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THE COMPACT DISCONTINUOUS GALERKIN (CDG) METHOD
FOR ELLIPTIC PROBLEMS∗

J. PERAIRE† AND P.-O. PERSSON‡

Abstract. We present a compact discontinuous Galerkin (CDG) method for an elliptic model
problem. The problem is first cast as a system of first order equations by introducing the gradient
of the primal unknown, or flux, as an additional variable. A standard discontinuous Galerkin (DG)
method is then applied to the resulting system of equations. The numerical interelement fluxes
are such that the equations for the additional variable can be eliminated at the element level, thus
resulting in a global system that involves only the original unknown variable. The proposed method
is closely related to the local discontinuous Galerkin (LDG) method [B. Cockburn and C.-W. Shu,
SIAM J. Numer. Anal., 35 (1998), pp. 2440–2463], but, unlike the LDG method, the sparsity pattern
of the CDG method involves only nearest neighbors. Also, unlike the LDG method, the CDG method
works without stabilization for an arbitrary orientation of the element interfaces. The computation
of the numerical interface fluxes for the CDG method is slightly more involved than for the LDG
method, but this additional complication is clearly offset by increased compactness and flexibility.
Compared to the BR2 [F. Bassi and S. Rebay, J. Comput. Phys., 131 (1997), pp. 267–279] and
IP [J. Douglas, Jr., and T. Dupont, in Computing Methods in Applied Sciences (Second Internat.
Sympos., Versailles, 1975), Lecture Notes in Phys. 58, Springer, Berlin, 1976, pp. 207–216] methods,
which are known to be compact, the present method produces fewer nonzero elements in the matrix
and is computationally more efficient.
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1. Introduction. Discontinuous Galerkin (DG) methods [11] have become the
subject of considerable research over recent years due to their potential to overcome
some of the perceived shortcomings of the more established discretization methods.
For convection problems, DG methods produce stable discretizations without the need
for cumbersome stabilization strategies. They work well on arbitrary meshes and
allow for different orders of approximation to be used on different elements in a very
straightforward manner. Clearly, this flexibility comes at the expense of duplicating
the degrees of freedom at the element boundary interfaces. This is a serious drawback
when low order polynomial approximations are used, but it is less important for
high order interpolations. DG methods appear to be ideally suited for applications
involving wave propagation phenomena, where low dispersion and high accuracy are
required, such as aeroacoustics or electromagnetics.

While DG methods seem to be well suited for the discretization of first order hy-
perbolic problems, their extension to elliptic problems is far less obvious. A number
of extensions to deal with the elliptic problem have been proposed and analyzed under
a unified framework in [1]. Also, a comparison of the performance of various schemes
from a practical perspective is presented in [6]. Among the various alternatives, the
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local discontinuous Galerkin (LDG) method [10] has emerged as one of the most
popular choices. The LDG method appears to be one of the most accurate and stable
schemes among those tested. In addition, the LDG method is easy to implement
for complex convective-diffusive systems and can be generalized to handle equations
involving higher order derivatives [16]. In the LDG method, the original equation
involving second order derivatives is cast as a system of first order equations by in-
troducing additional variables for the solution gradient, or flux. The resulting system
is then discretized using a standard DG approach. By appropriately choosing the
interelement fluxes, the additional variable can be eliminated locally. Thus, a stable
discretization that involves only the original unknown variable is obtained. Unfor-
tunately, when the LDG method is used in multiple dimensions, the discretization
generated has the undesirable feature that the degrees of freedom in one element are
connected, not only to those in the neighboring elements, but also to those in some
elements neighboring the immediate neighbors. For applications employing explicit
or iterative solution techniques, this is usually not a problem, but for applications
where the matrix needs to be formed, this represents a severe disadvantage.

Two alternative formulations for the treatment of the second order derivatives
are the symmetric interior penalty (IP) method [12] and the BR2 method proposed
in [3]. In these methods, the original form of the equation involving second derivatives
is discretized directly, and stabilization is added explicitly in a sufficient amount to
render the method stable. Although somewhat simpler, the IP method appears to be
less popular than the BR2 method. This is probably because of the requirement of
a penalty parameter that depends on both the mesh and the approximation order.
Both these methods have the advantage that they are compact in the sense that only
the degrees of freedom belonging to neighboring elements are connected in the dis-
cretization. When suitable penalization is employed these approaches are competitive
with the LDG scheme in terms of accuracy. Thus, these schemes are an attractive
alternative to the LDG scheme when an implicit solution of the discretized system is
required.

For many applications of interest involving convective-diffusive systems, such as
the Navier–Stokes equations at high Reynolds numbers, the time and length scales
are such that implicit discretization turns out to be a requirement. In this paper, we
develop a variation of the LDG method, the compact discontinuous Galerkin (CDG)
method. The main motivation for developing this new scheme is to eliminate the dis-
tant connections between nonneighboring elements which arise when the LDG scheme
is used in multiple dimensions. We note that in the one-dimensional case the CDG
and LDG schemes are identical, but in the multidimensional case they differ in the ap-
proximation to the solution gradient at the interface between neighboring elements.
This seemingly minor difference results in a scheme that appears to inherit all the
attractive features of the LDG method and is compact. In addition, numerical exper-
iments indicate that the CDG scheme is slightly more stable than the LDG method
and is less sensitive to the element and/or interface orientation. In particular, when
the stabilization constant is set to zero, the CDG scheme is stable in situations where
the LDG method is unstable. It is well known that, without explicit stabilization,
the LDG scheme is stable only when the orientation of element interfaces satisfies a
certain condition [15].

Since the CDG scheme is compact, it produces a sparser connectivity matrix than
the LDG scheme, meaning lower storage requirements and higher computational per-
formance. Thus, the slight additional increase in complexity involved in the numerical
flux evaluation is more than offset by the increased efficiency benefits. Compared to
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the IP and BR2 methods, the CDG scheme is computationally simpler, generates a
sparser matrix with a smaller number of nonzero elements when using a nodal basis,
and appears to produce slightly more accurate results than the BR2 method in the
numerical tests performed. Given the similarities between the BR2 and IP methods,
we have considered only the BR2 method in our numerical comparisons.

