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Abstract 

This article identifies the common characterizing property. the comonotonic sure-thing principle, that underlies 

the rank-dependent direction in non-expected utility. This property restricts Savage’s sure-thing principle to 

comonotonic acts, and is characterized in full generality by means of a new functional form-cumulative 

utility-that generalizes the Choquet integral. Thus. a common generalization of all existing rank-dependent 

forms is obtained including rank-dependent expected utility, Choquet expected utility, and cumulative prospect 

theory. 
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1. Introduction 

Expected utility has been the received theory of individual decision making under risk, 
where probabilities are known beforehand, and under uncertainty, where probabilities are 
not known beforehand. Its validity was however called into question due to the paradoxes 
ofAllais and Ellsberg. These paradoxes have led to the development of various alternative 

theories. There are two main directions in the literature on axiomatic non-expected utility 
theories-the rank-dependent direction and the betweenness direction. Betweenness, the 
common characterizing property of the latter direction, requires that the preference for a 
probability mixture of two lotteries be between those two lotteries. The betweemress 
direction originated with weighted utility theory (Chew, 1983; Fishburn, 1983), followed 

by Dekel (1986), Hazen (1987), Chew (1989), Gul (1991), and others. The betweenness 
literature has concentrated on decision making under risk, and does not provide an ac- 
count of the Ellsberg paradox. 

We focus on the other main direction, the rank-dependent direction, that originated with 
Quiggin ( 1982) and Schmeidler (1989). The rank-dependent theories have a number of 
appealing features. While expected utility has often been criticized for modeling risk 
attitudes solely through the valuation of outcomes, the rank-dependent models incorporate 
the influence of the perception of risk and uncertainty. Further, they have tractable fimc- 
tional forms and explain both the Allais and the Ellsberg paradoxes. 

Savage’s sure-thing principle is directly violated by the Allais paradox in the context of 
risk, and by the Ellsberg paradox in the context of uncertainty. This article proposes a 
weakening of Savage’s sure-thing principle, called the comonotonic sure-thing principle 
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or comonotonic independence axiom, which essentially restricts Savage’s sure-thing pi-in- 

ciple to comonotonic acts, i.e., acts that induce the same ordering on the states of nature 
in terms of the associated outcomes. We will use both labels interchangeably noting that 
the comonotonic sure-thing principle label is clearer in linking its content with the sure- 
thing principle, while comonotonic independence is simpler and avoids the connotation 
associated with the term “sure-thing.” 

We identify the comonotonic independence axiom as the common characterizing prop- 
erty that underlies the rank-dependent direction. We characterize comonotonic indepen- 
dence in full generality by means of a new functional form called cumulative utility (CU). 

The axiomatizations currently provided in the literature suppose various conditions, none 
directly weakening Savage’s sure-thing principle, and all stronger than comonotonic in- 
dependence. The derivations of most of those results can be simplified through the results 
of this article; see table 1 in section 5. In particular, by dropping separability of belief and 

utility, CU generalizes Choquet expected utility, as well as cumulative prospect theory 
(rank- and sign-dependent utility theory). A more detailed discussion of the literature is 
provided in section 5. 

The rank-dependent generalization of Savage’s expected utility to Choquet expected 
utility became possible when a proper generalization of additive integrals was understood, 

in Quiggin (1982) for the special case of decision making under risk, and, independently, 
in Schmeidler (1989) for the general case. This generalization is the Choquet integral 
introduced by Choquet (1954). In section 4, the form introduced in this article, the 

CU-functional, is shown to be a genuine generalization of the Choquet integral, satisfying 
natural conditions such as monotonicity, linearity within comonotonic subsets, and sup- 
norm continuity. The latter is less restrictive than weak continuity, popularly used in 
decision making under risk and in statistics, and yields convenient necessary and suffi- 
cient conditions in the main theorems; see Observation 4.2. It only employs structure on 

the outcomes, and does not impose any restriction on the state space, which may be finite, 
infinite, contain atoms, or be atomless. 

Section 2 presents some notation. Section 3 presents the representation theorem for 
simple acts. The main theorem, dealing with nonsimple acts, is given in section 4. Section 
5 relates our result to the literature. Table 1 illustrates that the CU-characterization gen- 

eralizes not only the existing rank-dependent characterizations for uncertainty, where no 
rank-linear forms had as yet been axiomatized but also generalizes existing results for the 
context of risk, For risk, rank-linear forms had been proposed before. Besides generalizing 

the existing results, we provide a direct proof that avoids some mathematical problems 
that occurred in the literature; these are discussed or referenced in section 5. Appendix A 
gives proofs and appendix B generalizes the results to connected topological spaces. 

2. Notation 

Let 11 be the state space, endowed with an algebra &. Elements of & are called events. 
As consequence space we take the real line R. (The appendix will generalize to connected 
topological spaces, e.g., any convex subset of R”‘.) F is the set of all acts, i.e., measurable 
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functions (the inverse of every interval is an event) from R to R. We denote by f-*x the 

act assigning x to all w E A and f(o) to all 6~ E A”, and by f-,4,g,y the act assigning x 
to all w E A, y to all o E B, and f(w) to all w E A’ n B’. Here A,B are disjoint events. 
A function v : s4 -+ [O,l] is a cupaci@ if v(0) = 0, LJ(L!) = 1, and $4 U B) 2 v(A) for 
all A,B E tie; capacities are nonadditive generalizations of probability measures. 

I1 = (A,, ., A,,) is an ordered partition, or partition for short (the usual unordered 

partitions will not occur in this article}, if A ,, ., A,, are mutually exclusive and exhaustive 
subsets of R. It is always assumed that the A/‘s are events. We write U’(n) for UJ=, .4,; 

U’(n) = 0; we often suppress rj. F” is the set of acts of the form XI’= I xjlA, (1, is the 
indicator function); whenever we use this notation, it is implicitly understood that the A$ 

are disjoint. Note that the set F” does not depend on the ordering of events in Il. F’i is the 
subset of F” for which x, 5 ... 2 x,,; here obviously the ordering of events in II does 
matter. The set F‘ of simple acts is the union of F” over all partitions n; F” denotes the 

set of all bounded acts. 
We are concerned with a preference relation > on a set of acts; the exact domain of Z= 

will be specified below. A function cp represents + ifq is a function from the domain of 

3 to R such that [f 3 g e cp(f) 5 p(g)]. If a representing function exists, then & is a 
weak order, i.e., it is complete [VJ g : f ?= g or g 3 f] and transitive. 

