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Abstract. Hydroxyl (OH) radicals play a vital role in main-

taining the oxidizing capacity of the atmosphere. To under-

stand variations in OH radicals both source and sink terms

must be understood. Currently the overall sink term, or the

total atmospheric reactivity to OH, is poorly constrained.

Here, we present a new on-line method to directly measure

the total OH reactivity (i.e. total loss rate of OH radicals)

in a sampled air mass. In this method, a reactive molecule

(X), not normally present in air, is passed through a glass

reactor and its concentration is monitored with a suitable de-

tector. OH radicals are then introduced in the glass reactor at

a constant rate to react with X, first in the presence of zero

air and then in the presence of ambient air containing VOCs

and other OH reactive species. Comparing the amount of X

exiting the reactor with and without the ambient air allows

the air reactivity to be determined. In our existing set up, X

is pyrrole and the detector used is a proton transfer reaction

mass spectrometer. The present dynamic range for ambient

air reactivity is about 6 to 300 s−1, with an overall maximum

uncertainty of 25% above 8 s−1 and up to 50% between 6–

8 s−1. The system has been tested and calibrated with dif-

ferent single and mixed hydrocarbon standards showing ex-

cellent linearity and accountability with the reactivity of the

standards. Potential interferences such as high NO in ambi-

ent air, varying relative humidity and photolysis of pyrrole

within the setup have also been investigated. While interfer-

ences due changing humidity and photolysis of pyrrole are

easily overcome by ensuring that humidity in the set up does

not change drastically and the photolytic loss of pyrrole is

measured and taken into account, respectively, NO>10 ppb

in ambient air remains a significant interference for the cur-

rent configuration of the instrument. Field tests in the tropical

rainforest of Suriname (∼53 s−1) and the urban atmosphere
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of Mainz (∼10 s−1) Germany, show the promise of the new

method and indicate that a significant fraction of OH reac-

tive species in the tropical forests is likely missed by current

measurements. Suggestions for improvements to the tech-

nique and future applications are discussed.

1 Introduction

Every year, approximately 1.3 billion tonnes of carbon are re-

leased into the troposphere due to natural and anthropogenic

gaseous emissions (Goldstein et al., 2004). Photochemi-

cal reactions, initiated by the hydroxyl radical (OH), oxi-

dize many of these emitted primary atmospheric pollutants

such as carbon monoxide (CO), sulphur dioxide (SO2), ni-

trogen oxides (NOx=NO and NO2) and VOCs (Volatile Or-

ganic Compounds) into forms, which are more readily re-

moved from the atmosphere by deposition or formation of

aerosol. Ultimately, if a carbon compound remains in the gas

phase it will be oxidised in radical reaction chains to CO2 and

water, which is vital for maintaining the self cleansing ca-

pacity of the atmosphere (Heard and Pilling, 2003; Lelieveld

et al., 2004). In order to ascertain how well we understand

these OH initiated photochemical processes, measured am-

bient OH radical concentrations from field studies are often

compared with OH radical concentrations predicted by pho-

tochemical models (e.g. Poppe et al., 1994; Hofzumahaus et

al., 1996; Carslaw et al., 2002; Holland et al., 2003; Martinez

et al., 2003; Olson et al., 2004; Ren et al., 2005; Ren et al.,

2006; Smith et al., 2006).

The accuracy of photochemical models depends to a large

extent on how well the OH sources, OH sinks and associated

chemical mechanisms are represented. For example, if the

model predicts significantly higher OH concentrations than

the measured OH concentrations, it could be due to an over-

estimation of the OH sources and/or an underestimation of

the OH sinks. Currently, the source term is better understood
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and more readily quantified than the sink. While the source

involves a limited number of reactants and rate coefficients

that can be determined using available instruments, the sink

is dependent on a multitude of species, all of which com-

pete for the available OH. An accurate sink term can con-

strain models and thus clarify the possible reasons for dis-

crepancies between models and measurements. Atmospheric

OH is produced primarily by the photolysis of O3 with solar

UV (λ≤320 nm) radiation followed by reaction of the excited

oxygen atoms (O1D) with water vapour,

O3 + hν → O2 + O(1D) (R1)

O(1D) + H2O → 2OH (R2)

The reactions of OH radicals with VOCs in the atmosphere

can be summarized by the following four generalized reac-

tions. In the first step, OH attacks a hydrocarbon in the pres-

ence of O2,

RH + OH + O2 → RO2 + H2O (R3)

to produce water and an alkyl peroxy radical, where

R=any organic moiety.

Next, the alkyl peroxy radical may react with NO when

present,

RO2 + NO → RO + NO2 (R4)

to produce an alkoxy radical that reacts with O2,

RO + O2 → carbonyls + HO2 (R5)

This step produces a carbonyl and HO2. Alternatively, the

alkyl peroxy radicals, RO2 and HO2, may also react with

each other,

RO2 + R′O2 → peroxides, alcohols, carbonyls + O2 (R6)

resulting in the production of peroxides, alcohols and car-

bonyls, which may dissolve into the liquid phase and precip-

itate out of the atmosphere or further react with OH. Both R

and R′ can be any organic moiety.

Reaction (3) represents a major sink term of OH radicals in

the atmosphere, namely reaction with the generic hydrocar-

bon RH. Often, the overall sink term is estimated by calcu-

lating OH loss frequencies (product of concentration and rate

coefficient) for all individually measured species and sum-

ming them. Thus, the OH reaction frequency (also termed

OH reactivity) of a chemical is given by

OH reaction frequency of reactant

X(s−1)=k(X+OH)[X] (1)

where k(X+OH) is the rate coefficient for the reaction of X

with OH

However, it is not certain whether all relevant OH reac-

tive species are measured by the suite of measurement tech-

niques deployed in current field studies. Roberts et al. (1998)

and Maris et al. (2003) determined the total carbon budget of

ambient VOCs, but while this information is useful for under-

standing what fraction of the carbon budget remains uniden-

tified by VOC measurements, it lacks the critical information

about how reactive the missing carbon might be for chemical

reactions in the atmosphere (e.g. 10 ppbC of isoprene is not

equivalent to 10 ppbC of methane for OH reactivity). Lewis

et al. (2000) identified more than 500 reactive VOCs in ur-

ban air using comprehensive gas chromatography and con-

cluded that a large number of VOCs, particularly those with

more than 6 carbon atoms and especially aromatics, are not

resolved in the more commonly employed single column gas

chromatography measurements. More recently, Goldstein et

al. (2004) and Holzinger et al. (2005) reported the presence

of unknown reactive biogenic compounds (up to 30 times the

emission of total monoterpenes observed in the forest canopy

on a molar basis), from a pine forest in California. Direct OH

reactivity measurement techniques circumvent the daunting

task of measuring all the OH reactive species individually, in

order to obtain the total OH reactivity (sink) and can even

serve as a diagnostic tool for missing reactivity due to pos-

sibly unmeasured reactive species (Di Carlo et al., 2004).

Additionally, OH production rates can also be estimated by

simultaneous measurements of total OH reactivity and OH

concentrations, assuming the steady state of OH using

d [OH]

d t
= POH − k [OH] = 0 (2)

where POH and k represent the OH production rate and its

measured first-order decay constant, respectively. Finally, in-

formation about the lifetime of OH is also easily obtained by

taking the reciprocal of the measured OH reactivity.

In the last decade, new instruments capable of directly

measuring the OH reactivity of ambient air have been de-

veloped (Kovacs and Brune, 2001; Sadanaga et al., 2004b).

With some variations, all of them employ laser induced flu-

orescence (LIF) to monitor the loss rate (decay) of OH radi-

cals in a reactor in the presence of ambient air. While these

measurement systems have provided new insights on the OH

reactivity budget, their cost, complexity and large size are

deterrents to their widespread deployment for field studies.

Thus, other techniques capable of measuring the total OH re-

activity of ambient air that are more economical and portable

than the existing LIF based method, would be a valuable ad-

dition to current atmospheric measurements.

In this study, we present a new method for direct online

measurements of the total OH reactivity of ambient air. This

method can be easily integrated with commonly employed

in-situ analytical techniques such as gas chromatography and

chemical ionization mass spectrometry at modest additional

costs. Presented below is a detailed description of the gen-

eral concept, the reactor design, the method validation and

calibration, choice of reagent (in this case pyrrole; C4H5N)

and the detector system employed (in this case a proton trans-

fer reaction mass spectrometer). First field results from the
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tropical rainforest in Suriname and the urban atmosphere of

Mainz, Germany, are shown and potential interferences from

NO and relative humidity are investigated. Finally an outlook

for future applications of the new method is given.