The remainder of the paper is organized as follows. In section 2, we introduce
our model second order elliptic problem. Next, we describe the LDG discretization
method and adopt the framework introduced in [1] to write the LDG algorithm in
the so-called primal form. This form, involving only the original problem variable,
highlights the symmetry of the scheme as well as the sparsity pattern. In section 3,
we present the CDG method. The CDG method is then written in primal form
so that it can be easily compared with the LDG method. Like the LDG method,
the CDG method is shown to be symmetric, conservative, and adjoint consistent.
It turns out that the CDG and LDG schemes are so closely related that the error
estimate presented in [1] for the LDG method is essentially applicable to the CDG
method without changes. In section 4, we compare the LDG and CDG schemes using
the test problem presented in [15]. The increased stability of the CDG scheme, for
arbitrary interface ordering, is shown numerically by calculating the size of the null-
space for the model test problem. Practical implementation and efficiency issues such
as sparsity patterns and storage requirements for the LDG, BR2, and CDG schemes,
in the more general d-dimensional setting, are addressed in section 5. Finally, we
conclude in section 6 with some numerical results aimed at comparing the accuracy
and conditioning of the LDG, BR2, and CDG schemes.

2. Discontinuous Galerkin formulation.

2.1. Problem definition. The proposed method will be described for the model
Poisson problem

(2.1)

−∇ · (κ∇u) = f in Ω,

u = gD on ∂ΩD,

κ
∂u

∂n
= gN on ∂ΩN ,

where Ω is a bounded domain in Rd with boundary ∂Ω = ∂ΩD ∪ ∂ΩN and d = 1, 2,
or 3 is the dimension. Here, f(x) is a given function in L2(Ω), and κ(x) ∈ L∞(Ω) is
positive. Further, we assume that the length of ∂ΩD is not zero.

2.2. DG Formulation for elliptic problems. In order to develop a DG
method, we rewrite the above problem (2.1) as a first order system of equations

(2.2)

−∇ · σ = f in Ω,

σ = κ∇u in Ω,

u = gD on ∂ΩD,

σ · n = gN on ∂ΩN ,

where n is the outward unit normal to the boundary of Ω.



CDG FOR ELLIPTIC PROBLEMS 1809

Next, we introduce the broken spaces V (Th) and Σ(Th) associated with the tri-
angulation Th = {K} of Ω. In particular, V (Th) and Σ(Th) denote the spaces of
functions whose restriction to each element K belongs to the Sobolev spaces H1(K)
and [H1(K)]d. That is,

V = {v ∈ L2(Ω) | v|K ∈ H1(K) ∀K ∈ Th},(2.3)

Σ = {τ ∈ [L2(Ω)]d | τ |K ∈ [H1(K)]d ∀K ∈ Th}.(2.4)

In addition, we introduce the finite element subspaces Vh ⊂ V and Σh ⊂ Σ as

Vh = {v ∈ L2(Ω) | v|K ∈ Pp(K) ∀K ∈ Th},(2.5)

Σh = {τ ∈ [L2(Ω)]d | τ |K ∈ [Pp(K)]d ∀K ∈ Th},(2.6)

where Pp(K) is the space of polynomial functions of degree at most p ≥ 1 on K.
Following [10], we consider DG formulations of the form: find uh ∈ Vh and

σh ∈ Σh such that for all K ∈ Th we have∫
K

σh · τ dx = −
∫

K

uh∇ · (κτ ) dx +
∫

∂K

ûκτ · n ds ∀τ ∈ [Pp(K)]d,(2.7)

∫
K

σh · ∇v dx = −
∫

K

fv dx +
∫

∂K

σ̂ · nv ds ∀v ∈ Pp(K).(2.8)

Here, the numerical fluxes σ̂ and û are approximations to σ = κ∇u and to u, re-
spectively, on the boundary of the element K. The DG formulation is complete once
we specify the numerical fluxes σ̂ and û in terms of σh and uh and the boundary
conditions.

Expressions (2.7) and (2.8) apply to each element separately. In order to write
expressions which are applicable over the whole domain, we require some additional
notation. Here, we closely follow the notation used in [1].

Consider two adjacent elements K+ and K− of the triangulation Th, and denote
by e = ∂K+ ∩ ∂K− their common face. Further, assume that n± denote the unit
normals to ∂K±, respectively, at any point on the face e. Similarly, let (τ±, v±)
denote the traces on e of functions (τ , v) ∈ Σh × Vh which are smooth in the interior
of elements K±. The average and jump operators are given as

{τ} = (τ+ + τ−)/2, {v} = (v+ + v−)/2,

[τ ] = τ+ · n+ + τ− · n−, [v] = v+n+ + v−n−.

Note that, according to this definition, the jump of a scalar quantity is a vector, but
the jump of a vector quantity becomes a scalar.

Now, by summing (2.7) and (2.8) over all elements and considering only conser-
vative schemes for which the numerical fluxes û and σ̂ on a given face are unique, we
obtain the following global expressions: find uh ∈ Vh and σh ∈ Σh such that∫

Ω

σh · τ dx = −
∫

Ω

uh∇h · (κτ ) dx +
∫
Ei

û[κτ ] ds +
∫

∂Ω

û κτ · nds ∀τ ∈ Σh,(2.9)

∫
Ω

σh · ∇hv dx =
∫

Ω

fv dx +
∫
Ei

σ̂ · [v] ds +
∫

∂Ω

v σ̂ · n ds ∀v ∈ Vh,

(2.10)
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where Ei denotes the union of all the interior faces in the triangulation Th. Also, ∇h

denotes the broken gradient operator. That is, ∇hv and ∇h · τ are functions whose
restriction to K is equal to ∇v and ∇ · τ , respectively.

For later use, we note that, if we use the integration by parts formula,

(2.11) −
∫

Ω

v∇h · τ dx =
∫

Ω

τ · ∇hv dx−
∫
Ei

([v] · {τ}+ {v}[τ ]) ds−
∫

∂Ω

vτ · n ds,

which is valid for all τ ∈ [H1(Th)]d and v ∈ H1(Th), we can write (2.9) as∫
Ω

σh · τ dx =
∫

Ω

τ · (κ∇huh) dx−
∫
Ei

([uh] · {κτ} − {û− uh}[κτ ]) ds

+
∫

∂Ω

(û− uh)κτ · nds ∀τ ∈ Σh.

(2.12)

2.3. The LDG method. Since our method is closely related to the LDG method
presented in [10], we start with a description of the LDG algorithm. For the LDG
method, the numerical interelement fluxes (σ̂, û) are given by

σ̂ = {σh} − C11[uh] + C12[σh],(2.13)

û = {uh} −C12 · [uh](2.14)

for the interior faces, and

(2.15)
σ̂ =σh − C11(uh − gD)n, û = gD on ∂ΩD,

σ̂ = gNn, û = uh on ∂ΩN ,

for the boundary faces. Here, C11 is a positive constant and C12 is a vector which is
determined for each interior face according to

(2.16) C12 =
1
2
(SK−

K+ n+ + SK+

K−n−),

where SK−

K+ ∈ {0, 1} is a switch which is defined for each element face. That is, SK−

K+

denotes the switch associated with element K+ on the face that element K+ shares
with element K−. The switches always satisfy that

(2.17) SK−

K+ + SK+

K− = 1

but are otherwise arbitrary. We note that, although the form (2.16) is not the most
general form for C12 presented in [10], other choices lead to wider stencils in the final
discrete equations. We also point out that the choice of element face switches has an
effect on the final form of the discrete equations.

