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ABSTRACT
A lot of research in graph mining has been devoted in the dis-
covery of communities. Most of the work has focused in the
scenario where communities need to be discovered with only
reference to the input graph. However, for many interest-
ing applications one is interested in finding the community
formed by a given set of nodes. In this paper we study a
query-dependent variant of the community-detection prob-
lem, which we call the community-search problem: given a
graph G, and a set of query nodes in the graph, we seek to
find a subgraph of G that contains the query nodes and it
is densely connected.

We motivate a measure of density based on minimum de-
gree and distance constraints, and we develop an optimum
greedy algorithm for this measure. We proceed by charac-
terizing a class of monotone constraints and we generalize
our algorithm to compute optimum solutions satisfying any
set of monotone constraints. Finally we modify the greedy
algorithm and we present two heuristic algorithms that find
communities of size no greater than a specified upper bound.
Our experimental evaluation on real datasets demonstrates
the efficiency of the proposed algorithms and the quality of
the solutions we obtain.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; G.2.2 [Discrete Mathematics]: Graph The-
ory—Graph algorithms

General Terms
Algorithms, Experimentation, Theory

Keywords
graph mining, community detection, social networks, graph
algorithms
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1. INTRODUCTION
Graphs is one of most ubiquitous data representations,

and they find applications in a wide range of areas including
biology, physics, social sciences, and information technology.
With the increasing availability of very large networks, there
is need for designing algorithmic data-analysis tools and for
developing applications that exploit the latent structure in
the data.

Discovering communities in graphs and social networks
has drawn a large amount of attention in recent years [9,
13, 15, 16, 25]. It has been one of them most well-studied
problems of graph mining. Most of the work has focused
in the scenario where communities need to be discovered in
an a-priori manner, with only reference to the input graph.
However, in many application scenarios we are interested in
discovering the community defined by a given set of nodes.
For instance, if Bob and Alice take the same tango class,
and Charles is Bob’s boss, the community formed by Bob

and Alice is very different than the community formed by
Bob and Charles.

In this paper we study a query-dependent variant of the
community detection problem, which we call the community-
search problem. Our problem formulation takes as input a
graph G, and a set of query nodes, and the task is to find
a densely connected subgraph of G that contains the query
nodes. The problem we study has many interesting appli-
cations in areas such as social-network analysis, collabora-
tive tagging systems, query-log analysis, biology, and others,
Some motivating examples are the following.

Finding a group or organizing an event: A number
of scientists obtain funding to organize a workshop. They
figure out that the chances of success of the workshop will be
higher if they invite a set of colleagues so that each scientist
is well acquainted, and perhaps have even worked together,
with a number of other participants.

Tag suggestion: In a social-media environment, a tag graph
relates similar tags. For instance, in a photo-sharing portal
two tags are related if they co-occur frequently in a given
set of photos. Given a new photo being uploaded, and a
number of initial tags that the user provides for this photo,
the system can suggest to the user a number of additional
tags. A good set of suggestions is a set of tags related to
each other and related to the original tags.

Biology: A biologist has identified a number of proteins
that regulate a gene of interest, and she would like to study
further a candidate list of other proteins that are likely to
participate in the regulation process. Such a candidate set
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can be obtained by finding a dense subgraph in the protein-
interaction network that contains the original proteins.

A similar problem has been studied by other researchers
in data mining, and our paper has been largely inspired by
that line of research. For instance, Faloutsos et al. [10],
Tong et al. [28], as well as other researchers have studied
the problem of finding a subgraph that connects a set of
query nodes in a graph. The main difference of our approach
is that we are not just interested in connecting the query
nodes, but also in finding a meaningful community of query
nodes. Additionally, we follow a graph-theoretic approach:
we first formulate an objective based on the density of the
subgraph, and then we devise combinatorial algorithms that
optimize this objective. Using such an objective function
allows a rigorous approach and it makes applicable a number
of techniques and results that have been developed by the
community of theoretical computer science.

In order to find densely connected communities that con-
tain the query nodes, one needs to define an appropriate
measures of density. Such measures can be the average or
the minimum degree of the nodes in the extracted commu-
nity. As we discuss in the following section, the average-
degree measure has the drawback of being sensitive to “free-
riders”, namely, irrelevant but dense subgraphs that may
be attached to the query nodes and yield unintuitive solu-
tions. For this reason, we focus on the latter measure, the
minimum degree. We also give the possibility to exclude
nodes that are far from the query nodes, as usually these
nodes are less related to the query nodes than those that
are nearby. Our goal in this paper, is to find compact com-
munities, containing the query nodes, and whose minimum
degree is maximized.

For this problem, we are able to develop a greedy algo-
rithm that computes the optimum solution. An interesting
property of the minimum-degree measure and the distance
constraint is that they are monotone; a formal definition of
monotonicity is deferred to Section 4. We then show that
the greedy algorithm can be generalized to give the optimal
solution for (i) any monotone function, and (ii) satisfying
any number of monotone constraints. We discuss that many
natural constraints are monotone.

