
The COMPASS Approach: Correctness,

Modelling and Performability of Aerospace
Systems�

Marco Bozzano1, Alessandro Cimatti1, Joost-Pieter Katoen2,
Viet Yen Nguyen2, Thomas Noll2, and Marco Roveri1

1 Fondazione Bruno Kessler, Trento, Italy
Tel.: +39 0461 314367; Fax: +39 0461 302040

bozzano@fbk.eu
2 Software Modeling and Verification Group, RWTH Aachen University, Germany

Abstract. We report on a model-based approach to system-software co-
engineering which is tailored to the specific characteristics of critical on-
board systems for the aerospace domain. The approach is supported by a
System-Level Integrated Modeling (SLIM) Language by which engineers
are provided with convenient ways to describe nominal hardware and
software operation, (probabilistic) faults and their propagation, error
recovery, and degraded modes of operation.

Correctness properties, safety guarantees, and performance and de-
pendability requirements are given using property patterns which act as
parameterized “templates” to the engineers and thus offer a comprehensi-
ble and easy-to-use framework for requirement specification. Instantiated
properties are checked on the SLIM specification using state-of-the-art
formal analysis techniques such as bounded SAT-based and symbolic
model checking, and probabilistic variants thereof. The precise nature
of these techniques together with the formal SLIM semantics yield a
trustworthy modeling and analysis framework for system and software
engineers supporting, among others, automated derivation of dynamic
(i.e., randomly timed) fault trees, FMEA tables, assessment of FDIR,
and automated derivation of observability requirements.

1 Introduction

The design of modern space missions and systems poses fierce challenges. On the
one hand, the involved systems are clearly critical, and huge amounts of money
are at stake. On the other hand, the design involves the integration of a large
number of heterogeneous requirements (e.g. functional correctness, dependabil-
ity, observability, performance), for which different teams are responsible, and
that often do not communicate in the early stages of the process.

In this paper, we describe an integrated, model-based methodology for system-
software co-engineering, which is tailored to the specific characteristics of crit-
ical on-board systems for the space domain. The approach covers modeling,
� Funded by ESA/ESTEC under Contract No. 21171/07/NL/JD.

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 173–186, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



174 M. Bozzano et al.

functional correctness, and performance analysis. In terms of modeling, the ap-
proach is based on a System-Level Integrated Modeling (SLIM) language. The
SLIM language is inspired by the well-known AADL [30] and provides engineers
with convenient ways to describe nominal hardware and software operation, hy-
bridity, (probabilistic) faults and their propagation, error recovery, and degraded
modes of operation.

A fundamental feature of the approach is model extension: starting from a
nominal model of the system, and a set of possible faults, the extension operator
is able to generate a comprehensive description combining both the nominal
and the faulty behaviours of the model. The SLIM language also allows for a
comprehensive representation of partial observability, necessary to describe the
actual sensing capabilities at the disposal of an on-line monitoring system.

The SLIM language allows to describe discrete dynamics, real time, and con-
tinuous dynamics, both in a qualitative and in a probabilistic fashion. A formal
semantics allows to precisely characterize the complete set of nominal and non-
nominal behaviours of the model, and opens up the possibility to apply a wealth
of formal verification techniques for various forms of analysis. These include sym-
bolic model checking for functional verification and formal requirements analysis,
FTA and FMEA, testability, and performance analysis.

The activity described in this paper is inspired by the COMPASS project1

(Correctness, Modeling, and Performance of Aerospace Systems). The project
is in response to an invitation to tender by the European Space Agency. The
methodology described in this work is made practical by a comprehensive toolset,
called the COMPASS toolset, based on state of the art tools in verification, such
as NuSMV [26], FSAP [19], Sigref [31], and MRMC [25]. The toolset and the
methodology are currently under industrial evaluation and will be applied to
several case studies by a major industrial developer of aerospace systems.

