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ABSTRACT This paper focuses on the comparison of dimensionality reduction effect between LightGBM 

and XGBoost-FA. With respect to XGBoost, LightGBM can be built in the effect of dimensionality reduction 

via both Gradient-based One-Side Sampling(GOSS) and Exclusive Feature Bundling(EFB) algorithms, while 

XGBoost coupling with traditional dimensionality reduction tool Factor Analysis (XGBoost-FA) may also 

have dimensionality reduction effect. To present the empirical comparison, the prediagnosis dataset for the 

2018 Kaggle competition Acute Liver Failure has been chosen as the research object. And pairwise 

comparison has been conducted among XGBoost, LightGBM, XGBoost-FA and LightGBM-FA. Concerning 

the test set, the vector (accuracy, log loss function, training time) of the above first four prediagnostic models 

are (0.75014, 0.569707, 10.5s), (0.75811, 0.576059,15.1s), (0.67786,0.663924,5.7s) and (0.67274,0.676019, 

4.1s) respectively. It’s been found that the training time of XGBoost-FA (external dimensionality reduction) 

is shorter than that of LightGBM (build-in dimensionality reduction). Considering (accuracy, training time) 

being (0.82, 3.1s) published on Kaggle, the algorithm (logogram as K2a) is better than the four XGBoost-FA 

and LightGBM in both training time and accuracy. However, K2a removes more than 50% samples with 

missing values and only performs binary classification. For multi-class classification or data with a large 

number of missing values, XGBoost-FA is more suggested if higher operational time is required, while 

LightGBM is preferred if higher predictive accuracy is required. With XGBoost-FA or LightGBM being 

employed in AI medical services, doctors are more productive in diagnosis and treatment due to much more 

data support and less workload. Both complement each other. 

INDEX TERMS LightGBM, XGBoost, Factor Analysis, Prediagnosis, Acute Liver Failure  

I. INTRODUCTION 

Based on Gradient Boosting Decision Tree (GBDT), 

XGBoost and LightGBM are both popular and cutting-edge 

boosting integrated algorithms in machine learning in recent 

years. By virtue of less training time and higher accuracy, 

many scholars have applied XGBoost and LightGBM in 

various scenarios.  

In the information technology field, Jin built real-time 

intrusion detection system based on LightGBM and parallel 

intrusion detection mechanism [1]. Concerning people's 

livelihood, Xie et al. used the historical data and three 

machine learning models (GBDT, XGBoost and LightGBM) 

to predict the monthly housing rent. The prediction results 

showed that XGBoost and LightGBM are superior to the 

traditional GBDT [2]. Parsa et al. applied XGBoost to 

establish a prediction model for highways, which can detect 

real-time accident and analyze features [3]. In the remote 

sensing image field, Samat investigated the performance of 

XGBoost in remote sensing image classification tasks [4]. In 

the medical field, Zhang et al. compared XGBoost with 

Artificial Neural Networks (ANN) and Random Forest (RF) 

in log loss function and training time based on dataset about 

Acute Liver Failure. The results indicate that XGBoost is the 

most advantageous in classification accuracy [5]. To 

determine whether a sample has Alzheimer's disease by the 

samples of brains pictures, Zhou et al. found that LightGBM 

has more advantages over Support Vector Machine (SVM) 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3042848, IEEE

Access

 

  

2 

[6]. The above application scenarios show that XGBoost and 

LightGBM perform better, especially in medical field. 

Many scholars adopted XGBoost while analyzing and 

modeling medical data. Shen et al. optimized the diagnostic 

technology of breast cancer [7]. Leng et al. classified gene 

based on XGBoost which performs better than Logistic 

Regression Classifier (LRC) and SVM [8]. Yang et al. used 

XGBoost to build a user network score prediction model to 

mine behavior features, whose accuracy and efficiency are 

higher than those of LRC and RF [9]. Guo et al. established 

a physical health assessment model based on XGBoost and 

used adolescent physiological data to assess youths’ physical 

health [10]. While some other scholars used LightGBM to 

deal with medical data. Zhang et al. constructed an acute 

kidney injury prediction model for ICU patients, and 

provided auxiliary decision support for clinical medical staff, 

which showed that LightGBM performs better than LRC and 

RF [11]. In the above medical scenarios, both XGBoost and 

LightGBM perform well. 

In light of the explosive growth of medical data and their 

feature dimensions, many scholars pay further attentions to 

data dimensionality reduction in order to shorten the training 

time of machine learning. Thus, dimensionality reduction 

method is introduced into XGBoost and LightGBM in this 

paper. 

LightGBM can remedy the defects of XGBoost via both 

the Gradient-based One-Side Sampling (GOSS) and the 

Exclusive Feature Bundling (EFB) algorithm. GOSS and 

EFB play the built-in role of dimensionality reduction and 

efficiency improvement in LightGBM. Additionally, 

XGBoost coupling external dimensionality reduction tool 

can realize dimensionality reduction as well. To explore the 

specific difference between the external dimensionality 

reduction effect and the built-in dimensionality reduction 

effect, it is actually worth comprising. 

In general, dimensionality reduction methods include 

Chi2, MI, LDA, PCA, Factor Analysis(FA) and autoencoder 

dimensionality reduction, and so on. While processing the 

sound signal data, Ali et al. used linear discriminant analysis 

(LDA) and Chi2 statistical model (Chi2) rank to detect 

automatic Parkinson's disease (PD) [12-14]. Based on 

Particle Swarm Optimization (PSO) for feature selection, 

Souriet al. established a fault prediction model in Internet of 

Things Applications [15]. In terms of image-based medical 

data processing, Kong et al. used Common Space Pattern 

(CSP) to select a low-dimensional and efficient feature set 

and applied Convolutional Neural Network (CNN) classifier 

to identify brain waves [16]. To effectively classify and 

recognize the ultrasonic signals, Huang et al. adopted 

Principal Component Analysis (PCA) to simplify features 

and realize the coupling with SVM [17]. Aiming at the 

problem of further improving the recognition rate of facial 

expression, Zhang et al. proposed a deep learning-based 

Stacked Hybrid Auto-Encoder (SHAE) method to realize 

dimensionality reduction [18]. While processing the medical 

data, Ali et al. proposed a two-stage decision support system, 

where mutual information (MI) reduced the data dimension 

and then neural network predicted the heart failure (HF) [19]. 

To explore the impact of interaction between two genes upon 

schizophrenia, Zhang et al. used multi-factor dimensionality 

reduction (MDR) to analyze gene-gene interactions [20]. 

Concerning non-linear high-dimensional medical data 

dimensionality reduction, Weng et al. introduced an 

isometric feature mapping (Isomap) method and applied it to 

detect lung cancer and breast cancer [21]. Gong et al. used 

PCA for dimensionality reduction and predicted blood 

glucose levels based on GBDT [22]. The above empirical 

analysis shows that machine learning method incorporating 

dimensionality reduction has achieved better prediction 

results, and the model performance has also been improved 

to a certain extent. 

Some scholars have proposed state-of-the-art 

dimensionality reduction methods and managed to reduce 

feature redundancy. M. Eftekhari and F. Saberi-Movahed 

remove duplicate features according to the theory of 

information gain and matrix factorization respectively 

[23,24]. Wang et al. proposed two feature selection methods, 

two-steps attribute reduction based on fuzzy dependency 

(TARFD) algorithm and fuzzy rough artificial bee colony 

(FRABC) algorithm， and applied them to radar signal 

processing [25]. Li et al. proposed a regular regression model 

with a generalized uncorrelated constraint for feature 

selection [26]. Wang et al. devised a multi-network feature 

extraction model using pre-trained deep convolution neural 

networks (DCNNs) and used it to detect breast cancer [27]. 