3. Cumulative utility for simple acts 

This and the following section characterize CU theory in terms of properties of >. CU 
employs an outcome-dependent capacity, i.e., a function W : R X d -+ R satisfying (i) 
V,4 E ti : W(O,A) = 0, (ii) Vx f 0, W(x,sZ) # 0, and (iii) Vx # 0, W(x;)/W(x,Q) is a 
capacity. In this section, we restrict attention to the set F of simple acts. A representing 

function on F is a cumulative utility (Cv) functional if there exists an outcome-dependent 
capacity W such that the function is of the form 

The most well-known special case is subjective expected utility (SEU). It corresponds to 
W(x,A) = P(A)u(x), where P is a probability measure and II a utility function. An inter- 
mediate special case is Choquet expected utility (CEU), where W(x,A) = v(A)u(x), with v 

being a capacity instead of a probability measure. Note the central role of events of the 
form U’, describing the occurrence of a fixed outcome .yi or anything better. That is, these 
events are “cumulative.” This explains the term cumulative utility. 

Throughout this article, for an outcome-dependent capacity W, 

V (y. B, A) : = W(v, B) - W(Y, A). 
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The condition B > A is implicit in the notation V(y,B,A). With this notation, (1) can be 
rewritten as 

5 V(xp u', P). 
j=l 

One may interpret V as an event-dependent utility, i.e., the natural rank-dependent ana- 
logue of state-dependent utility. To generalize Choquet expected utility (the case where 
W&4) = v(A)+) above) to incorporate state-dependence of utility, one can write W(x,A) 
= v(A)u,(x), where u,(e) now depends on the event A. Then, however, with preferences 
over acts as the only empirical primitive, the factorization v(A)u,(.) becomes meaningless. 
Only the product W&4) = v(A)u,&) can be derived from preferences. Thus, the result of 
this article may be interpreted as a generalization of CEU that allows for state-dependent 
utility. Under CU, the outcome-dependent capacity and the functional in (1) on F are said 
to be associated with each other. 

Actsfand g are comonotonic if there exist no states o, w’ such thatf(o) >f(o’) and 
g(w) <c g(w’). That is,fand g order the states of nature the same way in terms of the appeal 
of the assigned outcomes. A set of acts is comonotonic if the acts are pairwise comono- 
tonic. We say that & satisfies comonotonic independence (comonotonic sure-thing prin- 
ciple) on F if 

f-AX +g-,xwf-,y+g-,y (3) 

for alIf_, x, g-, x, f-A y, g-, y which are comonotonic. Observe that if the latter acts are 
not required to be comonotonic, then (3) is equivalent to Savage’s sure-thing principle. 
Comonotonic independence weakens Savage’s sure-thing principle by requiring the four 
involved acts to be comonotonic. It is apparent that comonotonic independence is com- 
patible with both the Allais paradox and the Ellsberg paradox. Motivations have been 
provided in Yaari (1987), Schmeidler (1989), Wakker (1990a), and other articles. 
Schmeidler (1989) uses the term comonotonic independence for independence with re- 
spect to probabilistic mixing; in his model, consequences are probability distributions 
over a set of prizes. Our condition is the natural weakening of his condition to the setting 
in which a probabilistic mixture operation is not available. It can be seen (Wakker, 1989, 
Lemma VI.3.3) that the simple acts in (3) are comonotonic if and only if they are 
contained in one set F:. 

The following lemma prepares for the main theorem. Its proof is given immediately 
because it illustrates the CU functional. Together with Corollary 1, it shows that comono- 
tonic independence underlies all rank-dependent models. 

Lemma 1 . + satisfies comonotonic independence on F whenever it can be represented by 
a CU functional. 
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Proof Let Ciijfil,, + xl,, 3 xi+jgil,, + xl,!. Further, letf, 2 ... ‘Jfi-, 2 x z&, 2 

... 2 f,, the same with g instead ofJ; and/or with JJ instead of x. Substitute 

-g V(j-, u’, W) + V(x, U’, W’) 2 z vg,, u’, u’-‘) + Vb, u, @‘I? 

and replace the common term V(x,ui,W-‘) by V@,ti,cy’-‘). Note that this reasoning 
could only be applied because the acts are comonotonic, and so can be related to one same 

set fl. 0 

Another way to understand the result of the above lemma is to observe that CU gives 
an additive representation within each set F!!; see (2). That implies the usual independence 

within each fl, i.e., comonotonic independence for simple acts. 
We say that 3 satisfies pointwise monotonicity on a general set of acts G, if for all acts 

Jg E G : [VW E R : f(o) 2 g(o)] +f B g. For simple acts however, we need to develop 
a stronger definition of monotonicity. An event A is inessential ifs- g for all simple acts 
f and g that coincide on A“. Essential is the opposite of inessential. We call 3 joint<v 
monotonic on F‘ if, for all simple acts f and essential events A, b > x tif-,+y > fdAx]. 
In CU, joint monotonicity implies monotonicity with respect to outcomes as well as with 

respect to event inclusion; in decision making under risk, it is equivalent to stochastic 
dominance (see section 5). Pointwise monotonicity follows on F‘ as an elementary con- 
sequence of joint monotonicity, transitivity, and completeness. 

Continuity will be related to the supremum norm: 3 is continuous on F” if for each j 
z g in F” there exists 6 > 0 such that for all h in F; : ([Vo E R : f(w) - h(w)1 < 61 a 
h > g), and ([VW E R : I&w) - g(w)1 < 61 +f> h). 

For an outcome-dependent capacity W : R X ti -+ R and the CU functional on F” 
associated with W, we use the following analogous conditions. W satisfies joint monoto- 
nici@ if y > x =+ V@B,A) > V(x,B,A) whenever BL4 is essential. CU is continuous on F 

if for each f E F” and each E > 0 there exists 6 > 0 such that for all h E F” : [Vo E fl 
: If(w) - h(o)1 < 61 * Km(f) - CU(h)l < E. Note that this implies continuity of W(-,A) 
for each A. Finally, a function is a ratio scale if it is unique up to a positive factor. The 

following theorem characterizes CU on the simple acts. 

Theorem 1. Suppose there exist three disjoint essential events. The following two state- 
ments are equivalent for + on F. 

(i) + is represented by 

for x, 2 ‘.. 2 x,, where W : R X ti -+ R is an outcome-dependent capacity that is 
continuous in the first argument and jointly monotonic. 
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(ii) + satisfies transitivity, completeness, joint monotonicity, (supnorm-) continuity, and 
comonotonic independence (comonotonic sure-thing principle). 

Further, given (i) or (ii), CU is (supnorm-)continuous, and the functions W and CU are 
ratio scales. 

A detailed proof of the theorem is given in the appendix. We give here some comments 
on the proof of the most difficult implication, (ii) 3 (i). (ii) implies that within each 

comonotonic subset e, the regular sure-thing principle holds. This principle is identical 
to the independence condition proposed in Debreu (1960) shown to be necessary and 

sufficient for additive representation on full product sets. Here we need the extension of 
Debreu’s result to comonotonic sets. This extension is nontrivial, and was provided by 
Wakker (1993a). Next the additive representations on comonotonic subsets must be 
“glued together” into one overall CU-functional that is defined on the set F” of simple acts. 