On the negative side, our greedy algorithm does not work
if one requires that the size of extracted communities satis-
fies an upper bound constraint. In fact, we show that the
community-search problem with an upper bound on the size
of the extracted community is an NP-hard problem. This
is an unfortunate situation since the size requirement is a
natural constraint: e.g., for the scientific workshop there is
space for inviting at most 100 participants; the biologist has
recourses to study at most 50 proteins, and so on.

To handle the size constraint, we modify the greedy al-
gorithm and we present two heuristic algorithms that find
communities of size no greater than a specified upper bound.
The heuristics are inspired by the optimality of monotone
constraints, and attempt to satisfy the size requirement by
setting alternative monotone constraints that affect the size
of the solution.

Roadmap: The paper is organized as follows. In the next
section we review the related work. In Section 3 we define
formally the problem of community search, and in Section 4
we present the greedy optimal algorithm, as well as its gener-
alization to monotone constraints and monotone functions.
In Section 5 we discuss our heuristic algorithms for finding

solutions with upper bound on the community size. Sec-
tion 6 presents our experimental results, while Section 7 con-
cludes the paper and presents some ideas for future work.

2. RELATED WORK
Our paper is partly inspired by data-mining work on find-

ing communities and connecting subgraphs, and partly by
work in theoretical computer science that seek to find dense
subgraphs. We review briefly both lines of work below, but
given the large amount of literature and our space limitation
we cannot hope to be comprehensive.

Connectivity subgraphs. Faloutsos et al. [10] and Tong
et al. [28] address the problem of finding a subgraph that
connects a set of query nodes in a graph. The focus of those
papers is to develop measures of proximity between nodes of
the graph that depend on the global graph structure. Such
measures are based on electrical-current flows [10] and the
related notion of random walks [28]. Then the task is to
extract subgraphs that on one hand are near to the query
nodes, according to the developed similarity measure, and
on the other hand connect the query nodes. In subsequent
work, Koren et al [21] refined the proximity measures us-
ing the notion of cycle-free effective conductance (cfec) and
proposed a brunch and bound algorithm in order to find a
subgraph that optimizes the cfec measure. More recently,
Asur and Parthasarathy [5] suggested the concept of view-
point neighborhood analysis in order to identify neighbors
of interest to a particular source in a dynamically evolving
network, showing the connection of their measure with heat
diffusion. Cheng et al [8] address the problem of connect-
ing query nodes in a context-aware framework, where they
first partition the graph using the modularity measure, and
then they study connectivity at intra-community and inter-
community levels. Finally, Kasneci et al. [19] use a random
walk-based approach in order to extracting informative sub-
graphs with respect to query nodes in entity-relationship
diagrams.

The main difference of our approach with the above line
of research is two-fold. First, we are more interested in ex-
tracting the best community that the query nodes define,
and not only finding a set of nodes that connect the query
nodes. Second, we follow an approach that comes closer to
theoretical computer, and formulate the problem of commu-
nity search as a graph theory problem. This allows a more
rigorous approach, for example, reasoning about the hard-
ness of the problem, as well as borrowing from the techniques
and results that have been developed by the community of
theoretical computer science.

Community detection. There is a very large body of
work on finding communities in large graphs, social net-
works, and other kinds of networks. A typical approach
for finding communities is by means of optimizing the mod-
ularity measure [16, 26]. There are many papers studying
the modularity measure and developing algorithms for it, for
instance, Brandes et al. [6] showed that it is NP-hard to op-
timize modularity, Fortunato and Barthelemy [14] identify
the resolution-limit problem, White and Smyth [29] follow
a spectral approach to optimize modularity, Agarwal and
Kempe [1] develop a mathematical-programing algorithm,
and many more algorithms. Other approaches to community
detection include algorithms based on max-flows [12, 13],
finding dense subgraphs [9, 15], as well as graph-partitioning
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algorithms based on spectral methods, such as the metis al-
gorithm [18], and random walks [3]. All the above methods
consider the static community detection problem, where the
graph needs to be partitioned a-priori with no reference to
query nodes.

Densest subgraph problem. The problem of finding the
densest subgraph of a given graph has also received a lot
of attention in the community of theoretical computer sci-
ence. A common objective to optimize is the density of
the subgraph, which corresponds to two times the aver-
age node degree. Without restriction on the subgraph size,
the problem can be solved optimally in polynomial time.
Charikar [7] showed that the greedy algorithm that we con-
sider in this paper can be used to find a factor-2 approxi-
mation. The same simple greedy algorithm was previously
studied by Asahiro et al. [4]. When adding size constraints,
and asking to find a subgraph of size exactly k the prob-
lem becomes NP-hard, while the best algorithm for this
problem has an approximation guarantee of O(nα), where
α < 1

3
[11]. Recently, Andersen and Chellapilla [2] and

subsequently Khuller and Saha [20] studied the case with
lower bound and upper bound constraints. In both cases
the problem is NP-hard, and they offer approximation re-
sults for directed and undirected graphs.

Again the difference of our work with the above papers is
that we seek to find dense subgraphs with reference to a set
of query nodes. Additionally, we observe that in the case
of query nodes, the measure of average degree may lead to
non intuitive solutions. Thus we motivate and study using
the measure of minimum degree as well as imposing distance
constraints.

