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Abstract

Here we describe a single-cell atlas of aging for the nematode Caenorhabditis elegans.
This unique resource describes the expression across adulthood of over 20,000 genes
among 211 groups of cells that correspond to virtually every cell type in this organism.
Our findings suggest that C. elegans aging is not random and stochastic in nature, but
rather characterized by coordinated changes in functionally related metabolic and
stress-response genes in a highly cell-type specific fashion. Aging signatures of
different cell types are largely different from one another, downregulation of energy
metabolism being the only nearly universal change. Some biological pathways, such as
genes associated with translation, DNA repair and the ER unfolded protein response,
exhibited strong (in some cases opposite) changes in subsets of cell types, but many
more were limited to a single cell type. Similarly, the rates at which cells aged,
measured as genome-wide expression changes, differed between cell types; some of
these differences were tested and validated in vivo by measuring age-dependent
changes in mitochondrial morphology. In some, but not all, cell types, aging was
characterized by an increase in cell-to-cell variance. Finally, we identified a set of
transcription factors whose activities changed coordinately across many cell types with
age. This set was strongly enriched for stress-resistance TFs known to influence the
rate of aging. We tested other members of this set, and discovered that some, such as
GEI-3, likely also regulate the rate of aging. Our dataset can be accessed and queried
at c.elegans.aging.atlas.research.calicolabs.com/.
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Introduction

The nematode Caenorhabditis elegans is a powerful model organism for studying
multicellular development and lifespan. Identification of genes controlling lifespan in C.
elegans has allowed the discovery of cellular regulators of aging conserved in other
organisms, including mammals (Kenyon, 2010). However, our understanding of these
mechanisms at the cellular and molecular levels remains incomplete, in part because
genome-wide analyses of C. elegans have been mostly limited to whole-animal studies,
with isolated tissues rarely profiled and compared. Thus, the research community lacks
data describing aging at the cellular level, in every tissue, and during the entire course
of adulthood.

Recent advances in transcriptomics have enabled scientists to profile gene expression
at the level of single cells. The biological accuracy of single cell RNA sequencing
(scRNA-seq) surpasses that of bulk RNA-seq because it does not average gene
expression across the entire cell population, organ or organism (Hwang et al., 2018).
Studies comparing the effect of aging on single-cell gene expression in mice have
revealed tissue-specific aging signatures, as well as shared aging genes regulated
similarly between cell types (Kimmel et al., 2019; Tabula Muris Consortium, 2020;
Zhang et al., 2021). However, due to the large number of cells and organ complexity in
mice, these datasets remain incomplete, omitting many organs (for example several
muscles, peripheral blood, gonads, esophagus, stomach, tail and more than half of the
brain) and many connective tissues (Tabula Muris Consortium et al., 2018). A complete
view of an entire multicellular organism’s aging is not yet available.

Application of scRNA-seq to C. elegans is especially opportune for several reasons. C.
elegans contains a small, defined number of cells (959 somatic cells). Cellular lineages
and physical locations are comprehensively described for each cell of the adult animal.
The animal is transparent, and knowledge accumulated from gene tagging in vivo is
substantial, providing many marker genes to help identify cell types. C. elegans’ short
lifespan and its experimental and genetic tractability greatly facilitates follow up studies.
Recently, scRNA-seq, in combination with a cell-dissociation protocol (Zhang et al.,
2011), has been applied successfully to study C. elegans embryogenesis and larval
development (Cao et al., 2017; Packer et al., 2019; Taylor et al., 2021; Tintori et al.,
2016). However, comprehensive examination of adult animals using this approach has
been hindered by the abundance of germ cells, which comprise roughly two thirds of the
adult cells (Kimble and Hirsh, 1979), as well as a bias toward germ-cell isolation during
dissociation (Cao et al., 2017; Packer et al., 2019) (personal communication and this
study).
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In this study, we developed experimental and bioinformatic methods for depleting germ
cells that enabled the collection of gene expression data in nearly every somatic cell
type across the adult lifespan of C. elegans. We identified 211 unique gene expression
profiles and matched the large majority to known cell types. We verified the quality of
our cell-identity annotation and novel marker genes using microscopy and comparison
to published pre-adult scRNA-seq datasets. We then asked which segments of the
aging transcriptome signatures were cell-type specific and which were shared. Our data
revealed a high level of tissue-specific changes in gene expression, including activation
of processes that might restore homeostasis, such as the up-regulation of proteostasis
and DNA-repair genes in certain tissues. The shared signature of aging includes
decreased expression of metabolic genes. We measured the extent to which the
transcriptome changed during aging and found that the magnitude was much larger for
some cell types than for others. We validated this inferred difference in cell aging rates
in vivo by examining age-dependent changes in mitochondrial morphology. As
expected, the transcriptional signatures of some tissues became more noisy with age;
however, unexpectedly, the signatures of others became more cohesive. We quantified
the expression and inferred activities of mRNAs encoding over 200 transcription factors
(TFs) in every tissue throughout adulthood. We made the unexpected discovery that
many transcription factors that can extend lifespan are naturally up-regulated with age,
and based on these TF expression signatures, we identified new TFs that appear to
regulate aging. Finally, we developed an online public interface to make genes, gene
sets and inferred TF activity easy to explore in every cell type at every age
[c.elegans.aging.atlas.research.calicolabs.com/].