These new dimensionality reduction methods may play an 

important role in medical scenarios in the near future. 

Considering the actual meaning behind the medical data is 

of great importance in the relevant analysis, it’s advised to 

perform data actual interpretation after dimensionality 

reduction. Among the above dimensionality reduction 

methods, FA enables the new common factors to carry the 

message of the realistic background without changing the 

original variables. That’s the reason why FA is chosen for 

dimensionality reduction. 

To explore the impact of built-in dimensionality reduction 

and external dimensionality reduction, corresponding 

comparison has been made among XGBoost, LightGBM, 

XGBoost-FA and LightGBM-FA in this paper. Specifically, 

Acute Liver Failure dataset of the Kaggle competition is used 

to present the empirical comparison. 

II. INTRODUCTION TO THE PRINCIPLES OF FACTOR 

ANALYSIS (FA), XGBOOST AND LIGHTGBM 

A. The basic principles of Factor Analysis (FA) 

    Factor Analysis is a multidimensional statistical method 

that converts multiple measured variables into a few 

unrelated comprehensive indicators. So, FA can reduce 

dimensionality and simplify data [28]. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3042848, IEEE

Access

 

  

3 

Assume that the number of related random variables are 𝑝, 

which contains 𝑚 independent factors. FA can be expressed 

as formula (1). 
𝑋$ = 𝑎$$𝐹$ + 𝑎$)𝐹) +⋯+ 𝑎$+𝐹+ + 𝜀$
𝑋) = 𝑎)$𝐹$ + 𝑎))𝐹) +⋯+ 𝑎)+𝐹+ + 𝜀)

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

𝑋- = 𝑎.$𝐹$ + 𝑎.)𝐹) +⋯+ 𝑎.+𝐹+ + 𝜀.

⋯⋯（1） 

    In the formula (1), F$， 	 F)，⋯， 	 F2 	 are known as 

common factors, which are unobtainable variables. Their 

coefficients 𝑎$$，𝑎$)，⋯，𝑎.+  are referred to as the 

loading factors.  	ε1，⋯，εp		are special factors and cannot 

be included in public factors. The flow of FA is shown in the 

following 7 steps. 

Step 1. Standardize the raw data to eliminate the 

differences between magnitude and dimension of variables. 

As shown in formula (2). 

𝑥6 =
𝑥6 − 𝐸(𝑥6)

𝑉𝑎𝑟(𝑥6)
⋯⋯⋯⋯⋯⋯⋯(2) 

    Step 2. Calculate the correlation matrix of the standardized 

data. The value of the correlation coefficient r is between -1 

and 1. And when |r| trends to 1, the linear correlation between 

the variables grows strong.  

     Step 3. Calculate the variance contribution and the 

cumulative variance contribution of the public factor, as 

shown in formula (3) and formula (4). 
𝜆6

𝜆?
.

?@$

(𝑖 = 1,2,⋯ , 𝑝)⋯⋯⋯⋯⋯⋯⋯⋯(3) 

𝜆?
6
?@$

𝜆?
.

?@$

(𝑖 = 1,2,⋯ , 𝑝)⋯⋯⋯⋯⋯⋯⋯⋯(4) 

    Where  𝜆6 is an eigenvalue of the correlation matrix R and 

the corresponding eigenvector 𝑙6  of the standard 

orthogonality. 

    Step 4. Select the common factors. Set F$，F)，⋯，F.as 

the 𝑝  factors, which contains the total amount of data 

information (its cumulative contribution rate is 100%). If the 

accumulated data information of the first m factors reaches 

up to or is over 80%, they shall be taken to represent the 

original evaluation index. 

     Step 5. Factors rotation. If the first m factors cannot be 

determined or its actual meaning is unclear, the factors 

should be rotated to obtain a clearer practical meaning. The 

specific transformation is shown in formula (5). 

𝑎6G = 𝜆6𝑙6G(𝑖, 𝑗 = 1,2,⋯ , 𝑝) 

																																𝐴 =

𝑎$$
𝑎)$

𝑎$)
𝑎))

⋯ 𝑎$+
⋯ 𝑎$+

⋮ ⋮ ⋯ ⋮
𝑎.$ 𝑎.) ⋯ 𝑎.+

 

																		=

𝜆$𝑙$$

𝜆$𝑙)$

𝜆)𝑙$)

𝜆)𝑙))

⋯ 𝜆+𝑙$+

⋯ 𝜆+𝑙)+
⋮ ⋮ ⋯ ⋮

𝜆$𝑙.$ 𝜆)𝑙.) ⋯ 𝜆+𝑙.+

 

																												= ( 𝜆$𝑙$, 𝜆)𝑙), ⋯ , 𝜆+𝑙+)⋯⋯⋯⋯⋯(5) 

    Step 6. Use the linear combination of the original variables 

to obtain the score for each factor. Use regression estimation 

or Bartlett estimation to calculate the factor score. 

Step 7. Comprehensive score. The comprehensive 

evaluation index function is the linear combination of each 

factor, as shown in formula (6). 

𝐹 =
𝛾$𝐹$ + 𝛾)𝐹) +⋯+ 𝛾+𝐹+

𝛾$ + 𝛾) +⋯+ 𝛾+
= 𝜔6𝐹6

+

6@$

⋯⋯⋯(6) 

In formula (6), 𝜔6 is the weight of 𝐹6 and 𝜔6 is the 

variance contribution rate of the pre-rotation or post-

rotation factors. 

Step 8. Score ranking. Use the composite score analysis 

to obtain a score ranking. 

B.  The basic principle of XGBoost 

The full name of XGBoost is eXtreme Gradient Boosting, 

proposed by Dr. Tianqi Chen who worked in the University 

of Washington in 2014. XGBoost is a tree integration model, 

which uses the cumulative sum of the predicted values of a 

sample in each tree as the prediction of the sample in the 

XGBoost system [29]. XGBoost reduces the risk of 

overfitting by adding regular terms and directly uses the first 

derivative and second derivative value of the loss function. 

The specific algorithm flow is performed in the following 8 

steps, as shown in Figure 1. 

 
FIGURE 1. The basic principle of XGBoost 

Step 1. Define a specific loss function. The objective 

function is divided into two major terms as shown in formula 

(7). 

𝐿 ∅ = 𝑙(𝑦6
6

, 𝑦6) + Ω(𝑓?
?

)⋯⋯⋯⋯⋯(7) 

In formula (7), 	𝑦6  is the predictive output, 	𝑦6  is the label 

value (true value), 𝑓? is the kth tree model, 𝑇 is the number 
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of leaf nodes in the kth tree, 𝛾 is the leaf tree penalty regular 

term.  𝑙(𝑦66 , 𝑦6) is the loss sum per sample, and XGBoost's 

loss function 𝑙  can be customized variously. Ω 𝑓? = 𝛾𝑇 +
$

)
𝜆 𝑤 )  is the regular term, where 𝑤  is the kth tree's leaf 

node weight value and	𝜆 is the leaf weight regular penalty 

term, which act as a smoothing factor to calculate gain in the 

process of splitting points. And both parts of the penalty 

terms can prevent overfitting. 

    Step 2. Transform the objective function based on the 

boosting algorithm and decision tree algorithm. In the 

boosting algorithm, the final predictive value is the sum of 

the outputs of multiple trees, as shown in formula (8). 