Team formation. Recently, Lappas et al. [24] studied the
problem of team formation: given a social network where
nodes are labeled with a set of skills that each node pos-
sesses, and given a task that requires a certain set of skills
to be satisfied, we are required to find a subgraph in which
all skills are present and the communication cost is small. As
we will see in Section 4 the constraint to satisfy a set of skills
is monotone, and therefore, it can be easily incorporated in
our framework. Thus our algorithm can address a variant
of the problem of Lappas et al. where the team needs to be
formed with respect to a set of initial members, and where
the goodness of the team can be measured with a monotone
function (such as maximum distance and minimum degree).

3. PROBLEM DEFINITION
In this section we introduce our notation and we define

more formally the problem of community search.
We are given an undirected graph G = (V, E) in which

the set of edges E represents binary relationships among the
items V . Examples of graphs from the introduction are a col-
laboration network among scientists, a protein-interaction
network, social networks, email networks, query graphs, etc.
We denote by n the number of nodes and by m the number
of edges in G.

When not mentioning explicitly we do not assume any
weights and labels on the nodes and edges of the graph,
however, many of the concepts we consider in this paper
can be generalized to the case of weights and labels. For
example, one might consider labels on the nodes indicating
the expertise of people to form a team and accomplish a
project, as was done by Lappas et al. [24], node weights

to indicate importance of nodes, as using PageRank-type
of scores, and edge weights to indicate strength of relation
among nodes.

In addition to the graph G = (V, E) we are also given as
input a set of query nodes Q. These are the nodes that form
the seed of the community that we are looking to extract.
Given an induced subgraph H of G, consider a function f
that measures the goodness of H as an extracted community.
We want f to take large values if H is densely connected.
We discuss different choices for f shortly after stating the
first abstract version of our problem formulation:

Problem 1 (Generic objective function:) Given an un-
directed (connected) graph G = (V, E), a set of query nodes
Q ⊆ V , and a goodness function f , we seek to find an in-
duced subgraph H = (VH , EH) of G, such that

(i) VH contains Q (Q ⊆ VH);

(ii) H is connected;

(iii) f(H) is maximized among all feasible choices for H.

Notice that the the assumption that the input graph G is
connected can be made without any loss of generality: the
query nodes Q cannot belong in different connected com-
ponents in G because then there is no feasible solution, so
we can just consider only the connected component that the
nodes of Q belong to.

With respect to the choice of the goodness function f ,
as we have already mentioned, we want to consider func-
tions that capture the density of the subgraph H. One such
measure is the number of edges |EH | in H, divided by all

possible possible edges |VH | (|VH |−1)
2

. However, even in its
simplest form this density definition leads to NP-hard prob-
lems (via a simple reduction from MaxClique [17]), so we do
not consider it in this paper.

Two other functions that measure the density of the sub-
graph H are (i) the average degree fa(H) of the nodes in
H, and (ii) the minimum degree fm(H) of the nodes in H.
The average degree in H = (VH , EH) can also be expressed

as fa(H) = 2|EH |
|VH | , and indeed the density function fa has

been studied extensively in the community of theoretical
computer science [2, 7, 20].

However, in all studies that the measure fa is considered,
the problem is to find the densest subgraph with no ref-
erence to a set of query nodes Q. When we require that
the extracted community H contains a given set of query
nodes Q, the density measure fa can lead to non intuitive
results. This is demonstrated in Figure 1. In this exam-
ple, the set of query nodes is Q = {x, y, z}, and an intuitive
solution is the community of the nodes C1 = {x, y, z, p, q}.
However, notice that the average density fa will increase
if in the solution we also include the K6 clique, that is, if
we take C2 = {x, y, z, p, q, r, a, b, c, d, e, f}. Intuitively, the
nodes of the K6 clique belong in a different community than
the nodes of Q. This problem that is demonstrated in the
somehow contrived example of Figure 1 is a serious one: one
can easily find to add an unrelated but densely connected
community to Q in order to increase the average density.

Thus, in this paper we will focus on the density measure
fm(H) that it is defined to be the minimum degree of any
node of VH in the induced subgraph H = (VH , EH). As any
measure that seeks to maximize a minimum, fm has the
drawback that it is sensitive to outliers. However, it does
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Figure 1: Different definitions of density. The set
of query nodes is Q = {x, y, z}. Should we seek to
maximize the average degree or the minimum degree
of the extracted community?

not suffer from the problem of attaching a non-related com-
munity, as the measure fa does. In the example of Figure 1,
the optimal solution with respect to the measure fm is the
community C1 = {x, y, z, p, q}.

Another way to avoid the pathological situations of at-
taching communities that are far way from query nodes, is
to set a distance constraint, which can be defined as follows.
First let dG(v, q) denote the length of the shortest path be-
tween nodes v and q in the graph G. If v and q are in
different connected components, then we define dG(v, q) to
be infinity. Now, given a node v in the graph G, we define
the distance of v from the query nodes Q to be

DQ(G, v) =
∑

q∈Q
dG(v, q)2, (1)

and we also define

DQ(G) = max
v∈V (G)

{DQ(G, v)}, (2)

the distance of the furthest node from the query nodes.
For defining DQ(G, v) other alternatives are possible, for
instance, not using squares, or using max instead of

∑
.