For example, the additive representations must be made to coincide on the diagonal of 
constant acts; the required derivation turns out to be rather complicated. The “gluing 
together” of additive representations within different comonotonic subsets, the main prob- 

lem in the proof, is trivially satisfied in the context of decision making under risk. It shows 
why our result for uncertainty is more complicated than existing results for risk. 

4. Cumulative utility for nonsimple acts 

This section extends the results of the previous section to Fh, the set of bounded acts. The 
definitions of comonotonicity, as well as continuity for & and functionals CU, are ex- 
tended to Fb in a straightforward manner. For simplicity, the definitions of (in)essentiality 

(and joint monotonicity as based on it) will not be changed i.e., they are only related to 
simple acts. (In the presence of proper monotonicity, this can be seen to be equivalent to 
alternative definitions of (in)essentiality, related to larger sets of acts.) Joint monotonicity 

of + will only be imposed on F”; whether Statement (i) in Theorem 2 implies joint 
monotonicity of > on the entire set p is an open question. Comonotonic ipidependence 
holds on Fh if (3) holds for all comonotonic acts in F’. For the extension to nonsimple 
acts, certainty equivalents are important; for an act, the certainty equivalent is the constant 

act/outcome equivalent to that act. 

Lemma 2. Suppose + satisfies joint monotonicity on F, and transitivity, completeness, 
and continuity on p. Then, for eachf E Fh, there exists a certainty equivalent. 

If a CU functional as characterized in Theorem 1 is given on F”, then, under the 
conditions of the above lemma, we can, for any f E Fh, define CU( f) as the CU-value of 
the certainty equivalent ofJ: Obviously this definition will only be useful if CU is a 
genuine generalization of integrals. That is, given boundedness, CU(f) should be the limit 
of CU values of converging simple acts. This is guaranteed by continuity, together with the 
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well-known denseness (with respect to the supnorm) of the simple acts in p. As a 

consequence (derived below), CU-on-p inheritspointwise monotonicity, natural for (gen- 
eralized) integrals, from C&on-F : [V w : Ao) 2 g(w)] * CU(f) 2 CL&). Another 
property that CU-on-p inherits from (X-on-P is comonotonic independence for the 
represented preference relation. This is crucial as comonotonic independence is at the core 

of the rank-dependent stream, and of this article. The property follows directly from the 
following lemma. 

Lemma 3. Suppose that CU : Fb + R is continuous, and is associated with an outcome- 

dependent capacity on F. Then CU satisfies pointwise monotonicity, and CU(f) - CU(g) 
= CU(.f’) - CU(g’) for all comonotonic actsJg,f’,g’ satisfying: Vo E R, 

u-(o) = g(o),f’(w) = g’(o)1 or [f(w) =f1(0), g(o) = g’(w)l. (4) 

Actually, a somewhat stronger condition than comonotonic independence follows for a 
preference relation represented by a CU-functional as in the above lemma. It says that, 
given comonotonicity, not only one or finitely many common outcomes can be changed 

without affecting preference, but rather any arbitrary number: 

Corollary 1. Under the conditions of Lemma 3, the binary relation a, represented by CU, 
satisfies the following condition: For all comonotonic f;g,f’,g’ satisfying (4), If+ g af 

k g’]. Consequently, ?= satisfies comonotonic independence. 

Sometimes in the literature stronger formulations for independence conditions, such as 
in the above corollary, have been used where an infinite number of common outcomes 

may be replaced. Also Savage (1954) used this stronger formulation for his sure-thing 
principle. The above corollary shows, in combination with Observation 1 below, that the 
alternative definition and ours are equivalent for continuous CU, thus for most rank- 
dependent models in the literature; also in Savage (1954), restriction of the sure-thing 

principle to simple acts would have sufficed to imply it in general (see Wakker, 1993b). 

Theorem 2. Suppose there exist three disjoint essential events. The following two state- 

ments are equivalent for 3 on Fh, the set of bounded acts: 

(i) > is represented by a (supnorm-)continuous functional CU. On F”, CU is associated 

with a jointly monotonic outcome-dependent capacity W, i.e., 

for x, 2 ... 2 x,,. 
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(ii) 3 satisfies joint monotonicity on P, transitivity, completeness, (supnorm-)continuity, 
and comonotonic independence (comonotonic sure-thing principle). 

Next some observations and modifications are given. 

Observation 1. The following observations apply to Theorem 2: 

l The functions W and CU in (i) are ratio scales. 
l In (i), W : R X LYJ + R is continuous in outcomes. 
l Both in statement (i) and statement (ii), pointwise monotonicity is implied by the other 

conditions. Continuity uniquely determines the extension of CU from P to p. 
l Comonotonic independence can be weakened to hold only on F; alternatively, it can be 

strengthened to the condition in Corollary 1. 
l Instead of Fh, any set of acts X with F C X C p could have been taken as domain. 

The next observation is another illustration that supnorm continuity is not very restric- 
tive. 

Observation 2. Under SEU and CEU, (supnorm-)continuity of the representing functional 
is equivalent to continuity of the utility function. 

The representation of Theorem 2 can be extended to unbounded acts with finite CU- 
value, in a way similar to definitions of integrals. Supnorm-continuity then is to be 

restricted to Fb. For act f, the truncation f," is u if f is less/equal u, it is f if f is between 
u and p , and it is p iff is greater/equal p. For any unbounded act f, the usual integrals are 
defined as limits of integrals of truncations off: Analogously, if the limit of the certainty 
equivalents of the truncations fup (u going to - 00, p to 00) exists and is real, then we can 

extend the definition of the CU functional to f by defining CU(f) as the CU-value of the 
mentioned limit of certainty equivalents. Here the condition must be imposed on the 

preference relation that f is equivalent to the mentioned limit of certainty equivalents. 
Representations of unbounded acts in rank-dependent models have been discussed in 
Chew and Epstein (1989a, end of section 4), Wakker (1993b), and Nakamura (I 992b). 

5. Specializations of cumulative utility 

This section presents the implications of Theorem 2 for the recent literature on rank- 

dependent preferences. We first show how, in general, decision making under risk can be 
considered a special case of decision making under uncertainty in which probabilities are 

known beforehand. In this case, a probability measure P on R is given, and each act f 
induces a probability distribution Fr : x H P(f 5 x) on the outcome space R. An act f 
stochastically dominates another act g if F,. (x) 5 F,(x) for all outcomes x. We require 3 
to satisfy stochastic dominance in the sense thatf 3 g wheneverf stochastically dominates 
g, and f > g if furthermore Ff # F,. It follows that different acts inducing the same 
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probability distribution over outcomes are indifferent. It is then customary not to make 
explicit the underlying state space but rather to assume that it is rich enough to generate 

all (countably additive) probability distributions on R. An example of such a state space 
is [O,l] endowed with the uniform distribution on the Bore1 subsets. Then, as is well- 
known, for any probability distribution, there exists a random variable/act that generates 
it. 

