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Abstract 
Structure-mapping is a provably NP-Hard problem 
which is argued to lie at the core of the human 
metaphoric and analogical reasoning faculties. 
This NP-Hardness has meant that early attempts at 
optimal solutions to the problem have had to be 
augmented with sub-optimal heuristics to ensure 
tractable performance. This paper considers 
various grounds for qualifying the competence of 
such heuristic approaches, and offers an evaluation 
of the sub-optimal performance of three different 
models of analogy, SME, ACME and Sapper. 

1; In t roduct ion 
Metaphor interpretation and Analogical reasoning are 
two, closely related, cognitive faculties which rely upon 
structure mapping to generate coherent and systematic 
correspondences between two domains of discourse. But 
since structure-mapping is clearly a graph-isomorphism 
process which must consider a combinatorial number of 
such correspondences to generate an optimal mapping, it 
is both intuitively and provably an NP-hard problem. 

A variety of computational approaches to the problem 
have been described in the AI literature, such as the 
Structure Mapping Engine (SME) of [Falkenhainer et ah 
1989], the Analogical Constraint Mapping Engine 
(ACME) of [Holyoak and Thagard 1989] and the Sapper 
model of [Veale et al 1996a,b]. The first of these, SME, 
provided an optimal (and thus potentially exponential) 
solution to the problem, followed by a heuristic, sub-

optimal greedy-merge approach (see [Oblinger and 
Forbus 1990]) and later, an incremental approach (see 
[Forbus et al. 1994]). Falkenhainer et al. [1989] provide a 
complexity analysis of SME that identifies several factors 
leading to factorial explosion, but argued that analogies 
producing such difficulties were unlikely to occur. At its 
heart the original SME is a forest-matching mechanism, 
which extends known results regarding the 0(N2) 
complexity of determining sub-tree isomorphism (e.g., see 
[Garey & Johnson 1979], [Akutsu, 1992]) to forests of 
inter-tangled tree representations. Layered on top of this 
forest matcher is a factorial merge process which 
combines the results of the polynomial sub-tree matching 
phase (called partial maps, or pmaps) into larger, global 
mappings (gmaps). This merge process is clearly 0(2N) 
where N is the number of pmaps (isomorphic sub-tree 
matches) involved. SME's designers state that flat 
representations (i.e., non-nested) that cause N to be large 
will cause SME to be overly factorial, but that analogies 
leading to this situation would be rare or incoherent 
'jumbles of unconnected expressions' (p28, 1989). 

However, this is shown not to be the case. Veale et al. 
[1996b] demonstrate that many concepts—most notably 
those that underlie nouns (such as Composer and War) 
but also story-based or narrative-structured concepts—are 
essentially object-centred, and are most naturally 
represented as a multitude of shallow trees. These trees 
are highly-connected in a coherent manner by means of 
shared arguments (common leaves). A mapping between 
two such domains is illustrated in Figure 1 below: 

(control General Battle_Plan) 
(isa Theatre_of_War Theatre) 
(control General Sabre) 
(perform Soldier Warfare) 
(part Army Artillery) 
(control General Army) 
(part Army Soldier) 
(part Artillery Cannon) 
(attr General Ruthless) 
(control Soldier Musket) 
(attr Cannon Russian_Campaign) 

(control Composer Orchestra) 
(control Composer Baton) 
(part Orchestra Percussion) 
(control Theatre_Manager Concert_Theatre) 
(part Orchestra Musician) 
(attr Composer Artistic) 
(control Musician Musical_Instrument) 
(part Percussion Drum) 
(attr Drum 1812-Overture) 
(control Composer Musical-Score 
(isa Concert_Theatre Theatre) 
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Figure 1: Partial domain descriptions relating to the concepts Composer and General. Noisy predications 
which do not contribute to the metaphor "Composers are Generals" are shown in italics. 



This type of commonly occurring metaphor exacerbates 
SME's original 0(2N) complexity. For example, the 
metaphor Surgeons are Butchers requires less that 
15 seconds of processing time in Sapper, yet generates 
enough pmaps to keep an optimal SME busy for many 
billions of years. Veale et al. report the results of Figure 2 
for an empirical test involving over 100 object-centred 
representations (drawn from the domain of professions): 

Figure 2: Evaluation of Sapper, SME and ACME. The 
unavailability of times for SME and ACME reflects the 

inability of these models to run in a matter of days. 