2.3.1. Primal form of the LDG algorithm. In order to derive the primal
form of the LDG algorithm, we first particularize (2.12) for the fluxes given by (2.14),∫

Ω

σh · τ dx =
∫

Ω

τ · (κ∇huh) dx−
∫
Ei

([uh] · {κτ}+ C12 · [uh][κτ ]) ds

+
∫

∂ΩD

(gD − uh)κτ · nds ∀τ ∈ Σh.

(2.18)
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To obtain an expression for σh as a function uh, we follow [1] and introduce the lifting
operators r : [L2(Ei)]d → Σh, l : L2(Ei) → Σh, and rD : L2(∂ΩD) → Σh:

(2.19)

∫
Ω

r(φ) · τ dx = −
∫
Ei

φ · {τ} ds ∀τ ∈ Σh,

∫
Ω

l(q) · τ dx = −
∫
Ei

q[τ ] ds ∀τ ∈ Σh,

∫
Ω

rD(q) · τ dx = −
∫

∂ΩD

qτ · n ds ∀τ ∈ Σh.

Thus, we can write (2.18) as

(2.20)

∫
Ω

(σh − κ∇huh − κr([uh])− κl(C12 · [uh]) + κrD(gD − uh)) · τ dx = 0

∀τ ∈ Σh.

Therefore, we have

(2.21) σh = κ∇huh + σ̄h,

where σ̄ ∈ Σh is

(2.22) σ̄h = κr([uh]) + κl(C12 · [uh])− κrD(gD − uh).

Thus, we see that that σh is equal to κ∇huh plus an additional perturbation term
which is forced by [uh], C12 · [uh], and gD − uh. Also, note that rD(gD − uh) is
nonzero only on the elements that have a face on the Dirichlet boundary. In writing
expressions (2.21) and (2.22), we have assumed that ∇hVh ⊂ Σh, which is certainly
the case if equal order polynomial interpolants are used for Vh and Σh.

Setting τ = ∇hv in (2.18), we can rewrite (2.10) as

(2.23)
∫

Ω

∇hv · (κ∇huh) dx−
∫
Ei

([uh] · {κ∇hv}+ C12 · [uh][κ∇hv]) ds

+
∫

∂ΩD

(gD − uh)κ∇hv · nds

=
∫

Ω

fv dx +
∫
Ei

σ̂ · [v] ds +
∫

∂Ω

v σ̂ · n ds ∀v ∈ Vh.



1812 J. PERAIRE AND P.-O. PERSSON

Making use of (2.13), (2.15), (2.21), and (2.22), the terms involving σ̂ in the above
equation can be written as∫

Ei

σ̂ · [v] ds =
∫
Ei

({κ∇huh}+ C12[κ∇huh]) · [v] ds +
∫
Ei

({σ̄}+ C12[σ̄]) · [v] ds

−
∫
Ei

C11[u] · [v] ds

=
∫
Ei

({κ∇huh}+ C12[κ∇huh]) · [v] ds

−
∫

Ω

κ(r([v]) + l(C12 · [v])) · (r([uh]) + l(C12 · [uh]) + rD(uh)) dx

+
∫

Ω

κ(r([v]) + l(C12 · [v])) · rD(gD) dx−
∫
Ei

C11[u] · [v] ds

and∫
∂Ω

v σ̂ · n ds =
∫

∂ΩD

vσh · n ds−
∫

∂ΩD

C11vuh ds +
∫

∂ΩD

C11vgD ds +
∫

∂ΩN

vgN ds

=
∫

∂ΩD

vκ∇huh · n ds +
∫

∂ΩD

κv (r([uh])

+ l(C12 · [uh]) + rD(uh)) · n ds

−
∫

∂ΩD

κv rD(gD) · n ds +
∫

∂ΩD

C11v(gD − uh) ds +
∫

∂ΩN

vgN ds

=
∫

∂ΩD

vκ∇huh · n ds−
∫

Ω

κrD(v)

· (r([uh]) + l(C12 · [uh]) + rD(uh)) dx

−
∫

∂ΩD

κv rD(gD) · n ds +
∫

∂ΩD

C11v(gD − uh) ds +
∫

∂ΩN

vgN ds.

Therefore, we can rewrite (2.23) as

(2.24) BLDG
h (uh, v) = LLDG

h (v) ∀v ∈ Vh,

where the bilinear form BLDG
h : Vh × Vh → R is given by

BLDG
h (u, v) =

∫
Ω

∇hv · (κ∇hu) dx−
∫
Ei

([u] · {κ∇hv}+ {κ∇hu} · [v]) ds

−
∫
Ei

(C12 · [u][κ∇hv] + [κ∇hu]C12 · [v]) ds +
∫
Ei

C11[u] · [v] ds

+
∫

Ω

κ(r([u]) + l(C12 · [u]) + rD(u)) · (r([v]) + l(C12 · [v]) + rD(v)) dx

−
∫

∂ΩD

(κ∇hu · nv + uκ∇hv · n)ds +
∫

∂ΩD

C11uv ds(2.25)



CDG FOR ELLIPTIC PROBLEMS 1813

and the linear form LLDG
h : Vh → R is given by

LLDG
h (v) =

∫
Ω

fv dx−
∫

∂ΩD

gD(κ∇hv + r([v]) + l(C12 · [v])) · nds

−
∫

∂ΩD

κv rD(gD) · n ds +
∫

∂ΩD

C11gDv ds +
∫

∂ΩN

v gN ds ∀v ∈ Vh.(2.26)

It is straightforward to verify that the bilinear form (2.25) is symmetric, i.e.,
Bh(u, v) = Bh(v, u). Also, the conservative form of the numerical fluxes, (2.13) and
(2.14), guarantees that the LDG scheme is conservative and adjoint consistent [1].

Unfortunately, when the scheme is implemented in multidimensions on general
triangular/tetrahedral meshes, the resulting discretization is not compact in the sense
that the equation corresponding to a given degree of freedom may involve degrees
of freedom that belong to elements which are not immediate neighbors. It turns
out that these additional connections are due to the volume term in (2.25) which
involves products of the lifting functions. Although the connectivity pattern between
elements depends on the choice of face switches in (2.16), it is well known [15] that
in multidimensions this problem cannot be remedied by a more careful choice of
the face switches (2.16). This noncompactness of the LDG scheme occurs also for
quadrilateral/hexahedral discretizations.