The paper is structured as follows. In Section 2, we describe the features of the
SLIM language. In Section 3, we discuss how the various analyses can be reduced
to (qualitative and quantitative) problems in formal verification. In Section 4,
we present the structure of the COMPASS toolset. Finally, in Section 5 we draw
some conclusions and outline directions for future work.

2 The Modeling Language

The System-Level Integrated Modeling (SLIM) language [7] has been designed
in order to provide a cohesive and uniform approach to model heterogeneous
systems, consisting of software (e.g., processes and threads) and hardware (e.g.,
processors and buses) components, and their interactions. Furthermore, it has
been designed with the following essential features in mind.

– Modeling both the system’s nominal and non-nominal behavior. To this aim,
SLIM provides primitives to describe software and hardware faults, error
propagation (that is, turning fault occurrences into failure events), sporadic

1 http://compass.informatik.rwth-aachen.de

http://compass.informatik.rwth-aachen.de


The COMPASS Approach: Correctness, Modelling and Performability 175

������ Battery

����	
��

empty: �	� ���� ��
�;

voltage: �	� ���� ��
� 
���;

�� Battery;

������ ������������ Battery.Imp

�	���������

energy: ���� ����	�	� �������� 100.0;

�����

charged: ������ ����

����� energy ’ = -0.01 �� energy >= 20;

depleted : ����

����� energy ’ = -0.015;

�
�������

charged -[��� energy >= 15

��� voltage := f(energy)]-> charged;

charged -[empty ��� energy <20]-> depleted ;

depleted -[��� voltage := f(energy)]-> depleted ;

�� Battery.Imp;

Fig. 1. Specification of a Battery Component

(transient) and permanent faults, and degraded modes of operation (by map-
ping failures from architectural to service level).

– Modeling (partial) observability and observability requirements. These no-
tions are essential to deal with diagnosability and Fault Detection, Isolation
and Recovery (FDIR) analyses.

– Specifying timed and hybrid behavior. In particular, in order to analyze con-
tinuous physical systems such as mechanical and hydraulics, the SLIM lan-
guage supports continuous real-valued variables with (linear) time-dependent
dynamics.

– Modeling probabilistic and quantitative aspects, such as probabilistic faults
and performability measures.

The characteristics listed above make SLIM an ideal language to specify and rea-
son about the following system properties: functional correctness, in particular
in case of degraded hardware operation; safety and dependability; diagnosability
and FDIR; system performance and performability.

2.1 Specifying Nominal Behavior

A SLIM model is hierarchically organized into components, distinguished into
software (processes, threads, data), hardware (processors, memories, devices,
buses), and composite components. Components are defined by their type (spec-
ifying the functional interfaces as seen by the environment) and their implemen-
tation(representing the internal structure). The implementation part contains:



176 M. Bozzano et al.

������ Power

����	
��

voltage: �	� ���� ��
� 
���;

�� Power;

������ ������������ Power.Imp

�	���������

batt1: ������ Battery.Imp � ����� (primary );

batt2: ������ Battery.Imp � ����� (backup);

��������

���� ��
� batt1.voltage -> voltage

� ����� (primary );

���� ��
� batt2.voltage -> voltage

� ����� (backup);

�����

primary: ������ ����;

backup: ����;

�
�������

primary -[batt1.empty]-> backup;

backup -[batt2.empty]-> primary;

�� Power.Imp;

Fig. 2. The Complete Power System

the structure of the component as an assembly of subcomponents; the interaction
through (event and data) port connections; the (physical) binding at runtime;
the operational modes as an abstraction of the concrete component behavior,
possibly representing different system configurations and connection topologies,
with mode transitions which are spontaneous or triggered by events arriving
at the ports; the timing and hybrid behavior of the component. The overall
specification can be organized into packages to support modularity.

To give a more concrete idea, Fig. 1 shows an example specification of a
simple battery device. Its type interface features two ports: an outgoing event
port empty which indicates that the battery is about to become discharged, and
an outgoing data port voltage which makes its current voltage level accessible
to the environment.