ℒ X = 𝑙(𝑦6

Y

6@$

, 𝑦6
XZ$

+ 𝑓X(𝑥6)) + Ω 𝑓X ⋯⋯(8) 

In formula (8), ℒ \  is the objective function of the t tree. 

y_
\Z$

 is the sum of the output values of the t − 1 trees, which 

constitutes the predictive value of the first t − 1 tree 𝑓X(𝑥6) is 

the output of the 𝑡	th  tree. The sum of the two parts 

constitutes the latest predictive value. The regular term 

becomes the corresponding term of the current tree. 

    Step 3. Learn the first tree to predict sample values. 

Step 4. Use the second order derivative Taylor rule to 

expand the loss function 𝑙(𝑦6 , 𝑦6
XZ$

) to learn the 𝑡 th tree as 

formula (9). 

ℒ \ ~ [l(y_

e

_@$

, y_
\Z$

) + g_f\(x_) +
1

2
h_f\

)(x_)] + Ω f\ ⋯⋯(9) 

In formula (9),	g
i
= ∂

y
i

t−1 l(y
i
，y

i

t−1
) is the first order partial 

derivative of the previous tree’s loss function.	hi = ∂
y
i

t−1

2
l(y

i

，y
i

t−1
) is the second order partial derivative of the previous 

tree’s loss function. 

   Step 5. Ignore the constant term to simplify the objective 

function. The first part of the function l(y_
e
_@$ , y_

\Z$
) is the 

loss function from the previous round of tree building. It is a 

known constant in the current round of tree building, and the 

value does not affect our tree building process in this round. 

We can ignore it and thus simplify the objective function as 

shown in formula (10). 

ℒ \ = [g_f\(x_) +
1

2
h_f\

)(x_)]

e

_@$

+ Ω f\ ⋯⋯⋯⋯(10) 

   Step 6. Add the residuals of the leaf nodes. Firstly, suppose 

the tree has T leaf nodes, and the set of samples in the jth leaf 

node is represented as Iq = {i q x_ = j} . Based upon this, 

g_f\(x_)
e
_@$  =	 ( g__∈vw

x
q@$ )wq. g__∈vw

, which is the sum of the first 

derivatives corresponding to all samples that fall into leaf 

node 	j. Accordingly, 
$

)
h_f\

)(x_)
e
_@$  can also be converted to 

$

)
hq_∈vw
wq
)e

_@$ . Thus, after the conversion and the merging of 

the regular terms, the formula (10) is converted to formula 

(11). 

ℒ X = 𝑔6𝑓X 𝑥6 +
1

2
ℎ6𝑓X

) 𝑥6

Y

6@$

+ 𝛾𝑇 +
1

2
𝜆 𝑤G

)

|

G@$

 

= ( 𝑔6
6∈}~

)𝑤G +
1

2
( ℎ6 +

6∈}~

𝜆)𝑤G
)

|

G@$

+ 𝛾𝑇⋯⋯(11) 

    Step 7. Split the nodes of the tree by scoring the tree 

structure.  The formula is shown in formula (12). 

ℒ�.�6X =
1

2

( 𝑔6)6∈}�

)

ℎ6 +6∈}�
𝜆
+
( 𝑔6)6∈}�

)

ℎ6 +6∈}�
𝜆
−
( 𝑔6)6∈}~

)

ℎ6 +6∈}~
𝜆
− 𝛾⋯ (12) 

     To put it in simpler terms, we can split the tree when the 

value of the loss function reduction is larger than 𝛾, which is 

the gamma parameter added to the denominator while 

calculating the gain to smooth it out. 𝛾  can help to prevent 

overfitting, which becomes optional rather than mandatory. 

   Step 8. Stop the growth and generate the decision tree. 

C. The basic principle of LightGBM 

LightGBM is a lightweight gradient booster, launched by 

Microsoft in 2017. To solve time-consuming problem in the 

environment of large high-dimensional data sample, 

LightGBM was proposed [30]. The specific algorithm flow 

is performed in the following 8 steps, as shown in Figure 2. 

 
FIGURE 2. The basic principle of LightGBM 

LightGBM is an improved version of XGBoost with four 

aspects improved. 

       Firstly, LightGBM's algorithm incorporates GOSS 

(Gradient-based One-Side Sampling) algorithm. GOSS 

strikes a good balance between the number of samples and 

precision for the decision tree in LightGBM. In training, 

more attention is paid to those samples with larger gradients, 

which also have more influence on the gain. 

    Secondly, LightGBM uses a histogram to identify the 

optimal segmentation point. Hhistogram algorithm firstly 

discretizes successive floating-point eigenvalues into k 

integers, and simultaneously constructs a histogram with 
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width k.  Based on the discretized values, the accumulated 

statistics in the histogram are selected as an index after 

traversing the data. Then, the computation of segmentation 

scores is identified. Histogram replaces the traditional Pre-

Sorted, so in a sense it sacrifices accuracy for speed.  

    Thirdly, LightGBM reduces the feature dimension to a 

certain extent by means of Exclusive Feature Bundling 

(EFB). For sparse feature space (for example, onehot 

encoding), it is possible to reduce the number of valid 

features by binding mutually exclusive features together to 

form a new feature. 

Fourthly, LightGBM uses a leaf-wise algorithm with 

depth limitation instead of the traditional level-wise, which 

improves accuracy and prevents overfitting. 

III.   THE ALGORITHM DIFFERENCES OF XGBOOST 

AND LIGHTGBM  
The algorithmic differences between LightGBM and 

XGBoost are mainly fall into following three aspects. 

    1. There are two ways in LightGBM which play a role in 

dimensionality reduction compared to XGBoost. 

1) Exclusive Feature Bundling (EFB). Based on graph 

algorithm, EFB incorporates some features to reduce the 

total number of features. 

2) Gradient-based One-Side Sampling (GOSS). Firstly, 

GOSS ranks the samples according to their gradient, selects 

the samples with a% of large gradient. Then it randomly 

selects the other samples with b% of small gradient, and 

combines them to evaluate the information gain, which 

reduces the number of samples and indirectly reduces the 

probability of small gradient samples. 

2. LightGBM uses the leaf-wise strategy, while XGBoost 

uses the level-wise strategy. XGBoost splits indiscriminately 

all nodes in each layer and splits some nodes with small gain, 

which barely affect the results, leading to resources wasting. 

In LightGBM, the leaf nodes with the greatest splitting gain 

at the current are selected, which will lead to overfitting 

easily and the tree growing much larger than expected.  

Therefore, the depth of the tree must be set in LightGBM.  

3. LightGBM's parallelism policy includes feature 

parallelism, data parallelism, and voting parallelism, while 

XGBoost's parallelism policy mainly focuses on feature. 

Therefore, LightGBM is faster than XGBoost for larger 

amounts of data. 

IV.   THE ANALYSIS IDEAS AND FRAMEWORK OF THIS 

PAPER 

    Based on the principles of FA, XGBoost and LightGBM 

(Section II), this paper specifically brings forward the 

following four steps. 

    Step 1. To facilitate machine learning later, data 

preprocessing including variable normalization, 

quantification of categorical variables, filling of missing 

values, and quantification of label variables. 

    Step 2. FA is used to reduce the dimensionality of the 

preprocessed data, and analyze the dimensionality reduction 

results and then explain the actual background of the 

obtained common factors. 

    Step 3. Based on the preprocessed data, XGBoost and 

LightGBM are trained. Based on the data after dimensionality 

reduction, XGBoost-FA and LightGBM-FA are trained. 