3. The CDG algorithm. The CDG algorithm is designed to be compact and,
at the same time, inherit all the attractive properties of the LDG algorithm. To start
with, we decompose the lifting operators introduced in (2.19) into facewise contribu-
tions. Thus, we consider for all e ∈ Ei, re : [L2(e)]d → Σh, le : L2(e) → Σh and for
each e ∈ ∂ΩD, rD : L2(e) → Σh, defined as

(3.1)

∫
Ω

re(φ) · τ dx = −
∫

e

φ · {τ} ds ∀τ ∈ Σh,∫
Ω

le(q) · τ dx = −
∫

e

q[τ ] ds ∀τ ∈ Σh,∫
Ω

re
D(q) · τ dx = −

∫
e

qτ · n ds ∀τ ∈ Σh.

Clearly, we will have, for all φ ∈ [L2(Ei)]d and all q ∈ L2(Ei),

(3.2) r(φ) =
∑
e∈Ei

re(φ), l(q) =
∑
e∈Ei

le(q), rD(q) =
∑

e∈∂ΩD

re
D(q).

Now, we can define the CDG method. The numerical interelement fluxes (σ̂, û)
for the CDG method are given by

σ̂ = {σe
h} − C11[uh] + C12[σe

h],(3.3)

û = {uh} −C12 · [uh](3.4)

for the interior faces, and

(3.5)
σ̂ =σe

h − C11(uh − gD)n, û = gD on ∂ΩD,

σ̂ = gNn, û = uh on ∂ΩN ,
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for the boundary faces. Here, σe
h is given as

(3.6) σe
h = κ∇huh + σ̄e

h,

where

(3.7) σ̄e
h = κre([uh]) + κle(C12 · [uh])− κre

D(gD − uh) .

We note that the numerical flux, û, is chosen as in the LDG method. Therefore, (2.18)
and (2.21)–(2.23) still apply for the CDG method, and the only difference between
the LDG and CDG methods is in the evaluation of the terms involving σ̂ in (2.23),
which in the CDG case is done according to (3.3) and (3.5). Also, the coefficients C12

are given by expressions (2.16) and (2.17).

In order to compute the CDG numerical flux σ̂ on a given face e, we need to
evaluate first a stress field σe

h associated with this face. This evaluation, however, can
be carried out efficiently due to the localized support of σ̄e

h. In particular, we note
that when e ∈ ∂ΩN , then σ̄e

h = 0. When e ∈ ∂ΩD, we have σ̄e
h = κre

D(gD − uh),
which has only a nonzero support on the element neighboring face e. Finally, when
e ∈ Ei, then σ̄e

h = κre([uh]) + κle(C12 · [uh]). In this case, σ̄e
h is nonzero only in one

of the elements neighboring face e. The element in which σ̄e
h is nonzero is determined

by the choice of switches for that face. In particular, using (2.16) and (3.1), it can be
easily shown that if SK−

K+ = 1 and SK+

K− = 0, then σ̄e
h = 0 on K−. Similarly, we will

have σ̄e
h = 0 on K+ when SK−

K+ = 0 and SK+

K− = 1.

3.1. Primal form of the CDG algorithm. In order to obtain the primal form
of the CDG method, we proceed as before and start from (2.23). In this case, the
terms involving σ̂ become

∫
Ei

σ̂ · [v] ds =
∑
e∈Ei

∫
e

σ̂ · [v] ds

=
∫
Ei

({κ∇huh}+ C12[κ∇huh]) · [v] ds +
∑
e∈Ei

∫
e

({σ̄e}+ C12[σ̄e]) · [v] ds

−
∫
Ei

C11[u] · [v] ds

=
∫
Ei

({κ∇huh}+ C12[κ∇huh]) · [v] ds

−
∑
e∈Ei

∫
Ω

κ(re([v]) + le(C12 · [v])) · (re([uh]) + le(C12 · [uh]) + re
D(uh)) dx

+
∑
e∈Ei

∫
Ω

κ(re([v]) + le(C12 · [v])) · re
D(gD) dx−

∫
Ei

C11[u] · [v] ds



CDG FOR ELLIPTIC PROBLEMS 1815

and∫
∂Ω

v σ̂ · n ds =
∑

e∈∂Ω

∫
e

v σ̂ · n ds

=
∑

e∈∂ΩD

∫
e

vσe
h · n ds−

∫
∂ΩD

C11vuh ds +
∫

∂ΩD

C11vgD ds +
∫

∂ΩN

vgN ds

=
∫

∂ΩD

vκ∇huh · n ds +
∑

e∈∂ΩD

∫
e

κv (re([uh]) + le(C12 · [uh]) + re
D(uh)) · n ds

−
∑

e∈∂ΩD

∫
e

κv re
D(gD) · n ds−

∫
∂ΩD

C11vuh ds +
∫

∂ΩD

C11vgD ds +
∫

∂ΩN

vgN ds

=
∫

∂ΩD

vκ∇huh · n ds−
∑

e∈∂ΩD

∫
Ω

κre
D(v) · (re([uh]) + le(C12 · [uh]) + re

D(uh)) dx

−
∑

e∈∂ΩD

∫
e

κv re
D(gD) · n ds−

∫
∂ΩD

C11vuh ds +
∫

∂ΩD

C11vgD ds +
∫

∂ΩN

vgN ds.

Thus, for the CDG scheme, (2.23) can be written as

(3.8) BCDG
h (uh, v) = LCDG

h (v) ∀v ∈ Vh,

where the bilinear form BCDG
h : Vh × Vh → R is given by

BCDG
h (u, v) =

∫
Ω

∇hv · (κ∇hu) dx−
∫
Ei

([u] · {κ∇hv}+ {κ∇hu} · [v]) ds

−
∫
Ei

(C12 · [u][κ∇hv] + [κ∇hu]C12 · [v]) ds

+
∑

e∈(Ei
S

∂ΩD)

∫
Ω

κ(re([u]) + le(C12 · [u]) + re
D(u)) · (re([v]) + le(C12 · [v]) + re

D(v)) dx

−
∫

∂ΩD

(κ∇hu · nv + uκ∇hv · n)ds +
∫
Ei

C11[u] · [v] ds +
∫

∂ΩD

C11uv ds

(3.9)

and the linear form LCDG : Vh → R is given by

LCDG
h (v) =

∫
Ω

fv dx−
∫

∂ΩD

gDκ∇hv · nds

−
∫

∂ΩD

κv rD(gD) · n ds +
∫

∂ΩD

C11gDv ds +
∫

∂ΩN

v gN ds ∀v ∈ Vh.(3.10)

