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1. Introduction. By an unoriented graph we mean a pair (G, P),

where G is a set (finite or infinite) and P is an irreflexive and sym-

metric relation defined on G. If P is a relation on G (i.e., a subset of

GXG), we write xRyii and only if (x, y)ER. If (x, y)EGXG and

(x, y)(£R, then we write x Ry. An oriented graph is a pair (G, 5),

where G is a set and 5 is a relation on G which is irreflexive and anti-

symmetric (i.e., xSy and y Sx do not both hold for any xEG,

yEG). An oriented graph (G, 5) is transitively oriented if and only if,

for all x, y, zin G, x S y and y S z imply x S z. A transitively oriented

graph is a partially ordered set, and in this case 5 is called a partial

order oí G. (H, S) is a subgraph of (G, P) if and only if (i) HQG and

(ii) x S y if and only if ¡e P y, for all #, yEH. For brevity we may

sometimes suppress mention of the relations P or 5, and refer only

to a graph G or a subgraph H. Whenever possible we may form an

intuitive picture of a graph (G, P) by imagining the elements of G to

be points in the plane, and interpreting x Ry to mean that x and y

are connected by a line segment (directed or undirected according as

(G, P) is oriented or not).

The general problem which we propose to investigate may be de-

scribed as follows. Let (G, P) be an unoriented graph. We say that a

relation T on G is a transitive orientation of (G, R) ii and only if (i)

(G, T) is a transitively oriented graph, and (ii) x Ry ii and only if

x T y or y T x, for all x, yEG. Now we may ask the question: what

are necessary and sufficient conditions on an unoriented graph (G, P)

for (G, P) to possess a transitive orientation?

The problem may also be stated in a slightly different form. Let

(G, <) be a partially ordered set. We may construct from (G, <) an

unoriented graph (G, P) by defining x R y if and only if x<y or

y <x; i.e., a; R y if and only if x and y are comparable elements of G

with respect to the partial order <. We shall call (G, P) the com-

parability graph of (G, <). Then our question is the following. Given

an unoriented graph (G, P), under what conditions is (G, P) the com-

parability graph of a partially ordered set?

It is easy to discover a number of necessary conditions. For exam-

ple, if (G, P) contains any closed polygon with an odd number of
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sides (greater than 3), then (G, 7?) must also contain a diagonal of

this polygon. Also, there are certain six-element graphs which possess

no transitive orientation. For example, let G= {a, b, c, d, e,f} and let

7?! = [ia,b), ib,c), ia,c), (a,d), (i,e), (c,/)},

R2 = {ia,b), ib,c), ia,c), (a,d), (M), (*,«), (c,e), (a,/), («,/)}.

The reader may easily verify that neither (G, 7?i) nor (G, 7?2) admit a

transitive orientation. Thus, the comparability graph of a partially

ordered set may contain neither (G, 7?i) nor (G, 7?2) as a subgraph.

The problem we have formulated appears to be very difficult, in

its most general form, and hence it seems natural to make a first

attack by restricting the class of partially ordered sets under discus-

sion. Let us say that a partially ordered set (G, <) is a tree if and only

if whenever x and y are incomparable elements of G there exists no

zEG with x <z and y<z. Our purpose in this paper is to characterize

the comparability graph of a tree; i.e., we obtain a simple necessary

and sufficient condition that an unoriented graph (G, 7?) possess a

transitive orientation T such that (G, T) is a tree. We intend, in sub-

sequent work, to attempt to extend our methods to larger classes of

partially ordered sets.

2. Main result. Throughout this paper set inclusion will be denoted

by Ç, and C will be reserved for proper inclusion. A—B denotes the

relative complement of the set B with respect to the set A. If 7? is

a relation on a set Af and A QM, we define R/A =Rf\(A XA).

Some further definitions relating to unoriented graphs will be neces-

sary. A subgraph 77 of an unoriented graph (G, 7?) will be called

complete if and only if x£77 and y£77 imply x 72 y. A subgraph 77

of (G, 7?) is empty if and only if x£77 and y£77 imply x Tí y. 77 is a

maximal complete subgraph of G if and only if 77 is complete and there

exists no complete subgraph K oí G with HEK. It is an immediate

consequence of Zorn's Lemma that every complete subgraph of a

graph G is contained in a maximal complete subgraph of G.

