m soil moisture and
improves the top 1 m soil moisture variability over Illinois.
EXP6 produces greater summertime ET than Noah V3 does
with almost the same level of soil moisture due to the
groundwater buffering effects. The mean state and variability
of soil moisture are mainly controlled by ET but modulated
by the buffering effects due to groundwater.
[45] Noah V3 produces less SWE in the melting season due

to greater snowmelt and sublimation but too much SWE
during the accumulation season due to the excessive frost
formation on the snow surface. The fully augmented version
improves snow simulations in both melting and accumulation
seasons as evaluated against CMC SWE and snow depth data
sets and GRACE TWS change data.
[46] The fully augmented version improves the simulation

of midday land skin temperature over arid Western U.S. by
reducing the cold bias produced by Noah V3. The warmer
midday land surface skin temperature produced by the fully
augmented version is mainly attributed to the use of M‐O
scheme for the surface exchange coefficient, which produces
a smaller CH than Chen97’s scheme.
[47] Prediction of LAI and GVF is a unique attribute of the

fully augmented version. Themodel well simulates the spatial
distributions of LAI and GVF compared to satellite retrievals.
The model simulates LAI and GVF seasonality better in
midlatitude and arid river basins than in tropical regions. In
tropical river basins, the modeled LAI has a low correlation
with MODIS LAI, while the modeled GVF shows a much
higher correlation with the NESDIS GVF data.
[48] We also conducted a 36‐member physically based

ensemble simulation with 36 different combinations of
optional schemes for leaf dynamics, stomatal resistance, the b
factor, and runoff. The runoff schemes largely determine the
modeled soil moisture–ET relationship. A runoff scheme
with a sealed bottom (zero‐flux lower boundary condition,
like SIMTOP) produces the wettest soil and greatest ET.
A model with a greater surface runoff (like BATS) produces
the driest soil and smallest ET. A runoff scheme with gravi-
tational free drainage like Noah V3 and BATS tends to
underestimate soil moisture and produces less ET than that

with a groundwater model. The b factor, dynamic vegetation,
and stomatal resistance schemes play a less important role
than the runoff schemes for globally averaged soil moisture
and ET. However, the effects on the soil moisture and ET
relationship vary with different regions according to varia-
tions in soil moisture regimes and vegetation conditions.
Although the Ball‐Berry type stomatal resistance scheme
behaves very similarly to the Javis type in modeling tran-
spiration, the former scheme allows a direct coupling of ter-
restrial water and carbon fluxes and improves the simulation
of vegetation–atmosphere interactions [Niyogi et al., 2009].
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