Sapper out-performs SME in these domains because it is 
designed to seek out structure laterally from shallow trees 
that are connected via common elements, while SME 
seeks structure vertically from the hierarchical nesting of 
deep trees. Sapper can also encode the kind of verb-
centred story analogues upon which SME demonstrates 
its strongest competence (such as the Karla the Hawk and 
Fortress: Tumor stories). This paper builds upon these 
results to show that while heuristic, sub-optimal Greedy-
SME and Incremental-SME avoid factorial time 
performance, they are still very sensitive to tree 
organization, producing poor mappings when dealing 
with object-centred representations. We also apply our 
intuitions to the Sapper and ACME models, 
demonstrating that while the latter is from the outset a 
sub-optimal model, it also exhibits diminished 
competence on hard problems. This discussion will allow 
us to outline in greater detail exactly what we mean by a 
hard analogical problem. 

2. Cognit ive Theories of Structure Mapp ing 
ACME approaches the structure-mapping problem from a 
different perspective than either SME or Sapper, pursuing 
what might be called a natural computation approach to 
analogy and metaphor. ACME models structure-mapping 
as a problem of parallel constraint satisfaction, in which 
the demands of 1 -to-1 coherence and structural 
systematicity are coded as soft constraints, or pressures, 
on the system. Ultimately, it is a sub-optimal approach 
which offers no guarantees of mapping quality. 

ACME employs a Hopfield-style connectionist network 
to encode mapping constraints (see [Hopfield and Tank, 

1985]). Every structure-mapping hypothesis—either 
between a source and target predicate or between a source 
and target entity—is coded as a distinct neuron. Likewise, 
structural entailments among these hypotheses are coded 
as bi-directional excitatory links between the 
corresponding nodes, while inhibitory links are used to 
connect mutually exclusive hypotheses. 

Such an arrangement is the connectionist equivalent 
of a 2-CNF SAT formula, raising the question of 
ACME's logical soundness. Indeed, it happens that the 
use of bi-directional linkages in ACME—which makes all 
implications mutual implications—means that an ACME 
representation is logically unsound. Because argument 
mappings can dictate predicate mappings, ACME is 
sound only when the source and target structures are trees 
(hence argument mappings do imply predicate 
mappings), but as noted, structure mapping is 
polynomially bounded anyway in such situations. 

Overall, the complexity prognosis of ACME is not 
good: as a feedback-based neural network, there is no 
guaranteed polynomial bound on its time performance. 
Yet, because the network size is polynomially-bounded 
(i.e., 0(n2) nodes and 0(n4) linkages, where n is the 
number of distinct symbols in the source domain), the 
theoretical results of [Brack and Goodman 1990] apply, 
who prove that a Hopfield-style network of polynomial 
size can only optimally solve NP-hard problems if NP = 
p. So, since an ACME network realistically embodies a 
polynomial algorithm, why should it be allowed to 
consume an exponential amount of time doing so? 

2.1. Sapper: A Memory-Situated Model 
The Sapper model of [Veale et al 1996a,b] views 
semantic memory as a localist graph in which nodes 
represent distinct concepts, and arcs between those nodes 
represent semantic / conceptual relations between those 
concepts. Memory management under Sapper is pro
active toward structure mapping, that is, it employs rules 
of structural similarity—called Triangulation and 
Squaring—to determine if any two nodes may at some 
future time be placed in systematic correspondence in a 
metaphoric context. If so, Sapper notes this fact by laying 
down a bridge relation between these nodes, to be 
exploited in some future structure-mapping session. 
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Spread Activation from node T in long-term memory to a horizon H 
Spread Activation from node S in long-term memory to a horizon H 

When a wave of activation from T meets a wave from S at a bridge T' :S' 
l inking the target domain concept T' to the source domain concept S' Then: 

Find a chain of semantic relations R that links both to T and S' to S 
If R is found, then the bridge is balanced relative to T:S, so Do: 

Generate a partial interpretation (pmap) of the metaphor T:S as follows 
For every target concept t between and T as linked by R Do 

Put t in alignment with the equivalent concept s between S ' and S 
Thus, 

Let 

Once the set of all pmaps within the horizon H have been found, Do 

Evaluate the richness of each pmap 
Sort the collection of pmaps in descending order of richness. 
Pick the first (richest) interpretation as a seed for overall interpretation. 