The CDG method is symmetric, i.e., BCDG
h (u, v) = BCDG

h (v, u), and retains
all the attractive properties of the LDG algorithm such as consistency and adjoint
consistency.
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3.2. Error estimates. We observe that the only difference between the LDG
and CDG schemes is the stabilizing term involving the products of the lifting functions.
In the LDG scheme, we have

∫
Ω

κ(r([u]) + l(C12 · [u]) + rD(u)) · (r([v]) + l(C12 · [v]) + rD(v)) dx,

∑
e∈Ei

∑
f∈Ei

∫
Ω

κ(re([u]) + le(C12 · [u]) + re
D(u)) · (rf ([v]) + lf (C12 · [v]) + rf

D(v)) dx,

(3.11)

whereas in the CDG scheme, we have

∑
e∈Ei

∫
Ω

κ(re([u]) + le(C12 · [u]) + re
D(u)) · (re([v]) + le(C12 · [v]) + re

D(v)) dx,

∑
e∈Ei

∑
f∈Ei

δef

∫
Ω

κ(re([u]) + le(C12 · [u]) + re
D(u)) · (rf ([v]) + lf (C12 · [v]) + rf

D(v)) dx,

(3.12)

where δef is the Kronecker delta. Thus, we see that the CDG scheme can be regarded
as the LDG algorithm with some terms turned off. We also note that the turned-off
terms in the LDG algorithm are indefinite and hence are not guaranteed to contribute
to the method’s stability. The effect of using lifting functions in the CDG method
which are associated with individual faces is to eliminate connectivities between non-
neighboring elements. We note that an analogous approach was adopted in [3, 5] to
render the BR2 scheme compact.

It turns out that the proofs of coercivity and boundedness for the LDG method
presented in [1] can be used here without change. This leads to optimal a priori
estimates for the CDG method,

(3.13) |||u− uh||| ≤ Chp|u|p+1,Ω

and

(3.14) ||u− uh||0,Ω ≤ Chp+1|u|p+1,Ω .

Here, the norm ||| · ||| is given by

(3.15) |||v|||2 =
∑

K∈Th

|v|21,K +
∑
e∈Ei

||re([v])||20,Ω +
∑

e∈∂ΩD

||rD(v)||20,Ω .

The above estimates require that the stabilization parameter C11 in (3.3) is taken
to be of order O(h−1), where h is the characteristic mesh size (see also [7]). We
note that for C11 of order O(1), only suboptimal convergence is demonstrated, but
in practical computations, optimal results are also observed. We also point out that
for general discretizations, the piecewise constant approximation p = 0 does not lead
to a consistent discretization. This is in common with other DG schemes such as the
LDG or the BR2.
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4. Stabilization. The above a priori error estimates are applicable to both the
CDG and LDG algorithms. It turns out that, for the LDG algorithm, one can set
C11 = 0 for all the internal interfaces, provided the switches in (2.16) are chosen
following a simple rule. That is, if the switches for each simplex element K satisfy
that

(4.1)
∑

e∈∂K

SK′

K < d + 1,

where d is the problem dimension, then the scheme shows no degradation in perfor-
mance and becomes extremely simple. This result was proven in [8]. In this case,
the numerical flux û on a given internal face is taken to be the value of uh on one
of the neighboring elements, while the numerical flux σ̂ is taken to be the value of
σh on the other neighboring element. The element used to calculate either û or σ̂
is determined by the value of switches on that face. The rule (4.1) guarantees that,
when calculating the numerical fluxes on each face, the value of the solution on each
element will be used, at least once, to set û on the element boundary, and, at least
once, to set σ̂ on the element boundary.

Clearly, there is plenty of flexibility in choosing appropriate values for switches
which satisfy the rule (4.1); see [9], for instance. Thus, provided that the rule (4.1) is
satisfied, the LDG scheme converges at the optimal rate without the need for explicit
stabilization.

4.1. Null-space dimension. We have found that while the rule (4.1) is essential
in ensuring that the solution is unique for the LDG method, this requirement is not
necessary for the CDG method. That is, for the CDG method we are able to set
C11 = 0 for all the internal faces and use any combination of switches with the only
constraint given by (2.17).

In order to illustrate this point, we adopt the two-dimensional test problem pre-
sented in [15]. We consider a square domain with periodic boundary conditions im-
posed on all sides. We perform a regular subdivision into four squares and then
subdivide each square into two triangles. We look at approximations ranging from
p = 1 to p = 7 and nodal basis functions with equally spaced nodes. We discretize
the Laplacian operator using the CDG and the LDG algorithms with the parameter
C11 set to zero and calculate the dimension of the null-space of the resulting matrix.

We consider two different switches for both the LDG and CDG algorithms. The
so-called consistent switch satisfies (4.1), and here it is chosen using a procedure
analogous to that presented in [9, 15]. We also consider the natural switch, which is
based on element numbering and sets SK−

K+ = 0 if the element number K+ is less than
the element number K−, and to 1 otherwise. This switch was first introduced in [2]
in the context of interior point methods for elliptic problems.

Because of the periodic boundary conditions, any solution will be undetermined
up to a constant, and as a consequence, we expect a singular matrix with a null-
space of dimension one. The computed dimension of the null-space for the different
schemes, polynomial order interpolations, and switches is presented in Table 4.1. We
note that while the LDG scheme gives the desired null-space dimension of one when
the consistent switch is employed, the null-space dimension grows with increasing p,
when the natural switch is employed. This same result was reported in [15]. On the
other hand, the CDG scheme always gives the desired one-dimensional null-space for
all p and for any switch choice.

We note that the natural switch has some computational advantages when com-
puting the ILU(0) factorization of the system matrix [14]. If SK−

K+ = 0 when K+ <
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Table 4.1
Nullspace dimensions for the CDG/LDG schemes using the two different switches. The problem

is expected to have a one-dimensional null-space, but with the (inconsistent) natural switch the LDG
scheme gives spurious modes and a null-space that grows with p.

Nullspace dimension
Polynomial order p 1 2 3 4 5 6 7
Consistent switch CDG 1 1 1 1 1 1 1

LDG 1 1 1 1 1 1 1
Natural switch CDG 1 1 1 1 1 1 1

LDG 3 4 5 6 7 8 9

K−, the lower triangular blocks in the matrix have only a few nonzero rows, and no
additional fill-in is introduced during the factorization phase. On the other hand, for
an arbitrary switch choice, some lower triangular blocks will have nonzero columns
that will render the blocks completely full after factorization. This effect is described
in more detail in [14], where the CDG method is used to discretize convective-diffusive
systems which are solved using a preconditioned Krylov solver.

