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Introduction
The emergence of  the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2), has resulted in a rapid response from the global scientific commu-

nity to better understand its pathophysiology (1–3).

Despite knowledge gained from SARS-CoV and Middle East respiratory syndrome–coronavi-

rus (MERS-CoV) outbreaks, many aspects of  this pandemic are unique to SARS-CoV-2. For example, 

COVID-19 has a wide spectrum of  presentation, ranging from asymptomatic carriers to severe infections 

resulting in death (4, 5), with 5%–25% of  patients requiring ICU-level support (6, 7). Critically ill patients 

suffer from acute respiratory failure, circulatory shock, acute renal failure, and thrombotic complications, 

including cerebrovascular accident (CVA), myocardial infarction, and pulmonary embolism as well as a 

hyperinflammatory state (8). Although multiorgan involvement has been the hallmark of  severe SARS-

CoV-2 infection, certain features specific to COVID-19 are being increasingly recognized (8). One such 

example is the rapid clinical deterioration in cardiorespiratory status, reminiscent of  cytokine release syn-

drome (9–11). Additionally, a subset of  those developing COVID-19 have evidence of  ongoing clinical 

and laboratory evidence of  ongoing thromboses, confirmed in multiple autopsy reports, with features that 

overlap with thrombotic microangiopathies (TMAs) (12–14). These reports, in combination with results 

from both targeted and unbiased proteomic studies, have increased the likelihood that complement acti-

vation is a key contributor to the COVID-19 pathogenesis (12–17). In this Review, we summarize interac-

tions between coronaviruses and the complement system, with a specific focus on SARS-CoV-2. We also 

describe clinical trials that are underway for the treatment of  severe COVID-19.

Interplay between SARS-CoV-2 and the complement system
Antiviral strategies. The complement system traces its origins to more than a billion years ago when primitive 

proteins evolved to protect cells from pathogens and to engage in intracellular metabolic processes (18, 19) 

(Figure 1A). The contemporary complement system lies at the interface between innate and adaptive immu-

nity (20). It efficiently recognizes and eliminates viral pathogens via several mechanisms: opsonizing viruses 

and virus-infected cells (including lysing them), inducing an antiviral immunoinflammatory state, boosting 

virus-specific immune responses, and directly neutralizing cell-free viruses (21) (reviewed in ref. 22).

Coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2) has resulted in a global pandemic and a disruptive health crisis. 

COVID-19–related morbidity and mortality have been attributed to an exaggerated immune 

response. The role of complement activation and its contribution to illness severity is being 

increasingly recognized. Here, we summarize current knowledge about the interaction of 

coronaviruses with the complement system. We posit that (a) coronaviruses activate multiple 

complement pathways; (b) severe COVID-19 clinical features often resemble complementopathies; 

(c) the combined e�ects of complement activation, dysregulated neutrophilia, endothelial injury, 

and hypercoagulability appear to be intertwined to drive the severe features of COVID-19; (d) a 

subset of patients with COVID-19 may have a genetic predisposition associated with complement 

dysregulation; and (e) these observations create a basis for clinical trials of complement inhibitors 

in life-threatening illness.

https://doi.org/10.1172/jci.insight.140711
https://doi.org/10.1172/jci.insight.140711
https://doi.org/10.1172/jci.insight.140711
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Antihost strategies. Viruses seek to disable and exploit complement activation using varied strategies 

(reviewed in ref. 23). For example, poxviruses attenuate complement activation by expressing a protein 

with functional and structural homology to complement regulatory proteins (24). Similarly, flaviviruses 

hijack complement regulators to avoid their engagement and thereby inhibit antiviral activity (reviewed in 

ref. 23). Certain viruses, such as HIV-1, recruit host complement regulators into their virions (23). In some 

of  these cases, C3 attaches to the surface of  viruses and may be carried intracellularly; however, the ability 

of  viruses to cleave C3 may affect host antiviral responses (25). Whether coronaviruses exhibit such antivi-

ral strategies (i.e., disabling and exploiting the complement system) remains to be answered.

Coronavirus-mediated complement activation. Emerging in vitro and in vivo data indicate that complement 

activation plays a critical role in pathogenesis and disease severity of  SARS-CoV and SARS-CoV-2. Using 

virus-infected C3–/– mice, Gralinski et al. assessed complement activation in SARS-CoV infection (26). 