    Step 4. Comparative analyses of the four models of 

XGBoost, XGBoost-FA, LightGBM and LightGBM-FA, and 

the algorithm released by Kaggle for the prediagnosis results 

of acute liver failure. 

   For all algorithms in this paper, the operating system is 

macOS version 10.14.6 and the processor is 1.4 GHz Intel 

Core i5, and the installed memory (RAM) is 8GB. Anaconda3 

of Jupyter Notebook and IBM SPSS Statistics 22 are used to 

run the algorithm program stand-alone. 

V.  INTRODUCTION AND PREPROCESSING OF ACUTE 

LIVER FAILURE DATA 

    From Kaggle's public datasets, this paper chooses one 

which contains 8785 samples of 8785 adult patients collected 

by JPAC Health Diagnostics and Control Center in 2014-2015. 

For each sample, there are 30 relevant variables. To facilitate 

subsequent machine learning, the raw data shall be 

preprocessed as the following four steps. 

    Step 1. Variable renaming. To comply with the software's 

usage specifications, the variables are renamed with 

separators in English. 

Step 2. Quantification of categorical variables. To facilitate 

the processing of categorical variables, different categories are 

replaced with different values (Such as the 'Gender' variable is 

divided into 'male' and 'female', and it is replaced with '0' and 

'1'). No sequential relations are involved. 

Step 3. Missing data filling. Some of the variables in the 

raw data contain missing data. For example, 'Waist' is a 

numerical variable which has 8471 non-empty raw data, 

whose mean is filled in the rest 314 empty data in this paper. 

'HyperTension' is a categorical variable which also has 8471 

non-empty raw data, whose mode is filled in the rest 314 

empty data in this paper. 

    Step 4. Identification and quantification of the label variable. 

According to the research topic of this paper, the variable 

'ALF' is used as the dependent variable (label variable), and 

the rest of variables are used as independent variables (feature 

variables). In detail, 'diagnosed without acute liver failure' is 

recorded as '0', 'diagnosed with acute liver failure ' is recorded 

as '1' and 'acute liver failure has not been diagnosed' is 

recorded as '2'.  

VI.  DIMENSIONALITY REDUCTION RESULTS OF 

ACUTE LIVER FAILURE DATA BASED ON FACTOR 

ANALYSIS 

    In dataset of Acute Liver Failure, there are as many as 29 

feature variables (independent variables). Factor Analysis (FA, 

Section II.A) is employed to decrease the number of variable 

while retaining the common factors with practical meaning. 

SPSS is used to realize FA. The results are shown in Table I. 
TABLE I 
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VARIANCE EXPLANATION TABLE  

Variable 

Starting Eigenvalue 

Total Variance% Cumulative% 

1 3.399 11.330 11.330 

2 3.145 10.482 21.812 

… … … … 

16 .810 2.701 80.613 

… … … … 

29 .029 .098 100.000 

    The fourth column of Table I is the cumulative percentage 

of initial feature values. The value in the row k, column 4 

stands for the percentage of the information contained in the 

first k common factors of the original total information.  

    According to the formula (1) given in Section II.A, the 

benchmark is that the common factors accounts for 80% of the 

original total information. From the 15th, 16th and 17th rows 

of the 4th column, it shows that the cumulative contribution 

exceeds 80% for the first time and reaches 80.613% when 

m=16. Therefore, in dataset of Acute Liver Failure, m=16 is 

selected in formula (1). According to formula (1), each 

original variable can be expressed as a linear combination of 

16 common factors. 

In order to give the common factors explanation that 

conforms to the actual background, the common factors in 

Table I are orthogonally rotated to obtain the final common 

factors FACT1, 	⋯ , FACT16. Thus, each of 29 original 

variables can be expressed as a linear combination of 

FACT1,	⋯, FACT16. The loading factor matrix is shown in 

Table II. 
TABLE II  

LOADING FACTOR MATRIX AFTER ROTATION 

 

         Variable 

common factors 

FACT1 FACT2 
… 

FACT16 

Weight 0.891 0.076 … -0.007 

Waist 0.888 0.058 … 0.036 

Obesity 0.875 -0.055 … 0.002 

Education -0.083 0.871 … 0.079 

… … … … … 

Diabetes 0.089 0.037 … 0.027 

Region 0.015 0.013 … 0.023 

Family-Hepatitis 0.029 0.097 … 0.943 

In Table II, values of each row stand for the coefficients 

of common factors FACT1, 	⋯ , FACT16, and the linear 

combination equals the corresponding original variable. For 

example, the value 0.891 in the row 1 and column 2 indicates 

that the variable 'Weight' has a positive linear correlation to 

FACT1, and the correlation is as high as 0.891. The number -

0.083 in the row 4, column 2 indicates that the variable 

'Education' has a negative linear correlation with FACT1 with 

a weak correlation coefficient. The whole first row indicates 

the combination relationship between the original variable 

'Weight' and common factors FACT1,	⋯, FACT16 as shown 

in formula (13). 

𝑋
Weight

= 0.891𝐹$ + 0.076𝐹) +⋯− 0.07𝐹$� + 𝜀$⋯(13) 

For one thing, from a horizontal viewpoint, Table II 

contains the linear combination relationship of 29 independent 

variables and FACT1,	⋯, FACT16, as shown in formula (14). 
𝑋

Weight
= 0.891𝐹$ + 0.076𝐹) +⋯− 0.07𝐹$� + 𝜀$

𝑋
Waist
= 0.888𝐹$ + 0.058𝐹) +⋯+ 0.036𝐹$� + 𝜀)

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

𝑋
Family−Hepatitis

= 0.029𝐹$ + 0.097𝐹) +⋯+ 0.943𝐹$� + 𝜀$�

(14) 

For another, from a longitudinal viewpoint, each column in 

Table II shows the relationship between the corresponding 

common factor and all the original variables. For example, in 

column 2, row 4, the number -0.083 indicates FACT1 has a 

weak negative linear correlation with the original variable 

'Education' (whether it is educated). Considering that the load 

factor is supposed to be no less than 0.85, the whole common 

2 indicates FACT1 heavily depends upon first three variables 

'Weight', 'Waist' and 'Obesity' with a positive correlation, 

therefore FACT1 can be interpreted as an obesity factor.  

Similarly, FACT2 can be interpreted as an education factor. 

FACT16 can be understood as a family hepatitis genetic factor. 

After dimensionality reduction based on FA, Python is used 

to divide the dataset into training set and the test set with the 

proportion of training set to test set being 8: 2 and random 

numbers are set. The training set has a total of 7028 samples, 

and the test set has a total of 1757 samples. 

VII.  PREDIAGNOSIS OF ACUTE LIVER FAILURE   

BASED ON FOUR MODELS  

A.  Learning and prediagnosis of XGBoost  

First, the hyperparameters are tuned based on the training 

set. Considering that there is only one sample data for each 

subject to be diagnosed in the dataset processed in this paper, 

artificial overlapping phenomenon shall not appear. To save 

time, cross-validation (CV) is used for the re-sampling 

selection strategy to divide the data set into k mutually 

exclusive subsets of similar size. Each time the union of k − 1 

subsets are used as the training set, and the remaining subset 

is used as the validation set, so that trainings and validations 

have been performed for k times, and the mean value of the 

k results are output finally. The command 'KFold' of the 

package 'sklearn.model_selection' is used to create a CV 

generator, where the first parameter 'n_splits' represents the 

number of folds in CV. And 'n_splits' is set as the default 

value 3.  The second parameter 'shuffle' is used to indicate 

whether the order of samples needs to be shuffled, if yes, it 

is set as ‘True’, otherwise it is set as ‘False’. The third 

parameter 'random_state' represents the random number seed, 

which is set as 123 without loss of generality. 