2 Methodology

2.1 Concept of Comparative Reactivity Method (CRM)

Figure 1 illustrates the general concept schematically. A re-

active molecule (X), not normally present in air, is intro-

duced into a glass reactor and its concentration C1 is mon-

itored with a suitable detector, in the air exiting the reactor.

After some time when C1 is well determined, synthetically

generated OH radicals (OH<[X]) are introduced into the re-

actor at a constant rate to react with X. This causes C1, the

monitored concentration of X, to decrease to C2, as X reacts

with the OH radicals. The decrease in the monitored concen-

tration of X (from C1 to C2) also gives the initial concentra-

tion of the OH radicals, as all the OH is completely titrated

by X. Next, an air sample containing reactive species is in-

troduced into the glass reactor. The various species present in

ambient air then compete with X for the available OH radi-

cals, so that the concentration of X in the air exiting the reac-

tor increases to C3. Comparing the amount of X exiting the

reactor without (C2) and with the ambient air (C3) allows

the introduced air sample’s OH reactivity to be determined

in a quantitative manner, provided the system is suitably cal-

ibrated. Some general criteria that the reagent molecule X

must satisfy are:

1. it reacts with OH at a suitable rate so as to compete with

reactive species in ambient air;

2. the rate coefficient for reaction with OH should be well

established;

3. it must be volatile (to make into a good bottled stan-

dard);

4. it must have the necessary physical and chemical prop-

erties for easy and accurate detection (without interfer-

ences) using a suitable detector (e.g. the proton affinity

of X should be greater than water to be detectable by a

PTR-MS);

5. it should not be present in ambient air (under normal

circumstances) as this can complicate the analysis. In

the present version of the CRM developed in Mainz, the

reagent molecule X is pyrrole (C4H5N) and the detector

is a PTR-MS.

2.2 Determining OH reactivity: derivation of the basic

equation for CRM

Based on competitive kinetics, an expression may be derived

for the total OH reactivity of the analysed air sample (de-

Fig. 1. Schematic illustrating concept of the Comparative Reactivity

Method.

noted by Rair) in terms of the measured pyrrole signals C1,

C2 and C3 (shown in Fig. 1).

Consider the loss of OH in a two component reactive mix-

ture consisting of pyrrole and air, the equations describing

the loss of OH are:

OH + pyrrole → products (R7)

OH + air → products (R8)

leading to the rate expression

− δ[OH]/dt = kp[OH][Pyrrole] + kOH+air[OH][air] (3)

where kp is the rate coefficient for reaction of OH with

pyrrole and kOH+air is the effective rate coefficient of all re-

active components in the air sample and [air] is their summed

concentration. As [pyrrole] is >[OH] the first order loss

rate coefficients of OH in its reactions with pyrrole and air

are given approximately by Rp=kp [Pyrrole] and Rair=kair

[air], respectively, resulting in a total loss rate coefficient of

Rp+Rair. If all OH is lost in reaction with pyrrole and air, the

change in pyrrole concentration (C1–C3) is approximately

given by

(C1 − C3) =
Rp

Rp + Rair
· [OH] (4)

As discussed previously, the OH concentration is given by

the loss of pyrrole in the absence of air (C1–C2), so that:

(C1 − C3) =
Rp

Rp + Rair
· (C1 − C2) (5)

rearranging we get

Rair =

{

(C1 − C2)

(C1 − C3)
− 1

}

· Rp (6)

and, equating [pyrrole] to C1,

Rair =

{

(C1 − C2)

(C1 − C3)
− 1

}

· kpC1 (7)
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Fig. 2. Schematic of the glass reactor used in the Mainz CRM in-

strument.

which is numerically equivalent to

Rair =
(C3 − C2)

(C1 − C3)
· kpC1 (8)

[OH], C1, C2 and C3 have the units of molecules cm−3 and

kp has the unit of cm3 molecule−1s−1, so that the unit for Rair

is s−1. It should be noted that Eq. (8) assumes that mixing

within the reactor does not favour reaction of X with OH

compared with the reaction of ambient air with OH or vice

versa. It also assumes that throughout its reactive lifetime the

OH is partitioned to the pyrrole and air reactants according to

their initially available concentrations, i.e. the reaction takes

place under pseudo-first order conditions. We examine the

effect of this assumption in Sect. 4.1 when we present the

results of some numerical simulations of the reactor.

3 Experimental

The simple set up consists of a small glass reactor (where

pyrrole and ambient air/standards mix and react with OH rad-

icals), a PTR-MS which detects pyrrole in the air exiting the

reactor and a set of mass flow controllers along with two gas

bottles (nitrogen and zero air).

3.1 Glass reactor

Figure 2 shows a diagram of the glass reactor used along

with its inlets and outlets labelled as arms A, B, C, D and E.

The length and volume of the glass reactor are approximately

14 cm and 94 cm3, respectively. The typical flow rate inside

the reactor is approximately 260 ml min−1.

Gas phase pyrrole (Westfalen A.G., stated uncertainty 5%;

10 µmol mol−1) is mixed with zero air (Synthetic air, West-

falen A.G., 99.999% purity, <0.5 µmol mol−1 THC) and in-

troduced through inlet A at a constant flow. Its concentra-

tion is monitored in the air exiting the reactor (outlet D) with

a PTR-MS. Inlet B consists of a pen ray spectral mercury

vapour lamp (L.O.T Oriel GmbH and Co. KG), over which

humidified nitrogen/nitrogen (Westfalen A.G., 99.9999% pu-

rity) is passed at a constant flow rate. The humidification is

accomplished by bubbling gaseous nitrogen through water,

which is maintained at room temperature (298 K). When the

lamp is switched on, OH and H radicals are produced due

to photolysis of the water vapour (at λ=184.9 nm) present

in the humidified nitrogen. The lamp is 5 cm long and the

maximum time the OH radicals spend in arm B before they

emerge into the glass reactor, is 0.6 s. This method of pro-

ducing OH radicals has been used extensively in gas phase

kinetic studies, including calibration of OH measurement in-

struments, and for more details the reader is referred to Heard

and Pilling (2003) and references therein.

The tapered arm E is a Wood’s horn which minimizes re-

flection of the mercury lamp down the reactor and hence

photochemical reactions along the length of the glass re-

actor. Outlet C is connected to an exhaust pump (Model

NO22AV.18, KNF Neuberger, Germany) that draws out the

excess air from the main flow. The total incoming flow rate

(A+B) is circa 260 ml min−1, slightly more (∼5 ml min−1)

than the combined flow through the exhaust pump (arm C)

and the PTR-MS. To prevent an over-pressure from build-

ing up within the reactor, and to ensure that the pressure in

the reactor is always atmospheric pressure (760 Torr), one of

the lines linked to arm A (with a T-shaped Teflon joint) is

kept open-ended at all times. The pressure and temperature

inside the reactor are also monitored using a digital pressure

manometer (Model 13 AN, Greisinger Elektronik, Germany)

and a temperature probe connected to the line exiting arm

C. A total of four mass flow controllers (MKS Instruments,

Deutschland GmbH) are used to maintain constant flows in

arm A (one each for pyrrole and zero air), arm B (one for

nitrogen) and arm C (for the exhaust pump). All the gas car-

rier lines leading into and from the reactor are plumbed using

short (<1 m) 1/4 inch (0.635 cm) (outer diameter; o.d.) and

1/8 inch (0.3175 cm) (o.d.) Teflon tubing.

To sample ambient air for reactivity, the zero air is

switched off and an equivalent amount (130–150 ml min−1)

of ambient air is pumped in, using a Teflon VOC sampling

pump (Laboport N86-KN18; at arm A). This causes dilution

of the ambient air within the reactor, and the dilution factor

has to be taken into account when determining the total OH

reactivity of the introduced ambient air. It is worth mention-

ing that the ambient air is not subject to any gas chromatog-

raphy column, preconcentration step or laser excitation and

its reactivity is directly converted into a modulation of the

pyrrole signal so that any potential losses of VOCs and/or

associated artefacts are minimised. Typical pyrrole and OH

radical mixing ratios (the signal C1–C2 in Fig. 1) in the set

up are ∼120 nmol mol−1 (∼3.23×1012 molecules cm−3) and

up to 100 nmol mol−1 (∼2.69×1012 molecules cm3), respec-

tively.