C3 activation products (C3a, C3b, iC3b, C3c, and C3dg) were observed in the lung as early as 1 day after 

SARS-CoV infection. Lung injury and weight loss were significantly reduced in the absence of  C3, despite 

an unchanged viral load. Further, substantially fewer neutrophils and inflammatory monocytes, as well as 

lower cytokine and chemokine levels, were detected in C3-deficient mice. Additionally, factor B–/– or C4–/– 

mice also had less weight loss than WT mice (26), suggesting that complement activation enhances pulmo-

nary pathology and SARS-CoV infection–associated systemic illness. A preprint by Gao et al. reported that 

the secreted nucleoprotein (N protein) dimers of  MERS-CoV, SARS-CoV-1, or SARS-CoV-2 autoactivate 

mannan-binding lectin-associated serine protease 2 (MASP-2), the primary enzymatic initiator of  the lectin 

pathway (Figure 1B) (27). MASP-2 activation leads to generation of  C3 convertase (via cleavage of  C4 and 

C2) and membrane attack complex (MAC) formation. Moreover, alteration of  the MASP-2–binding motif, 

either via Masp2 deletion or blocking the MASP-2–N protein interaction, attenuated lung injury. These 

data, along with human proteomic studies (15, 16), suggest that coronavirus infections involve the activa-

tion of  multiple complement pathways.

Natural antibodies. Natural antibodies are polyreactive germline-encoded antibodies produced by 

B-1 cells capable of  binding evolutionarily fixed epitopes, such as phospholipids and glycoproteins 

(28). A role of  natural antibodies in COVID-19 has been suggested by observations that both the 

infection and death rates from COVID-19 in hospitals in China, the United States, Spain, and Italy are 

skewed toward patients with blood group A and away from those with blood group O (29–31). A sim-

ilar finding has also been previously published for SARS-CoV-1 (32). As type O patients harbor both 

anti-A and anti-B natural IgM, these antibodies may help to reduce the viral load of  their hosts due to 

early activation of  the classical complement pathway and viral clearance before the establishment of  a 

pneumonia. In fact, such a hypothesis has been tested in vitro, using a measles virus produced in cells 

engineered to express only A-type, B-type, or O-type carbohydrate epitopes. In studies using human 

preimmune serum, neutralizing antibodies were present and prevented viral infection by A-type and 

B-type, but not O-type, virus in a complement-dependent manner (33). Furthermore, in vitro expres-

sion of  SARS-CoV-1 spike protein (S protein) ectodomain in CHO cells (also engineered to express 

A-transferase) demonstrated impaired adherence to ACE2-expressing cell lines when either a S pro-

tein–specific monoclonal antibody or isolated human natural IgM anti-A antibodies were used (34). 

Taken together, these data imply that natural ABO group antibodies serve as an initial barrier to viral 

infection in a complement-dependent manner.

Interestingly, older patients have reduced diversity of  natural IgM antibodies (35). As has been 

widely reported from data sets from China (36), Italy (37), and the United States (38, 39), the case 

fatality rate of  COVID-19 rises with age. It is tempting to speculate that, in the relatively asymptom-

atic early phases of  the disease, reduced natural antibody diversity may lead to poor control of  virus 

clearance. This then predisposes older patients to be more prone to developing severe pneumonia and 

other complications of  disease.

In sum, many intriguing questions remain unanswered and will require further in-depth study. For 

example, how is SARS-CoV-2 protected from complement-mediated inactivation strategies? Does SARS-

CoV-2 exploit complement or its receptors to gain entry into cells? Does promotion of  complement activa-

tion assist viral pathogenesis? Investigating the temporal nature of  the host immune response to SARS-CoV 

(vis-à-vis complement proteins) will likely provide additional insights and facilitate the personalizing of  

therapeutics to both promote host defense and minimize tissue injury.

https://doi.org/10.1172/jci.insight.140711
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Figure 1. Schematic diagram of the activation of the 3 complement cascades and COVID-19 therapeutically targeted components. A simplified (A) 

and detailed (B) description of the complement cascade are shown. There are 3 major independent, but overlapping, pathways for activation of comple-

ment. The classical, lectin, and alternative pathways generate the major complement opsonin C3b and the membrane attack complex (MAC, C5b-9). The 

engagement of the C1 complex (C1qrs) with antigen-antibody complexes or pentraxins generates bimolecular C3 convertase (C4b2a). The latter cleaves C3 

to C3b and releases the anaphylatoxin, C3a. The binding of another C3b to the convertase generates the C5 convertase (C4b2a3b). The lectin pathway is 

similar, except mannose-associated serine proteases (MASPs) substitute for C1 proteases (C1r and C1s). The AP self-activates by the low-level turnover of 