There are a variety of algorithm options for hyperparameter 

tuning, such as Genetic Algorithm (GA)， Randomized 

Search CV and GridSearch CV. To simplify this tuning 

process, GridSearch CV is chosen in this paper. In the 

package 'sklearn.model_selection', 'GridSearch CV' is set to 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3042848, IEEE

Access

 

  

7 

create a grid search hyperparameter tuner. The parameter 

'scoring' represents the model performance index, which is set 

as 'accuracy' due to the classification tasks in this paper. 

The subsequent XGBoost-FA, LightGBM and 

LightGBM-FA have been set the same parameter for 

hyperparameter tuning to make comparison among the four 

models.  

Firstly, the search range of hyperparameters param_grid is 

defined, which includes two parameters of 'max_depth' and 

'lambda'. The initial parameters 'max_depth' (the maximum 

depth of the tree) are set as 2, 3, 4, 5, and 6, and the initial 

parameter 'lambda' (L2 regular term parameters in the weight 

of complexity) are set as 2, 3, and 4. The results of 

hyperparameter tuning are shown in Figure 3. 

FIGURE 3. Hyperparameter tuning results of XGBoost 

In Figure 3, the abscissa indicates the depth of the tree and 

the ordinate indicates the average precision of CV. The blue 

line stands for 'lambda' with the value being set as 2, the 

orange with the value being set as 3, and the green with the 

value being set as 4. 

From Figure 3, it can be seen that when 'lambda' = 2, the 

average precision of CV stays at a lower level and remains the 

same in the interval 'max_ depth'= [2, 4]. It starts to increase 

gradually and reaches its maximum value at 'max_depth' = 6 

in [4, 6]. When 'lambda' = 3, the average precision of CV stays 

at a lower level and remains the same in the interval 

'max_depth' = [2, 6]. When 'lambda' = 4, the average precision 

of CV begins to decline gradually and reaches a minimum 

value at 'max_depth' = 6 in the interval 'max_depth' = [2, 4]. It 

is at a lower level and remains the same level in [4, 6]. 

When the value of 'max_depth' is more than 4, the line 

where 'lambda' = 2 is always on top of the other two lines, 

which means 'lambda'= 2 is the optimal choice. Besides, when 

'lambda' = 2 and 'max_depth' = 6, the average precision of CV 

is the maximum value. Therefore, the optimal hyperparameter 

combination is 'max_depth' = 6, 'lambda' = 2. 

 After the optimal combination of hyperparameters is 

selected, and the times of iterations is set as 500 to obtain the 

XGBoost prediagnosis model. A part of the 72nd decision 

tree is selected as shown in Figure 4 to present a clear 

visualization effect considering the integrated decision tree 

is too complex. 

The overall structure of Figure 4 is a vertical binary tree. 

The first node in the tree indicates that 'Age' is the optimal 

segmentation variable among the 29 feature variables in the 

current subset of preprocessed data, and the corresponding 

optimal segmentation point is 23. When 'Age' ≥ 23, it enters 

the second node of Figure 2. The second node shows that for 

the subset which does not meet 'Age' < 23, 'Age' is still the 

optimal segmentation variable among the 29 feature variables, 

and the corresponding optimal segmentation point is 66 at this 

time. The output leaf node value is 0.0109748961 when 'Age' 

< 66. It is 0.00188306055 when the sample does not meet 

'Age' < 66. The value of the corresponding leaf nodes (error 

fitting value) in each tree are added up to the predictive value 

of the first tree as the final predicted value. 

FIGURE 4. Part of the 72nd tree diagram of XGBoost 

    Some of prediagnose on the test set are shown in Table III. 
TABLE III 

PARTIAL LEARNING RESULTS ON THE TEST SET BASED ON XGBOOST 

Sample Number Prediagnosis of ALF The Actual Situation of ALF 

1 1 1 

2 0 0 

⋯ ⋯ ⋯ 

1757 0 0 

    Firstly, we use the log loss function to evaluate the effect of 

the model, as shown in formula (15). 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑁
𝐼 �~@G log ℎ� 𝑦G = 𝑗 𝑥

?

G@$

�

6@$

⋯⋯⋯（15） 

    The number of samples in this example is 1757 and the 

categories ranges from 0 to 2.  Comparing the second and 

third columns of Table III, the log loss function value of the 

XGBoost model on the test set is shown in formula (16). 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

1757
𝐼 �~@G log ℎ� 𝑦G = 𝑗 𝑥

)

G@�

$���

6@$

= 0.569707⋯⋯（16） 

The prediagnosis accuracy of XGBoost is 0.75014 and its 

merror is 0.24986.  

Besides, the efficiency of the model is evaluated by the 

running time. According to results, the running time of 

XGBoost is 10.5 seconds. 

B.  Learning and prediagnosis results of XGBoost-FA 

Firstly, 'GridSearch CV' is set to create a grid search 

hyperparameter tuner on the training set. The search range of 

hyperparameters param_grid is defined in advance, which 

includes two parameters of 'max_depth' and 'lambda'. Setting 

the initial parameter 'max_depth' (the maximum depth of the 

tree) is set as 2, 3, 4, 5, and 6 respectively, and setting the initial 

parameter 'lambda' (L2 regular term parameters in the weight 
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of complexity) to 2, 3, and 4. The results of hyperparameter 

tuning are shown in Figure 5. 

FIGURE 5. Hyperparameter tuning results of XGBoost-FA 

    In Figure 5, the abscissa indicates the depth of the tree and 

the ordinate indicates the average precision of the cross- 

validation. 'Lambda' is represented by lines with three 

different kinds of color with the blue line standing for 2, the 

orange line standing for 3, and the green line standing for 4 

respectively. 

    From Figure 5, it can be seen that when 'lambda' = 2, the 

average precision of CV, starts to rise gradually and reaches 

its maximum value at 'max_depth' = 5 in the interval max_ 

depth = [2, 5], then it starts to decrease gradually in [5, 6]. 

When 'lambda' = 3, the average precision of CV gradually 

increases in the interval 'max_depth' = [2, 6]. When 'lambda' 

= 4, the average precision of CV, it is always at a lower level 

and remains unchanged in [2, 6]. 

   The line where 'lambda' = 2 is always on top of the other two 

lines, which means 'lambda' = 2 is the optimal choice. Also, 

when 'lambda' = 2 and 'max_depth' = 5, the average precision 

of CV is the maximum value. Therefore, the optimal 

hyperparameter combination is 'max_depth' = 5, 'lambda' = 2.     

 After the optimal combination of hyperparameters is 

selected, and the times of iterations is set as 500 to obtain the 

XGBoost-FA prediagnosis model. To visualize the model, 

the parameter 'xgb.to_graphviz' is used in this paper. A part of 

the 77th decision tree is selected as shown in Figure 6 to 

present the visualization effect considering the integrated 

decision tree is too complex. 

FIGURE 6.  Part of the 77th tree diagram of XGBoost-FA 

    The overall structure of Figure 6 is a binary tree which 

shows the current subset of data after dimensionality reduction. 

The first node in the tree indicates that FACT4 is the optimal 

segmentation variable among 16 common factors in the 

current data subset, and the corresponding optimal 

segmentation point is 0.231513664. When FACT4 ≥ 

0.231513664, it enters the second node of Figure 4. The 

second node shows that for the subset of FACT4 < 

0.231513664, FACT6 is the new optimal segmentation 

variable among the 16 common factors. In this case, the 

corresponding optimal segmentation point is -0.590530634. 