3.2 PTR-MS: the detector

The mixing ratio of pyrrole in the air exiting the glass reactor

through arm D was monitored using a proton transfer reac-

tion mass spectrometer (PTR-MS), a device used extensively

over the last decade to measure ambient VOCs (Lindinger et
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al. 1998a; de Gouw and Warneke, 2007). Within the instru-

ment, organic species with a proton affinity greater than wa-

ter are chemically ionised by proton transfer with H3O+ ions

and the products are detected using a quadrupole mass spec-

trometer (Lindinger et al., 1998b). The entire inlet system of

the PTR-MS including switching valves is made of Teflon.

Details about the operation of the PTR-MS used here, in-

cluding its mass identifications, its sensitivity and detection

limits for masses other than pyrrole (C4H5N) are given else-

where (Williams et al. 2001, Salisbury et al., 2003; Sinha

et al., 2007a). Pyrrole is detectable by the PTR-MS since

its proton affinity (209.2 kcal mol−1) is higher than that of

water (165.2 kcal mol−1) and the signal is observed with-

out fragmentation at mass 68 (C4H5NH+). There are no

known species in ambient air that could interfere at mass

68 within the PTR-MS, and experience from field campaigns

has shown this mass to be stable. It is advantageous that mass

68 is an even mass (pyrrole has a nitrogen atom), since most

organic compounds detectable by PTR-MS (e.g. methanol,

acetone, acetaldehyde and isoprene) are detected after pro-

tonation at odd masses. Pyrrole is not normally present in

ambient air, and has only been observed in emission plumes

from specific energy production processes such as coal gasi-

fication and shale and coal-based oil production (Sickles et

al., 1977).

Calibrations performed with custom prepared pyrrole stan-

dards from Westfalen A.G. show that the protonated ion of

pyrrole (m/z=68) does not fragment within the instrument

and high mixing ratios of up to circa 250 nmol mol−1 do

not significantly decrease the signal of the H3O+ reagent

ions. Furthermore, no significant humidity effect has been

observed at the pyrrole signal (mass 68). The linearity of the

pyrrole signal is excellent (r=0.99 between the investigated

range of 0.5 to 250 nmol mol−1) and the total uncertainty

in the measured pyrrole signal is estimated to be 11%. This

includes a 5% accuracy error inherent in the pyrrole gas stan-

dard and a 2σ precision error of 6%, while measuring pyrrole

at 25 nmol mol−1(the typical baseline value, C2, Fig. 1). As

a detector for the CRM technique, the PTR-MS offers the

added advantage of tracking humidity changes in the air ex-

iting the glass reactor (more details in Sect. 4.2.3), by mon-

itoring masses 37 (cluster ion H3O+·H2O) and 55 (cluster

ion H3O+·(H2O)2), which can be used as proxies for water

vapour in the air sampled by the PTR-MS. Further details of

this approach are available in Ammann et al. (2006).

4 Results

4.1 Calibrations and method validation

Several tests with single and mixed hydrocarbon standards

were performed to ascertain whether the Comparative Reac-

tivity Method can reliably quantify samples of known OH re-

activity. Figure 3 shows an example plot of the measured raw

reactivity data versus time. A propane gas standard (West-

falen A.G.; 33 µmol mol−1; stated uncertainty 4%) was in-

troduced at different concentrations through the same line

that is used to introduce ambient air into the glass reactor.

The PTR-MS is blind to propane since the proton affinity

of propane is less than that of water. The occasions when

propane was introduced are indicated by shaded areas. As

can be seen in Fig. 3, the baseline value (corresponding to

C2 in Fig. 1) of pyrrole is ∼25 nmol mol−1 and after every

modulation (increase in signal corresponding to C3 in Fig. 1)

with propane concentrations of 1203 nmol mol−1, 769 nmol

mol−1and 465 nmol mol−1, respectively, the pyrrole signal

reproducibly returns to its baseline value (from C3 to C2),

within the instrumental precision error of ∼6%. This shows

that the modulation (from C2 to C3) occurs due to the com-

petition between propane and pyrrole for the available OH

radicals. The evaluated rate coefficient for the reaction of

propane with OH is (1.1±0.2)×10−12 cm3 molecule−1 s−1

(Atkinson et al., 2007). Using Eq. (1), the reactivities due to

the propane amounts shown in Fig. 3, were calculated to be

∼35.3 s−1, 22.5 s−1 and 13.6 s−1, respectively. The breaks in

the data plot in Fig. 3 correspond to periods where the instru-

mental background was measured. The background signal is

collected by passing the sampled air over a Pt catalyst kept at

350◦C to oxidize all the organics. This enables correction for

the noise at the measured masses and results in more accurate

quantification.

Figure 4 shows the reactivity measured with the CRM

(vertical axis) plotted against the reactivity introduced into

the glass reactor (horizontal axis) due to several standards in

different experiments. In addition to propane, a 19 compo-

nent hydrocarbon mixture was used as a reactivity standard.

The 19 component hydrocarbon mixture is a commercial gas

standard (Apel-Riemer Environmental Inc.) and contains nu-

merous compounds spanning four orders of magnitude in OH

reaction rates. These are methanol, acetone, acetaldehyde,

hexanal, trans-2-hexenal, methyl ethyl ketone, methyl vinyl

ketone, acetonitrile, isoprene, alpha pinene, toluene, ben-

zene, 1,3-dimethyl benzene, 2-methyl furan, 2-pentanone,

1,3,5-trimethyl benzene, 1,2,4,5- tetramethyl benzene, cis-

2-butene dimethyl sulphide and dimethyl disulphide. Akin

to propane, the reactivity due to the standards is calculated

using Eq. (1) and using rate coefficients taken from the latest

IUPAC recommendations on gas kinetic data evaluation for

atmospheric chemistry (Atkinson et al., 2007).

For 1,2,4,5- tetra methyl benzene, no data was avail-

able and so its OH rate coefficient was assumed to be

1×10−11 cm3 molecule−1 s−1(similar to rate coefficients of

∼1.3×10−11 cm3 molecule−1 s−1 for 1,3-dimethyl benzene

and 1,4-dimethyl benzene and 3×10−11 cm3 molecule−1 s−1

for 1,3,5-trimethyl benzene). For the 19-component hydro-

carbon standard’s data shown in Fig. 4, the hydrocarbon

concentrations introduced were ∼7 nmol mol−1 and 16 nmol

mol−1, which are notably higher than the general abundance

levels of these VOCs in the atmosphere. The horizontal

www.atmos-chem-phys.net/8/2213/2008/ Atmos. Chem. Phys., 8, 2213–2227, 2008
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Fig. 3. Example plot showing raw reactivity data and modulations with propane (increase in pyrrole signal). Grey bars indicate the occasions

when propane was added to the setup.
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Fig. 4. Method validation and calibration using different standards

on different occasions (good reproducibility). Error bars represent

the total calculated uncertainty.

error bars in Fig. 4 represent the total uncertainty in the re-

activity of the standards, which includes the uncertainties

in the VOC+OH-rate coefficient (typically ∼15–20%), the

accuracy of the standard (∼5%) and the flow fluctuations

(∼10%). The measured reactivity (plotted on the vertical

axis in Fig. 4) is obtained by interpolating the measured base-

line (corresponding to C2 in Fig. 4) and applying Eq. (8) to

the measured pyrrole signals C1, C2 and C3.

The vertical error bars (∼20%) in Fig. 4 represent the

total uncertainty in the measured OH reactivity and in-

clude the uncertainty in the pyrrole+OH rate coefficient

(1.20±0.16)×10−10 cm3 molecule−1 s−1, flow fluctuations

of the mass flow controllers (∼10%), uncertainty in the pyr-

role standard (5%) and instrumental precision error (∼6%).

Applying the root square propagation of uncertainties due

to 1) rate coefficient of pyrrole+OH (14%), 2) overall flow

fluctuation (10%), 3) uncertainty in value of the pyrrole stan-

dard (5%, 4) precision error (6%), we get an overall error of

18.89% which is ∼20%.

Overall, it can be seen from Fig. 4 that the CRM measure-

ments show excellent linearity (r=0.99) and good account-

ability (slope of measured reactivity versus reactivity due to

standard=1.08±0.04) for the reactivity of up to ∼196 s−1due

to propane as well as the 19-component hydrocarbon stan-

dard. This means that the dynamic range for the reactivity

of ambient air (typically diluted in the glass reactor by a fac-

tor 1.7–2) would be about 6 to 300 s−1. The intercept of the

line in Fig. 4 is negative (a=–3.3) which indicates that at low

reactivity ranges of <6 s−1 the existing method lacks sensi-

tivity.