Table 1 presents the rank-dependent forms for simple acts xJZl x,1+,, with X, > ... > xn; 

the extension to general acts has been given in section 4. The forms to the right concern 
decision making under uncertainty in full generality; the forms to the left concern deci- 
sion making under risk. In the latter case, the (objective) probabilities P(A,) are abbrevi- 

ated as p,. 
CU was defined before; RLU (rank-linear utility) is the special case in which W(x,A) = 

$(x,&A)) for a function + satisfying +(x,0) = 0, and for all )’ > x and q > p, 

NY>4) - QCVP) - Wx,q~ + W,p) > 0. (5) 

Condition (5) is equivalent to stochastic dominance, and is the analogue of joint mono- 
tonicity in CU (see Lemma 4 below). CEU (Choquet expected utility) corresponds to the 

case where w(x,A) = u(x)v(A), where v is a capacity; let us repeat that W’ abbreviates 

#=, Ai. RDEU (rank-dependent expected utility) is the special case of CEU in which v 
= cp o P, for a known probability measure P and a strictly increasing function cp with q(O) 
= 0, cp( 1) = 1; stochastic dominance implies that u is strictly increasing. SEU (subjective 
expected utility) corresponds to CEU where the capacity v is additive, i.e., it is a (sub- 
jective) probability measure. EU (expected utility) is the special case of SEU in which the 
subjective probability measure coincides with a known objective probability measure P. 

RDEU originated with Quiggin (1982). See also Yaari ( 1987), Chew (1990), Nakamura 
( 1992a), and Wakker { 1994). CEU was initiated by Schmeidler (1989; first version, 1982) 
with refinements by Gilboa (1987), Lute (1988), Nakamura (1990, 1992a), Wakker (1989, 

Theorem VI.5. I), Sarin and Wakker (1992) and Chew and Kami (1993). RLU was first 
proposed in Segal (1989, Theorem 1; first version, 1984) (see also Wakker, 1993~; Segal, 
1993.) Green and Jullien (1988) gave sufficient conditions for this form. Chew and 
Epstein (1989a) gave necessary and sufficient conditions (see also Chew, Epstein, and 

Wakker, 1992). Our result is more general, because, first, it can be formulated for con- 
nected topological outcome spaces (see appendix B), and second, the imposed continuity 
restrictions are weaker. 

We obtain the following generalization of Wakker (1990b): 

Table 1. 

Risk Uncertainty 
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Observation 3. All models from the left-hand side of Table 1 can be derived from those 
on the right-hand side: One relates probability distributions to random variables (acts) on 
the space [O,l] endowed with the uniform distribution, and invokes stochastic dominance. 

The following lemma shows how RLLJ can be derived from CU. Thus, in conjunction 
with Theorem 2, the lemma provides a characterization of RLU. Here it should be noted 
that, for decision making under risk, stochastic dominance implies joint monotonicity of 
the preference relation, thus of the CU form. The requirement that P be atomless is 

necessary and sufficient for the possibility to generate all probability distributions on R. 

Lemma 4. Suppose P is an atomless countably additive probability measure on a. Under 

CU, the following two statements are equivalent: 

(i) + satisfies stochastic dominance. 
(ii) RLU holds. 

Proof: (ii) immediately implies (i). So we suppose that (i) holds, and derive (ii). Under 

stochastic dominance, the equality P(A) = P(B) implies, for all x 2 y, the indifference xl, 

+ ~1,~ w xl, + ~1,~. Substituting CU yields 

W(x, A) - W(x, 0) + W(.v, 02) - WCv, A) = w(x, B) - w(x, 0) + w(v, R) 

Substituting y = 0 and 

W(x, 0) = W(0, n) = W(O+4) = W(x, 0) = W(O,fl) = W(O,B) = 0 

yields PV(x,A) = W(x,B) for all x 2 0. Analogously, W&4) = W&B) follows fory < 0 by 
substituting x = 0. So W(.,,4) depends only on the probability of A, and W(x,A) = 
$(x,&4)), for a function $. Mainly by stochastic dominance, $ satisfies all required 

conditions. cl 

The ordinal independence ‘condition of Green and Jullien (1988) is weaker than 
comonotonic independence. In Theorem 1, however, comonotonic independence can be 
weakened to the following condition, the equivalent of ordinal independence of Green and 
Jullien: 

f-AX * g-A E @f-A y + g-, y (6) 

where either x and y are maximal outcomes, or minimal outcomes. This condition implies 
comonotonic independence in the presence of the other conditions of Theorem 2, by 
reasonings analogous to Gorman’s (1968). (Further details will be given in Remark Al.‘) 
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Quiggin (1989, Proposition 4) and Ebert ( 1988a,b) also obtained such representations for 
simple probability distributions. Due to symmetry, in RLU, only nondecreasing random 
variables from [O,l] to R need to be considered so that the additive representation only 

has to be derived on one maximal comonotonic set. The process in the proof of Theorem 
1 of fitting together the additive representations from different comonotonic sets through 
certainty equivalents into one overall additive representation can thus be skipped for RLU. 

Hence its derivations are considerably simpler. (Wakker (1991, 1993a) pointed out math- 
ematical problems for the derivations of RLU. Also, Chateauneuf (1990) characterized 
RLU.) 

Cumulative prospect theory, introduced in Tversky and Kahneman (1992) is a special 
case of CU with W(x,B) = v+(B)u(x) for x L 0, and W&B) = v (B)u(x) for x < 0. (See 
also Wakker and Tversky, 1993.) The preference functional used in cumulative prospect 
theory appeared also in Starmer and Sugden ( 1989) and Lute and Fishburn (1991). It 

modifies the earlier prospect theory of Kahneman and Tversky ( 1979) by adopting RDEU 
or CEU forms, and presupposes a status quo-the zero outcome-relative to which gains 
and losses are defined. 

Within CU, we may extend the notion of a status quo to a normal region [u,u] of 

outcomes within which behavior conforms to the prescriptions of expected utility. Only 
when extreme outcomes are involved may the implications of expected utility be violated. 

This can be modeled by: For x E [u,u], W(x,A) = u(x)P(A), i.e., coincides with expected 
utility; for x < u, W&A) = u(x)v(A); for x > p, W(x,A) = u(.r)v’(A), where v and v’ are 
capacities, v(v’) pertains to the perception of uncertainty when excessively low (high) 
outcomes are involved. 