C3 in serum to C3(H
2
O). This nondiscriminate tickover, particularly on a pathogen surface or damaged tissue, rapidly engages factors B (B) and D (D) to form 

a C3 convertase C3(H
2
O)Bb to trigger more C3b. C3b generated by any one of the 3 pathways opsonizes the target, binds a C3 convertase to generate the 

trimolecular C5 convertases (C4b2a3b or C3bBbC3b), and amplifies more C3b via the AP. Cleavage of C5 releases the potent anaphylatoxin C5a, while the 

C5b initiates the terminal pathway to form the MAC. C3a and C5a are potent chemoattractants for neutrophils and monocytes. Membrane-bound (CD46, 

CD55) and fluid-phase regulators (factor H [FH], factor I [FI]) prevent fluid-phase activation and activation on normal cells and tissues. For example, mem-

brane cofactor protein (MCP, also known as CD46) serves as a cofactor the FI-mediated inactivation of C3b to iC3b and C4b to C4c and C4d. The current 

armamentarium of complement inhibitors being tested in COVID-19 targets di�erent aspects of this cascade. AMY-101 is a synthetic peptide that inhibits 

C3, whereas both eculizumab and ravulizumab are humanized monoclonal antibodies against C5. IFX-1 is a monoclonal antibody specifically targeting C5a, 

and narsoplimab is a human monoclonal antibody targeting MASP-2.

https://doi.org/10.1172/jci.insight.140711
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Clinicopathological features of COVID-19 indicative of complement activation
General features. Soluble markers of  complement activation have been observed in patients with COVID-19. 

In a single-center case series from Italy, increased levels of  plasma C5a and sC5b-9 were noted in patients 

with moderate (patients requiring continuous positive airway pressure) and severe (mechanically ventilat-

ed) COVID-19 (40). In addition, complement fragment deposition has been reported in multiple organs in 

patients with COVID-19. For example, septal capillary injury in the lungs of  those who died of  respiratory 

failure is accompanied by extensive deposits of  C5b-9, C4d, and MASP-2 in the microvasculature (13). 

A similar pattern has been demonstrated in the skin of  patients with retiform and purpuric lesions (13). 

Moreover, C4d and C5b-9 colocalized with the SARS-CoV-2 S protein in the lung and skin vasculature 

(13). At autopsy, strong C5b-9 staining was demonstrated on the apical brush border of  tubular epithelial 

cells of  the kidney, with minimal deposition on glomeruli and capillaries (41). Reports have proposed that 

the relative lack of  complement regulators on the proximal tubular cells in the kidney makes them more 

susceptible to complement-mediated injury (42, 43). In further support of  this hypothesis, genetic variants 

in 2 complement regulators, DAF (also known as CD55) and FH, have been associated with SARS-CoV-2 

infection (44) and have previously been linked to atypical hemolytic uremic syndrome (aHUS) and age-re-

lated macular degeneration (AMD), which are associated with haploinsufficiency of  complement regula-

tory proteins (45). Of  interest, AMD was identified as a risk factor for mortality in COVID-19 (44). While 

these associations need to be evaluated in independent cohorts, they suggest that activation of  the lectin 

and alternative pathways of  complement is preferentially occurring in COVID-19.

There are certain clinicopathologic features of  COVID-19 that are distinct from the described comple-

mentopathies. In contrast to the relatively limited number of  organs affected in AMD and aHUS (which 

is a renal-predominant TMA, although extrarenal manifestations have been described), COVID-19 has a 

wider spectrum of  organ involvement. This may be a result of  the broad-organ tropism of  SARS-CoV-2 

(46) and resultant damage induced by both the virus and the immune response to it, which is especially true 

in the lung. Additionally, evidence of  hemolysis has not been observed in COVID-19 (47).