Indeed, at low reactivity significant systematic errors can

be induced by use of the analytical expression (Eq. 8) which

is strictly appropriate only if pseudo-first order conditions ex-

ist (i.e. [pyrrole] ≫[OH]). Under the experimental conditions
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Fig. 5. Plots showing relation between Reqnand Rtrue for numerical

simulations at [pyrrole]/[OH] ratios of 10 (purple markers) and 1.22

(green markers).

here a significant depletion of pyrrole was however neces-

sary in order to make accurate measurement of C2 feasi-

ble. In fact, even under near pseudo first order conditions

([Pyrrole]/[OH] ratio=10), for sample air having 5 s−1 OH

rate reactivity and OH radical concentration in the set up of

∼2.7×1011 molecules cm−3, one would have to measure a

modulation of 0.2 nmol mol−1 on a baseline (C2) pyrrole

signal of 1 µmol mol−1, which is not possible with a PTR-

MS. Only the initial flux of OH to either pyrrole or air is

adequately described by Eq. (8), but the integrated flux to

both reactants (i.e. over the entire reaction time for OH) may

deviate from this if the two pools of reactants (i.e. pyrrole

versus air) are depleted at different rates. In order to investi-

gate this, simple numerical simulations (Curtis et al.,1988)

were carried out in which an initial concentration of OH

(2.7×1012 molecules cm−3) was allowed to react firstly with

pyrrole only and then with pyrrole and a hydrocarbon with

a rate coefficient of 2×10−13 at different concentrations, to

give OH reactivity between 5 and 150 s−1. Considering the

dilution factor for ambient air in the set up, this would corre-

spond to a reactivity range of about 8 to 300 s−1 for ambient

air sampling.

The results are summarised in Fig. 5 which plots the re-

activity, Reqn, obtained by applying Eq. (8) to the numer-

ical simulations of the pyrrole concentration (C2 and C3)

after OH had reacted to zero, versus the true reactivity,

Rtrue (derived from kRH. [RH]; Eq. 1). Two scenarios

were considered, one approaching pseudo-first order condi-

tions with [pyrrole]/[OH]=10 and the second one with [pyr-

role]/[OH]=1.22. The simulations for near-pseudo-first order

conditions (see Fig. 5) provide confirmation of the analytical

expression used and return a slope of 1.05. Note that the re-

lationship between Reqn and Rtrue is however not perfectly

linear, with a maximum deviation of 6%. For the case where

[pyrrole]/[OH]=1.22 (also shown in Fig. 5), which is more
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Fig. 6. Plot showing the fitting function obtained between Rtrue and

Reqn at [pyrrole]/[OH] ratio of 1.22 (the experimental conditions).

relevant for the experiments described here, we obtain the

following fitting function:

Reqn = 3.16 × R0.84
true − 2.55 (9)

This shows that using Eq. (8) under the conditions of [pyr-

role]/[OH]=1.22, may cause the measurements to overesti-

mate the OH reactivity of the analyzed air sample, especially

at lower ranges of OH reactivity. Also, in the real experiment

this curvature would not have been observed (e.g. Fig. 4).

Nevertheless, as the [pyrrole]/[OH] ratio is known from the

experiments (C1/C1–C2), this simple analysis does enable a

correction factor to be derived for the measured data. For

conditions typical of the present set of experiments, the cor-

rection factor is easily obtained by plotting Rtrue versus Reqn

as shown in Fig. 6, and we obtain the following correction

factor:

Rtrue = 0.26R1.19
eqn + 1.2 (10)

Applying Eq. (10) to the measured reactivity data in the

calibration plot of Fig. 4, we obtain a line with a slope of

0.79±0.03 (as shown in Fig. 7). From Fig. 7, it is again obvi-

ous that the OH reactivity measured by the CRM accounts for

the introduced air sample’s OH reactivity, within the overall

uncertainty of the measurement (20%). For all measured OH

reactivity data shown hereafter, the correction factor (Eq. 10),

has already been applied.

4.2 Investigation of possible interferences

Three main potential interferences have been identified while

operating the Comparative Reactivity Method in its present

configuration. These are: photolysis of pyrrole; recycling

of OH at high NO due to the NO+HO2 reaction; and dras-

tic changes in the relative humidity within the set-up when

ambient air is sampled. A detailed discussion of each is pre-

sented in the following sub-sections.
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on different occasions (good reproducibility) after application of the

correction factor. Error bars represent the total calculated uncer-

tainty.

4.2.1 Photolysis of pyrrole

The pen ray mercury lamp (L.O.T Oriel GmbH and Co.

KG), used for producing OH radicals by photolysis of wa-

ter vapour at 184.9 nm, also has emission lines at 253.6 nm,

312.5 nm, 365 nm and 435.8 nm. Pyrrole absorbs at some of

these wavelengths (Bavia et al., 1976; Cronin et al., 2004

and its photolysis can potentially complicate the reactivity

assessment. Switching on the lamp inside the set-up without

bubbling the nitrogen through water (so that no OH radicals

are generated) gives the decrease in pyrrole (from C0 to C1)

due to photolysis alone.

In every session of CRM measurements, the C1 value is

obtained experimentally and so the initial amount of pyr-

role (corresponding to C1), which is available for reaction

with OH, is known accurately. Using C1 instead of C0 is

valid provided that the photolytic loss of pyrrole is not sig-

nificantly influenced by addition of water vapour. As H2O

does not absorb strongly at the 254.6 nm Hg line, which is

mainly responsible for pyrrole photolysis, this is a reason-

able assumption. Photolysis of pyrrole in our set-up (can

be up to 25%) is a significant interference if it is not taken

into account. However, by measuring and hence knowing

its contribution to the observed decrease in the pyrrole sig-

nal, when the lamp is switched on in the presence of moist

N2 for OH production ensures that this interference is ade-

quately quantified and hence has negligible influence on the

measurements. This is also borne out by the good agreement

obtained using reactivity standards as mentioned earlier.

4.2.2 Recycling of OH due to HO2+NO

The pen-ray mercury lamp produces OH radicals by the pho-

tolysis of water vapour at atmospheric pressure in the follow-
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Fig. 8. Results of the experimental (open green markers) and nu-

merical (closed markers: red, green and purple) NO sensitivity

study to determine its impact on the CRM measurements.

ing manner

H2O
184.9 nm
−→ OH + H (R9)

While the above step is performed only in a flow of N2,

zero air containing oxygen (O2) enters the glass reactor

through arm A (see Fig. 2), so that HO2 is also rapidly pro-

duced within the glass reactor by the following reaction:

H + O2 + M −→ HO2 + M (R10)

If NO is present in the sampled ambient air, it can recycle

OH radicals:

NO + HO2
k = 8.8×10−12 cm3 molec−1s−1

−→ OH + NO2 (R11)

Figure 8 shows the measured OH reactivity (vertical axis;

open green markers) for different amounts of NO in the

setup (horizontal axis) while sampling air containing propane

(∼16.5 s−1 of reactivity; 558 nmol mol−1 propane). Note

that even at such high values of propane in the introduced air

sample (∼16.5 s−1 of reactivity; 558 nmol mol−1 propane),

the measured OH reactivity is not affected significantly (that

is, the change is within the measurement uncertainty) for

added NO concentrations of up to ∼3.5 nmol mol−1. Above

5 nmol mol−1 of NO in the setup, however, the change in

the measured OH reactivity due to reaction with the recy-

cled OH was non-linear and caused significant interference in

the CRM measurements, so that the entire modulation (C3–

C2) was suppressed (data not plotted in Fig. 8). The numer-

ical simulation for the same value of introduced reactivity

(16.5 s−1) is also shown in Fig. 8 (the closed green markers)

and are in good agreement with the profile of the measure-

ments (open green markers) up to ∼3.5 nmol mol−1. This

numerical simulation included the complete propane degra-

dation mechanism (to end products CO2 and H2O) (Atkin-

son et al., 2007) and, by neglecting reactions of RO2 with

Atmos. Chem. Phys., 8, 2213–2227, 2008 www.atmos-chem-phys.net/8/2213/2008/
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Fig. 9. Changes in the measured pyrrole signal due to changes in

relative humidity within the glass reactor

themselves or with HO2, represents the worst case scenario

in which the rate of reaction of HO2 with NO is optimized.

Beyond 3.5 nmol mol−1 of NO in the setup, while the sim-

ulation also shows more suppression in the measured OH

reactivity, the scale of change is not the same as that ob-

served for the measurements (measured OH reactivity tends

to zero at 10 nmol mol−1of NO in the experiments while the

simulation shows only ∼70% change, from 16.5 s−1to 5 s−1;

Fig. 8). Further simulations at 12 s−1 (red markers in Fig. 8)

and 50 s−1(purple markers in Fig. 8) of OH reactivity confirm

the same trend of underestimation of measured OH reactivity

at NO>5 nmol mol−1 in the setup.