5. Implementation. Since the main motivation for developing the CDG algo-
rithm is to obtain a computationally more efficient method, we next discuss some
practical implementation issues.

5.1. Sparsity patterns. We start by discussing the sparsity pattern of the CDG
method and compare it with that of the LDG and BR2 methods. We assume through-
out that nodal bases [13] are used to span the approximating and weighting Galerkin
spaces. For illustration purposes, we consider the triangular mesh shown in Figure 5.1,
consisting of four elements and a finite element space of piecewise polynomials of de-
gree p = 3 on each element. The total number of degrees of freedom is 60, corre-
sponding to 15 degrees of freedom per element. The sparsity patterns corresponding
to the CDG, LDG, and BR2 methods are also shown in Figure 5.1. We note that

and
and

CDG :
LDG :
BR2 :

1

2 3

4

1

1

2

2

3

3

4

4

Fig. 5.1. The sparsity structure for four triangles with p = 3 (left plot). The CDG and the BR2
scheme are both compact in the sense that they connect only neighboring triangles; however, BR2
introduces more nonzeros. The LDG scheme is noncompact and gives connections between some
nonneighboring triangles (3 and 4).
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the sparsity pattern of the IP method is identical to that of the BR2 method, and
therefore the same remarks apply.

As is well known, the LDG scheme introduces connections between degrees of
freedom in nonneighboring elements. In this example, some degrees of freedom in
element 3 are connected to degrees of freedom in element 4. These connections are
caused by the stabilization term (3.11), which involves the product of global lifting
functions. We note that these nonlocal connectivities also occur for quadrilateral
discretizations and cannot be avoided by a more careful renumbering of the elements
and/or internal interfaces [15].

Of the three schemes, the CDG method produces the smallest number of nonzero
entries in the matrix. In fact, any nonzero entry in the CDG matrix is also a nonzero
entry in the matrices generated by the other two schemes. The BR2 scheme is compact
but connects the face nodes of each element with all the nodes of the neighboring
element sharing that face. On the other hand, the CDG scheme connects only the
nodes of those faces for which the switch is one, to the interior nodes of the neighboring
element sharing that face.

5.2. Storage requirements. In order to quantify the matrix storage require-
ments for the three schemes, we consider a simplex element in d dimensions having
d + 1 distinct neighboring elements. For polynomial basis function of degree p, the
number of degrees of freedom per element is given by S =

(
p+d

d

)
, and the number of

degrees of freedom along each element face is given by Se =
(
p+d−1

d−1

)
. Using this nota-

tion, we can obtain expressions for the number of nonzero matrix entries per interior
element.

For the CDG scheme we have one diagonal block with S2 entries and d + 1 off-
diagonal blocks with SeS entries. Since the scheme connects some element face nodes
to all the nodes of the neighboring element sharing that face, we have

MCDG = S2 + (d + 1)SeS.

For the LDG scheme, the pattern is the same as for the CDG algorithm plus the
additional nonlocal connectivities. Each such connectivity involves S2

e entries since
the scheme connects face nodes to nonneighboring face nodes. The number of nonlocal
connections α depends on the mesh and the switch, but on average, we have that in
one dimension the switch can be chosen such that α = 0, and our experiments indicate
that α ≈ 1 for d = 2 and α ≈ 2 for d = 3. The total number of nonzeros is then

MLDG = S2 + (d + 1)SeS + αS2
e .

Finally, for the BR2 (and also the IP) scheme, the pattern is the same as with
the CDG scheme, but with the additional connections caused by the fact that all the
face nodes connect to all the interior nodes in the neighboring elements. This results
in SeS + Se(S − Se) entries per block, giving a total number of nonzeros of

MBR2 = S2 + (d + 1)(2S − Se)Se.

The memory requirements for d = 1, 2, 3 and p = 1, . . . , 5 are shown in Table 5.1.
We note that the CDG method has the lowest memory requirements. For instance,
in three dimensions with polynomials of degree p = 4, the additional storage require-
ments of the LDG and BR2 methods are 14% and 36%, respectively.

Finally, we note that the CDG sparsity pattern is such that in addition to having
fewer nonzero entries, the entire matrix can be stored using simple blockwise dense
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Table 5.1
Memory requirements per interior simplex element for the CDG, LDG, and BR2 schemes. The

case p = 3 in two dimensions is illustrated in Figure 5.1. The LDG scheme is assumed to have
α = 0, 1, 2 noncompact neighbors in one, two, and three dimensions, respectively.

Dim Scheme p = 1 p = 2 p = 3 p = 4 p = 5
1 CDG 8 15 24 35 48

LDG 8 15 24 35 48
BR2 10 19 30 43 58

2 CDG 27 90 220 450 819
LDG 31 99 236 475 855
BR2 33 117 292 600 1089

3 CDG 64 340 1200 3325 7840
LDG 82 412 1400 3775 8722
BR2 76 436 1600 4525 10780

arrays. In particular, for a problem involving T elements, we can use an S × S × T
dense array for the diagonal blocks, and an S × Se × (d + 1)× T dense array for the
off-diagonal blocks. This representation is not only simple and compact, it also makes
it straightforward to apply high-performance libraries such as the BLAS routines [4]
for basic matrix operations.

A similar storage format is harder to define for the LDG scheme, because of the
noncompactness and the somewhat complex pattern in which these additional blocks
appear. For the BR2 scheme, while it is compact, and in principle one could use
a storage scheme similar to that of the CDG method, the sparsity pattern of the
off-diagonal blocks is nonrectangular, and therefore any dense storage strategy would
require, at least, an additional array.

6. Numerical results. In this section, we present some numerical experiments
to assess the accuracy and behavior of the CDG algorithm. We consider a two-
dimensional model problem. The domain Ω is the unit square [0, 1]× [0, 1]. Dirichlet
conditions are imposed at all the boundaries (∂ΩD = ∂Ω), and we choose the analyt-
ical solution

u(x, y) = exp [α sin(ax + by) + β cos(cx + dy)](6.1)

with numerical parameters α = 0.1, β = 0.3, a = 5.1, b = −6.2, c = 4.3, d = 3.4. We
then solve the model Poisson problem (2.1) with the parameter κ = 1 and with the
Dirichlet boundary conditions gD(x, y) = u(x, y)|∂ΩD

. The source term, f(x, y), is
obtained by analytical differentiation of (6.1).