The corresponding component implementation specifies the battery to be ini-
tially in the charged mode with an energy level of 100 (%). This level is con-
tinuously decreased by 1% per time unit (in Fig. 1, energy’ denotes the first
derivative of energy) until a threshold value of 20% is reached, upon which the
battery changes to the depleted mode. This mode transition triggers the empty
output event, and the loss rate of energy is increased to 1.5%. Moreover, the
voltage value is regularly computed from the energy level (the correspond-
ing function, f, is not detailed here) and automatically made accessible to the
environment via the corresponding outgoing data port.

The next specification, presented in Fig. 2, shows the usage of the battery
component in the context of a redundant power system. It contains two instances



The COMPASS Approach: Correctness, Modelling and Performability 177

�

�
 ����� BatteryFailure

����	
��

normal: ������ �����;

dead: �

�
 �����;

�� BatteryFailure ;

�

�
 ����� ������������ BatteryFailure .Imp

�����

fault: �

�
 ���� ���	

��� ������ 0.001;

�
�������

normal -[fault]-> dead;

�� BatteryFailure .Imp;

Fig. 3. An Error Model

of the battery device, being respectively active in the primary and the backup
mode. The mode switch that initiates reconfiguration is triggered by an empty
event arriving from the battery that is currently active. Moreover the voltage
information of the active battery is forwarded via an outgoing data port.

2.2 Specifying Faulty Behavior

Nominal component specifications can be extended by error models to support
safety and dependability analyses. For the sake of modularity, nominal specifica-
tions, error specifications, and their mutual association are separated from each
other.

Again, an error model is defined by its type, its implementation, and its effect.
An error model type defines an interface in terms of error states and (incoming
and outgoing) error propagations. Error states are employed to represent the
current configuration of the component with respect to the occurrence of errors.
Error propagations are used to exchange error information between components.
An error model implementation provides the structural details of the error model.
It is defined by a (probabilistic) machine over the error states declared in the
error model type. Transitions between states can be triggered by error events,
����� events, and error propagations. Error events are internal to the compo-
nent; they reflect changes of the error state caused by local faults and repair
operations, and they can be annotated with occurrence distributions to model
probabilistic error behavior. Moreover, ����� events can be sent from the nom-
inal model to the error model of the same component, trying to repair a fault
which has occurred. Outgoing error propagations report an error state to other
components. If their error states are affected, the other components will have a
corresponding incoming propagation. An error effect is specified by expressions
that overload the nominal assignments when the error occurs. Fig. 3 presents
a simple error model for the battery device. It introduces a probabilistic error
event, fault, which is assumed to occur once every 1000 time units on average.



178 M. Bozzano et al.

������ PowerSystem

����	
��

voltage: �	� ���� ��
� 
���;

alarm: �	� ���� ��
� ���� �������� ����� ����
����� ;

�� PowerSystem ;

������ ������������ PowerSystem .Imp

�	���������

pow: ������ Power.Imp;

��������

���� ��
� pow.voltage -> voltage;

�����

normal: ������ ����;

critical : ����;

�
�������

normal -[��� voltage < 4.5 ��� alarm:=�
	�]-> critical;

critical -[��� voltage > 5.5 ��� alarm:=�����]-> normal;

�� PowerSystem .Imp;

Fig. 4. The Complete Power System with an Alarm

Whenever this happens, the error model changes into the dead state, that could
for instance be associated with voltage being constantly 0.0.

2.3 Specifying Observability

In order to enable modeling of partial observability, the SLIM language allows
the specifier to explicitly define the set of observables. For instance, in the bat-
tery example, we may assume that the output voltage of the power system is
observable, whereas the internal status of the batteries and the occurrence of
faults is not. Fig. 4 shows an example in which an alarm, modeled as an ob-
servable Boolean output signal, is raised whenever the voltage is lower than 4.5
volts. Once raised, the alarm is deactivated if the voltage increases to 5.5 volts.