Next we suggest an application of the CU functional proposed in this article to robust 
statistics. There, the L-estimator corresponds to RDEU with u(x) = x (Huber, 198 1; Chew 

and Epstein, 198913). A commonly used special case is the a-trimmed mean consisting of 
the arithmetic mean after trimming the (Y fractions of the highest and the lowest obser- 
vations. One can be critical of trimmed means for indiscriminately discarding outliers, 
even when these turn out to be moderate. It seems prudent to determine a normal region 
[u,u] and trim for outliers only if they are outside this region. Such an estimator corce- 

sponds to: For x E [u,u], W(x,A) = x&4), i.e., coincides with expected value, for x < u, 
W&4) = xcp(P(A)) where cp is continuous on [O,l], linear on (cu,l], and vanishes on [0, OL), 

for x > u, W(x,A) = xcp’(P(A)) where cp’ is continuous on [O,l], linear on [O,l - 011, and 
equals 1 on (1 - cy,l]. 

Appendix A: Proofs 

Proof of Theorem I. 

SUPNORM-CONTINUITY OF CU: As a preparation we consider (supnorm-) continuity 
of cu. 
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Lemma Al. If W is jointly monotonic, then continuity of W in its first argument is 
equivalent to continuity on F” of the functional CU associated with W. 

ProoJ If CU is continuous, then continuity of W&A) in x follows from continuity of 
CU(x1, + ~1,~) in X, for y < x. Next suppose W is continuous in its first argument. To 
demonstrate the continuity of CU, let fj be a sequence of simple acts, converging in 

supnorm to the simple act5 We shall only prove liminf CU(f:) 2 CU(f ). We can write f 
as zy=, xii,,, with x, > ... > x,. Let gj be the simple act xy=, yjl,, where y( is the 

minimum of xi and infCfk(w) : k 2 j, w E Ai}. Then also these acts g’ converge in 

supnorm, monotonically from below, toJ: By taking j large enough, y( > > y,” can be 
guaranteed, so that then all g’ are in the same fl asf; with ll = (A,, . . ., A,). By continuity 

in x, for each i, of W(x,U’), consequently of each V(x,Ui,Uim’), CU(g’) converges to 
CU(j). Repeated application of joint monotonicity implies pointwise monotonocity of CU 
on F, so that CV(f’) 2 CU(gj) for all j. Hence liminf CU(f’) 2 liminf CU(g’) = 

CU(f 1. cl 

The above lemma also shows that, on F”, (supnorm-) continuity in the presence of joint 
monotonicity is equivalent to the usual (Euclidean) “finite-dimensional” continuities im- 
posed within each F”, so is not very restrictive. 

IMPLICATION (i) * (ii): To derive (i) + (ii) in Theorem 1, assume (i) holds. Comono- 
tonic independence has been derived in Lemma 1. Transitivity and completeness are 
direct. Continuity of > follows from the continuity of CU as established above. For joint 

monotonicity of 3, consider the simple act c:= ,x,l,,+zl,, for x, > ... > x,, A essential, 
and (A,, ., A,) an ordered partition of A’. It suffices to show that the CU-value of this 
simple act is a strictly increasing function of z. On (-~,.x,J, it is because I’@, A U (U”), 

U”) is, on [xj+,,xjJ, because V(z,A U (U’),U’) is, and on [x,, co), because V(z,A, 0) is. 

IMPLICATION (ii) + (i): Now we turn to the most difficult part of the proof. We suppose 
(ii) holds, and derive (i). Since + satisfies the usual continuity and monotonicity condi- 

tions within each p, we get: 

Lemma A2. For each f E F there exists a certainty equivalent (defined in section 4). 

We call one ordered partition (A,, ., A,,) an ordered refinement of another ordered 

partition (B,, ., B,) if A, is B, U B, U ... U B,, , A, is B,, + , U B,, +z U . U Bk2, etc. 
Again, because this article only deals with ordered partitions, we shall suppress “ordered” 
everywhere. Note that thus (A,, A,, A3) is not a refinement of (A2 U A,, A,). The following 
simple observations concerning essentiality of events can easily be verified: 

If A is essential, then so is each superset. (AlI 

IfA is essential, and (A i , . . ., A,) is a partition of A, then at least one Ai is essential. 

(A9 
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For each partition, there exists a refinement containing at least three essential 

events. (A3) 

For (A3), intersect each element of the partition with each of the three disjoint essential 

events as required in Theorem 1, and with the complement of the union of those three 

events. Then apply (A2) with each of those three events in the role of A. 

For every partition II containing at least three essential events, 2 restricted to fli is a 

continuous monotonic weak order that satisfies usual independence (CI in Wakker, 

1993a). Hence, by Corollary 3.6 of Wakker (1993a) (the increasingness condition there 

follows after suppression of inessential coordinates), there exists a cardinal additive rep- 

resentation v”: xJ=,x,lA, -~JE,V~‘(,xj) on $1. For each inessential Al in II, I$” is constant, 

and can be taken to be 0; for each essential A, it is strictly increasing in outcome by joint 

monotonicity. By (A3) and standard uniqueness results (see Wakker, 1993a), the same 

holds true for partitions Il with only two essential events. Partitions containing at least two 

essential events are called essentinl partitions. By (A2), any refinement of an essential 
partition is again essential. For all essential II, we set v”( 1,)) = 1 and for allj, q’i(O) = 

0. Assume now that ll’ is a refinement of an essential partition ll. Then the additive 

representation v”’ for ll’, when restricted to Fy, provides an additive representation that 

is alternative to p’. By cardinality, @’ differs from the restriction of p” only by scale and 

location, By our choices of the 0 and 1 levels of the additive representations, v”’ must be 

identical to the restriction of v”‘. In other words, we have: 

For any essential partition II, the additive representation V”coincides on 

common domain with the additive representation V”‘of any finer partition. (A4) 

The major difficulty in the present proof is to show that the different additive represen- 
tations for different partitions coincide on the “diagonal” of constant acts: 

c V,” (x) = 2 V,?‘(x) for ail outcomes x and essential partitions II and Il‘. (A.5) 
I J 

We call two essential partitions Il and n’ linked, denoted by ll 2 ll’, if they assign the 

same v” = V”‘-value to constant acts. Of course, we must prove that all essential parti- 
tions are linked. For every essential partition there exists a coarsening that is essential and 
contains exactly two events. By (A4), the additive representations on the two partitions 

must be in agreement, so the two partitions are linked. From this it follows that it suffices 
to prove (A5) for essential partitions containing exactly two events. 

Let us consider essential partitions (4,X) and (B,B’), and prove @,A’) Y (B,B’). If A 
tl B is essential, then, since essentiality of A’ by (Al) implies essentiality of (A n B)‘, the 
partition (A fl B, (A fl B)‘) is aiso essential; hence, by (A4), we can then link (A,&) 2 
(A n B+4v3, sw+4’ n F) 2 (A n B, (A n II)‘) 3 (B n A, Bu, m, 13” n AC) 22 (B,B~). 
So, say A n B is inessential. Then, by (A2), essentiality of A implies essentiality of AD, 
and essentiality of B implies essentiality of BW. So all partitions below are essential: 
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It remains to be shown that (IQ?‘) 2 (B”,B), where both partitions are essential. 