When FACT6 <-0.590530634, the output leaf node value 

(𝑦6
�)
) = 0.0441141678. When FACT6 ≥ -0.590530634, the 

output leaf node value (𝑦6
�)
) = -0.00960170757. The value of 

the corresponding leaf nodes (error fitting value) in each tree 

are added up to the predicted value of the first tree as the final 

predicted value. 

    Some of prediagnose on test set are shown in Table IV. 
TABLE IV 

THE PARTIAL LEARNING RESULTS ON TEST SET BASED ON XGBOOST-FA 

Sample Number Prediagnosis of ALF The Actual Situation of 

ALF 

1 0 0 

2 0 1 

⋯ ⋯ ⋯ 

1757 0 0 

According to formula (15) and Table IV, the log loss function 

value of the XGBoost-FA model on the test set, as is shown in 

formula (17). 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

1757
𝐼 �~@G log ℎ� 𝑦G = 𝑗 𝑥

)

G@�

$���

6@$

= 0.663924⋯⋯（17） 

The prediagnosis accuracy of XGBoost-FA is 0.67786 and 

its merror is 0.32214. 

In addition, the efficiency of the model is evaluated by the 

running time, and the running time of the XGBoost-FA is 5.7 

seconds according to results. 

C.  Learning and prediagnosis results of LightGBM  

FIGURE 7.   Hyperparameter tuning results of LightGBM 

 Firstly, 'GridSearch CV' is set 'GridSearch CV' to create a 

grid search hyperparameter tuner on the training set. The 
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search range of hyperparameters param_grid is defined, 

which includes two parameters of 'num_leaves' and 'lambda'. 

The initial parameter 'num_leaves' (number of leaf nodes) is 

set as 50, 100, 150, and 200 respectively, and the initial 

parameter 'lambda' (L2 regular term parameters in the weight 

of complexity) is set as 0.2 and 0.5 respectively. The results 

of hyperparameter tuning are shown in Figure 7. 

In Figure 7, the abscissa indicates the number of leaf nodes 

and the ordinate indicates the average precision of CV. 

'Lambda' is represented by lines with different kinds of color 

with the blue line standing for 0.2, the orange line standing for 

0.5 respectively. 

According to Figure 7, when 'lambda' = 0.2, the average 

precision of CV starts to gradually increase and reaches 100 

as the maximum value at 100 in the interval 'num_leaves' = 

[50, 100]. It begins to gradually decrease in [100, 150], and 

reaches a minimum value in 'num_leaves' =150. The average 

precision of CV stays at minimum and remains the same in 

[150, 200]. When 'lambda' = 0.5, the average precision of CV 

begins to rise gradually and reaches 100 as the maximum in 

the interval 'num_leaves' = [50, 100]. It stays always at a 

maximum level and remains unchanged in [100, 200]. 

When the 'num_leaves' is over 100, the line where 'lambda' 

= 0.5 is always on top of the other line, which means 'lambda' 

= 0.5 is the optimal choice. And, when 'num_leaves' >100 and 

'lambda' = 0.5, the average precision of CV is the maximum 

value. Therefore, the optimal hyperparameter combination is 

'num_leaves'=200, 'lambda'=0.5.  

 After the optimal combination of hyperparameters is 

decided, the boosting type 'boosting_type' is set to 'gbdt' 

(gradient boosting decision tree) for training the LightGBM 

prediagnosis model. The 'lgb.create_tree_digraph' command 

is called in this paper to present the visualized effect. 

Considering the integrated decision tree is too complicated, 

a part of the 46th decision tree is selected as shown in Figure 

8 to present the visualized effect. 

FIGURE 8.   Part of the 46th tree diagram of LightGBM  

The overall structure of Figure 8 is a horizontal binary tree. 

The first node in the tree indicates that 'Hepatitis' is the optimal 

segmentation variable among the 29 feature variables in the 

current subset of preprocessed data, and the corresponding 

optimal segmentation point is 0 in this case. When 'Hepatitis' 

≤ 0, it enters the second node of Figure 8. The second node 

shows that for the current subset, 'Alcohol' is the new optimal 

segmentation variable among the 29 feature variables, and the 

corresponding optimal segmentation point is 0 at this time. 

When 'Hepatitis' > 0, it enters the third node in Figure 6. The 

third node shows that 'Good-Cholesterol' is the new optimal 

segmentation variable among the 29 feature variables for the 

current subset and the corresponding optimal segmentation 

point is 140.500 in this case. The value of the corresponding 

leaf nodes (error fitting value) in each tree are added up the 

predictive value of the first tree as the final predictive value. 

    Some of prediagnose on test set are shown in Table V. 
TABLE V 

THE PARTIAL LEARNING RESULTS ON TEST SET BASED ON LIGHTGBM 

Sample Number Prediagnosis of ALF The Actual Situation of 

ALF 

1 2 1 

2 0 0 

⋯ ⋯ ⋯ 

1757 0 0 

    According to formula (15) and Table V, the value of the log 

loss function of the LightGBM model on the test set is shown 

in formula (18). 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

1757
𝐼 �~@G log ℎ� 𝑦G = 𝑗 𝑥

)

G@�

$���

6@$

= 0.576059⋯⋯（18） 

    The prediagnosis accuracy of LightGBM is 0.75811 and its 

merror is 0.24189. 

   In addition, the efficiency of the model is evaluated by the 

running time, and the running time of LightGBM is 15.1 

seconds according to results. 

D.  Learning and Prediagnosis results LightGBM-FA  

 Firstly, 'GridSearch CV' is set to create a grid search 

hyperparameter tuner on the training set. The search range of 

hyperparameters param_grid is defined, which includes two 

parameters of 'num_leaves' and 'lambda'. The initial 

parameter 'num_leaves' (number of leaf nodes) is set as 100, 

200, 300, 400, and 500 respectively, and the initial parameter 

'lambda' (L2 regular term parameters in the weight of 

complexity) is set as 0.5 and 0.8 respectively. The results of 

hyperparameter tuning are shown in Figure 9. 

FIGURE 9.   Hyperparameter tuning results of LightGBM-FA 
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In Figure 9, the abscissa indicates the number of leaf nodes 

and the ordinate indicates the average precision of CV. 

'lambda' is represented by lines with different colors with 0.5 

being set as blue line and 0.8 being set as orange line. 

    According to Figure 9, when 'lambda' = 0.5, the average 

precision of CV starts to gradually increase and reaches 200 

as the maximum value in the interval 'num_leaves' = [100, 

200]. It begins to gradually decrease and reaches a minimum 

value at the point of 300 within the range of [200, 300]. The 

average precision of CV stays at minimum and remains the 

same in the interval 'num_leaves'= [300, 500]. When 'lambda' 

= 0.8, the average precision of CV always stays at minimum 

and remains unchanged. 

    When the 'num_leaves' is in [100, 300], the line where 

'lambda' = 0.5 is always on top of the other line, which means 

'lambda' = 0.5 is the optimal choice. when 'num_leaves' = 200 

and 'lambda' = 0.5, the average precision of CV is the 

maximum value. Therefore, the optimal hyperparameter 

combination is 'num_leaves'=200, 'lambda'=0.5. 

After the optimal combination of hyperparameters is 

decided, the boost type 'boosting_type' is set as 'gbdt' 

(gradient boost decision tree) for training the LightGBM-FA 

prediagnosis model.  The 'lgb.create_tree_digraph' command 

is used in this paper to visualize the model.  Considering the 

integrated decision tree is too complicated, a part of the 56th 

decision tree is selected as shown in Figure 10 to present the 

visualized effect.  