4.2.3 Humidity difference between zero air and ambient air

If the zero air used in lieu of ambient air to determine the

pyrrole baseline signal (corresponding to C2 in Fig. 1) dif-

fers substantially in humidity from that of the sampled ambi-

ent air, then the amount of OH radicals generated within the

glass reactor might change, causing artefacts in the measured

C2 and C3 pyrrole signals. When the zero air is drier than

the ambient air entering the glass reactor, more OH radicals

may be produced while sampling/modulating with ambient

air due to photolysis of the ‘extra’ water vapour present in

the sampled ambient air. As a result, there can be a suppres-

sion of the measured pyrrole signal (C3) causing the mea-

surements to underestimate the actual reactivity. Conversely,

if the zero air is wetter than the sampled ambient air, less OH

radicals may be available for reaction with pyrrole during the

sampling of ambient air, leading to an enhancement of the

measured pyrrole signal (C3) and resulting in measurements

that may overestimate the actual OH reactivity.

To ascertain how significant this interference might be, the

zero air flowing into the set-up was humidified to different

degrees by mixing varying amounts of wet and dry zero air

prior to its introduction into the glass reactor through arm

A (see Fig. 2). Then, the variation in the pyrrole baseline

(signal C2 in Fig. 1) was monitored for different degrees of

humidified zero air. The humidity of the glass reactor air is

tracked using mass 55 (cluster ion H3O+(H2O)2), with the

PTR-MS, similar to the approach of Ammann et al. (2006).

Figure 9 shows the results, with the increase in the pyrrole

signal (vertical axis) plotted against the corresponding de-

crease in humidity (horizontal axis). It is evident that repeat-

ing the experiment on different occasions which involved re-

assembling the whole set up and slightly different flows (see

data for 14 August 2005 and 26 October 2006 in Fig. 9) pro-

duces a consistent trend line.

The data in the top left hand corner of Fig. 9 were obtained

under the extreme condition of measuring the change in the

pyrrole signal (C2) while using saturated zero air (∼90%)

and dry zero air, taken directly from the bottle. Figure 9 also

shows that for changes in mass 55 (humidity tracer) of up

to ∼20000 counts per second (cps) the change in the pyrrole

signal is <1 nmol mol−1, which is within the precision er-

ror of the PTR-MS. Therefore, while conducting ambient air

reactivity measurements, the diluting zero air is humidified

to lie within the 20 000 cps range of the mass 55 signal ob-

served for ambient air. So, while drastic changes in humidity

can cause a significant interference, care is taken to match

the mixing gases close to the ambient humidity and thereby

significant interferences are avoided.

4.3 Field deployment and first CRM results of ambient air

OH reactivity

To test the capability and performance of the technique under

markedly different ambient conditions, measurements were

conducted first in the urban atmosphere of Mainz, Germany,

and then in the tropical rainforest air of Suriname in August

and October 2005, respectively.

4.3.1 Total OH reactivity of Mainz air: urban environment

Figure 10 shows the diel OH reactivity profile for Mainz air,

measured with the CRM technique from 18–20 August 2005.

Ambient air was sampled outside our laboratory (49◦59′N,

8◦14′E) at the Max Planck Institute for Chemistry in Mainz,

circa 8 m above the ground. Just outside the laboratory

there is an undergrowth of bushes and plants. The sampled

ambient air was introduced directly into the CRM glass reac-

tor using ∼12 m long, 1/2 inch (o.d.) Teflon tubing, using a

VOC sampling pump (Laboport N86-KN18). The inlet res-

idence time for the ambient air was <20 s and the measure-

ment frequency was 0.025 Hz. During the measurements,

NO in Mainz air was typically less than 1.5 nmol mol−1

(Landesamt für Umwelt, Wasserwirtschaft und Gewerbeau-

sicht Rheinland-Pfalz). The average value of the total OH

reactivity of Mainz air was ∼10.4 s−1. OH reactivity was

observed to be highest during the afternoon (13:00 L.T.),

reaching peak values of ∼18±4 s−1, while lowest values

www.atmos-chem-phys.net/8/2213/2008/ Atmos. Chem. Phys., 8, 2213–2227, 2008
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Fig. 10. Diel mean profile (black circles) of the total OH Reactivity

of Mainz (urban site) air measured during summer (August 2005)

with the CRM instrument.

(∼6±3 s−1) were observed early in the morning between

02:00 to 04:00 L.T.

4.3.2 Total OH reactivity of Suriname rainforest air: forest

environment

Figure 11 shows OH reactivity measurements of rainforest

air at the peak of diel emissions. The measurements were

taken in the nature reserve of Brownsberg (4◦56′N, 55◦10′W,

512 m a.s.l.) in Suriname, within the canopy at about 35 m

above the ground. Details about the sampling methodology

along with the site description are given elsewhere (Sinha et

al., 2007b; Williams et al., 2007). Ambient forest air reactiv-

ity was measured for almost 2 h on 6 October 2005 before the

PTR-MS broke down. Earlier, from 2 to 5 October 2005, the

PTR-MS was used to measure ambient air directly (without

reactivity measurements) to determine diel emission profiles

for VOCs such as acetone (mass 59), acetaldehyde (mass

45), isoprene (mass 69) and the isoprene oxidation products,

methyl vinyl ketone and methacrolein (detected collectively

at mass 71). The calculated diel reactivity profile derived

from the ambient air PTR-MS measurements of these species

is shown on the right vertical axis of Fig. 11. The CRM reac-

tivity measurements shown in Fig. 11 were taken when forest

air seemed to have maximum OH reactivity, as they coincide

with the peak of diel forest emissions. The average of all the

OH reactivity measurements (∼2 h of data) was circa 53 s1,

with a peak OH reactivity of approximately 72±18 s−1.

5 Discussion

The results shown here demonstrate that a new and promis-

ing online technique capable of directly measuring the total

OH reactivity of ambient air has been developed. Using pyr-

role and a PTR-MS, as the reagent molecule and detector,

respectively, the dynamic range of the technique in its exist-

ing configuration is about 6 to 300 s−1 for ambient air. At

C1, C2 and C3 values of 120 nmol mol−1, 20 nmol mol−1

and 1.5 nmol mol−1, respectively, the measured reactivity us-

ing Eq. (8) is ∼5.9 s−1. Applying the correction factor in

Eq. (10) this corresponds to true reactivity of ∼3.3 s−1 and

allowing for the dilution factor of 1.7 within the set up, this

implies ∼ 6 s−1 of reactivity for the sampled ambient air. The

overall uncertainty of the measurements is typically around

25%. At lower ambient air reactivities (< circa 8 s−1), the

uncertainty can be up to ±50%. This is sensitive enough

to constrain the OH reactivity (OH sink) and test for miss-

ing OH reactants during field campaigns (when OH reac-

tivity >8 s−1). The technique performs well with propane

and mixed hydrocarbon standards and accounts for the intro-

duced reactivity within the measurement uncertainty. While

the slope of the trend line derived from the calibration ex-

periments (Fig. 4) tended to slightly overestimate the true

reactivity by circa 8%, the trend line obtained by applying a

model correction factor to the same data (Fig. 7), tended to

underestimate the true reactivity by circa 20%. Note how-

ever that both the simulation and the experiments lie within

20% of the true reactivity due to the different standards.

While major potential interferences have been investigated

in Sect. 4.3, other minor interferences have also been con-

sidered. Ambient air VOCs which absorb in the UV region

may undergo photolysis within the set up. However, the fact

that the calibration line due to the 19 component hydrocar-

bon standard (containing VOCs such as acetaldehyde, hex-

anal and aromatics and methyl vinyl ketone, which absorb

UV light and are introduced at concentrations of 7 to 17 nmol

mol−1), falls on the same trend line as that of propane (see

Fig. 4), suggests that this is not a significant effect. To test

for secondary chemistry along the reaction length, and the

sensitivity to slight change of flows (∼20 ml minute−1) the

PTR-MS probe (inlet D of the glass reactor; Fig. 2) was

placed at different points along the length of the glass reac-

tor. However, no noticeable change in the measured pyrrole

signal was observed. This simple test is also applied in the

field, while sampling ambient air to investigate the influence

of secondary chemistry within the glass reactor. It is also

worth mentioning that the lifetime of OH radicals within the

glass reactor set up is always <4 ms.