By (A3), there exists a refinement of (B,B’) having at least three essential events. If B 

contains at least two of those essential events, then by (Al) the partition can be chosen of 

the form (B,, B2, B”). In the other case, B’ must contain at least two of those essential 

events, and the partition can be chosen of the form (B,B,, &). Say the former case holds. 

We have (B,B’) 2 (B,,B,,B’) 2 (B,,(B2 U B’)) 2 (B,,B’,B*) 3 ((B, U lF), B2) .2 (B’, B,, 

B2) 2 (B’,B). Formula (A5) has been established. 
With (A5) available, it is easy to show that the additive representations on the sets 

Fy coincide on common domain, resulting in one overall function, and further to show 

that this one overall function is representing: Considerf E Fy, g E Fy’, II and II’ essential. 

By Lemma A2, there exists a certainty equivalent x for g. We have f 3 g w f 2= 
x w V”(f)rV”(x). Since by (A5) and the representation on Fy’ we have v”(x) = v”‘(x) 

= ti”(g)), we get 

f> g w v” (f) 2 v”’ (g). (A6) 

First, this shows, by setting f = g and reflexivity, that different v”‘s coincide on common 

domain so can be considered the restriction of one function, denoted CU, on F”. Note that 

the union of the F”‘s for essential II is A’; every simple act is contained, by (A3), in F” 

for an essential Il. Second representation of ?= by CU now is immediate from (A6). 

Continuing the proof, we proceed to show that CU is of the form as described in table 

1. For positive x, we define 

x 2 0 then W(xjl) : = CU(.rl,). (A7) 

For negative x, we define 

x < 0 then W(xJ1) := CU(xlLR) - CU(X~,~,). w3) 

Obviously, I#’ is an outcome-dependent capacity. It follows that, for each partition II = 

(B,, ., B,,) and simple act ,$,laj with x, 2 .. 2 x,, we have 

i v;(x,) = ,$ {W(x,, U :&I - ff’@, U ill 4)). 
/=I 

649) 

So W and CU are associated. Next we show joint monotonicity of W. Let y > x, B 3 A, 
BW essential. Monotonicity of Z= implies yl, + yl,,+xlg > yl, + xl,,+xl,c. Sub- 
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stituting CU gives joint monotonicity of W. Continuity of W(x, A) in x follows from 

continuity of CU on any F”, with ll an essential partition that refines (A,A’). 

UNIQUENESS: The only freedom in the construction of CU and W in the above proof 
was the choice CU( In) = (v”( I,,) =)I. One easily verifies that this could have been any 
other positive real number, leading to an admissible change in scale. There is no further 
freedom. Given W(O,A) = W(.x,@) = 0, CU, as well as the additive representations v” 

within the sets flI (i.e., the restrictions of CU to these sets) in the proof above, we must 
assign value 0 to the act constant 0. So indeed each of these is unique up to a positive 

scale. This scale might be thought to depend on F’i, but since the functions must coincide 
on the constant acts, the scale is independent of pl. Indeed CU, and W as uniquely 

determined by CU, are ratio scales. 

Remark Al. In Theorem I, comonotonic independence can be replaced by ordinal inde- 

pendence (6). 
Proof: In the proof of Theorem 1, comonotonic independence was used to obtain, 

through some other results in the literature (Corollary 3.6 in Wakker, 1993a, which in turn 

is based on Theorem 4a in Walker, 199 1) an additive representation v” on sets F”J . This 
in turn was based on application of Debreu (1960, Theorem 3) on small Cartesian prod- 

ucts (denoted F in the mentioned references) on which comonotonic independence is 
identical to full-strength independence. Since R is an arc-connected separable topological 
space, this might as well have been obtained, without any further complication, by (5) and 

Gorman (1968) instead of by comonotonic independence and Debreu ( 1960). cl 

Proof of Lemma 2. 

Let f E #. It is well-known that there are sequences of simple acts f’, gj, converging to 
f, monotonically from above and below respectively; so, f(w) 2 f” ‘(0) 2 flw) 1 
g”‘(w) 2 g’(o) for allj, w. By Lemma A2, which only needed the conditions of Lemma 

2, these simple acts have certainty equivalents, abbreviated CE. By pointwise monoto- 
nicity, CE(p) 2 CE( fj’ ’ ) 2 CE(g’+‘) L CE(gj) for all i. Let the limits be x, and xx, 
respectively; obviously x, 2 .Y~. [V’ : .x,~ 3 g’] implies xr 3 jY [Vj : fj 3 x,] implies f 2 
x,. so x1 = x,q - f: q 

Proof of Lemma 3. 

If f pointwise dominates g, then every simple function pointwise dominated by g is 
pointwise dominated by f as well. Since CU( f) and CU(g) are supremum of CU-values of 
pointwise dominated simple acts, CV( f) 2 CU(g) follows. 
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For the other condition, let$g,y,g’ be comonotonic, and satisfy (4). By Wakker (1989, 
Lemma VI.3.3.iii), there exists an ordering ?=’ (transitive, complete, antisymmetric: w 2=’ 
w’ and w’ >’ w 3 w = w’) of Sz such that, for each act h in vf’,g,g’), 

w >’ w * h(w) 2 h(w’). (AlO) 

Each other act h satisfying (AlO) is comonotonic withf;f’,g,g’. Let A := {w : f(w) = 

g(w),f’(w) = g’(w)}. Then for each w E A” :f(w) = f’(w) and g(w) = g’(w). Letf/,f’i, 
g’, g’j be four sequences of simple acts, converging toJf’,g, and g’, monotonically from 
below; e.g.,y(w) s f’+‘(w) I f(w) for allj,w. They can always be chosen such that they 
satisfy (AlO) and (4). To wit, suppose that they do not satisfy these conditions. We transfer 

these properties from A f;f , g, g’ to the simple acts as follows. For (AlO), we change each 
q from Cfj,f)‘, g’, g”} by assigning, to each w, max{hi(w’) : w’ <’ w}. Henceforth,fi, 
f”,g’, g” will denote the changed acts. This change has not affected monotonic conver- 

gence, in particular, for allj, w, and symbols h =f;f’,g,g’, still h’(w) 5 n+ ‘(0) 5 h(o). 
Observe that all simple acts in question satisfy (A lo), and are comonotonic withJ f;,g,g’ 
This change is called a step towards (AlO). Next, for each w E A, we replace bothf/(w) 

and gj(w) by their maximum maxv(w),gi(w)}, and analogously replaceyj(w) and g”(w) 
by their maximum. For each w E A’, we replace bothp(w) andf’J(w) by their maximum, 
and replace g’(w) and gci(w) by their maximum. Again, the changed acts will be denoted 

as the original ones. This change is called a step towards (4), and again, has not affected 
monotonic convergence from below. Now also fj = gj and ffJ = g’j on A, and fj = f’j and 
gj = g!’ on A’. I.e.,(4) is satisfied. But (AlO) may now be violated. So we make another 

step towards (Al 0), then one towards (4), etc., until these steps involve no more change. 
Each change gives rise to at least one more identity between the outcomes of the simple 
acts. Since the number of outcomes is finite, after a finite number of steps, the procedure 

stops, and (AlO) and (4) are satisfied. Substituting the resulting simple acts in the CU 
form on F” shows that CV( fj) - CV(gj) = CU(f “) - CU(g”) for all j : by comonoto- 

nicity fj,f”, g’, gQ belong to one same FT. Il can be refined such that each element is 
either a subset of A, or of A’. The terms V($, C, D) with CW C A cancel both in 
CU(f’)- CU(gJ) and in CU(f”)-CU(g’j); the ones with c\D C A“ are identical in these 

two differences. The resulting equality CU( f’)- CU(gj) = CU( f ‘j) - CU(g’j) is pre- 
served after taking limits, i.e., CU( f )-CU(g) = CU(f’)-CU(g’). Cl 