Visit every other pmap in descending order of richness 
If it is coherent to merge with T (i.e., without violating 1-to-lness) then 

Otherwise discard 

When is exhausted, wi l l contain the overall Sapper interpretation of T:S 

Figure 3: The Sapper Algorithm, as based on the exploitation of cross-domain bridge-points in semantic memory. 

Squaring Rule: If Bjk is a bridge, and if there 
already exist the linkages Lij andL l k of the semantic 

type L, forming three sides of a square between the 
concept nodes Ci, Cj, Ck and Cl, then complete the 

square and augment memory with a new bridge Bil. 

At some future time, if Sapper wishes to determine a 
structural mapping between a target domain rooted in the 
concept node T (for Target) and one rooted in the node S 
(Source), it applies the algorithm of Figure 3. 

The Sapper algorithm comprises two main phases: the 
first of these seeks out the set of all well-formed and 
balanced semantic pathways (of length < 2H) that 
originate at the root node of the target (T), and terminate 
at the root node of the source (S), crossing a single 
conceptual bridge (i.e., the domain cross-over point) at its 
mid-point. Each such pathway corresponds to a partial 
interpretation (a pmap in SME parlance) of the 
metaphor/analogy. The second phase coalesces this 
collection of pmaps into a coherent global whole; it 
does this using a seeding algorithm (see [Keane and 
Brayshaw, 1988]) which starts with the structurally 
richest pmap as its seed, and then attempts to fold each 
other pmap into this seed, if it is coherent to do so, in 
descending order of the richness of those pmaps. This 
seeding phase is directly equivalent to the greedy merge 
phase of Greedy-SME (see [Oblinger & Forbus 1990). 

3. Proof: Structure-Mapping is NP-Hard 
In this section we place our arguments on a solid footing 
by proving the NP-Hardness of the structure mapping 
problem. Though the known NP-complete problem LCS 
(Largest Common Sub-Graph) is perhaps a more 
immediate match, we instead employ here 3DM (3-
Dimensional Matching) as a proof basis, a problem 
which seeks to obtain a non-overlapping matching of 
points in a 3-D space. A consideration of 3DM wi l l shed 
light on the worst case scenario as encountered by the 
greedy heuristics employed by greedy-SME. Garey and 
Johnson ([1979]) define 3DM as follows: 

Proof: To reformulate 3DM as a problem of structure-
mapping, it is necessary to represent each 3-D point 

as a pair of predicates, one in each of 

the source S and target T domains, such that these 
predicates are only allowed to map onto each other. 
Furthermore, any isomorphic mapping must not contain 
two different predicate matches that arise from two 
points sharing one or more coordinates. We can ensure 
this using the following polynomial transformation: 
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Now, because the predicate P is uniquely tagged with the 
subscript XYZ which ties it to a particular 3-D point, 
these two predicate structures can map only to each 
other. When so mapped during the analogy process, such 
a mapping results in the creation of the following 
structure (a pmap in SME parlance): 

In this manner a root mapping will be created for each 
point in M. Note also that is unique for each 
pairing of and thus and are tied 
together and cannot be cross-mapped with any other 
point coordinate. Suppose we have two such pmaps, 
mapi = and mapk = 

arising out of the two 
points which share a Z-
coordinate These maps cannot therefore be merged to 
create a larger mapping as such a merge results in Zi 

being mapped to both a 
clear violation of mapping isomorphism. 

Once a maximal gmap is found for the analogy, each 
pair of this gmap can 
then be decomposed and reassembled (in polynomial 
time) to recreate a point that is added to 
M ' . Since the gmap is maximal, so is M ' . Because it 
solves 3DM, structure-mapping is thus NP-Hard. 

4. Problem Reorganization for Tractabi l i ty 
A large body of problem instances may nevertheless be 
tractably amenable to an optimal Sapper variant. If an 
optimal Sapper solution can be obtained for a large 
enough body of problem examples, these solutions can 
be used as ceilings to measure the competence of sub-
optimal heuristics like greedy merging / seeding. 