The following definition plays a central role in our discussion. A

related but weaker condition has recently been considered by Hajnal

and Surányi [l].

Definition. An unoriented graph (G, 7?) has the diagonal property

if and only if whenever Xi, x2, x3, and x4 are elements of G with

Xx R x2 R Xg 7? Xi, then we also have xi 7? x3 or x2 R x4.

The reader may easily verify that the diagonal property is equiv-

alent to the following condition: whenever {x0, Xi, ■ ■ ■ , xk] is a

finite sequence of elements of G with x0 7? xi 7? • • • 7? xk, there exists
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an i such that 1 = i = k — 1 and x0 R xt R xk.

We now state our main theorem. No restriction is placed on the

cardinal number of G.

Theorem. An unoriented graph (G, R) is the comparability graph

of a tree if and only if (G, R) has the diagonal property.

We first prove the necessity of the diagonal property. Suppose that

(G, P) is the comparability graph of a tree (G, <). Then x Ry means

that x<y or y <x. Suppose that (G, P) does not have the diagonal

property. Then there exist elements a, b, c, and d in G such that

a Rb Re Rd, but a Re and b Rd. Let us consider two cases.

Case 1. Suppose that a<b. Then, since c is comparable with b but

not with a, we must have c<b. But a<b and c<b contradicts the

condition that (G, <) is a tree.

Case 2. Suppose that 0 <a. Then we must have 0 <c, since c is not

comparable with a. Likewise we must have d<c. But b<c and d<c

is again a contradiction.

The proof of the sufficiency of the diagonal property is less simple.

Given an unoriented graph (G, P) with the diagonal property, we are

of course required to produce a transitive orientation T oí (G, R)

such that the oriented graph (G, T) is a tree. The construction of the

relation T will be broken down into a sequence of lemmas. In each of

the following lemmas (G, P) is assumed to be an unoriented graph

with the diagonal property.

Lemma 1. Let N be a maximal complete subgraph of (G, R). Let ö be

any family of maximal complete subgraphs of (G, R) with NE&- Then

the family { MC\N: JliGßj is a nest of sets.

Proof. If the lemma is false, then there exist MiEGt, M2E& such

that Mi(~\N and M2C\N are incomparable sets. Suppose that

xiE(Mi—M2)C\N, x2E(M2 — Mi)i~\N. We have xiRx2, since xh x2

EN. Also, by maximality of M2, XiEM2 implies that there exists

qEM2 with xi R q. Likewise, XiEMi implies that there exists pEMx

with Xi R p. Then p RxiRxiRq but p Rxí and Xi R q, contradicting
the diagonal property.

For any mEG, let us define Gm= {xEG: xRm or x — m}.

Lemma 2. Let C be any complete subgraph of (G, R). Then the family

{Gm: mEC} is a nest of sets.

Proof. Suppose that Gm and G„ are incomparable sets for some

m, nEC. Let xEGm — Gn, yEGn — Gm. Then xRmRnRy, but

x Rn and m Ry, a contradiction.
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The construction of the transitive orientation T for the graph

(G, 7?) will be accomplished by an inductive procedure. By a linearly

ordered set we mean a partially ordered set in which each two dis-

tinct elements are comparable. Let 9TÏ denote the set of all maximal

complete subgraphs of (G, 7?). Roughly speaking, we shall define in-

ductively a linear order on each ME'SIL in such a way that, if RM

and Rn are the linear orders on M and N respectively, then RM and

Rn agree on MC\N. The transitive orientation Twill then be defined

as the union of all the Rm's. The members of the family 9TC will of

course be the maximal chains of the partially ordered set (G, T).

First we give two more definitions.

Definition. Let A7£3TC. If RM is a linear order on M, we say that

Rm is admissible for M il and only if mEM, nEM, and G„EGm imply

m Rm n.

Definition. Let 0<4, <) be a linearly ordered set and let BQA.

We say that B is an initial section oí A ii and only if b E B, x E A, and

x<b imply x£73.