Results

Single-cell RNA sequencing of aging C. elegans
We set out to perform time series scRNA-seq on a C. elegans population over the
course of their adult lifespan and for that purpose selected six, roughly evenly spaced,
time points (days 1, 3, 5, 8, 11 and 15 of adulthood, Figure 1A). We used three methods
to reduce germ cell number. First, we analyzed temperature-sensitive gon-2(q388ts)
mutants, which fail to develop gonads at the non-permissive temperature (Sun and
Lambie, 1997). Due to the incomplete penetrance of this mutation, we were still able to
detect gonad dependent gene expression cell signatures, and we still observed an
overrepresentation of germ cells in the data, as determined by germline marker gene
set enrichment scores (Suppl. Notes 1) (Aibar et al., 2017). To further enrich somatic
cells, we FACS sorted cells based on their genetic ploidy using DAPI, as the majority of
the germ cells are meiotically arrested with a 4N ploidy. This method greatly enriched
somatic cells but still did not eliminate the germ-cell signal altogether. Therefore, we
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computationally identified and removed any remaining germ cells, as well as embryonic
cells and sperm cells, from the dataset (see Methods). Together, our methods enriched
somatic cells up to a factor of >7 times at the older time points.

We applied CellBender (Fleming et al., 2019) to remove empty droplets and correct for
ambient background RNA. We performed additional cell filtering in cases where
CellBender ambient RNA removal was incomplete (see Methods). The final dataset
contained 47,423 cells quantifying 20,305 genes across the full time series. Our method
yielded more reads per cell than previous scRNA-seq in C. elegans adults (2,175
unique molecular identifiers (UMIs) vs. 156 UMIs per cell, 644 genes vs. 52 genes per
cell, comparing our data to that of Preston et al. (Preston et al., 2019). However, we
note that at the last time point (d15), we recovered fewer cells and fewer UMIs per cell
(Figure S1A-C).

We embedded the cells into a low-dimensional latent space using the negative binomial
variational autoencoder scVI and computed a nearest neighbor graph (Lopez et al.,
2018). Uniform Manifold Approximation and Projection (UMAP) visualization (McInnes
et al., 2018) revealed considerable cluster structure and variation with age (Figure 1B,
S1D).
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Figure 1. Single-cell RNA sequencing of C. elegans adults revealed 211 clusters
covering nearly every known cell type at six ages.
A) Experimental design.
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B) UMAP representation of all cells colored by time point.
C) UMAP representation of all cells colored by high-level cell type annotation (tissue
types, detailed in Table S1). Inset shows specific annotations for several neuron
clusters. For UMAP visualization of all 211 clusters, see Figure S1D.
D) Heatmap of Pearson correlations between every pair of cell-type clusters’ average
gene expression. High-level tissue type is annotated in the color bar. This matrix is
annotated in Figure S1F.
E) Example of a new marker gene. Top left: cells belonging to cluster 96_0 are labeled
in blue; Top right: UMAP coloring cells by AUCell score of WBbt:0004465, anatomy term
gene set for M5 neuron; Bottom left: UMAP coloring cells by expression of our
newly-identified M5 marker gene, clec-166. Bottom right: Visualization of M5 by
promoter_clec-166::scarlet expression. Arrows point to cluster 96_0. Scale bar: 10𝝻m.