The more concrete problem that we focus in the next sec-
tion is the following:

Problem 2 Given an undirected (connected) graph G =
(V, E), a set of query nodes Q ⊆ V , and a number d to
be interpreted as a distance constraint, we seek to find an
induced subgraph H = (VH , EH) of G, such that

(i) VH contains Q (Q ⊆ VH);

(ii) H is connected;

(iii) DQ(H) ≤ d; and

(iv) the minimum degree function fm(H) is maximized among
all feasible choices for H.

4. COMMUNITIES WITHOUT SIZE
RESTRICTION

In this section we present a family of algorithms for the
community-search problem. We start from the specific prob-
lem instance of maximizing the minimum degree of the nodes
that belong in the community. For the moment we ignore the
distance constraint, for instance, in the definition of Prob-
lem 2 we may set d = |V |3. Guided by the objective function
of minimum degree, we then provide a definition of mono-
tonicity, and we generalize our algorithm for any monotone
function and monotone constraint, including the distance
constraint.

Throughout this section we assume that there is no re-
striction on the size of resulting community. The case of
communities with size restriction is addressed in the next
section.

4.1 Maximizing the minimum degree
We start by present an optimal algorithm for Problem 2.

Our algorithm, called Greedy, is a variant of the greedy al-
gorithm that was proposed and studied by Asahiro et al. [4]
and later analyzed by Charikar [7], who showed that it achieves
a factor 2 approximation guarantee for the densest-subgraph
problem.

The details of the algorithm Greedy are the following:

• We start by setting G0 = G, the input graph, and we
proceed by deleting one node in each step.

• At the t-th step, we consider a node u that has minimum
degree in Gt−1.

• Consequently, at the the t-th step, we obtain graph Gt

by deleting the node u and all the edges incident to u
from Gt−1.

• The algorithm terminates at the t-th step if either (i)
at least one of the query nodes Q has minimum degree
in the graph GT−1, or (ii) the query nodes Q are no
longer connected.

If Gt is the graph during the t-th step of the algorithm, we
denote by G′

t the connected component of Gt that contains
all query nodes Q. As defined before, fm(G′

t) is the mini-
mum degree of the nodes in G′

t. Greedy returns as a solu-
tion GO the graph G′

t for which fm(G′
t) is maximized during

all steps of its execution. That is, GO = arg max{fm(G′
t) |

t = 1, . . . , T − 1}.
As observed by Charikar [7], Greedy can be implemented

in linear time. The idea is to make a list of nodes with degree
d, for d = 1, . . . , n, that is, one separate list for each degree.
When removing a node u from Gt, a neighbor of u with
degree d needs to be moved from the list d to the list d− 1.
So the total amount of moves is O(m). In addition, since the
minimum degree in each step decreases by at most 1, given
the node with minimum degree in one step, we can locate a
node with minimum degree for the next step in O(1) time.
Overall the running time is O(n + m).

Remarkably, Greedy gives an optimal solution for Prob-
lem 2. For the following, we still assume that d = |V |, and
the case of using a distance constraint is addressed by the
generalization of the algorithm in the next section.

Theorem 1 Let G be a graph and Q be a set of query nodes.
The algorithm Greedy returns an optimum solution for the
problem of finding the community that contains Q and max-
imizes the minimum degree of all nodes in the community
(Problem 2).

Proof. Let GO be an optimum solution for the problem.
Consider the step t of Greedy, when the first node v of
GO is selected. Let Gt be the graph at step t. From the
fact that v is the first node in the optimum that has been
chosen, it follows that GO is a subgraph of Gt. This in turn
implies that there must be a connected component G′

t in Gt

which is a supergraph of GO, for otherwise, GO would not be
connected. From this fact it follows that, δG′

t
(v) ≥ δGO (v).

Since v has minimum degree in Gt, it follows that for every
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node u in G′
t it holds:

δG′
t
(u) ≥ δG′

t
(v) ≥ δGO (v),

which implies that G′
t has optimum minimum degree.

4.2 Generalization to monotone functions
In this section we generalize the results that we developed

in the previous section. We first provide a characterization
of monotone functions, so that the minimum degree function
fm is a member of this family of functions. Consequently
we show that the algorithm Greedy can be used to find an
optimal solution for any monotone function.

Definition 1 (Monotone function) Let V be an under-
lying set of nodes, and let GV be the collection of all possible
graphs defined over subsets of V . Let f be a function that as-
signs a score value to any graph in GV , that is, f : GV → R.
We say that the function f is monotone non-increasing if
for every graph G and for every induced subgraph H of G,
f(H) ≤ f(G). We similarly define f to be monotone non-
decreasing by requiring f(H) ≥ f(G).

We extend the notion of monotone functions to be defined
with respect to a specific node v in V .