Endotheliopathy. Histopathologic features in COVID-19 suggest a complement-mediated endotheliop-

athy. Endothelial cell abnormalities have been observed in numerous organs, including the kidney, lung, 

heart, small bowel, and liver (48, 49). Endothelial cell swelling with variable foamy degeneration was pres-

ent in the glomeruli of  5 of  26 deceased patients with COVID-19 (50). In 3 additional patients, segmental 

fibrin thrombi in glomerular capillary loops were identified and associated with severe injury to the endo-

thelium (50). Patients with COVID-19 have also been found to have biopsy-proven TMA (ref. 51 and A. 

Chang, personal communication). These cytomorphologic changes in the endothelium are prototypic of  

complement-mediated injury induced by C5b-9 (52). Indeed, endothelial C5b-9 deposition in patients with 

COVID-19 has been observed by Magro et al. (13). Given the prevalence of  ACE2 expression on vascu-

lar endothelium, it is hypothesized that the endothelium is infected by SARS-CoV-2 (49), which induces 

injury, activates complement, and sets up a feedback loop that perpetuates inflammation (53). In support 

of  this hypothesis, substantially elevated levels of  vWF have been identified in patients with severe SARS 

CoV-2 infection, consistent with endothelial injury (54, 55). Hypertension, diabetes, obesity, and estab-

lished cardiovascular disease have also been identified as independent COVID-19 risk factors, indicating 

that preexisting conditions associated with endothelial dysfunction may heighten risk of  both susceptibility 

and adverse outcomes in this illness (38). Additionally, other triggers specific to COVID-19 that could lead 

to endotheliopathy include neutrophilic extracellular traps (NETs) (56) and hypoxia (57).

Hypercoagulable state. A hypercoagulable state distinct from disseminated intravascular coagulation 

(DIC) is superimposed upon and likely contributes to the endothelial injury and complement activation 

in severe SARS-CoV-2 infection (55). Complement activation has been described in severe cases, and an 

admission D-dimer level >1 μg/L predicts an 18-fold increase of  in-hospital mortality (58). However, 

distinguishing features of  hypercoagulability in COVID-19 include a normal prothrombin time (PT) but 

activated partial thromboplastin time (aPTT), an elevated fibrinogen level, a normal or increased platelet 

count, near-normal antithrombin level, and increased protein C and factor VIII levels (55).

Although most patients with COVID-19–associated acute respiratory distress syndrome (ARDS) pres-

ent with varying degrees of  diffuse alveolar damage, a subset of  patients have increased dead-space ven-

tilation with high compliance, suggestive of  pulmonary microthrombi (13, 59, 60). Autopsy studies in 

some patients with COVID-19 have demonstrated a septal microangiopathy characterized by endothelial 

cell injury, mural fibrin deposition, and variable intraluminal thrombus formation (61, 62). In patients 

https://doi.org/10.1172/jci.insight.140711


5insight.jci.org   https://doi.org/10.1172/jci.insight.140711

R E V I EW

presenting with a CVA, thrombotic manifestations are more frequent than hemorrhage (63). Particularly, 

those younger than 50 years of  age have been reported to present with large-vessel stroke, a feature of  

macrovascular thrombosis also observed in aHUS and thrombotic thrombocytopenic purpura (64). Clots 

in the renal vasculature can contribute to acute kidney injury or to myocardial infarction if  present in the 

coronary arteries (65). Another possible link between complement activation and hypercoagulability is that 

dysfunction of  complement regulatory proteins due to underlying genetic alterations may contribute to 

the pathogenic mechanisms of  COVID-19, as suggested in a preprint by Ramlall et al. (44). Such impaired 

complement regulation could be implicated in both micro- and macrovascular thrombotic events, such as 

stroke, in addition to primary or secondary TMA (66). In sum, as underlying pathogenic mechanisms are 

better elucidated, therapeutics can be more appropriately timed and targeted to the injury state (i.e., endo-

thelial injury, hypercoagulability, or complement activation).

Mechanisms of complement-mediated injury in COVID-19
NETs. Neutrophils and complement are key sentinels of innate immunity and act hand-in-hand to defend the 

host against invading pathogens and to maintain homeostasis (67). For example, complement opsonization aids 

in NET generation, while blockade of complement receptor 1 (CR1) and complement receptor 3 (CR3) inhibits 

NETosis (a type of programmed cell death) in response to certain pathogens. The ability of a pathogen to induce 

NETosis might therefore inversely correlate with its ability to evade complement activation and opsonization. A 

pathogen that can prevent complement deposition is probably a less efficient NET inducer (67).