2.4 Formal Semantics

To enable trustworthy modeling and analysis of systems, our SLIM language
is equipped with a formal semantics (see [7]) that provides the interpretation
of SLIM specifications in a precise and unambiguous manner. The semantics
has been designed in such a way to conform to the environment described in
[3], which encompasses different aspects of the development of reactive systems,
from functional verification to safety analysis, dependability and diagnosability,
within the framework of symbolic model checking.

The semantics of a nominal specification is defined on two levels, distinguish-
ing between the local behavior of an active component and the interaction be-
tween active components via ports and connections. This interaction is highly
dynamic as local transitions can cause subcomponents to become (in-)active,



The COMPASS Approach: Correctness, Modelling and Performability 179

and can change the topology of event and data port connections. On the level
of the formal model this means that both the activation status of components
and their interconnection relation depend on the modes of the components.

When it comes to integrating faulty system behavior, first the association be-
tween nominal and error models has to be specified. In the example above, e.g.,
one would connect (every instance of) the Battery device to the BatteryFailure
error model. The occurrence of an error event, or a propagation in an error
model implementation, indicates a (local, respectively global) fault, and gener-
ally causes the transition to a new error state. Failure effects can be attached
to error states in order to specify the impact of a fault to the nominal behavior
of that component. Every such effect is defined by a list of assignments to the
component’s data elements that overrides the nominal transition effects in the
presence of an error. In the case of the battery example, one could reset the
voltage level to zero while being in error state dead.

The actual integration of the nominal and the error model, the so-called (fault)
model extension, works similarly to the procedure described in [8]. It takes the
nominal model and enriches it by the error model specification, thus producing
an integrated model which represents both the nominal and the failure behav-
ior. Informally, this model is obtained as follows. Its modes are pairs of nominal
modes and error model states. The set of event ports is obtained by adding the
error propagations to the original event ports, in order to represent the exchange
of error information via propagations as event communication. Correspondingly,
the set of event port connections has to be extended by propagation port con-
nections. Finally, in the mode transition relation of the integrated model, all
possible interleavings and interactions between the nominal and the error model
have to be considered.

2.5 Comparison with AADL

The SLIM language covers a significant subset of AADL. Many features of AADL
have been omitted (such as properties, extensions, prototypes, and flow specifi-
cations), and the set of available component categories has been reduced. Also
some “mixed” concepts (such as ����� ���� ports or 	� 
�� ports) have been
omitted to simplify the implementation. There are, however, some extensions
that have been introduced in our language to support the description of dy-
namic system behavior.

– Initialization values for data ports and data components have been added.
– To support mode history, 	�	�	�� and ��	���	
�modes are distinguished.

This allows to express that after a re-activation of a component due to a sys-
tem reconfiguration, the component should resume its operation in the state
in which it had previously been deactivated.

– Explicit binding relations between subcomponents (��
��� 	�, ����	�� 
�,
������) have been introduced.

– To support the specification of timed and hybrid behavior, mode invariants
(��	��), transition guards (����) and transition effects (����) have been
added (similarly to the AADL Behavior Annex).



180 M. Bozzano et al.

From the semantical perspective, as a difference with AADL, which supports
asynchronous communication via event queues, the SLIM language is based on
(possibly multi-way) synchronous event communication.

3 Analyzing System Specifications

In this section we discuss the main analysis capabilities of the COMPASS ap-
proach. The available functionalities are summarized by the use case diagram in
Fig. 5.

3.1 Property Specification and Validation

Formal properties are increasingly being used to describe the qualitative and the
quantitative requirements of electronic designs. These properties are used both
for verification and as a means to describe the requirements for a system before
it is built. The use of a formal language to state formal properties is a first and
substantial step towards a high quality specification, as it makes subtle questions
explicit that otherwise might be hidden in the ambiguity of natural language.

Within the COMPASS project, we use temporal logic properties to describe
both the qualitative and the quantitative properties the system under analy-
sis has to satisfy. Linear Temporal Logic (LTL) [28] and Computational Tree
Logic [13] are used to express qualitative properties. Probabilistic Computation
Tree Logic (PCTL) [21] and Continuous Stochastic Logic (CSL) [2] are used
to express quantitative properties. The definition of properties from non expert
users can be facilitated by the use of property patterns [17].