FIGURE 10.  Part of the 56th tree diagram of LightGBM-FA  

    The overall structure of Figure 10 is a horizontal binary 

tree which shows the current subset of data after 

dimensionality reduction. The first node in the tree indicates 

that FACT1 is the optimal segmentation variable among 16 

common factors in the current data subset, and the 

corresponding optimal segmentation point is -1.164. When 

FACT1 ≤ -1.164, it enters the second node of Figure 10. The 

second node shows that FACT4 is the new optimal 

segmentation variable among the 16 common factors for the 

subset of FACT1 ≤ -1.164. In this case, the corresponding 

optimal segmentation point is 0.086. When FACT1> -1.164, 

it enters the third node of Figure 10. The third node shows 

that FACT16 is the new optimal segmentation variable 

among the 16 common factors for the current subset. At this 

time, the corresponding optimal segmentation point is 0.317. 

The value of the corresponding leaf nodes (error fitting value) 

in each tree are added up to the predictive value of the first 

tree as the final predictive value. 

    Some of prediagnose on test set are shown in Table VI. 
TABLE VI 

THE PARTIAL LEARNING RESULTS ON TEST SET BASED ON LIGHTGBM-FA 

Sample Number Prediagnosis of ALF The Actual Situation of 

ALF 

1 2 1 

2 0 0 

⋯ ⋯ ⋯ 

1757 0 0 

    According to formula (15) and Table VI, the value of the 

log loss function of the LightGBM-FA model on the test set is 

shown in formula (19). 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

1757
𝐼 �~@G log ℎ� 𝑦G = 𝑗 𝑥

)

G@�

$���

6@$

= 0.676019⋯⋯（19） 

    The prediagnosis accuracy of LightGBM-FA is 0.67274 

and its merror is 0.32726. 

In addition, the efficiency of the model is evaluated by the 

running time, and the running time of LightGBM-FA is 4.1 

seconds according to results. 

VIII. RELEVANT COMPARISONS OF PROGNOSTIC 

RESULTS 

A.  Comparative analysis of prediagnosis results for 

XGBoost, XGBoost-FA, LightGBM and LightGBM-FA 

The learning results of the four prediagnosis models 

including XGBoost, XGBoost-FA, LightGBM and 

LightGBM-FA are summarized, as shown in Table VII. 
TABLE VII 

PREDIAGNOSED RESULTS OF XGBOOST, XGBOOST-FA, LIGHTGBM AND 

LIGHTGBM-FA 

Model Accuracy Log loss Training time (s) 

XGBoost 0.75014 0.569707 10.5 

XGBoost-FA 0.67786 0.663924 5.7 

LightGBM 0.75811 0.576059 15.1 

LightGBM-FA 0.67274 0.676019 4.1 

   Firstly, in Table VII, LightGBM has the greatest value in 

terms of accuracy, but the difference of accuracy among the 

four prediagnostic models is no more than 0.09. The biggest 

difference is 0.08537 (LightGBM and LightGBM-FA), which 

indicates that the accuracy of LightGBM decreases largely 

after using FA dimensionality reduction. And the accuracy of 

XGBoost-FA is 0.07228 lower than that of XGBoost. 

Therefore, the accuracy of both XGBoost and LightGBM 

decreases after coupling FA. 

   Additionally, the log losses of both XGBoost and 

LightGBM slightly exceed than those of both XGBoost-FA 

and LightGBM-FA in Table VII. It could be seen that the log 

loss will increase after XGBoost and LightGBM coupling 

FA. That is, the total difference between the predictive value 

and the actual value will increase. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3042848, IEEE

Access

 

  

11 

  At last, in terms of training time, the efficiency of the 

algorithm improves greatly after coupling FA as shown in 

Table VII. XGBoost-FA is 4.8 seconds shorter than XGBoost. 

LightGBM-FA is 11 seconds shorter than LightGBM. Among 

them, LightGBM-FA runs most efficiently among the four 

models, but its accuracy is the lowest. Therefore, LightGBM-

FA is generally not recommended. 

   Comparing the training time of XGBoost-FA and 

LightGBM, XGBoost-FA (5.7 s) is 9.4 seconds shorter than 

LightGBM (15.1s), which means that efficiency of external 

dimensionality reduction is increases by about 1.6 times than 

built-in dimensionality reduction with respect to XGBoost. In 

terms of accuracy, XGBoost-FA is almost 0.08 lower than 

LightGBM. Therefore, in cases with lower run time 

requirements, LightGBM is the best choice to ensure the 

highest accuracy. For applications with higher efficiency 

requirements, such as instant diagnostics, XGBoost-FA is 

preferable. 

B. Comparing the algorithm on the Kaggle and the 

algorithms used in this paper 

   For the Acute Liver Failure dataset, the prediction algorithm 

from Kaggle (author: kernel4d6502ba2a) has removed all of 

the sample data which has not yet been diagnosed as having 

acute liver failure or has missing values. The algorithms on the 

Kaggle use LRC based on the remaining 4034 sample data 

which has labeled variables consisting of only two categories, 

0 (diagnosed as not having acute liver failure) and 1 

(diagnosed as having acute liver failure). 

    The comparison of the algorithm on the Kaggle with the 

methods used in this paper is shown in Table VIII. 
TABLE VIII 

COMPARISON OF ALGORITHMS FROM KAGGLE AND THIS PAPER 

Model	 Samples 
Issues 

addressed 

Training 

time (s) 
Accuracy 

LRC 

(Kaggle 

Algorithm) 

4034 binary 

classification 
3.1 0.82 

XGBoost-

FA 
8785 

multi-class 

classification 

（three） 

5.7 0.67786 

LightGBM 8785 

multi-class 

classification 

（three） 

15.1 0.75811 

   In terms of accuracy, the official website's public algorithm 

LRC is 0.14214 higher than XGBoost-FA and 0.06189 higher 

than LightGBM. In terms of training time, LRC is 2.6 seconds 

shorter than XGBoost-FA and 12 seconds shorter than 

LightGBM. However, the algorithms used in this paper 

processes about twice as much data as the publicly available 

algorithm on the official website, while the running time of 

XGBoost-FA is not twice as long as the official website's 

public algorithm. Thus, XGBoost-FA is more efficient than 

the official website's algorithm. 

   The reason why the accuracy of the algorithm used in this 

paper is lower than that of Kaggle falls into two parts. Firstly, 

the problem dealt with in this paper is multi-class classification 

(including 'Confirmed not ill', 'Confirmed ill' and 'Not yet 

confirmed to be ill'), compared with the binary classification 

on the official website (including 'Confirmed not ill', 

'Confirmed to be ill'), which are more complex. Secondly, the 

data dealt with in this paper consists of variables with a large 

number of missing values, of which numeric variables have 

been filled in with the mean while categorical variables have 

been filled in with the mode. Although being affected by the 

above two reasons, the accuracy of LightGBM still reaches 

92% of the accuracy of the official website algorithm while 

the accuracy of XGBoost-FA also reaches 83% of the 

accuracy of the official website algorithm. 

   All things considered, the official algorithm is advised to 

fix the issue of simpler binary classification and no missing 

values. 

    While dealing with multi-classification problems or data 

with a large number of missing values, XGBoost-FA is 

preferred to have better operating efficiency.  LightGBM is 

preferred to have a higher prediagnosis accuracy. 