Definition 2 (Node-monotone function) Let GV be, as
before, the collection of all possible graphs defined over sub-
sets of V . A function f : GV × V → R is said to be node-
monotone non-increasing if for every graph G, for every in-
duced subgraph H of G, and every node v in H, f(H, v) ≤
f(G, v). We similarly define node-monotone non-decreasing
functions.

An interesting special case is when a function is boolean.
We refer to such boolean functions as properties. We say
that the graph G satisfies property f if f(G) = 1, while it vi-
olates property f if f(G) = 0. Similarly, for node-monotone
properties, given a graph G, we say that a node v satisfies
the property f in G if f(G, v) = 1, while v violates the
property f in G if f(G, v) = 0,

With respect to the community-search problem, and the
minimum degree function that we used in the previous sec-
tion we have:

Example 1 (Degree) Let d(G, v) be the degree of node v
in graph G. The function d is node-monotone.

Example 2 (Minimum degree) Let fm(G) be the mini-
mum degree of any node in G. The function fm is monotone.

Example 3 (Distance) The functions DQ(G, v) and DQ(G),
defined by Equations (1) and (2) are node-monotone and
monotone, respectively.

In addition to connectivity and degree there are many in-
teresting monotone and node-monotone functions. In some
of the examples below we also consider a set of nodes Q,
which can be thought of as the set of query nodes Q for the
community-search problem. Also with dG(v, q) we denote
the length of the shortest path distance between nodes v
and q in graph G.

• A lower bound on the number of nodes in a graph is
monotone.

• Requiring that the set Q must belong to the graph G
and must be connected is monotone.

• Other distance functions are monotone. For instance,
the function MQ(G, v) = maxq∈Q{dG(v, q)} is node-
monotone, and MQ(G) = maxv∈V (G){MQ(G, v)} is mo-
notone.

• The constraint along the lines of Lappas et al [24], where
a set of skills specified in input should be present in the
extracted community, is monotone.

• The number of disjoint paths between two nodes (which
is a popular measure for friendship strength) is node-
monotone non-increasing.

Before defining the general problem, we need one more
definition for comparing node-functions in different graphs.

Definition 3 Let f : GV × V → R be a function. We say
that G maximizes the function f if minv∈V (G){f(G, v)} ≥
minv∈V (H){f(H, v)} for all H in the collection GV . The
definition for minimizing f is symmetric.

Now are are ready to define the generalization of the
community-search problem.

Problem 3 (Cocktail party) We are given an undirected
graph G = (V, E), a node-monotone non-increasing function
f : GV ×V → R, as well as a set of monotone non-increasing
properties f1, . . . , fk. We seek to find an induced subgraph
H of G that maximizes f among all induced subgraphs of G,
and satisfies f1, . . . , fk. A similar problem can be defined by
considering to minimize monotone non-decreasing functions.

For solving the Problem 3, we generalize the algorithm
Greedy. We call the generalized version GreedyGen al-
gorithm. In detail, the GreedyGen algorithm is described
as follows:

We start from G0 = G and at each step, we check whether
there is a property fj and a node v ∈ V such that v vi-
olates fj , j = 1, . . . , k. In such a case we delete v and
all the incident edges of v. Otherwise we delete from G a
node v such that f(G, v) is minimum. This procedure is
iterated until all nodes are deleted. Let Gt be the graph
constructed at step t. GreedyGen returns as solution the
graph H which maximizes f , among all graphs Gt that are
constructed throughout the execution of the algorithm and
satisfy all the monotone properties.

Theorem 2 The algorithm GreedyGen returns always an
optimum solution for Problem 3.

We omit the proof of Theorem 2 for brevity.
Running time. Note that, as opposed to the algorithm
Greedy, whose execution time is linear, GreedyGen can
be more expensive. The reason is that after removing each
node, it needs to re-evaluate which constraints f1, . . . , fk are
violated. The exact running time of the algorithm depends
on the constraints employed.

5. COMMUNITIES WITH SIZE
RESTRICTION

The drawback of the algorithms proposed in the previous
section is that they might return subgraphs with very large
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size. Unfortunately, if we require that the size of the out-
put subgraph is less than a pre-specified upper bound, the
problem becomes NP-hard. This is shown in Theorem 3.

Therefore, we resort to two simple yet effective heuristics
inspired by the Greedy algorithm. These heuristics are
presented in Section 5.2, while their empirical evaluation is
discussed in Section 6.

5.1 Complexity
Formally, the problem of maximizing the minimum degree

while having an upper bound on the size of the graph is
defined as follows.

Problem 4 (Minimum degree with upper bound on the size).
Given an undirected (connected) graph G = (VG, EG), a set
of query nodes Q ⊆ V , a number d (distance constraint),
and an integer k (size constraint), we wish to find an in-
duced subgraph H = (VH , EH) of G, such that:

(i) H contains the query nodes (Q ⊆ H);

(ii) H is connected;

(iii) DQ(H) ≤ d;

(iv) |VH | ≤ k (H has at most k nodes); and

(v) the minimum degree of H is maximized.

Theorem 3 Problem 4 is NP-hard.