The COMPASS approach supports property validation, to check correctness
and completeness of a set of properties [27]. First, it allows to check for logical

Fig. 5. Functionalities of the COMPASS approach



The COMPASS Approach: Correctness, Modelling and Performability 181

consistency. Logical consistency can be intuitively defined as “freedom from con-
tradictions”: in fact it is possible that two properties mandate mutually incom-
patible behaviors. Consistency checking of temporal properties can be carried
out by dedicated formal verification algorithms [11].

Second, it is possible to check the set of properties is strict enough to rule out
unwanted behavior and that it is not too strict to disallow for certain desirable
behavior. Checking that the properties are not too strict amounts to verifying
whether a set of conditions (also called a scenario) is possible, given the con-
straints imposed by the considered set of properties. If the scenario is possible, we
obtain a behavior trace compatible with both the properties and the constraint
describing the scenarios. Otherwise, we obtain a subset of the considered set of
properties that prevents the scenario to happen. Checking that the properties
are strict enough to rule out unwanted behavior amounts to verifying whether
an expected property (describing the desired behaviors) is implied by the con-
sidered set of properties. This check is similar in spirit to model checking [15],
with the considered set of properties playing the role of the model. When the
property is not implied by the specification, a counterexample, witnessing the
violation of the property, is produced.

3.2 Verification of Functional Properties

A SLIM model can be evaluated using model checking techniques, in order to
guarantee that it satisfies the required functional properties. To this aim, the
model can be translated into a Labeled Transition System (LTS) and exhaus-
tively analyzed by the model checker to check whether the properties hold. If
a property does not hold, a counterexample trace can be generated to show
an execution trace of the model that violates the property. To cope with the
state explosion problem, advanced techniques can be applied, in particular sym-
bolic techniques based on Binary Decision Diagrams (BDD) [9] and SAT-based
Bounded Model Checking [4,5,22,18] (BMC). Verification can also benefit from
advanced techniques for compiling temporal properties into a symbolic LTS [12].

In order to deal with the timed and hybrid domain (i.e., SLIM models con-
taining integers and reals), standard symbolic model checking techniques cannot
be applied. The most noticeable approach is Counterexample Based Abstraction
Refinement [14] (CEGAR). Here, a property is verified in an abstraction of the
original model. If verification is not conclusive, the abstraction can be automat-
ically refined, based on analysis of the trace generated by the model checker,
and the verification process is iterated. Advanced techniques for computing and
refining the abstraction include techniques based on the emerging technology
of Satisfiability Modulo Theory (SMT) [10]. Similar techniques can also be ex-
ploited in BMC. All these techniques have been incorporated into the NuSMV
[26] model checker.

3.3 Verification of Safety/Dependability Aspects

The COMPASS methodology can be used to produce artifacts and support activ-
ities that are specific of safety assessment, such as techniques for hazard analysis.



182 M. Bozzano et al.

The use of formal techniques for such activities is relatively new. The COM-
PASS methodology relies on the seminal work carried out within the ESACS2

(Enhanced Safety Assessment for Complex Systems) and ISAAC3 (Improvement
of Safety Activities on Aeronautical Complex systems) projects, two European-
Union-sponsored projects involving various research centers and industries from
the avionics sector, and that resulted in the FSAP tool[19]. As advocated in
[8], an essential step of the methodology is the decoupling between the nominal
behavior and the faulty behavior of the system, that is realized by means of the
model-extension step (cf. Section 2.4).