The domain descriptions in the Sapper profession 
corpus contain on average over 120 predications each. 
Test metaphors in the profession corpus thus generate 
too many partial mappings to make optimal evaluation 
tractable. Yet, some problem re-organization can be 
applied to reduce the number of pmaps to frequently 
make an Optimal-Sapper interpretation feasible, without 
losing the combinatorial scope of the interpretation. This 
reorganization process, whereby redundant areas of the 
combinatorial search space are pruned, is the equivalent 

of arc-consistency testing in satisfaction problems to a 
priori remove contradictory variable assignments (see 
[Mohr and Henderson, 1986]). 

For each metaphor (whose pmap set is denoted a 
conflict graph is constructed in time, by 
determining for each pmap the set of other pmaps with 
which it cannot be combined. This set is similar to the 
set of NoGoods calculated by the SME algorithm, 
though it used differently to achieve more extensive 
reductions in performance time. The conflict set CFi for 
a particular pmap is thus defined as: 

Compatibility between pmaps can thus be defined as: 

In contrast to SME, Optimal-Sapper uses this 
information to recognize any compatibility-based 
redundancies, and redistribute them accordingly before 
entering the punishing factorial merge-stage, as follows: 

Given that the combinatorial merge stage of an Optimal-
Sapper algorithm is each such pmap factored 
out a priori lowers the eventual cost another exponential 
notch. On our corpus of profession metaphors, we have 
found that problem reduction of this form reduces the 
number of pmaps for each metaphor by an average of 
60%, pruning the search space of the most intractable 
instance, Generals are Surgeons, from to 
one more manageable by Optimal-Sapper, 

5. Experiment: Sapper Vs.& Greedy-SME 
We can now quantify the competence of sub-optimal 
heuristics such as seeding and greedy-search as a 
percentage of optimal performance. But first, we 
consider the nature of the interpretations that structure-
mapping algorithms will generate for these test 
metaphors. The mapping of Figure 1 is the Sapper 
interpretation of the metaphor Composers are 
Generals, while the mapping of Figure 4 is that 
returned by greedy-SME for the same metaphor. 

Since an official implementation of greedy-SME is not 
yet publicly available ([Forbus, 1996]), we therefore 
simulate greedy-SME by feeding the pmaps generated by 
the available optimal-SME through the Sapper seeding 
stage. This a computationally equivalent process. 
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If Composer is like General 

Then 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 

Drum is like Cannon 
Powerful is like Loud 
Loud is like Powerful 
Conductor_Baton is like Sword 
Tchaikovsky is like Napoleon 
Libretto is like Plan 
Narrow is like Dangerous 
19th_Century is like French 
Music_ecital is like Cavalry_Charge 
Long is like Sharp 
Orchestra is like Army 
Listener is like Soldier 
W_A_Mozart is like George_Patten 
Percussion is like Artillery 
Theatre is like Influential 
Russian is like 19th_century 
Music_Composition is like Bomb_Raid 
Musical is like Healthy 
Music_Note is like Enemy_]Soldier 
Sudden is like Dead 
Piano is like Snub_Fighter 
Fictional is like On_Target 
Character is like Smart_Bomb 
18th_Century is like Arrogant 
Symphony is like Military_Propaganda 
Violin is like Musket 
Musical_Score is like Enemy_Army 
Operatic_Act is like Medal 
Opera is like Militaiy_Uniform 
Inspiration is like Corpse 

Figure 4: Simulated Greedy-SME interpretation of 
"Composers are Generals". 

A selection of the mappings in Figure 4 above are 
displayed in an italics face to convey their 'ghost' status: 
'ghosts' are essentially noisy mappings that might work 
in another metaphoric context but which are not 
systematic here. But why does greedy-SME generate so 
many ghosts while Sapper produces none, when both 
employ equivalent merge processes? To see why, 
consider that SME and Sapper agree on three tacit 
assumptions for seeding: first, that a goodness ordering 
can be placed upon the set of pmaps; secondly, that the 
pmap chosen as seed for the merge is rich enough to 
justify its own inclusion in the global mapping; and 
thirdly, that this seed is rich enough to nudge the overall 
merge process toward a good to optimal global mapping. 
However, Greedy-SME—unlike Sapper—does not 
generate sufficiently rich (and thus differentiable) pmaps 
in object-centred domains to make these assumptions 
work. As these domains are best represented as a broad 

forest of many shallow trees rather than a tight forest of 
few, deep trees (see [Veale et al 1996]), the pmaps 
generated by SME for object-centred metaphors are 
equally shallow and numerous. In fect, these 
impoverished SME pmaps resemble the geometric 
pmaps generated in section 3 when reposing 3DM as 
structure-mapping. One clearly would not expect a 
greedy approach to work in this geometric context as no 
one pmap would have enough structure to successfully 
guide the merge process to a good solution. 