In the case of  SARS-CoV-2, an exaggerated host response in patients with COVID-19 centers around 

the aberrant activation of  neutrophils particularly in the lung (68, 69). Autopsy reports from those with 

COVID-19 demonstrated neutrophil infiltration in pulmonary capillaries, acute capillaritis with fibrin depo-

sition, extravasation of  neutrophils into the alveolar space, and neutrophilic mucositis (69). Neutrophilia 

predicts poor outcomes in patients with COVID-19, and the neutrophil-to-lymphocyte ratio is an indepen-

dent risk factor for severe disease (70). Furthermore, elevated levels of  NET-specific markers myeloperoxi-

dase DNA and citrullinated histone H3 were observed in the sera of  patients with COVID-19 (69).

Activated neutrophils and NETs contain C3, factor B, and properdin (67). These components are needed 

to generate and stabilize the AP C3 convertase, thereby amplifying the cascade. The biological relevance of  

complement activation on NETs is also speculated to facilitate the formation of  the anaphylatoxins, C3a and 

C5a, which further induce recruitment and activation of  neutrophils, monocytes, and eosinophils as well as 

the production of  proinflammatory cytokines. Thus, although NETs are beneficial in the host defense against 

pathogens, sustained NET formation, as seen in COVID-19, can trigger a cascade of  inflammatory reactions 

that damage and destroy surrounding tissues, despite the lack of  immune cell infiltration.

Complement and neutrophil activation also work in concert to drive severe COVID-19 manifestations 

by creating a coagulopathic milieu and therein generating microthrombi, a process which leads to acute 

lung, kidney, and cardiac injury, as described above and as elaborated on below (67). Complement activa-

tion, in conjunction with neutrophilia and dysregulated NET formation, is linked to ARDS, pulmonary 

inflammation, and thrombotic events, resulting in permanent multiorgan damage. NETs initiate arterial 

and venous thrombosis by activating the contact pathway of  coagulation and enhancing other prothrom-

botic pathways, resulting in excessive thrombin generation and subsequent C5a generation (67). Thus, 

we speculate that there is a feedback loop whereby complement activation induces NETosis, which in 

turn leads to procoagulant activity (e.g., that of  thrombin) and ongoing complement activation to further 

enhance NET formation (Figure 2).

Complement activation and hypercoagulability. The question as to whether complement activation is driving 

the features of  hypercoagulability and microthromboses in COVID-19 is currently an area of  immense inter-

est (53). The reasons for the association between the complement and coagulation systems include an evolu-

tionary history that indicates a common origin and recent research revealing considerable crosstalk between 

the 2 biological processes. The mutual engagement of  both systems has been particularly recognized in par-

oxysmal nocturnal hemoglobinuria (PNH), aHUS, and the antiphospholipid syndrome (71). For example, 

it has long been known that thrombin can activate C5 in the absence of  C3 via a convertase-independent 

mechanism (72). Similarly, vWF has a complex role in coagulation and reciprocally regulates complement, 

depending on multimer size (73). Small vWF multimers potentiate the actions of  the complement inhibitor 

factor I, facilitating C3b inactivation, while ultra-large vWF multimers, as observed after tissue injury, provide 

a binding platform for C3b to trigger complement activation via the AP (74, 75). Factor XII cleaves C1s and 

https://doi.org/10.1172/jci.insight.140711


6insight.jci.org   https://doi.org/10.1172/jci.insight.140711

R E V I EW

thereby activates the classical complement pathway (76), while kallikrein cleaves both C3 and factor B (77). 

Platelets themselves may facilitate as well as amplify complement activation (78, 79).

Furthermore, C5a exerts a prothrombotic effect by upregulating tissue factor and PAI-1 expression by endo-

thelial cells and monocytes (80, 81). The disruption of endothelial cells and platelets by the MAC provides 

a nidus for prothrombinase assembly (82), and MASPs (initiators of the lectin pathway) have been shown to 

cleave prothrombin to thrombin (83). Interestingly, complement activation can both facilitate coagulation and 

interfere with anticoagulation. For example, heparan sulfate is a proteoglycan on endothelial cells that dampens 

local inflammation and inhibits coagulation. However, endothelial injury is associated with shedding of heparan 

sulfate via both complement-dependent (exposure to C5a) and -independent mechanisms (84, 85).