Proof. We give a simple reduction to the Steiner-tree
problem with unit weights. It is well known that the Steiner-
tree problem is NP-Hard as shown by Karp (1972) (for a
proof see [22, Theorem 20.2]). In the decision version of the
Steiner-tree problem, we are given a graph G = (V, E), a set
T of nodes (T ⊆ V ), and an integer k. We are asked to find
a subtree of G (a connected subgraph of G with no cycles)
containing all nodes in T and having at most k edges.

Given an instance of the Steiner-tree problem, with G be-
ing the graph in input, T the set of nodes we are to connect,
and k an upper bound on the number of edges, we define an
instance of the decision version of our problem as follows.
The graph in input is G, the query nodes are the nodes in
T , the upper-bound on the number of nodes is k + 1, the
distance constraint is set to infinity (d = |V |3 suffices), and
we are to find a graph with minimum degree at least 1. We
show that there is a solution for the Steiner-tree problem if
and only if there is a solution for our problem.

First, any Steiner-tree using at most k edges is also a
solution for our problem using at most k + 1 nodes. On the
other hand, given a solution H for our problem containing
at most k + 1 nodes, we can compute a Steiner tree with at
most k edges: simply take any spanning tree of H.

Note that from the proof it follows that the problem is
NP-hard even without the distance constraint, that is, even
without the requirement (iii) of Problem 4.

5.2 Algorithms
Summarizing our discussion so far, we have seen that the

Greedy algorithm cannot be used to find communities that
have size within a pre-specified upper bound. And indeed,
we saw in the previous section that finding a community
with bounded size is an NP-hard problem.

On the other hand, the problem of finding bounded-size
communities is very interesting from the application point

of view. So, in this section we describe two heuristics that
can be used to find communities with bounded size. Our
heuristics are inspired by the Greedy algorithm for maxi-
mizing the minimum degree. The design principle of the first
heuristic is the simple observation that a tighter distance
constraint implies smaller communities. In other words, the
size of the output graph is a monotonically decreasing func-
tion of the distance bound d. This monotonicity property
can be proved by a simple argument, however, the proof is
omitted for brevity.

As one may expect, the solutions provided by our heuris-
tics do not have any provable quality guarantee. Thus, in
Section 6 we study the heuristics experimentally, and we
show that in practice they give good solutions. Our two
heuristics are called GreedyDist and GreedyFast. Both
take as input the graph G, the set of query nodes Q, an up-
per bound k on the size of the output graph, and a distance
bound d.

The two heuristics provide a quality–efficiency trade-off:
GreedyDist is tries to optimize quality while GreedyFast
tries to optimize efficiency.

GreedyDist: As we mentioned above, this heuristic is mo-
tivated by the monotone behavior of the size of the output
graph with respect to the distance bound. GreedyDist
uses the algorithm GreedyGen as a subroutine. Greedy-
Dist starts by executing the algorithm GreedyGen in order
to maximize the minimum degree subject to the distance
constraint d that is specified in input. If the query nodes
are connected and the size constraint is not satisfied in the
output graph, then the algorithm GreedyGen is executed
again with a tighter distance bound d′ < d. GreedyDist
iterates executing GreedyGen by decreasing at each step
the distance constraint, until the size constraint is satisfied
or the query nodes become disconnected. In the latter case,
GreedyDist returns the smallest graph found among all
executions of GreedyGen that is connected.

As we already discussed, GreedyDist provides no guar-
antee on the quality of the solution that it finds. The reason
is that an optimal graph with size less than k may satisfy
some distance constraint d0 ≤ d, and GreedyGen executed
with distance bound d0 provides no guarantee of finding this
optimal graph. However, as we show in the experimental
section, the algorithm GreedyDist finds accurate solution.

In order to specify fully the algorithm GreedyDist we
need to answer one more question: how is the distance con-
straint decreased between successive calls of the Greedy-
Gen algorithm? One simple solution is to decrease the dis-
tance constraint by exactly one unit at a time. However,
note that since the size of the output graph is a monotone
function to the distance bound one can perform a binary
search on the distance bound. Such a binary search speeds
up significantly the GreedyDist algorithm.

GreedyFast: Our second heuristic, GreedyFast, is also a
variant of the Greedy algorithm. As the name suggests, we
aim at devising a heuristic more efficient than GreedyDist,
even if this might worsen the quality of the solution. To this
end, there is a preprocessing phase where the input graph
is restricted to the k′ closest nodes to the query nodes; k′

is defined to be minimum such that the resulting graph is
connected and contains at least k nodes. The distance of a
node to the query nodes is measured using the function DQ

defined in Equation (1).
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After this preprocessing phase, we execute Greedy on
the restricted graph formed in the preprocessing phase. Our
intuition for employing this preprocessing phase, is that the
closer a node is to the query nodes the more related the node
is to the query nodes, and the more likely it is that the node
belongs in their community.

Size and distance bounds: The algorithms GreedyDist
and GreedyFast take as input the size upper bound k,
and the distance bound d. Both of those bounds depend
on the application for which the community-search prob-
lem is used. The size upper bound k expresses how many
additional nodes we want to include in the community –
and as we saw, if such a constraint exists, the problem can-
not be solved optimally. For this reason, GreedyDist and
GreedyFast might produce a graph whose size is larger
than k. The dist ance bound is used for the case that we
do not want to include in the community nodes that are far
away, so that we obtain communities that are semantically
more coherent. If one does not need to specify a distance
bound, again the constraint can be ignored, and this leads
to a much faster algorithm.