IX. APPLICATION AND IMPLICATION ABOUT 

PREDIAGNOSIS OF ACUTE LIVER FAILURE 

A. Significance of prediagnosis of acute liver failure 

It’s common to suffer acute liver failure in modern lives. 

Its timely and accurate diagnosis is conducive to effectively 

controlling and treating the disease, as well as increasing the 

probability of recovery. Take these into consideration, the 

data set of acute liver failure is selected as a representative 

example in this paper. 

Clinically, the diagnosis of acute liver failure requires a 

series of rigorous clinical tests such as liver puncture and 

prothrombin time (PT) measurement. Experienced doctors are 

also needed to judge the severity of liver damage. Therefore, 

the diagnosis efficiency of acute liver failure depends upon 

the two factors including medical conditions and doctor's 

diagnosis experience. 

Based on the characteristic variables of a sample, this 

paper can predict whether the patient suffers from acute liver 

failure, which is helpful for doctors in prediagnosis before 

medical testing.  This prediagnosis has nothing to do with the 

medical conditions of the hospital or the doctor’s diagnostic 

experience. Instead, it provides rigorous scientific support 

for the diagnosis of acute liver failure. 

B. Significance of model application 

From the perspective of model comparison, LightGBM has 

two built-in algorithms with dimensionality reduction and 

sampling functions, EFB and GOSS. Compared with 

XGBoost, LightGBM is more powerful.  But compared with 

XGBoost-FA, LightGBM is slightly higher in prediction 

accuracy and is almost as three times in training time.  

Additionally, the dimensionality reduction effect of 

LightGBM is not as direct as the traditional dimensionality 

reduction tool FA. The reason lies in the extent to which the 

original information is retained could be decided according 

to the results of FA. At last but not least, the newly generated 

common factors are explanatory variables with practical 

meaning. Therefore, with respect to XGBoost, external 
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dimensionality reduction (XGBoost-FA) is preferred to built-

in dimensionality reduction(LightGBM).   

Based on the prediagnosis model of this paper, the 

common factors FACT1 is an important indicator to identify 

acute liver failure (Section VI.), which is a fusion of the three 

original variables of Weight, Waist and Obesity with a 

positive impact on it. Therefore, doctors can use obesity as an 

important indicator for prediagnosing acute liver failure while 

residents can use weight control as an important measure to 

prevent acute liver failure. 

In addition, doctors can make three corresponding 

judgments based on the prediagnosis results of the samples in 

this paper. When the predicted result is 0, the prediagnosis 

sample is not ill. It is recommended that the subject should 

be observed at home and the scarce medical resources should 

be saved for more urgent patients. When the predicted result 

is 1, the prediagnosed patient has acute liver failure. At this 

time, the patient should be arranged for hospitalization as soon 

as possible to be treated timely. When the predicted result is 

2, it is deduced that the subject is suspected of being ill, and 

further medical examinations and hospitalization observations 

are required. 

LightGBM-FA is recommended as shown from Table VII 

that the model takes the shortest time. In dealing with multi-

category with missing values, in order to balance efficiency 

and accuracy, XGBoost-FA is advised as a prediagnosis 

model. According to TABLE VIII, XGBoost-FA has the 

shortest prediagnosis time, and the prediagnosis accuracy of 

XGBoost-FA is higher than that of LightGBM-FA. 

In the dataset of Acute Liver Failure used in this paper, 

more than 50% of the samples have missing values. It’s easy 

to find the common constraints of various factors such as the 

scope of statistics, indicators and objects, imperfect data with 

large sample sizes and high dimensions in real life. It is 

difficult to collect clean and perfect data in real life set. In 

another word, it truly reflects the authenticity of the 

prediction results and the actual situation of our work. It’s 

unavoidable to encounter relatively unsatisfactory prediction 

results for this kind of unsatisfactory data.  

To deal with multi-category prediagnosis problems with 

so many missing values, FA is used to remove redundant 

variables to increase training efficiency and accuracy. 

XGBoost-FA is selected as the diagnostic model and obtained 

good results, with the accuracy rate 0.67786 and training time 

5.7 seconds. 

C. Significance of applying algorithms to AI Medical 

In many medical scenarios, people are usually troubled by 

the imperfect of the public medical management system, high 

medical costs, few channels, and low coverage. AI (artificial 

intelligence) Medical is designed to integrate the multi-

dimensional data of different systems and departments in the 

hospital via the AI technology including expert systems, 

medical natural language processing and data mining.  

AI medical can be developed in two directions. Firstly, AI 

medical can be improved on more multiple source data such 

as voice medical records, image data, and multiple indicators 

of the body.  Secondly, algorithm updating can improve AI 

medical in technology. Both should be organically combined 

to complement each other. 

As a popular and cutting-edge boosting integrated 

algorithm, XGBoost can help AI medical improved in 

technology.  Because the newly generated common factors by 

FA can be explained by practical meaning, it is easier for 

doctors to understand and explain the predicted outcome by 

FA. Applying XGBoost-FA to AI Medical can help doctors 

proactively participate in diagnosis of many diseases with 

higher efficiency and accuracy.   

Take tumor surgery as an example. The planning process 

for tumors often takes long hours. If machine learning 

algorithms can help doctors improve diagnosis accuracy in a 

shorter time, it will undoubtedly greatly reduce the workload 

of doctors and increase the success rate of surgery. 

D. The constraints of machine learning combined with AI 

Medical 

First of all, only when the accuracy of AI Medical products 

in actual medical applications satisfies a certain standard, it is 

eligible to enter the clinic. 

In addition, AI Medical care may encounter an unavoidable 

problem, that is, whether data acquisition leads to the violation 

of patient’s privacy. 

Thirdly, there is a lack of comprehensive and unified 

standards for issues such as defects in AI diagnosis and 

judgment basis for medical negligence. 

X. CONCLUSION 

This paper mainly compared the accuracy and efficiency 

of built-in dimensionality reduction (LightGBM), external 

dimensionality reduction (XGBoost-FA), and built-in 

combined with external dimensionality reduction 

(LightGBM-FA). 

Based on the dataset of Acute Liver Failure for 

classification and prediagnosis, FA is used to realize 

dimensionality reduction to remove redundant information 

of variables. And then the prediagnosis results are obtained 

in combination with XGBoost and LightGBM learning. The 

prediagnosis examples for Acute Liver Failure show that 

XGBoost-FA and LightGBM-FA have greatly improved the 

efficiency of prediagnosis compared with single XGBoost and 

LightGBM, but their accuracy has decreased. At the same time, 

the results show that although the accuracy of the built-in 

dimensionality reduction algorithm is slightly higher than that 

of the external one, its training time will be doubled. Based on 

the prediagnosed effect, XGBoost-FA performs better while 

dealing with multi-classification problems or data with a large 

number of missing values. 

One thing worth mentioning is the imperfect medical-

related data feature in AI Medical. Although dimensionality 

reduction is an extremely common step in data processing, its 

role is crucial. The effect of dimensionality reduction is related 

to the accuracy and efficiency of subsequent models. 

Embedding some dimensionality reduction algorithms in the 
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model does improve the accuracy a little, but it sacrifices the 

operating efficiency of many models. Traditional 

dimensionality reduction tools could be selected according 

to different application requirements. 

More examples of AI Medical and theoretical comparison 

of the two algorithms are expected. From the perspective of 

data dimensionality reduction processing, FA is chosen in this 

paper. However, dimensionality reduction methods vary with 

different types of data. The impact of dimensionality reduction 

methods including Chi2, MI, LDA and autoencoder 

dimensionality reduction, etc. upon the machine learning 

models needs to be further explored. 
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