In addition to these changes that both enhance clot formation and impair the clearance of  fibrin, com-

plement activation may also contribute to increased vascular bed resistance in end organs. For example, 

a current hypothesis is that angiotensin II levels are locally elevated in critically ill patients with severe 

COVID-19, at least in part, due to downregulation of  ACE2 on different cell surfaces (86). In preclinical 

models of  angiotensin II–associated vasculopathy, locally elevated C-reactive protein and TNF-α levels 

induced C3 expression and were associated with complement activation (defined by elevated C1q, C3, 

C3c and C5b-9) in the vessel media (87). Thus, such mechanisms may create an amplifying loop in vas-

cular beds wherein endothelial injury and complement activation further accentuate the prothrombotic 

state. Initial reports also suggest that, in addition to elevated fibrin degradation products (e.g., D-dimer), 

patients with severe COVID-19 have elevated fibrinogen levels, factor VIII activity, and vWF levels (88–90). 

Figure 2. A summary of SARS-CoV-2 and complement activation 

leading to immune hyperinflammatory reactions and resulting in 

human pathology. Complement activation generates the proinflam-

matory polypeptides, C3a and C5a, and recruits neutrophils as well as 

monocytes. Activated neutrophils generate web-like extracellular traps 

(NETs), in a process known as NETosis, that contain components such as 

C3, properdin (P), and factor B (B) that activate the alternative comple-

ment pathway and engage an inflammatory feedback loop. Although 

NETs assist in host defense against pathogens, a sustained response, 

such as that seen in COVID-19, may incite ongoing inflammation and 

a hypercoagulable state. Additionally, the membrane attack complex 

(MAC) also induces endothelial inflammation and tissue injury, leading 

to the generation of IL-6 and IL-1β, which continue to propagate NETosis. 

Endothelial injury leads to the generation of vWF multimers. Excess 

ultralong vWF stabilizes factor VIII activity and prevents the binding of 

factor I. Endothelial damage also results in the release of plasminogen 

activator inhibitor-1 (PAI-1), which exacerbates thrombosis, along with 

C5a-induced release of tissue factor and other prothrombotic proteins. 

These changes then can augment a complement-coagulation pathway 

crosstalk, due to serine proteases, such as thrombin and kallikrein, 

activating the complement system in a convertase-independent manner. 

Such interactions among endothelial injury, hypercoagulability, and 

complement activation cause tissue damage, such as acute respiratory 

distress syndrome (ARDS), acute kidney injury (AKI), and stroke, and are 

often associated with a thrombotic microangiopathy.

https://doi.org/10.1172/jci.insight.140711
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Platelet count, aPTT, and, occasionally, even PT have been reported as normal or mildly elevated in these 

patients. Although many of  the coagulation components remain to be systematically tested in patients with 

COVID-19, the currently reported parameters, along with the clinical features, have led to the hypothesis 

that the coagulation disturbances seen in severe COVID-19 represent a pattern of  complement-mediated 

TMA, rather than DIC (13, 53). Thus, in COVID-19, the crosstalk between the complement and coagula-

tion cascades creates a prothrombotic environment associated with adverse outcomes.

Hyperinflammation and cytokine storm. A hyperinflammatory state is observed in patients with severe 

COVID-19, despite the apparent absence of  tissue inflammation outside of  the lungs. In a study of  41 hos-

pitalized patients, high plasma levels of  proinflammatory cytokines (IL-2, IL-6, IL-7, IL-10, G-CSF, IP-10, 

MCP-1, MIP-1α, and TNF-α) were associated with adverse clinical outcomes, such as ARDS, shock, organ 

failure, and death (91). Although multiple viral pathogens are known to induce this hyperinflammatory 

state (92), it is unclear how SARS-CoV-2 infection promotes the so-called “cytokine storm.”

Complement is well known for promoting immune cell activation and proinflammatory states. Ana-

phylatoxins C3a and C5a are capable of  activating neutrophils, mast cells, monocytes/macrophages, baso-

phils, eosinophils, T cells, and B cells (93). This drives a potent proinflammatory response, especially by 

macrophages and neutrophils, including the expression of  TNF-α, IL-1β, and IL-6 (93). As previously 

noted, elevated plasma C5a was observed in patients with moderate and severe COVID-19, along with 

elevated IL-6 (40). Furthermore, upregulation of  IL-6 can be a direct sequela of  enhanced endothelial cell 

expression of  this cytokine due to mannan-binding lectin pathway activation. Thus, while the hyperin-

flammatory state observed in COVID-19 likely involves numerous players, these observations suggest that 

complement plays an important role.