Proof of Theorem 2. 

IMPLICATION (i) + (ii): Suppose (i) holds. Transitivity, completeness, and continuity, 
are direct. Joint monotonicity of ?= on F” was already established in Theorem 1. Comono- 

tonic independence was established Corollary 1. 

IMPLICATION (ii) 3 (i). Suppose (ii) holds. By Theorem 1, there exists an outcome- 
dependent capacity W, jointly monotonic and continuous in outcomes, such that on F” the 
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associated functional represents > By Lemma Al, CU is continuous on E”. We define, for 

anySE Fb, CU(f) = CU( ) x , w ere x is the certainty equivalent outcome/constant act the h 
existence of which is guaranteed by Lemma 2. Obviously, on F”, this definition coincides 
with CU as already defined there, and obviously CU represents >. It remains to be shown 
that CU is continuous on Fh. Let the bounded f’ converge to the boundedJ: By compact- 
ness, it suffices to show that, if CU( fJ) converges, it converges to CU( f ). Suppose this 

were not the case, say the limit were larger. Then there is an outcome x strictly between 
that limit and Cc’(f). For large j, then f’ > X. But x > J; contradicting continuity of Z=. 

q 

Proof of Observation 1. 

That CU and W are ratio scales and that W is continuous in outcomes follows from 

Theorem 1. Pointwise monotonic&y follows from Lemma 3. That continuity uniquely 
determines the extension of CU from F to Fh follows from the denseness of the simple 
acts. 

The only implication of comonotonic independence used in the proof of (ii) ti (i) was 
its restriction to Ep. For the extension of F to Fh, it was not used. Corollary 1 shows how 
it can be strengthened. 

Only minor details in the proof need to be adapted when the set of acts is a set between 

p and Fh. Availability of simple acts was all that was needed in the proof. q 

Proof of Observation 2. 

Under CEU, thus also under SEU, we see that, by restriction to constant acts, continuity 
of CU implies continuity of the utility function. Conversely, continuity of the utility 
function implies continuity of the functional, mainly by uniform continuity of the utility 

function when restricted to an appropriate compact set. q 

Appendix B: General outcome sets 

For simplicity of presentation, we have formulated the results for the case where the 

outcome set is R. This appendix shows how to adapt the results to the case where the 
outcome set is any connected topological space. Let us first discuss a problem that may 
arise if there are maximal and/or minimal outcomes. Then it may happen that the repre- 
senting functional CU is “driven to infinity,” i.e., assigns value m to maximal acts, and/or 
value --to to minimal acts. Being a ratio scale, CU then necessarily is an extended 
representation. The following example illustrates: 
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Example Bl. Let the set of outcomes be [-l,l], fi = {w,, . . . . w,,} (n i_ 3), > is 

represented by I=:=, xi 1 (w,) H (x,,,,+ I)Xexp(x,,,,) X. .X exp(x,,,,), with x,(,, 2 ... L 
x,(,) (see Example 3.8 in Wakker, 1993a). An extended CU-representation is obtained by 

taking logarithm: the act constant -1 gets assigned value -co; other acts get assigned value 

Mk, 1) + 11) + x,(~) + ... + x,(,,), for x,,(,) 1 ... 2 x,(,,). Note that W(- l,A) = --a, 

for all essential, (i.e., nonempty) A. Since CU and Ware ratio scales, there does not exist 

a real-valued CU-representation. 

Let us now, similarly to appendix 2 in Wakker (1994) show how to adapt Theorem 2 

to general outcome sets. We will continue to use the notation EJ”, x,lAj for the simple act 

assigning outcome x, to A, for each i. In general, 2_ on outcomes is replaced by the 

preference relation > restricted to the constant acts. Equalities x = y are sometimes 

replaced by equivalences x N y. We assume that replacement of outcomes by other 
equivalent outcomes does not affect preference. For an adaptation of Theorem 1 this 

would have to be made explicit; for the adaptation of Theorem 2 that we provide below, 

it will be implied by pointwise monotonicity, a condition that will be added. Thus, in the 

presence of joint monotonicity (now with y Z x instead of y > x), the ordering of 

outcomes is the same for all essential BW. 

It was convenient (while not essential) for the derivations in this article, in particular for 

the uniqueness results, to let the representations have the value 0 at 0. Hence, for a general 

outcome set, we fix one outcome x0, called neutral, at which the representation and the 

outcome-dependent capacity will be given the value 0. The neutral outcome should be 

neither maximal nor minimal to avoid the problems of being driven to infinity at this 

outcome; that would preclude normalization at 0. 

An act f is bounded (in preference) if there exist outcomes u,u such that [Vo E R : u 

=S f(o) d u]. Certainty equivalents need no longer be uniquely determined. The choice 
between them is always immaterial. Acts are required to be measurable: the inverses of 
sets of outcomes of the form (x : x > y} and {x : x 6 y} should be events. In the presence 
of continuity of 3, measurability with respect to any algebra containing the topology on 

the outcome set will ensure this. 
Supnorm-continuity cannot be defined in this general setting. One solution, which we 

inferred from Chateauneuf (1990), is to assume, somewhat less generally, that the out- 

come set is a separable connected metric space. Alternatively, one may make explicit the 
implications of (supnorm-)continuity needed in the proofs of Theorems 1 and 2. These 
implications are as follows. On F”, one imposes simple continuity, which requires the 
restriction of ?= to any FrJ to be continuous with respect to the product topology there. 
This (and the possibility to replace outcomes by indifferent outcomes without affecting 
preference) is all that is needed to adapt Theorem 1. On P, the analogous simple conti- 
nuity of CU is, by Lemma Al, equivalent to supnorm-continuity if the outcome set is R. 
On Fb, more implications of supnorm-continuity are needed. First, we add pointwise 
monotonic&y explicitly and assume the existence of a certainty equivalent for each f E Ab. 
Then we impose a “simple-act denseness” condition to guarantee that the CU-value of an 
act is indeed the infimum of the CU-values of pointwise dominating simple acts, as well 
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as the supremum of pointwise dominated simple acts: We say simple-act denseness holds 
if, for all f > h, there exists a simple act g such that f > g z h, where g pointwise 

dominates h, and a simple act g’ such that f z g’ > h where g’ is pointwise dominated 
byJ An analogous condition is defined for CU. That the added restriction about pointwise 
dominance of g above is appropriate may appear from its necessity in the adaptation of 