The competence of Sapper and greedy-SME has been 
determined over the test corpus of 100+ profession 
metaphors, where the optimal-Sapper of section 4 is 
used as a savant: a mapping of a sub-optimal 
interpretation is considered valid if it is also contained 
in the optimal Sapper interpretation. The sub-optimal 
competence of Sapper and greedy-SME is thus 
calculated as 100 * (No. of valid mappings) / (Total 
No. of mappings). If this validity criterion seems overly 
strict and all-or-nothing, it needs to be for tractability 
reasons. If one were to evaluate a noisy interpretation on 
the basis of its largest systematic subset, the partition of 
the interpretation into signal and noise would in itself be 
an intractable problem of combinatorial dimensions. 
Comparative results are displayed in Figure 5 below: 

Competence 
% of Times 

Optimal 

95.2% 

77% 

18.7% 

0% 

100% 

100% 

80.5% 

45% 

Figure 5: Comparative trials of Sapper and Sub-
Optimal greedy-SME with a random control. 

Greedy-SME performs disappointingly on these trials, 
significantly trailing even the random control trial, in 
which a random merging of coherent Sapper pmaps is 
generated as an interpretation for each metaphor. These 
results speak for the importance of structurally rich 
pmaps, for when these are rich enough even a random 
coalescence of pmaps will generate a good 
interpretation. But if the set of pmaps is structurally 
impoverished, as with SME in object-centred domains, 
not even a best-first sorting will compensate. These 
random trials indicate that a system's true competence is 
to be found in the processes which generate pmaps, 
more so than in those which combine them. 

6. Where the Hard Analogies Are 
What do the results of section 5 say about the 
identifiable qualities of hard analogies/metaphors? 
Clearly, when employing an optimal mapping 
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algorithm, the number of distinct roots in the forest-of-
trees representation of each domain is a direct indicator 
of the exponential requirements of the algorithm. What 
can be said of the hardness of analogies as perceived by 
sub-optimal approaches such as Sapper and SME? 

In complexity terms no problem instance is—strictly 
speaking—hard to a sub-optimal structure matcher, as 
the number of pmaps is largely irrelevant in a O(N2) 
greedy merging / seeding process. However, if one 
measures hardness in terms of the likelihood of 
generating a quality (i.e., ghost-free and accurate) 
interpretation, the best indicator of hardness is the 
average structural richness of each pmap (i.e., the 
average number of mappings in each pmap). The lower 
this average richness, the more probable it is that any 
two pmaps can be coherently merged, and thus the more 
likely that the final interpretation will be noisy and 
ghost-ridden. In contrast, the higher this average, the 
more probable it is that a final interpretation will be near 
optimal, and less likely to contain ghosts (as each pmap 
merge operation will have a greater chance of failure). 

If we have side-lined ACME'S sub-optimal approach 
to structure-mapping in this paper, it is due to the belief 
that ACME represents an excessive approach to the 
problem. Recall that ACME can be characterized as a 2-
SAT problem, where network nodes mirror SAT 
variables, and network linkages mirror SAT clauses, 
From the ratio of ACME nodes to linkages for any given 
metaphor/analogy, we can determine the equivalent SAT 
ratio of clauses to variables as 0(N2), thus making an 
ACME problem hugely over-constrained (see [Mitchell 
et al. 1992]). Given the large networks which ACME 
can construct for a hard problem (> 12,000 nodes), 
existing relaxation techniques based on constraint 
prioritization do not seem practical (see [Bakker et al. 
1993]). ACME thus reduces to a difficult subclass of 
maximal 2-SAT, with the size of that subset of clauses it 
must leave unsatisfied growing exponentially with the 
extent of network over-constraint, which itself grows 
quadratically with metaphor size. In this case, sub-
optimality certainly thus not imply tractability. 

In closing, we note that the profession corpus upon 
which our experiments are based is available from the 
following URL, in Sapper, ACME and SME formats: 
http: //www. compapp. dcu.ie/~tonyv/metaphor, html 
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