Complement genes, including those encoding C1q, C2, factor B, and factor D, are also part of  the 

IFN-stimulated gene response (94). Elevated IFN levels and undesirable engagement of  complement have 

been noted in patients with posttransplant TMA (95), suggesting an IFN-complement loop that contributes 

to a hypercoagulable state. However, SARS-CoV-2 induces an abbreviated IFN-stimulated gene signature 

with low systemic IFN levels (96) that likely serves as a viral evasion strategy. Therefore, how the attenuated 

IFN response influences complement levels and activity in COVID-19 remains to be determined. Does the 

early attenuated IFN response reduce complement component expression, preventing sufficient complement 

activation to assist in viral clearance early in disease? Does the active viral replication later result in hyperpro-

duction of  IFN and influx of  neutrophils and macrophages, leading to a hyperinflammatory state that drives 

an overexuberant complement response, contributing to severe manifestations, such as ARDS? Testing these 

intriguing hypotheses will shed additional insight into the crosstalk between these systems and will also help 

to determine the efficacy and timing of  IFN administration, which is key to yielding a protective response.

Intracellular complement viral defense: the complosome
Traditionally, complement has been considered primarily a serum-centric system in which complement 

activation occurs only in the extracellular milieu. Thus, opsonization of  viruses would occur outside the 

cell. However, recent studies reveal that complement also has a rich and robust intracellular arsenal of  com-

ponents, the complosome, that provides immune defense as well as mediates key interactions for host cell 

functioning (reviewed in refs. 19, 97). Further, proteins such as C3 and C5 can be cleaved in a noncanonical 

manner inside the cell (98, 99). These findings suggest that virus opsonization, especially by C3b, may occur 

intracellularly as well. For example, C3 plays a role in detecting and disabling intracellular pathogens (25). 

Tagging the virus with C3b/iC3b and then infecting epithelial cells activated cytoplasmic sensors of  C3 and 

the mitochondrial antiviral signaling pathway. This in turn led to potent responses by NF-κB, activating 

protein 1, and the IFN regulatory factor transcriptional pathways. These data indicate that intracellular C3 

fragments serve as damage-associated molecular patterns to enhance intracellular innate immunity.

While elucidation of  the complosome has centered primarily on T cells (20), the intracellular comple-

ment system likely functions in most, if  not all, cells (19, 97). Defining if  and how complement activation 

modulates these responses in the context of  SARS-CoV-2 remains to be identified.

However, a major consideration in how intracellular complement modulates cellular functions is the 

source of  these intracellular proteins. We have previously demonstrated that cells internalize C3 in the 

form of  C3(H
2
O) from the extracellular space, and this internalization increases the production of  IL-6 and 

IL-17 from effector T cells (100). Thus, this rapid internalization of  C3 is likely to alter the proinflammato-

ry responses when an exogenous source of  C3 is made available (e.g., in the context of  barrier disruption 
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and associated plasma leak in acute lung injury) and accelerated turnover from C3 to C3(H
2
O) in the 

context of  ongoing inflammation (101). The recent discovery that intracellular C3 protects human airway 

epithelial cells (AECs) from stress-associated death may also have implications for COVID-19 (102). In 

this study, AECs were unique compared with other cell types in containing large intracellular stores of  de 

novo–synthesized C3. Proinflammatory cytokine exposure increased both stored and secreted forms of  

C3. Additionally, AECs took up C3 from exogenous sources that then mitigated stress-associated cellular 

death. These studies suggest that modulation of  intracellular C3 in AECs may have beneficial effects. Thus, 

approaches that inhibit C3 may need to consider its intracellular permeability and effects on cellular viabil-

ity. Elucidating the effects of  both intracellular and extracellular key complement components, such as C3 

and C5, could provide a greater understanding of  how viruses regulate complement activation and thereby 

suggest appropriate therapeutic targeting strategies.