The COMPASS methodology supports two of the most popular hazard anal-
ysis techniques, that is, Failure Mode and Effects Analysis (FMEA) and Fault
Tree Analysis (FTA). FMEA uses an inductive approach; it starts by consid-
ering the initiating causes of a given hazard, and traces them forward to the
corresponding safety consequences. FTA, on the other hand, is a deductive tech-
nique; it starts by considering an unintended behavior of the system at hand,
and traces it, in a backward reasoning fashion, to the corresponding causes.
The COMPASS methodology can automatically generate (dynamic) fault trees
[16,24], given an extended model and a property representing the hazard. Fur-
thermore, (dynamic) FMEA tables can be automatically generated, given a set
of failure modes (more in general, a set of fault configurations, which may include
combinations of different faults) and a set of properties. Finally, it is possible
to compute a criticality measure, which combines probability of occurrence and
severity of the consequences.

3.4 Diagnosability Analysis

The COMPASS toolset support diagnosability analysis and FDIR (Fault Detec-
tion, Isolation and Recovery). These analyses are based on the notion of observ-
ables in the input model. In particular, fault detection analysis checks whether
an observation can be considered a fault detection means for a given fault, that
is, every occurrence of the fault eventually causes the observable to be true. All
such observables are reported as possible detection means. Fault isolation analy-
sis generates fault isolation measures, namely, for each of the observables, it gen-
erates a fault tree that contains the minimal explanations that are compatible
with the observable being true (the fault tree contains one cut set consisting of a
single fault, in case of perfect isolation). Finally, fault recovery verifies whether a
user-defined recoverability property is satisfied. The COMPASS toolset can also
check whether a system is diagnosable with respect to a diagnosability property,
and synthesize a set of observables that ensure diagnosability.

3.5 Quantitative Analyses

To guarantee the required performance, a SLIM model can be evaluated using
probabilistic model checking techniques [2]. Prior to this, the user has to specify
2 http://www.esacs.org
3 http://www.cert.fr/isaac

http://www.esacs.org
http://www.cert.fr/isaac


The COMPASS Approach: Correctness, Modelling and Performability 183

the formal performance requirements through PCTL or CSL properties: e.g.
the system under degradation always has to recover within 40 time units with
a probability of 0.98; or, that in the long run, the system will be down with a
probability of 0.005. To check whether the SLIM model meets these requirements,
it has to be transformed into its underlying Markov chain through probabilistic
information captured by the occurrences definitions in the error models. The
Markov Reward Model Checker [23] (MRMC) can then be used to evaluate
whether the Markov chain meets the expressed performance requirements.

The same probabilistic model checking techniques are used for computing the
probability of the top-level event in fault trees. They can be extended to com-
puting probabilities for dynamic fault trees [6]. Akin to checking the correctness
of FDIR measures, we use the same probabilistic techniques to evaluate FDIR
performance. For example, in addition to checking whether a fault is detected
or not, we compute the probability of detection; in case of fault recovery, we
compute the probability that the system will recover from a fault.

Finally, it is possible to analyze the timing behaviour of a SLIM model, like
for example whether the system will correctly reset a valve between 20 and 30
minutes. Clock invariants, constraints and resets expressed in the SLIM models
are used for this. Drafting the transformations from these timing constructs to
the underlying formal model, timed automata [1], is still work in progress.

4 Tool Support

The activities described in the previous sections are supported by an inte-
grated platform, which incorporates extensions of existing tools in a uniform
environment. Verification and validation functionalities of the toolset are based
on symbolic model checking techniques. In particular, the tool set builds upon
the NuSMV [26] symbolic model checker, the MRMC [25] probabilistic model
checker, and the RAT [29] requirements analysis tool. The architecture of the
tool set is shown in Fig. 6.

The toolset takes as input a model written in the SLIM language, and a
set of property patterns [17,20]. It generates several artifacts as output, among
them: traces resulting either from simulation of the SLIM specification or as
counterexample for properties not satisfied by the specification; (probabilistic)
Fault Trees and FMEA tables; diagnosability and performability measures.