6. EXPERIMENTAL EVALUATION
In this section we present an empirical evaluation of the

algorithms presented in the previous sections.

Datasets: We consider the following three datasets:

DBLP: We use a coauthorship graph extracted from a re-
cent snapshot of the DBLP database. The dataset considers
publications in all major computer-science journals. There
is an undirected edge between two authors if they have coau-
thored a journal article. Considering the largest connected
component of the whole dataset yields a graph of 226K nodes
and 1.4M edges.

tag: We consider a tag graph extracted from the flickr1

photo-sharing portal. The nodes in this graph represent tags
that have been used for tagging photos. A tag is considered
if it has used by at least 5 different users. An edge between
two tags indicates that the two tags appear in at least 100
photos. Again a connected component is extracted, resulting
in a graph of 38K nodes and 1.3M edges.

BIOMINE: We use a graph extracted from the database of the
Biomine project [27]. The database represents a collection of
biological interactions. Interactions are directed and labeled
with probabilities. For extracting the BIOMINE graph we use
in this paper, we ignore directions on the edges, and we
consider one connected component. The resulting graph has
16K nodes, and 491K edges.

To understand better the performance of the proposed
heuristics we compare them against a simple and natural
baseline algorithm, which we call Baseline. As opposed
to the two heuristics, Baseline is based on adding nodes,
instead of removing.
Baseline: Assume first that the query nodes Q are con-
nected, and let H0 be the connectivity graph among Q. The
Baseline proceeds in a sequence of steps as follows. At step
t, the graph Ht+1 is defined to be Ht ∪ {v}, where v is the
node among all nodes in G \ Ht that has largest degree in
Ht ∪ {v}. If there is a tie on the degree, then Baseline
breaks the tie by selecting the node whose distance DQ to

1www.flickr.com

Table 1: Community size vs. distance bound d.
6 9 11 12 14 17 20 27

BIOMINE 71 76 77 867 870 900 923 1394
DBLP 4 9 9 13 14.5 17 21 160
tag 35 248 248 3316 3554 8287 8305 14256

the query nodes is minimized, and if there is again a tie, a
node is selected arbitrarily. The Baseline terminates when
no further nodes can be added, and it returns the graph that
maximizes the minimum degree among all graphs Ht’s that
were computed during its execution.

Of course we cannot assume that the query nodes Q are
connected in the input graph G. For this reason, before
entering the node-adding phase that we described above, we
first compute a Steiner tree on the query nodes. Then we
define H0 to be the Steiner tree we computed. To compute
a Steiner tree we use the classic algorithm by Kou et al. [23],
which gives an approximation guarantee of 2 − 2/k, where
k is the number of query nodes.

Experimental framework: To evaluate our algorithms we
use the three datasets, and we execute the algorithms and
the baseline for randomly generated sets of query nodes Q.
We study the characteristics of the algorithm as a function
of the number of query nodes, which we denote be q = |Q|,
as well as size bound k, and distance bound d. We also study
the dependence of the algorithms on a parameter l that de-
notes the inter-distance between all query nodes. So, a value
of l = 2 means that all query nodes are within distance 2 to
each other.

For the extracted communities we measure and we report
the minimum degree fm, the average degree (or density)
fa, as well as the size and distance achieved. Each number
shown in the graphs is an average over 50 repetitions. We
implemented our algorithms in Perl and all experiments run
on a dual-core Opteron processor at 3GHz.

6.1 Quantitative results
We start our empirical evaluation by analyzing Greedy.

We can prove that the size of the output graph yielded by
Greedy is a monotone non-increasing function of the dis-
tance bound d. This monotonicity behavior served as in-
spiration for the the heuristic GreedyDist. Here we give
empirical evidence of this fact aiming at gaining a deeper
understanding of the behavior of this function. Our results
are shown in Table 1. Each line of this table corresponds
to one of the three datasets we consider, while each column
corresponds to a possible value of the distance constraint
specified in input (that is, an element of the codomain of
the function DQ(G) defined in Section 3). We can see that
in all three datasets the size of the output is increasing. The
largest increase is observed for tag. This reason is that tag
is the dataset with the largest average degree.

Then we move on evaluating our two heuristics, Greedy-
Dist and GreedyFast, and comparing them with Base-
line. Our results are shown in Figure 2 for the DBLP dataset,
and in Figure 3 for the tag dataset. The behavior of the al-
gorithms for the BIOMINE dataset is similar and we omit the
results for space limitations.