Targeting complement: current and future trials
Multiple therapeutic agents targeting complement activation are currently being studied for COVID-19 

(Figure 1). The most commonly used complement inhibitor in clinical practice currently is eculizumab, 

a humanized monoclonal antibody to C5. Eculizumab is FDA-approved for patients with PNH, aHUS, 

myasthenia gravis, and neuromyelitis optica spectrum disorder (NMOSD) (103). A case series of  patients 

with COVID-19 receiving eculizumab (104) suggests that the drug remains well-tolerated in these patients. 

However, additional multicentric data, along with a better understanding of  how blocking complement 

affects critically ill patients, are urgently needed. As a result, there are 2 ongoing trials of  eculizumab 

in COVID-19 in Europe (NCT04355494, an open-label, multicenter, expanded access program, and 

NCT04346797, CORIMUNO19-ECU, a phase II trial and part of  a larger CORIMUNO19 study). While 

most of  these studies primarily focus on adult patients with COVID-19 with severe pneumonia, acute 

lung injury, or ARDS requiring oxygen supplementation, some patients also have features overlapping 

with aHUS. These cases prompt consideration as to whether most patients would benefit from this thera-

py versus a subset of  those who have microangiopathy-like features (schistocytes, microthromboses [with 

end-organ damage], and other laboratory evidence of  complement activation). Importantly, identifying the 

correct timing to initiate this treatment will likely be a critical issue.

There are ongoing clinical trials examining ravulizumab (phase III, NCT04369469), IFX-1 (phase II and 

III, NCT04333420), avdoralimab (phase II, NCT04371367), and AMY-101 (compassionate use). Ravulizum-

ab, like eculizumab, is a recombinant humanized anti-C5 monoclonal antibody that has a prolonged half-life 

compared with eculizumab (105). Ravulizumab is FDA approved for use in aHUS and PNH, and its efficacy 

and safety are currently being evaluated in acute lung injury and cytokine storm associated with COVID-19.

IFX-1 is a monoclonal antibody that blocks the effect of  C5a and, therefore, keeps the formation of  

the MAC intact by not interfering with C5b generation or function (106). It has shown efficacy in nonhu-

man primate models of  toxin- and virus-induced acute lung injury (107, 108). Avdoralimab (IPH5401) 

is an IgG1-κ anti-C5aR1 blocking antibody that has previously been used in phase I and II studies in 

combination with checkpoint inhibitors for solid tumors (NCT03665129) and is being studied in patients 

with COVID-19 (NCT04371367) who need ≥5 L/min supplemental oxygen to maintain oxygen saturation 

(SpO2) >93% or those with ARDS, who need invasive mechanical ventilation with a PaO2/FiO2 ratio 

<300 for more than 24 hours. A newer class of  C3 inhibitors is being tested for COVID-19–associated 

ARDS (109), with safety studies having been conducted in nonhuman primates (110). Another consider-

ation is the use of  the MASP-2 inhibitor narsoplimab (OMS721), given the interaction between MASP-2 

and the N-protein of  SARS-CoV-2 (27).

An especially important consideration for any trial of  complement inhibition is the predisposition to 

infection by encapsulated organisms. This becomes even more important in critically ill patients, includ-

ing those with COVID-19, many of  whom may not have received meningococcal vaccination in the past. 

Despite this major concern, the safety of  eculizumab has been demonstrated in postmarketing surveillance 

(111, 112). Nevertheless, a tailored approach for careful patient selection, antibiotic prophylaxis during 

and potentially for a period of  time after treatment cessation, will be necessary to minimize any unin-

tended adverse effects associated with infections. Thus, while complement activation has a role in viral 

opsonization, a deeper understanding of  the dynamics of  altering viral proliferation versus the hyperim-

mune response will help to determine the appropriate time to introduce these treatments.
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Conclusion
Multiple features of  severe SARS-CoV-2 infection suggest that complement activation plays a critical role 

in the pathogenesis of  COVID-19, particularly during exaggerated immune responses. However, the vari-

able clinical course and the ability of  this system to modulate a viral infection is obviously a serious con-

cern. Therefore, deciding at what point complement intervention is appropriate is a key and an unanswered 

issue. For example, one could easily envision that complement inhibition (of  1 or all 3 major pathways) 

could prove deleterious in the first week, as during this time complement serves as a “friend.” On the other 

hand, in the second or third weeks of  infection, complement intervention could prove critical, since at this 

time it becomes a “foe.” Hopefully, informative clinical trials on these and other key issues will provide 

much-needed answers.
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