Lemma 3. Each Af£9TC possesses an admissible linear ordering Rm-

Proof. Let Af(E2fT£. For m, nEM, let us define m om n if and only

if Gm = Gn. The relation a m is an equivalence relation on M. Let 8

denote the set of all equivalence classes with respect to aM- For any

EG8, let Re be an arbitrary linear ordering of E. Then we define

Rm = U{Re:EE&} U {im, n) E M X M: Gn E Gm].

Since the family {Gm: mEM] is a nest, by Lemma 2, it follows im-

mediately that Rm is an admissible linear ordering of M.

Now let 9TC be well-ordered, so that 9H= {Ma: aEW}, where W is

some ordinal {0, I, • • ■ , a, ■ • • }. For each aEW, we shall define

by transfinite induction a relation Ra satisfying

(1) Ra is an admissible linear ordering of Ma,

(2) for each ß<a, we have Ra/iMar\Mß)=Rß/iManMß),

(3) for each ß<a, Maf^Mß is an initial section of both Ma and Mß

in the linear orders 7?a and 7?^ respectively.

Choose 7?o as any admissible linear order on M0. Let aEW, and

assume that Rß has been defined satisfying (1), (2), and (3) for all

ß<a. We shall show how to define Ra.

The family {MaC\Mß: ß<a] is a nest of sets, by Lemma 1. Let

Z = U { MaC\Mß: ß<a], and let 5=U {Rß/iMaC\Mß): ß<a].

Lemma 4. S is a linear order on Z.

Proof. We first check that 5 is transitive. Suppose that x S y
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and y S z. Then there exist y < a and b < a such that (x, y)

ERJ(Mar\My) and (y, z)ERi/(Mar\Ms). Since the family
{MaC\Mß: ß<a] is a nest, the sets ¥,HM, and MaC\Ms are com-

parable. Assume that M«r\MTÇJli„nJli|. Then x, y, and z are all

elements of MaC\M¡, and P« is a linear order on Ms by our inductive

hypothesis. Hence (x, z)ERs/(Ma(~\Ms), and thus x Sz. The proof

that x S y or y Sxior all at, y EZ, with * ?¿ y, is very similar and may

be left to the reader.

Now let Pm,, be any admissible linear order on Ma. We define

Ra = S\J RMJ(Ma - Z)Kj\(x,y):xEZ,yEMtt- Z}.

Lemma 5. Ra satisfies (1), (2), and (3).

Proof. (1) It is clear that Ra is a linear order on Ma. Let us show

that Ra is admissible. Suppose that x, yEMa and GVEGX. We must

consider several cases.

Case I. xEZ, yEZ. In this case we have x, yEMaf\Ms for some

b<a. By our inductive hypothesis R¡ is an admissible linear order on

Ms. Hence (x, y)ERs/(Mar\Ms)QS. Hence (x, y)ER„.

Case II. xEMa — Z, yEMa — Z. The result in this case follows im-

mediately by the admissibility of Ri£a.

Case III. xEMa—Z, yEZ. We show that this case cannot occur.

For suppose that yEMaC\Mß for some ß<a. Then x(£Mß. Hence,

by maximality of Mß, there exists pEMß with x Rp. Hence pE-G*

but pEGy, contradicting GVEGX.

In the remaining case when xEZ, yEMa — Z, we have at once that

(x, y)ERa. Hence the proof of (1) is complete.

(2) Let ß<a. Then Ra/(Mar\Mß) = S/(Mar\Mß) by definition of
Ra. But by definition of 5 we have S/(Mar\Mß)=Rß/(Mar\Mß).

This proves (2).

(3) Let ß<a. Let xEMaC\Mß, yEMß-Ma, and zEMa-Mß. We

must prove that x Rßy and x Ra z. Since yEMa, by maximality of

Ma there exists pEMa with y Rp. Hence pEGv, but pEGx. Since

the family {Gm:mEMß} is a nest, we have GVEGX. Hence xRßy,

since Rß is an admissible linear order on Mß. In a similar way we show

that zEMß implies G,EGX, and hence x Ra z.

We now define r=U{Pa: aEW}.

Lemma 6. For all x, yEG, we have x Ryif and only ifx T y or y Tx.