We consider triangular meshes obtained by splitting a regular n × n Cartesian
grid into a total of 2n2 triangles, giving uniform element sizes of h = 1/n. On these
meshes, we consider solutions of polynomial degree p represented using a nodal basis
within each triangle, with the nodes uniformly distributed. We use five different
meshes, n = 2, 4, 8, 16, 32, and five polynomial degrees, p = 1 to p = 5.

6.1. Effect of the stabilization parameter C11. In order to assess the effect
of the stabilization parameter, we discretize the Poisson equation (2.1) in two dimen-
sions and solve for the numerical solution uh using different values of the stabilization
parameter C11. The resulting equation system is solved using a preconditioned it-
erative solver [14]. We then compute the L2 error ||u − uh||0,Ω. The computed L2

error, ||u − uh||0,Ω, is shown in Table 6.1 for the different values of p and n, and for
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Table 6.1
L2 errors in the solution for the model Poisson problem, for various polynomial degrees p, mesh

sizes n, and C11 values. The consistent switch is used. The convergence rate is calculated based on
the two finest meshes.

p C11 n = 2 n = 4 n = 8 n = 16 n = 32 Rate

1 0 4.55 · 10−2 1.52 · 10−2 4.63 · 10−3 1.26 · 10−3 3.27 · 10−4 1.9
1 4.55 · 10−2 1.49 · 10−2 4.56 · 10−3 1.25 · 10−3 3.26 · 10−4 1.9

10 2.20 · 10−0 2.07 · 10−2 4.24 · 10−3 1.16 · 10−3 3.13 · 10−4 1.9

2 0 9.00 · 10−3 1.80 · 10−3 2.56 · 10−4 3.36 · 10−5 4.29 · 10−6 3.0
1 9.10 · 10−3 1.80 · 10−3 2.56 · 10−4 3.36 · 10−5 4.29 · 10−6 3.0

10 2.89 · 10−2 2.01 · 10−3 2.62 · 10−4 3.38 · 10−5 4.30 · 10−6 3.0

3 0 2.61 · 10−3 2.44 · 10−4 1.72 · 10−5 1.11 · 10−6 7.04 · 10−8 4.0
1 2.63 · 10−3 2.44 · 10−4 1.72 · 10−5 1.11 · 10−6 7.04 · 10−8 4.0

10 4.16 · 10−3 2.59 · 10−4 1.73 · 10−5 1.11 · 10−6 7.03 · 10−8 4.0

4 0 1.09 · 10−3 4.52 · 10−5 1.57 · 10−6 5.14 · 10−8 1.64 · 10−9 5.0
1 1.09 · 10−3 4.54 · 10−5 1.57 · 10−6 5.15 · 10−8 1.64 · 10−9 5.0

10 1.19 · 10−3 4.77 · 10−5 1.60 · 10−6 5.16 · 10−8 1.64 · 10−9 5.0

5 0 3.73 · 10−4 9.31 · 10−6 1.76 · 10−7 2.83 · 10−9 4.47 · 10−11 6.0
1 3.75 · 10−4 9.32 · 10−6 1.76 · 10−7 2.83 · 10−9 4.47 · 10−11 6.0

10 4.07 · 10−4 9.52 · 10−6 1.77 · 10−7 2.84 · 10−9 4.47 · 10−11 6.0

C11 = 0, 1, and 10, using the consistent switch. The same results are reported for the
natural switch in Table 6.2.

We note that the accuracy is only weakly dependent on the value of C11. The
only noticeable differences are for the underresolved cases (p = 1, 2 and n = 2) when
using a large amount of stabilization, C11 = 10. We obtain the optimal convergence
rate of p + 1 for all cases. Using the natural switch, instead of the consistent one,
makes the errors somewhat larger, but on average only by 11% and, in the worst case,
only by 42%.

Table 6.3 shows the errors and the convergence rates for the gradient of the solu-
tion using the CDG method with C11 = 0. In particular, we calculate the seminorm
(
∑

K∈Th
|u− uh|21,K)1/2. We observe optimal convergence at the expected rate of p.

6.2. Comparison with the LDG and BR2 schemes. Here, we discretize the
equations using the CDG, LDG, and BR2 schemes. For the CDG and the LDG meth-
ods, we use the consistent switch and set C11 = 0, except at the Dirichlet boundaries,
where C11 = 1. The lifting parameter in the BR2 scheme is η = 3, which is the value
required for stability [5].

The accuracy results for the CDG, LDG, and BR2 schemes are shown in Fig-
ure 6.1, with details in Table 6.4. We note that the CDG scheme is the most accurate
scheme in most of the test cases. For low polynomial degrees and on the coarse meshes,
the difference is often more than a factor of 2, while for well-resolved solutions, CDG
and LDG are similar, and BR2 is about 10% less accurate. We can also see that all
schemes give optimal convergence rates close to p + 1 for ||u− uh||0,Ω.

6.3. Spectral radius. In our next study, we compute the spectral radius |λmax|
of the discretized matrix and compare the three methods. The spectral radius of
the discretized matrix determines the magnitude of the timestep if an explicit time
marching solution is sought. In Table 6.5, we show these values for each of the
simulations in the previous section, scaled by the factor (h/p)2. Here we have used
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Table 6.2
L2 errors in the solution for the model Poisson problem, for various polynomial degrees p, mesh

sizes n, and C11 values. The natural switch is used.

p C11 n = 2 n = 4 n = 8 n = 16 n = 32 Rate

1 0 3.72 · 10−2 1.61 · 10−2 4.71 · 10−3 1.30 · 10−3 3.39 · 10−4 1.9
1 3.83 · 10−2 1.50 · 10−2 4.70 · 10−3 1.32 · 10−3 3.38 · 10−4 2.0

10 2.33 · 10−1 3.40 · 10−2 4.64 · 10−3 1.25 · 10−3 3.31 · 10−4 1.9

2 0 1.28 · 10−2 1.96 · 10−3 3.03 · 10−4 3.98 · 10−5 5.04 · 10−6 3.0
1 1.18 · 10−2 2.07 · 10−3 2.88 · 10−4 4.01 · 10−5 5.02 · 10−6 3.0

10 3.24 · 10−2 3.00 · 10−3 3.37 · 10−4 4.05 · 10−5 5.16 · 10−6 3.0

3 0 3.03 · 10−3 2.68 · 10−4 2.01 · 10−5 1.33 · 10−6 8.63 · 10−8 4.0
1 3.25 · 10−3 2.74 · 10−4 2.05 · 10−5 1.33 · 10−6 8.61 · 10−8 3.9

10 1.84 · 10−2 3.56 · 10−4 2.28 · 10−5 1.38 · 10−6 8.79 · 10−8 4.0

4 0 9.67 · 10−4 5.15 · 10−5 1.82 · 10−6 5.86 · 10−8 1.87 · 10−9 5.0
1 1.33 · 10−3 5.24 · 10−5 1.81 · 10−6 5.90 · 10−8 1.88 · 10−9 5.0