Ozone is also produced within the glass reactor by photol-

ysis of O2 due to the 184.9 nm lamp emission line. Moreover

the ratio of O3/OH in our glass reactor set up is similar to that

found in ambient air (103). However, the ozone (produced

at µmol mol−1 level) hardly affects the pyrrole signal since

the pyrrole+O3 reaction rate (kO3+pyrrole=1.57×10−17 cm3

molecule−1 s−1(Atkinson et al., 1984) is several orders of

magnitude slower than the reaction rate with OH radicals.

With regard to the reactions of HOx with O3 in the set up, the

contribution of the HOx and O3 (e.g. HO2+O3) reactions to

the production or destruction of OH radicals within the setup

does not change appreciably in the presence of ambient air

Atmos. Chem. Phys., 8, 2213–2227, 2008 www.atmos-chem-phys.net/8/2213/2008/
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Fig. 11. Total OH reactivity measurements (black markers) of rainforest air in Brownsberg, Suriname along with diel median profile of

calculated OH reactivity (red markers) due to isoprene, mvk, methacrolein , acetone and acetaldehyde), obtained during the dry season in

October 2005.

due to their low levels of ambient abundance (ppb for O3 and

ppt for HOx) when compared with the levels already within

the set up (ppm for O3 and ppb for HOx). It is also worth

mentioning that reactions involving the OH radical and am-

bient HO2, O3 are not important because of the very short

lifetime of OH with respect to pyrrole (less than 4 ms). When

terpenes and sesquiterpenes are present in ambient air, they

can react with O3 within the glass reactor and recycle OH

(Paulson et al., 1999; Hasson et al., 2003). Also, some

RO2 reactions with HO2 may also generate OH (Hasson et

al., 2004), again potentially affecting the reactivity measure-

ment. Note however, that the recycled OH due to ozonolysis

of these reactive alkenes and the Hasson reactions within the

glass reactor is negligible compared to the high OH radical

concentrations (∼2.15×1012 molecules cm−3) generated in-

situ by photolysis of water vapour at 184.9 nm and O3 photol-

ysis at 254 nm, which also produces OH by the O(1D)+H2O

reaction. For the same reason, the CRM method may actually

perform better under such ambient air conditions (of highly

reactive terpenes in ambient air) than the LIF based method.

This is because the regenerated OH radicals may mask the

actual OH decay rate within the LIF instrument’s flow re-

actor and cause an underestimation of the actual measured

decay rate and OH reactivity.

The NO sensitivity studies have shown that in the existing

configuration of CRM high NO in sampled air causes inter-

ference. We found significant interference at NO>5 nmol

mol−1 in the setup for propane at ∼16.5 s−1 reactivity, and

numerical simulations for 50 s−1 of OH reactivity in the set

up (corresponding to 100 s−1 of OH reactivity for ambient air

due to the dilution factor of 2) also indicate that the interfer-

ence is not significant for NO<5 nmol mol−1 in the setup. In

this respect, it would be useful and interesting to compare the

CRM technique with the LIF based reactivity measurement

technique to test for systematic offsets between the two ana-

lytical approaches. It is worth mentioning here that the LIF

based methods can measure OH reactivity in the sub 6 s−1

range, provided NO is not too high. Under our experimen-

tal conditions, it is likely that high NO (>10 nmol mol−1)

in ambient air might cause the measurements to underesti-

mate the actual reactivity. Thus, low NOx environments such

as tropical forests (NO<20 pmol mol−1, e.g. Brownsberg),

moderately polluted cities (NO<10 nmol mol−1) and pris-

tine marine environments appear to be ideal sites for the de-

ployment of the existing CRM instrument.

Further modifications to improve the sensitivity, precision

and automation of the instrument and to minimize/remove in-

terferences can proceed now that the first validation is com-

plete. For example, a mercury pen-lamp equipped with an

interference filter to transmit only the 184.9 nm line, would

significantly reduce photolysis related interferences. OH

sources that are not HO2 sources exist and may help in im-

proving the current system (e.g. photolysis of H2O2, F+H2O,

photolysis of N2O followed by the reaction of O1D with

www.atmos-chem-phys.net/8/2213/2008/ Atmos. Chem. Phys., 8, 2213–2227, 2008
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Table 1. Summary of ambient air OH reactivity measurements.

Site Ave/Med+ (s−1) Max (s−1) Reference

Nashville,TN, USA 11 25 Kovacs et al. (2003)

New York City, USA 19 50 Ren et al. (2003)

Tokyo, Japan 40 85 Sadanaga et al. (2005)

M.C.M.A, Mexico 33 200 Shirley et al. (2005)

Pine forest, USA - 13 Di Carlo et al. (2004)

Mainz, Germany 10.4 18 This work

Rainforest, Suriname 53§ 72§ This work

+=average was used when median was not available.

§=measurements period was at peak of diel emissions.

water). The existing sampling strategy for introducing am-

bient air into the glass reactor, which uses a VOC sampling

Teflon pump (Laboport N86-KN18), could also be modified

so that the ambient air enters the set-up directly without go-

ing through a pump. This would help to minimize the loss of

sticky reactive VOCs, which may contribute significantly to

OH reactivity. While we have used the reagent and detector

system of pyrrole and a PTR-MS, respectively, in principle it

should be possible to apply the Comparative Reactivity Con-

cept to other suitable reagent molecules (e.g. labeled isotopes

of isoprene) and detectors (e.g. fast GC-MS systems). Other

reagent molecules, which have a smaller rate coefficient than

that of pyrrole with OH may also afford better sensitivity at

lower ranges of ambient air OH reactivity.

The instrument has been successfully deployed in the field

to measure the total OH reactivity of ambient air in the

contrasting environments of Mainz (urban), Germany and

Brownsberg (rainforest air), Suriname. The measurements

indicated that at the peak of diel emissions, Suriname forest

air was 4 times more reactive than the urban air of Mainz

(72 s−1 compared to 18 s−1). The total OH reactivity mea-

surements for Mainz air lie well within the range of total OH

reactivity measurements reported in literature for urban air

sites. Table 1 presents a summary of ambient air OH re-

activity measurements from urban and forest sites. Kovacs

et al. (2003) reported ambient air OH reactivity values of

11–19 s−1 at Nashville, TN, USA. In the same campaign,

a comparison of the measured OH reactivity and the calcu-

lated reactivity due to the measured reactants (70 VOCs),

showed that on average, the measured OH reactivity was 1.45

times higher (Martinez et al., 2003). Using laser induced

fluorescence based techniques, maximum OH reactivity val-

ues of 50 s−1in New York City (Fig. 8 in Ren et al., 2003),

85 s−1in suburban Tokyo (Sadanaga et al., 2004a; Sadanaga

et al., 2005; Yoshino et al., 2006), and 200 s−1 in Mexico city

(Fig. 9 in Shirley et al., 2006) have been observed.

To our knowledge, the ambient air OH reactivity measure-

ments from Brownsberg are the first total OH reactivity mea-

surements from a tropical rainforest site, an ecosystem that

is known for strong biogenic emissions (Karl et al., 2004;

Goldstein and Galbally, 2007). Di Carlo et al. (2004) ob-

served missing OH reactivity in a mixed transition forest

consisting of northern hardwood, aspen and white pine in

north Michigan. Our limited OH reactivity measurements

from Brownsberg also indicate that a significant fraction of

important OH reactive compounds are likely missed in con-

ventional measurements at forest sites (see Fig. 11), since

isoprene, isoprene oxidation products, acetone and acetalde-

hyde make up only ∼35% of the measured sink. In future

studies, it will be interesting to measure a more comprehen-

sive suite of VOCs and other OH-reactive species such as

NO2 and SO2, together with direct OH reactivity measure-

ments to better understand the budget of OH sinks. Rate

constants for the reaction of OH with almost all measured

ambient VOCs are known. By summing up the calculated

reactivity due to all the measured VOCs (i.e. summation of

VOC concentration times its rate coefficient) and comparing

it with the direct OH reactivity measurement, one can ad-

ditionally examine the reactive carbon budget and assess to

what extent the individually measured VOCs account for the

total OH reactivity.

6 Conclusions

This study has shown that the Comparative Reactivity

Method (CRM) can be applied for measurements of the total

OH reactivity of ambient air. Applying the CRM concept

to the reagent and detector system of pyrrole and a PTR-

MS, respectively, a new online measurement technique with

a dynamic range of about 6 to 300 s−1 for ambient air and

accuracy of ±25% has been developed. Sensitivity studies

(involving changing parameters) have been carried out, and

high NO (>10 nmol mol−1) in ambient air has been iden-

tified as the major interference. Therefore low NOx envi-

ronments such as remote forest sites and marine environ-

ments are ideal for deploying the new instrument, and im-

provements in the existing set up are needed for conduct-

ing measurements in strongly NOx polluted environments.
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Moderately polluted Mainz air measurements (NO≤1.5 nmol

mol−1) are consistent with OH reactivity measurements re-

ported previously for urban air. Our measurements from the

tropical rainforest (for which no other data exists) indicate

that a significant fraction of OH reactive species is missed in

current measurements. Further OH reactivity measurements,

combining comprehensive measurements of VOCs and other

OH reactive species are needed to clarify whether sinks are

currently underestimated in forest environments and to con-

strain the budget of reactive VOCs.