Lemma 3, needed for the derivation of comonotonic independence. Next we define an 
Archimedean axiom that precludes the phenomenon of driven-to-infinity, illustrated in 
Example Bl. Let II = {A,;.., A,,} be an ordered partition. A sequence of outcomes 

a’,ci2,... is a standard sequence on event A, in Ffi’ if there exist x,i # j, and nonequivalent 
outcomes v,, uji such that (denoting only the outcomes for events A, and A,, assuming other 
outcomes identical to those of x) (vi, ok) N ( MB~, (Y ‘+ ’ ) for all k = 1,2,. ., with furthermore 

all acts in question contained in Ff. We call (Y’, (Y’, .. a second-order standard sequence 
on A,, in Fy if for every k there exists a standard sequence (p’ , p2, . ..) on A, in Fy, such 
that for some m, I E IN, ok N B”‘, oh+’ - B”” ‘, and 01’~’ N p”‘+“, The second-order 

Archimedean axiom requires that a second-order standard sequence be finite whenever it 
is bounded (i.e., there exist outcomes u and v that are preferred and dispreferred, respec- 

tively, to each element of the sequence). Wakker (1993a) showed that the axiom is nec- 
essary and sufficient to preclude the driven-to-infinity phenomenon (and that a regular 
“first-order” version is not). 

Theorem Bl. Suppose the set of outcomes is a connected topological space with a fixed 

(neutral) outcome x0 that is neither maximal nor minimal, and that there exist three 
disjoint essential events. The following two statements are equivalent for > on Fh, the set 
of bounded measurable acts: 

(9 k is represented by a pointwise monotonic, simple-continuous, simple-act dense 
functional CU. On P, CU is of the form 

i xjlA, -i {W(+ U;=, A;) - W(x,, U;:; Ai)} 
,= I ;= I 
forx, * ‘.. Zx Here W is an outcome-dependent capacity ( W(.x”J) = W(x,0) = 
0 for all A and x\ that is jointly monotonic. 

(ii) Z= satisfies joint monotonicity on F”, transitivity, completeness, pointwise monoto- 
nic&y, simple-continuity, the existence-of-certainty-equivalent condition, simple-act 

denseness, the second-order Archimedean axiom, and comonotonic independence 
(comonotonic sure-thing principle). 

ProojY For the implication (i) j (ii), we make a few comments. For the certainty equiva- 

lent condition, note that by pointwise monotonic&y, there exists a dominating and domi- 

nated constant act for every bounded act $ By continuity of CU on constant acts (as 

implied by simple continuity) and connectedness, f has a certainty equivalent. For the 

proof of comonotonic independence, we shortly comment on the proof of (the analogue 
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of) Lemma 3. For h = fy,g,g’, one now takes a sequence of simple acts ti such that h 

pointwise dominates M”‘c ’ and h’+ ’ pointwise dominates ti for all j, and CV(w) converges 

to CU(h). By simple-act denseness, such hi exist. The other parts of the implication (i) * 

(ii) are straightforward. 

Next we assume that (ii) holds, and derive (i). First the CU-representation on P is 

derived. We adapt the proof of (ii) * (i) of Theorem 1 given in appendix A. Lemma A2, 

ensuring the existence of certainty equivalents for simple acts, is now derived from 

Wakker (1989, Lemma VI.6.1) and connectedness. For every partition containing at least 

three disjoint essential events, now, by Theorem 3.3.C (instead of Corollary 3.6) of 

Wakker (1993a), a cardinal additive representation v” is obtained on Fy. Again, such 

representations are subsequently obtained on all essential partitions. We take any non- 

maximal outcome (existing by continuity and connectedness) x’ > x0, and let all additive 

representations assign value 0 to the act constant x0, and value 1 to the act constant x’. 

With these modifications, the representation on F” results. The extension to Fh requires no 

further comments. q 
The, somewhat complicated, second-order Archimedean axiom in statement (ii) above 

is only needed for maximal or minimal outcomes. If there exist maximal outcomes but no 
minimal outcomes and the second-order Archimedean axiom is dropped, then only a 

minor adjustment is required to permit an extended representation. It is then possible that 
for the maximal equivalence class of acts (containing the acts that assign maximal out- 

comes to each state of nature, and acts that do so except on an inessential event) the CU 
value must be m For all nonmaximal acts the CU value then is finite. The representation 
in terms of the outcome-dependent capacity in Theorem B 1 .(i) can then be maintained if 

W&4) is infinite whenever x is maximal and A” is inessential, and if the convention is 
adopted that terms m - ~0 are zero (such terms occur only for the events A,,..., Aj such 
that A, U . ..U AJ is inessential). 

If the second-order Archimedean axiom is dropped and there exist minimal outcomes, 

the case is more complicated. Then for the minimal equivalence class of acts (containing 
the acts that assign minimal outcomes to each state of nature, and acts that do so except 
on an inessential event) the CU value can be --oo. The representation in terms of the 

outcome-dependent capacity in Theorem B 1 .(i) then cannot be maintained for acts for 
which the minimal outcome occurs (for the other acts it can be). The reason is that W(xJ1) 
in Formula (A8) must be --tsr as soon as x is minimal and A is essential. Then in the 

summation in Theorem Bl .(i) terms m - ~0 occur that cannot be defined as 0. The 

cumulative method of summation of the outcome-dependent capacity-differences turns 
out to be less convenient for minimal outcomes than for maximal outcomes. If one is 
willing to give up the convention that the representations are zero at the prespecified 
neutral outcome, then there is a way for maintaining the representation in terms of the 
outcome-dependent capacity in Theorem Bl .(i); we inferred this method from Chateau- 
neuf (1995, personal communication). If then a minimal outcome x exists, one sets W&4) 
= 0 for all events A such that A’ is essential. Only if A’ is inessential, one sets @x0, A) 
= 0 for a neutral outcome x0 that is strictly perferred to the minimal outcome. Then the 
convention 00 - ~0 = 0 always gives the right results in the summation. 
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Finally, let us note that Remark Al can be extended to separable arc-connected outcome 

spaces by Gorman (1968), and to separable connected outcomes spaces by von Stengel’s 
(1991) generalization. 
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Notes 

1. The comontonic sure-thing principle was tested empirically by Wakker. Erev, and Weber (1994) in the 

context of risk, and by Fennema and Wakker ( 1994) in the context of uncertainty. 
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