In order to perform all the verification activities, the SLIM high-level specifica-
tion is parsed and an internal representation of the input files and a symbol table
are constructed. Depending on the specific verification task to be run, different
transformations of the input files are then possible, and realized by the building
blocks shown in Fig. 6. The ModelExtension block takes care of performing model
extension, when required. It generates as output another SLIM model with prob-
abilistic annotations (if any) that represent the faulty system. The Slim2SMV
translator is used to translate a SLIM specification into a semantically-equivalent
SMV file, which can be used for all NuSMV-based analyses, and to produce sep-
arate probabilistic information (if any). The safety analysis activities are per-
formed by FSAP[19], which has been integrated within NuSMV. The SMV file



184 M. Bozzano et al.

Slim2SMV

Instantiator
Slim Property

Estension
Model

Table
Symbol

Sigref2MRMCSMV2SigrefNuSMV MRMC

SMV2Slim

Viewer
Fault Tree

Viewer
Trace

RAT

Instantiator
Property

PERFORMABILITY
ANALYSIS
− Performability measures
− Probabilistic fault tree

DIAGNOSABILITY
ANALYSIS
− FDIR effectiveness measures
− Sysnthesis of Observability Requiremements

CORRECTNESS
VERIFICATION
− Property verification
− Simulation

SAFETY
ANALYSIS
− Dynamic Fault Tree
− FMEA Tables

REQUIREMENTS
VALIDATION
− Property Assurance
− Property Simulation

Slim

Model

Property

Pattern

Fig. 6. Architecture of the COMPASS Platform

and the probabilistic information are used by the SMV2Sigref and Sigref2MRMC
blocks, that collaborate to transform an SMV file into an equivalent input file
for MRMC (the latter also contains probabilistic information), which can be
used for all MRMC-based activities. Property patterns are used to create formal
properties [17,20]. These properties are processed either by the Slim Property
Instantiator, and then converted into SMV or MRMC format, or by the Property
Instantiator, that transforms them into RAT format for requirements validation.
Finally, the block SMV2Slim converts the results of the analyses back from the
internal tools’ format into SLIM format, which can be processed by the visual-
izers, namely graphical fault tree and trace viewers.

5 Conclusions and Future Work

In this paper, we presented a comprehensive, end to end methodology for the
design of complex systems. The approach covers all possible user queries in a



The COMPASS Approach: Correctness, Modelling and Performability 185

unique methodology, and it is formally well founded. It includes in a unique,
clear formal framework, a number of analyses, and has a full-fledged support by
the integration of several state of the art verification tools.

An industrial evaluation of the methodology on realistic case studies is cur-
rently ongoing within the COMPASS project. This will provide substantial in-
sights on the applicability of the proposed methodology and the effectiveness of
the tool chain. Of particular interest is the verification of reactive systems model-
ing continuous dynamics. In the future, we plan to systematically investigate the
combination of symbolic model checking techniques for the effective construction
of the state space to scale up quantitative and probabilistic analyses.

Acknowledgments

We wish to acknowledge and give special thanks to Benedikt Brütsch, Roberto
Cavada, Christian Dehnert, Friedrich Gretz and Andrei Tchaltsev, that assisted
us by programming a great part of the developed toolset and actively partic-
ipated to the fruitful discussions that came along the way when we stumbled
upon technical issues.

References

1. Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded Model Check-
ing for Timed Systems. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS,
vol. 2529. Springer, Heidelberg (2002)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE TSE 29(6), 524–541 (2003)

3. Bertoli, P., Bozzano, M., Cimatti, A.: A Symbolic Model Checking Framework for
Safety Analysis, Diagnosis, and Synthesis. In: Edelkamp, S., Lomuscio, A. (eds.)
MoChArt IV. LNCS (LNAI), vol. 4428, pp. 1–18. Springer, Heidelberg (2007)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

5. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Logical Methods in Comp. Sc. 2(5) (2006)

6. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using in-
put/output interactive Markov chains. In: DSN, pp. 708–717. IEEE, Los Alamitos
(2007)

7. Bozzano, M., Cimatti, A., Nguyen, V.Y., Noll, T., Katoen, J.P., Roveri, M.: Code-
sign of Dependable Systems: A Component-Based Modeling Language. In: Proc.
MEMOCODE 2009 (2009)

8. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA Safety Analysis Platform.
International Journal on Software Tools for Technology Transfer 9(1), 5–24 (2007)