Finally, several measurement groups routinely employ

proton transfer reaction mass spectrometers and gas chro-

matography detectors for measuring VOCs in ambient air,

during field campaigns. It would be relatively easy and eco-

nomical to integrate a glass reactor and employ the CRM

based technique proposed in this study with these detectors

for direct quantification of the OH sink, using either pyrrole

or another suitable molecule. One of the future objectives

will also be to compare the newly developed CRM based in-

strument with the existing more comprehensive laser induced

fluorescence (LIF) based reactivity measurement technique,

to test for systematic offsets between the two analytical ap-

proaches. Hopefully, this study will stimulate further efforts

in the application of the Comparative Reactivity Method for

ambient air OH reactivity measurements.

Acknowledgements. Special thanks to S. Jung for helping with her

expertise in glass blowing and furnishing the requested myriad

glassware and reactors, sometimes even at very short notice.

K. Simon is appreciated for expediting delivery of the custom

ordered hydrocarbon standards. V. Sinha acknowledges the

financial support rendered by the Max Planck Society. Last but

certainly not the least, we thank all the members of the ORSUM

group, in particular T. Kluepfel and T. Custer who have facilitated

the successful accomplishment of this work.

Edited by: R. Cohen

References

Ammann, C., Brunner, A., Spirig, C., and Neftel, A.: Technical

note: Water vapour concentration and flux measurements with

PTR-MS, Atmos. Chem. Phys., 6, 4643–4651, 2006,

http://www.atmos-chem-phys.net/6/4643/2006/.

Atkinson, R., Aschmann, S. M., Winer, A. M., and Carter, W. P. L.:

Rate Constants for the Gas-Phase Reactions of OH Radicals and

O3 with Pyrrole at 295+/-1k and Atmospheric-Pressure, Atmos.

Environ., 18, 2105–2107, 1984.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson,

R. F., Hynes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M. J. and

Troe, J.: IUPAC Subcommittee for gas kinetic data evaluation,

Evaluated kinetic data: http://www.iupac-kinetic.ch.cam.ac.uk/,

2007.

Bavia, M., Bertinelli, F., Taliani, C., and Zauli, C., Electronic-

Spectrum of Pyrrole in Vapor and Crystal: Mol. Phys., 31, 479-

489, 1976.

Carslaw, N., Creasey, D. J., Heard, D. E., Jacobs, P. J., Lee, J. D.,

Lewis, A. C., McQuaid, J. B., Pilling, M. J., Bauguitte, S., Pen-

kett, S. A., Monks, P. S., and Salisbury, G.: Eastern Atlantic

Spring Experiment 1997 (EASE97) – 2. Comparisons of model

concentrations of OH, HO2, and RO2 with measurements, J.

Geophys. Res.-Atmos., 107,4190, doi:10.1029/2001JD001568,

2002.

Cronin, B., Nix, M. G. D., Qadiri, R. H., and Ashfold, M. N. R.:

High resolution photofragment translational spectroscopy stud-

ies of the near ultraviolet photolysis of pyrrole, Phys. Chem.

Chem. Phys., 6, 5031–5041, 2004.

Curtis, A. R. and Sweetenham, W. P.: Facsimile/Chekmat Users

Manual, AERE Report R-12805, Her Majesty’s Stationary Of-

fice, England, 1988.

de Gouw, J. and Warneke, C.: Measurements of volatile or-

ganic compounds in the earths atmosphere using proton-transfer-

reaction mass spectrometry, Mass Spectrom. Rev., 26, 223–257,

2007.

Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R.,

Ren, X. R., Thornberry, T., Carroll, M. A., Young, V., Shepson,

P. B., Riemer, D., Apel, E., and Campbell, C.: Missing OH reac-

tivity in a forest: Evidence for unknown reactive biogenic VOCs,

Science, 304, 722–725, 2004.

Goldstein, A. H., McKay, M., Kurpius, M. R., Schade, G. W., Lee,

A., Holzinger, R., and Rasmussen, R. A.: Forest thinning experi-

ment confirms ozone deposition to forest canopy is dominated by

reaction with biogenic VOCs, Geophys. Res. Lett., 31, L22106,

doi: 10.1029/2004GL21259, 2004.

Goldstein, A. H. and Galbally, I. E.: Known and unexplored organic

constituents in the earth’s atmosphere, Environ. Sci. Technol.,

41, 1514–1521, 2007.

Hasson, A. S., Chung, M. Y., Kuwata, K. T., Converse, A. D.,

Krohn, D., and Paulson, S. E.: Reaction of Criegee intermedi-

ates with water vapor – An additional source of OH radicals in

alkene ozonolysis?, J. Phys. Chem. A., 107, 6176–6182, 2003.

Hasson, A. S., Tyndall, G. S., and Orlando, J. J.: A product

yield study of the reaction of HO2 radicals with ethyl peroxy

(C2H5O2), acetyl peroxy (CH3C(O)O-2), and acetonyl peroxy

(CH3C(O)CH2O2) radicals, J. Phys. Chem. A., 108, 5979–5989,

2004.

Heard, D. E. and Pilling, M. J.: Measurement of OH and HO2 in

the troposphere, Chem. Rev., 103, 5163–5198, 2003.

Hofzumahaus, A., Aschmutat, U., Hessling, M., Holland, F., and

Ehhalt, D. H.: The measurement of tropospheric OH radicals by

laser-induced fluorescence spectroscopy during the POPCORN

field campaign, Geophys. Res. Lett., 23, 2541–2544, 1996.

Holland, F., Hofzumahaus, A., Schafer, R., Kraus, A., and Patz,

H. W.: Measurements of OH and HO2 radical concentrations

and photolysis frequencies during BERLIOZ, J. Geophys. Res.-

Atmos., 108, 8246, doi:10.1029/2001JD001393, 2003.

Holzinger, R., Lee, A., Paw, K. T., and Goldstein, A. H.: Observa-

tions of oxidation products above a forest imply biogenic emis-

sions of very reactive compounds, Atmos. Chem. Phys., 5, 67–

75, 2005,

http://www.atmos-chem-phys.net/5/67/2005/.

Jeanneret, F., Kirchner, F., Clappier, A., van den Bergh, H., and

Calpini, B.: Total VOC reactivity in the planetary boundary layer

1. Estimation by a pump and probe OH experiment, J. Geophys.

Res.-Atmos., 106, 3083–3093, 2001.

www.atmos-chem-phys.net/8/2213/2008/ Atmos. Chem. Phys., 8, 2213–2227, 2008

http://www.atmos-chem-phys.net/6/4643/2006/
http://www.iupac-kinetic.ch.cam.ac.uk/
http://www.atmos-chem-phys.net/5/67/2005/


2226 V. Sinha et al.: CRM – a new tool to measure atmospheric OH Reactivity

Karl, T., Potosnak, M., Guenther, A., Clark, D., Walker, J., Her-

rick, J. D., and Geron, C.: Exchange processes of volatile organic

compounds above a tropical rain forest: Implications for model-

ing tropospheric chemistry above dense vegetation, J. Geophys.

Res.-Atmos., 109, D18306, doi:10.1029/2004JD004738, 2004.

Kovacs, T. A. and Brune, W. H.: Total OH loss rate measurement,

J. Atmos. Chem., 39, 105–122, 2001.

Kovacs, T. A., Brune, W. H., Harder, H., Martinez, M., Simpas, J.

B., Frost, G. J., Williams, E., Jobson, T., Stroud, C., Young, V.,

Fried, A., and Wert, B.: Direct measurements of urban OH reac-

tivity during Nashville SOS in summer 1999, J. Environ. Monit.,

5, 68–74, 2003.

Lelieveld, J., Dentener, F. J., Peters, W., and Krol, M. C.: On the

role of hydroxyl radicals in the self-cleansing capacity of the tro-

posphere, Atmos. Chem. Phys., 4, 2337–2344, 2004,

http://www.atmos-chem-phys.net/4/2337/2004/.

Lewis, A. C., Carslaw, N., Marriott, P. J., Kinghorn, R. M., Mor-

rison, P., Lee, A. L., Bartle, K. D., and Pilling, M. J.: A larger

pool of ozone-forming carbon compounds in urban atmospheres,

Nature, 405, 778–781, 2000.

Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of

volatile organic compounds at pptv levels by means of proton-

transfer-reaction mass spectrometry (PTR-MS) – Medical appli-

cations, food control and environmental research, Int. J. Mass

Spectrom., 173, 191–241, 1998a.

Lindinger, W., Hansel, A., and Jordan, A.: Proton-transfer-reaction

mass spectrometry (PTR-MS): on-line monitoring of volatile or-

ganic compounds at pptv levels, Chem. Soc. Rev., 27, 347–354,

1998b.

Maris, C., Chung, M. Y., Lueb, R., Krischke, U., Meller, R., Fox,

M. J., and Paulson, S. E.: Development of instrumentation for

simultaneous analysis of total non-methane organic carbon and

volatile organic compounds in ambient air, Atmos. Environ., 37,

S149–S158, 2003.

Martinez, M., Harder, H., Kovacs, T. A., et al.: OH and HO2 con-

centrations, sources, and loss rates during the Southern Oxidants

Study in Nashville, Tennessee, summer 1999, J. Geophys. Res.-

Atmos., 108(D19), 4617, doi:10.1029/2003JD003551, 2003.

Olson, J. R., Crawford, J. H., Chen, G., et al.: Testing fast pho-

tochemical theory during TRACE-P based on measurements of

OH, HO2, and CH2O, J. Geophys. Res.-Atmos., 109, D15S10,

doi:10.1029/2003JD004278, 2004.

Paulson, S. E., Chung, M. Y., and Hasson, A. S.: OH radical forma-

tion from the gas-phase reaction of ozone with terminal alkenes

and the relationship between structure and mechanism, J. Phys.

Chem. A., 103, 8125–8138, 1999.

Poppe, D., Zimmermann, J., Bauer, R., et al.: Comparison Of Mea-

sured Oh Concentrations With Model-Calculations, J. Geophys.

Res.-Atmos., 99, 16 633–16 642, 1994.

Ren, X. R., Brune, W. H., Cantrell, C. A., Edwards, G. D., Shirley,

T., Metcalf, A. R., and Lesher, R. L.: Hydroxyl and peroxy rad-

ical chemistry in a rural area of Central Pennsylvania: Obser-

vations and model comparisons, J. Atmos. Chem., 52, 231–257,

2005.

Ren, X. R., Brune, W. H., Oliger, A., Metcalf, A. R., Simpas, J.

B., Shirley, T., Schwab, J. J., Bai, C. H., Roychowdhury, U.,

Li, Y. Q., Cai, C. X., Demerjian, K. L., He, Y., Zhou, X. L.,

Gao, H. L., and Hou, J.: OH, HO2, and OH reactivity during

the PMTACS-NY Whiteface Mountain 2002 campaign: Obser-

vations and model comparison, J. Geophys. Res.-Atmos., 111,

D10S03, doi:10.1029/2005JD006126, 2006.

Ren, X. R., Harder, H., Martinez, M., Lesher, R. L., Oliger, A.,

Shirley, T., Adams, J., Simpas, J. B., and Brune, W. H.: HOx

concentrations and OH reactivity observations in New York City

during PMTACS-NY2001, Atmos. Environ., 37, 3627–3637,

2003.

Roberts, J. M., Bertman, S. B., Jobson, T., Niki, H., and Tanner, R.:

Measurement of total nonmethane organic carbon (C-y): Devel-

opment and application at Chebogue Point, Nova Scotia, during

the 1993 North Atlantic Regional Experiment campaign, J. Geo-

phys. Res.-Atmos., 103, 13 581–13 592, 1998.

Sadanaga, Y., Yoshino, A., Kato, S., and Kajii, Y.: Measurements of

OH reactivity and photochemical ozone production in the urban

atmosphere, Environ. Sci. Technol., 39, 8847–8852, 2005.

Sadanaga, Y., Yoshino, A., Kato, S., Yoshioka, A., Watanabe,

K., Miyakawa, Y., Hayashi, I., Ichikawa, M., Matsumoto, J.,

Nishiyama, A., Akiyama, N., Kanaya, Y., and Kajii, Y.: The

importance of NO2 and volatile organic compounds in the urban

air from the viewpoint of the OH reactivity, Geophys. Res. Lett.,

31, L08102, doi:10.1029/2004GL0196612004a.

Sadanaga, Y., Yoshino, A., Watanabe, K., Yoshioka, A., Waka-

zono, Y., Kanaya, Y., and Kajii, Y.: Development of a mea-

surement system of OH reactivity in the atmosphere by using

a laser-induced pump and probe technique: Rev. Sci. Instrum.,

75, 2648–2655, 2004b.

Salisbury, G., Williams, J., Holzinger, R., Gros, V., Mihalopou-

los, N., Vrekoussis, M., Sarda-Esteve, R., Berresheim, H., von

Kuhlmann, R., Lawrence, M., and Lelieveld, J.: Ground-based

PTR-MS measurements of reactive organic compounds dur-

ing the MINOS campaign in Crete, July–August 2001, Atmos.

Chem. Phys., 3, 925–940, 2003,

http://www.atmos-chem-phys.net/3/925/2003/.

Shirley, T. R., Brune, W. H., Ren, X., Mao, J., Lesher, R., Carde-

nas, B., Volkamer, R., Molina, L. T., Molina, M. J., Lamb, B.,

Velasco, E., Jobson, T., and Alexander, M.: Atmospheric oxi-

dation in the Mexico City Metropolitan Area (MCMA) during

April 2003, Atmos. Chem. Phys., 6, 2753–2765, 2006,

http://www.atmos-chem-phys.net/6/2753/2006/.

Sickles, J. E., Eaton, W. C., Ripperton, L. A., and Wright, R. S.: US

Environmental Protection Agency, EPA-60017-77-104, 1977.

Sinha, V., Williams, J., Meyerhofer, M., Riebesell, U., Paulino, A.

I., and Larsen, A.: Air-sea fluxes of methanol, acetone, acetalde-

hyde, isoprene and DMS from a Norwegian fjord following a

phytoplankton bloom in a mesocosm experiment, Atmos. Chem.

Phys., 7, 739–755, 2007a,

http://www.atmos-chem-phys.net/7/739/2007/.

Sinha, V., Williams, J., Crutzen P., and Lelieveld J.: Methane emis-

sions from boreal and tropical forest ecosystems derived from

in-situ measurements, Atmos. Chem. Phys. Discuss., 7, 14 011–

14 039, 2007b.

Smith, S. C., Lee, J. D., Bloss, W. J., Johnson, G. P., Ingham, T.,

and Heard, D. E.: Concentrations of OH and HO2 radicals dur-

ing NAMBLEX: measurements and steady state analysis, Atmos.

Chem. Phys., 6, 1435–1453, 2006,

http://www.atmos-chem-phys.net/6/1435/2006/.

Williams, J., Poschl, U., Crutzen, P. J., Hansel, A., Holzinger, R.,

Warneke, C., Lindinger, W., and Lelieveld, J.: An atmospheric

chemistry interpretation of mass scans obtained from a proton

Atmos. Chem. Phys., 8, 2213–2227, 2008 www.atmos-chem-phys.net/8/2213/2008/

http://www.atmos-chem-phys.net/4/2337/2004/
http://www.atmos-chem-phys.net/3/925/2003/
http://www.atmos-chem-phys.net/6/2753/2006/
http://www.atmos-chem-phys.net/7/739/2007/
http://www.atmos-chem-phys.net/6/1435/2006/


V. Sinha et al.: CRM – a new tool to measure atmospheric OH Reactivity 2227

transfer mass spectrometer flown over the tropical rainforest of

Surinam, J. Atmos. Chem., 38, 133–166, 2001.

Williams, J., Yassaa, N., Bartenbach, S., and Lelieveld, J.: Mirror

image hydrocarbons from Tropical and Boreal forests, Atmos.

Chem. Phys., 7, 973–980, 2007,

http://www.atmos-chem-phys.net/7/973/2007/.

Yoshino, A., Sadanaga, Y., Watanabe, K., Kato, S., Miyakawa, Y.,

Matsumoto, J., and Kajii, Y.: Measurement of total OH reactiv-

ity by laser-induced pump and probe technique – comprehensive

observations in the urban atmosphere of Tokyo, Atmos. Environ.,

40, 7869–7881, 2006.

www.atmos-chem-phys.net/8/2213/2008/ Atmos. Chem. Phys., 8, 2213–2227, 2008

http://www.atmos-chem-phys.net/7/973/2007/