10 1.98 · 10−3 6.30 · 10−5 1.95 · 10−6 6.12 · 10−8 1.90 · 10−9 5.0

5 0 3.98 · 10−4 1.01 · 10−5 1.85 · 10−7 3.07 · 10−9 4.83 · 10−11 6.0
1 3.84 · 10−4 1.02 · 10−5 1.88 · 10−7 3.06 · 10−9 4.85 · 10−11 6.0

10 4.97 · 10−4 1.15 · 10−5 1.98 · 10−7 3.11 · 10−9 4.88 · 10−11 6.0

Table 6.3
The errors in the gradient for the CDG scheme with consistent switch and C11 = 0.

p n = 2 n = 4 n = 8 n = 16 n = 32 Rate

1 1.80 · 10−0 6.09 · 10−1 3.05 · 10−1 1.54 · 10−1 7.75 · 10−2 1.0
2 7.40 · 10−1 1.57 · 10−1 3.73 · 10−2 9.20 · 10−3 2.28 · 10−3 2.0
3 2.57 · 10−1 3.01 · 10−2 3.63 · 10−3 4.37 · 10−4 5.36 · 10−5 3.0
4 9.53 · 10−2 5.96 · 10−3 3.61 · 10−4 2.18 · 10−5 1.32 · 10−6 4.0
5 5.42 · 10−2 1.33 · 10−3 3.67 · 10−5 1.04 · 10−6 3.11 · 10−8 5.0
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Fig. 6.1. L2 errors in the solution for the model Poisson problem; see Table 6.4 for detailed
values and convergence rates.
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Table 6.4
L2 errors in the solution for the model Poisson problem, for different polynomial degree, p, and

mesh size, n, using CDG, LDG, and BR2 Schemes.

p Scheme n = 2 n = 4 n = 8 n = 16 n = 32 Rate

1 CDG 4.54 · 10−2 1.52 · 10−2 4.62 · 10−3 1.25 · 10−3 3.27 · 10−4 1.9
LDG 1.34 · 10−1 1.73 · 10−2 4.68 · 10−3 1.25 · 10−3 3.26 · 10−4 1.9
BR2 8.60 · 10−2 3.08 · 10−2 9.23 · 10−3 2.47 · 10−3 6.36 · 10−4 2.0

2 CDG 8.99 · 10−3 1.79 · 10−3 2.55 · 10−4 3.35 · 10−5 4.28 · 10−6 3.0
LDG 3.81 · 10−2 2.92 · 10−3 3.03 · 10−4 3.59 · 10−5 4.42 · 10−6 3.0
BR2 1.66 · 10−2 2.75 · 10−3 3.16 · 10−4 3.75 · 10−5 4.60 · 10−6 3.0

3 CDG 2.61 · 10−3 2.44 · 10−4 1.71 · 10−5 1.10 · 10−6 7.03 · 10−8 4.0
LDG 5.88 · 10−3 3.81 · 10−4 2.04 · 10−5 1.18 · 10−6 7.23 · 10−8 4.0
BR2 5.64 · 10−3 3.77 · 10−4 2.47 · 10−5 1.52 · 10−6 9.46 · 10−8 4.0

4 CDG 1.09 · 10−3 4.52 · 10−5 1.56 · 10−6 5.14 · 10−8 1.63 · 10−9 5.0
LDG 2.04 · 10−3 5.00 · 10−5 1.65 · 10−6 5.28 · 10−8 1.66 · 10−9 5.0
BR2 1.30 · 10−3 6.22 · 10−5 2.05 · 10−6 6.57 · 10−8 2.07 · 10−9 5.0

5 CDG 3.73 · 10−4 9.30 · 10−6 1.75 · 10−7 2.83 · 10−9 4.46 · 10−11 6.0
LDG 1.06 · 10−3 1.32 · 10−5 1.93 · 10−7 2.91 · 10−9 4.50 · 10−11 6.0
BR2 4.42 · 10−4 1.08 · 10−5 2.05 · 10−7 3.31 · 10−9 5.23 · 10−11 6.0

Table 6.5
The spectral radii of the matrices for the model Poisson problem, scaled by (h/p)2.

p Scheme n = 2 n = 4 n = 8 n = 16 n = 32
1 CDG 153.4 157.5 159.4 159.9 160.1

LDG 149.5 156.7 159.2 159.9 160.1
BR2 244.0 244.8 245.2 245.4 245.4

2 CDG 137.4 139.8 140.8 141.1 141.1
LDG 135.1 139.5 140.7 141.1 141.1
BR2 216.1 215.5 215.3 215.1 215.1

3 CDG 159.9 161.3 161.8 162.0 162.0
LDG 159.5 161.1 161.8 162.0 162.0
BR2 244.4 244.0 243.8 243.8 243.8

4 CDG 198.4 200.3 201.0 201.2 201.3
LDG 197.7 200.2 201.0 201.2 201.3
BR2 302.1 300.9 300.6 300.6 300.6

5 CDG 244.8 246.0 246.4 246.5 246.5
LDG 245.1 246.0 246.4 246.5 246.5
BR2 368.5 368.4 368.4 368.4 368.4

the consistent switch with the constant C11 = 0 for the CDG and LDG methods and
a value of η = 3 in the BR2 discretization. We observe that the CDG and the LDG
methods have almost identical spectral radii, while the BR2 method gives about 50%
larger values. It is possible that a lower value of the η parameter in the BR2 method
may reduce the spectral radius. However, in this case stability may be compromised.

7. Conclusions. We have presented a new scheme for discretizing elliptic oper-
ators in the context of discontinuous Galerkin approximations. The main advantage
of the proposed scheme is its reduced sparsity pattern when compared to alternative
schemes such as the LDG, BR2, or IP methods. This is important when an implicit
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solution technique is required. Compared to the LDG scheme the proposed scheme is
compact, meaning that only degrees of freedom in neighboring elements are connected.
Compared to the BR2 and IP schemes, which are also compact, the CDG scheme pro-
duces a smaller number of nonzero entries in the off-diagonal blocks and, at the same
time, the nonzero elements in the CDG scheme are amenable to a dense block matrix
storage. Like the alternative approaches, the proposed scheme converges optimally,
and numerical tests indicate that the accuracy obtained compares well with that of
the LDG or BR2 schemes. An additional potential advantage of the CDG scheme over
the LDG scheme when both schemes are used with minimal dissipation (i.e., C11 = 0
in the interior faces) is its insensitivity to the face ordering.
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