9. Bryant, R.: Symbolic Boolean Manipulation with Ordered Binary Decision Dia-
grams. ACM Computing Surveys 24(3), 293–318 (1992)

10. Cavada, R., Cimatti, A., Franzén, A., Kalyanasundaram, K., Roveri, M., Shya-
masundar, R.K.: Computing Predicate Abstractions by Integrating BDDs and
SMT Solvers. In: Proc. FMCAD, pp. 69–76. IEEE Computer Society, Los Alamitos
(2007)



186 M. Bozzano et al.

11. Cimatti, A., Roveri, M., Schuppan, V., Tonetta, S.: Boolean abstraction for tem-
poral logic satisfiability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 532–546. Springer, Heidelberg (2007)

12. Cimatti, A., Roveri, M., Tonetta, S.: Symbolic Compilation of PSL. IEEE Trans.
on CAD of Integrated Circuits and Systems 27(10), 1737–1750 (2008)

13. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concur-
rrent systems using temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems 8(2), 244–263 (1986)

14. Clarke, E., Grumberg, O., Jha, S., Lua, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. JACM, 752–794 (2003)

15. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

16. Dugan, J., Bavuso, S., Boyd, M.: Dynamic fault-tree models for fault-tolerant com-
puter systems. IEEE Transactions on Reliability 41(3), 363–377 (1992)

17. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-
state verification. In: Proc. ICSE, pp. 411–420. IEEE, Los Alamitos (1999)

18. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science 89(4) (2003)

19. The FSAP/NuSMV-SA platform, http://sra.itc.it/tools/FSAP
20. Grunske, L.: Specification patterns for probabilistic quality properties. In: ICSE

2008: Proceedings of the 30th international conference on Software engineering,
pp. 31–40. ACM, New York (2008)

21. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

22. Heljanko, K., Junttila, T.A., Latvala, T.: Incremental and complete bounded model
checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 98–111. Springer, Heidelberg (2005)

23. Katoen, J.-P., Khattri, M., Zapreev, I.: A Markov reward model checker. In: QEST,
pp. 243–244. IEEE CS, Los Alamitos (2005)

24. Manian, R., Dugan, J., Coppit, D., Sullivan, K.: Combining Various Solution Tech-
niques for Dynamic Fault Tree Analysis of Computer Systems. In: Proc. High-
Assurance Systems Engineering Symposium (HASE 1998), pp. 21–28. IEEE Com-
puter Society Press, Los Alamitos (1998)

25. The MRMC model checker, http://wwwhome.cs.utwente.nl/~zapreevis/mrmc/
26. The NuSMV model checker, http://nusmv.itc.it
27. Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti, A.: Formal

analysis of hardware requirements. In: Proc. DAC, pp. 821–826. ACM, New York
(2006)

28. Pnueli, A.: A temporal logic of concurrent programs. Th. Comp. Sc. 13, 45–60
(1981)

29. RAT: Requirements Analysis Tool, http://rat.itc.it
30. Architecture Analysis and Design Language (AADL) V2. SAE Draft Standard

AS5506 V2, International Society of Automotive Engineers (March 2008)
31. Sigref — A Symbolic Bisimulation Tool, http://sigref.gforge.avacs.org/

http://sra.itc.it/tools/FSAP
http://wwwhome.cs.utwente.nl/~zapreevis/mrmc/
http://nusmv.itc.it
http://rat.itc.it
http://sigref.gforge.avacs.org/

	The COMPASS Approach: Correctness, Modelling and Performability of Aerospace Systems
	Introduction
	The Modeling Language
	Specifying Nominal Behavior
	Specifying Faulty Behavior
	Specifying Observability
	Formal Semantics
	Comparison with AADL

	Analyzing System Specifications
	Property Specification and Validation
	Verification of Functional Properties
	Verification of Safety/Dependability Aspects
	Diagnosability Analysis
	Quantitative Analyses

	Tool Support
	Conclusions and Future Work