We first measure the size of the output graph, the min-
imum degree, and the average degree, as a function of the
size upper-bound k. The first observation is that Baseline
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Figure 2: Behavior of the three heuristics (GreedyDist, GreedyFast, and Baseline) for the DBLP dataset.

does not perform very well. Both the minimum and the av-
erage degree of Baseline are poor in comparison with our
heuristics This is shown in Figures 2(b) and 2(c) for the DBLP
dataset, and in Figures 3(b) and 3(c)) for the tag dataset.
On the other hand, from Figures 2(a) and 3(a) we observe
that the size of the graphs yielded by the two heuristics
does not increase too much as we increase the upper-bound
on the size k, yet, both the minimum and the average de-
gree increases. This is a good property of our heuristics, as
they keep the output graphs small, while still succeeding in
increasing the objective that they try to optimize.

One may ask how good is a minimum degree of at least 3
and an average degree of 5-8, as those achieved by Greedy-
Dist. We note that for those experiments, we used three
query nodes, which are within distance 2 from each other.
Thus, given that the query nodes are quite unrelated, and
given that the input graph is very sparse, we think that it is
quite remarkable that GreedyDist finds subgraph average
distance more than 5.

With respect to comparing the two heuristics we can see
from indeed GreedyDist delivers the most accurate results.
However, GreedyFast still gives very good results and it
is much faster, as shown in Figure 2(d) for DBLP and in
Figure 3(d) for tag.

In Figures 2(e) and 3(e), respectively for the two datasets,
we show the minimum degree as a function of the distance
between the query nodes. We can see that for all three al-
gorithms the minimum degree decreases as a function of the
distance. The reason is that as the distance increases the
query nodes become less related. Therefore, the existence of
a dense graph connecting them becomes unlikely. A similar
behavior can be observed in Figures 2(f) and 3(f) for in-
creasing the number of query nodes. Since the query nodes
are selected randomly, it becomes more difficult to connect
a large number of nodes.

6.2 Case study
Evaluating the quality of the results of our algorithm in

a way that it does not involve internal measures (such as
densities, degrees, and graph distances) but the semantics
of an application is a difficult and not entirely well-defined
task. Thus a formal quality evaluation is beyond the scope
of this paper. Instead we describe a case study that provides
a feel of the results that one can obtain with our algorithm.

Christos Papadimitriou is one of the most prolific com-
puter scientists. He has been recognized not only for the
importance of his contributions, but also for the extremely
wide range of areas that he has worked on. His interests
include complexity theory, combinatorial optimization, al-
gorithmic game theory, database theory, economics, biology,
the internet, and more.

As a manifestation of his multiple research interests, in
a network of scientific collaboration, Papadimitriou would
be represented by a node that belongs in many overlapping
communities. In our case study, we seek to find different
communities formed by Papadimitriou and his coauthors.

We use the DBLP dataset, and we make four queries, each
one including Papdimitriou and two other computer scien-
tists. The queries are the following

Q1 = {Papadimitriou, Abiteboul, Kanellakis};
Q2 = {Papadimitriou, Widgerson, Fortnow};
Q3 = {Papadimitriou, Yannakakis, Karp}; and

Q4 = {Papadimitriou, Raghavan, Kleinberg}.
We run our algorithm requesting communities of less than 20
nodes (in order to be able to visualize the results), and set-
ting the sum-of-square-of-distances constraint equal to 10.

The resulting communities are shown in Figure 4. In all
cases one can find the theme associated with each commu-
nity. Query Q1 corresponds to database theory, query Q2
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Figure 3: Behavior of the three heuristics (GreedyDist, GreedyFast, and Baseline) for the tag dataset.

Table 2: Statistics of the graphs of Figure 4, showing
number of nodes |C|, min. degree fm, and avg. degree fa.

Community |C| fm fa
Database theory 13 6 7.38
Complexity theory 12 4 4.81
Algorithms I 12 4 5.16
Algorithms II 14 7 7.84

corresponds to complexity theory, query Q3 corresponds to
algorithms for work mostly done in 70’s and 80’s, and query
Q4 corresponds to most recent work in algorithms.

Notice that for Q2 there is only one edge between the three
query nodes, while in the other three cases there is a triangle
of collaboration. In all cases the resulting communities have
high minimum and average degree, as shown in Table 2.

7. CONCLUSIONS
In this paper we studied the problem of finding a com-

munity in a graph given a set of query nodes. The aim is
to find compact a community that contains the query nodes
and it is densely connected. We motivate a measure of den-
sity based on minimum degree, and we also suggest prun-
ing nodes based on their distance to the query nodes. For
those requirements we study a simple greedy algorithm and
we show that it yields the optimal solution. The algorithm
generalizes nicely and yields optimal solution if we want to
optimize any monotone function, and if we want to satisfy
any number of monotone constraints.

For the variant of the problem with size constraint on the
size of extracted community, the situation is not so agree-
able. We show that the community-search problem with
upper-bound constraint on the size of the extracted commu-

nity is NP-hard – even though the case with lower-bound
constraint is still polynomial, but this case is less useful in
practice. Thus, to address the problem of community search
with upper-bound constraint on the size, we propose two
simple heuristics, inspired by the basic greedy algorithm,
and we show experimentally that those heuristics outper-
formed a natural baseline.

For future work, we would like to apply our problem def-
inition in practical applications, such as query suggestion
and tag suggestion.

Acknowledgements: We are grateful to Hannu Toivonen
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