Proof, x T y implies x Ray for some a. Thus x and y are elements

of the complete subgraph Ma and hence x Ry. Conversely, suppose

that x Ry. Then there exists a maximal complete subgraph M„ such
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that x, yEMa- Then x Ra y or y Ra x, since 72a is a linear order on Ma.

Hence x T y or y T x.

To conclude the proof of our theorem, we shall now show that

(G, T) is a tree. We first prove that (G, T) is a partially ordered set.

7 is irreflexive, since all Ra have this property, so it is necessary only

to check the transitivity of T. Suppose that x T y and y T z for some

x, y, and z in G. We shall show that the set {x, y, z} forms a complete

subgraph of (G, 7?). By Lemma 6 we know that x 7? y and y R z,

so we need only to show that x 7? z. First note that if Gx = Gy, then it

follows at once that x 7? z, since zEGy. So assume that Gx?±Gy. In

this case, since x Ray for some a, and the linear order 7?« is admissible,

we must have GyEGx. Hence there exists qEG such that q R x and

q R y. Then q Rx Ry Rz but q R y. By the diagonal property we

have xRz. Therefore {x, y, z] is a complete subgraph of (G, 72).

Hence there exists yEW such that {x, y, z} QMy. But x T y implies

x 72T y, and y T z implies y 72T z. Since 727 is transitive on My, we have

x Ry z, and hence x T z.

Now to show that (G, T) is a tree, let x and y be elements of G with

x T y and y T x, and suppose that there exists zEG with x T z and

y Tz. Then there exist a, ßEW with x, z£A7a and y, zGAff¡. Since

x 72 y, we have x(£Mß, y$A7a. Also, by the construction of T, we

have xRaz and yRßz. But, since zGMaHAfß, this means that

Mar\Mß is not an initial section of Ma or of Mp, contradicting condi-

tion (3). Hence (G, T) is a tree, and the proof of the theorem is com-

plete.

3. Some remarks on Souslin's Problem. If G is a partially ordered

set and 77ÇG, we say that 77 is totally unordered if and only if all pairs

of distinct elements of 77 are incomparable. E. W. Miller [2] has

shown that the well-known Problem of Souslin may be stated in the

following equivalent form. 7/ (G, <) is a tree in which all chains and

all totally unordered subsets are countable, does it follow that G is

countable? Since we have shown that the diagonal property char-

acterizes the comparability graph of a tree, we are now able to state

Souslin's Problem in a "graph-theoretic" form as follows. If G is an

unoriented graph with the diagonal property in which all complete sub-

graphs and all empty subgraphs are countable, then must G be countable?

It should be noted that the affirmation of this proposition is a weaker

statement than an open question relating to Souslin's Problem re-

cently discussed by Hajnal and Surányi [l].

We may also give another formulation to Souslin's Problem in the

following way. Let us call a partially ordered set (G, <) a pseudo-tree

il and only if the comparability graph of (G,  <) has the diagonal
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property. A simple example of a pseudo-tree which is not a tree is the

partially ordered set consisting of a least element 0, a greatest element

I, and a pair of incomparable elements x, y, with 0<x<I, 0<y<I.

The reader may easily verify that a partially ordered set (G, <) is

a pseudo-tree if and only if it satisfies the following condition : when-

ever a, b, c, d are distinct elements of G such that a and o are incom-

parable, c<a, c<b, and d<b, then d is comparable with c. Now,

according to our theorem of the preceding section, given any pseudo-

tree P, there exists a mapping of P onto a tree which is 1:1 and which

preserves the comparability relation. Thus we may state Souslin's

Problem as follows. Does there exist an uncountable pseudo-tree in

which (i) every chain is countable and (ii) every totally unordered subset

is countable?

It is important to point out that there exist uncountable partially

ordered sets satisfying conditions (i) and (ii) above. An example of

such a partially ordered set is due, in essence, to Sierpinski [3]. Let

G denote the set of all ordinals preceding the first uncountable ordinal,

and let Ei be the real numbers. Let < denote the usual ordering of

both G and £i. Let/ be a 1:1 mapping of G into Ex. For x, yEG, we

define x T y if and only if x<y and/(x) <f(y). (G, T) is an uncounta-

ble partially ordered set, and Sierpinski's results [3] imply that

(G, T) satisfies conditions (i) and (ii).
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