Cell type annotation
Most adult C. elegans cell types lack comprehensive gene expression profiles, but
many have sparse marker-gene data collected from published microscopy studies. To
annotate cell types de novo without age as a confounder, we encoded and decoded the
raw gene expression counts through scVI, treating time points as batches, to form
denoised and age-corrected profiles. We then applied Leiden community detection to
the nearest neighbor graph and identified 147 super-clusters of cells (Traag et al.,
2019). Noticing clear substructure within super-clusters, we further applied Leiden to
each super-cluster individually, tuning for optimal resolution using functionally relevant
metrics to identify a total of 211 cell clusters (Figure S1D). All time points except for d15
were represented in most clusters (Figure S1A), confirming that the clusters capture cell
type variation rather than age variation (Figure S1C, S1E). Nevertheless, visualizing
each cluster on the original UMAP without any age correction, we observed a clear
continuous aging trajectory within most clusters (Figure S1E).

To annotate these cell clusters with known cell-type identities, we queried the 211
clusters using 532 WormBase anatomy gene sets using three different approaches.
Here, and in the analyses to follow, we leveraged a statistic called AUCell, which
quantifies gene set enrichment at the top of a ranked gene list, where the genes are
ranked by expression in a single cell (Aibar et al., 2017). We used an age-corrected
scVI model to perform clustering and annotation to avoid confounding cell type and cell
changes with age.

In our first approach, we applied AUCell to individual cells by computing enrichment
scores for each WormBase anatomy gene set, summarizing these scores at the cluster
level and assigning each anatomy term to its top three clusters.
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For our second approach, we established a set of marker genes for each cluster using
differential expression compared to all cells outside of the cluster. We then quantified
the enrichment of each anatomy gene set with a hypergeometric test for significant
overlap. In our final approach, we manually visualized the AUCell score distribution of
each WormBase anatomy gene set on the UMAP, assigning the anatomy term to one or
multiple clusters. The three annotation methods usually resulted in consistent anatomy
annotation, but the AUCell method tended to bias toward smaller anatomy terms and
the hypergeometric test tended to bias toward larger anatomy terms (Table S1). We
summarized the results from the three methods and assigned a final annotation to each
cluster (Table S1).

Together the clusters comprised a large portion of the known cell types from every
tissue, including the intestine, hypodermis, seam cells, various muscles, glands, glia
and neurons (Figure 1C, Table S1). 73% of the clusters were described by a single
anatomy term (cell type), 18% by more than one anatomy term. 9% did not enrich for
any anatomy term, which we call ‘orphan’ clusters. For many of these orphan clusters,
assignment was hampered by the lack of known marker genes. Improving these
annotations will be an ongoing process as more single-cell and in vivo expression data
are collected. We assigned putative annotations to orphan clusters as detailed below.

To further the analysis, we assigned a high-level annotation (tissue type) to each
specific anatomy term (Figure 1C). Neurons comprised the most abundant cell type,
with 133 distinct clusters. Muscles were also represented by multiple cell types, 22 in
all. Because our germ cell removal remained incomplete, we also identified several
germline clusters. Due to the partial penetrance of the gon-2(q388) mutation, our cell
population also contained somatic gonads. Importantly, comparing these clusters with
those of a strain carrying a wild-type copy of gon-2, we showed that the mutation did not
alter the expression of genes assigned to gonad cells (Suppl. Notes 1), and we
recovered non-gonadal cells whose development requires signals from the gonad (for
example, vulval cells, (Ferguson and Horvitz, 1985). Finally, we note that since our
germline removal approach might have introduced selection bias for germ cell subtypes
(as 4N cells were removed), these clusters must be interpreted accordingly.

To visualize the clusters from the perspectives of their annotations, we compared
clusters with each other using a pairwise Pearson’s correlation of the average cluster
expression. This revealed a prominent bifurcation separating neurons and non-neuronal
cells (Figure 1D, S1F). Zooming in, both the neuronal and non-neuronal groups
exhibited considerable structure arising from functionally similar and different cell types.
Multiple clusters annotated as glia, muscles and coelomocytes grouped together in this
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correlation matrix, reflecting their similar gene expression. Based on the similarities of
different cell types revealed by hierarchical clustering, we were able to assign candidate
annotations to the orphan clusters (Figure S1F, Table S1).

These cell-type similarities suggested new insights into their functions (Figure S1F),
particularly for tissues that had never been isolated before. For example, the excretory
canal CAN neuron (69_0) was not clustered among the neuronal clusters but rather with
non-neuronal cell types. Taylor et al. also described this cell type as the one with the
least similarity with neuron types (Taylor et al., 2021). Most glial clusters grouped
together and resembled neurons, but they also clustered near the hypodermis,
consistent with their epithelial hypodermal cell junctions. A smaller group of CEP glial
cells exhibited a different and more distinctive transcriptomic signature. Two uterine
epithelial cell types, UV1 and UV3 (clusters 146_0 and 68_1) and the
spermathecal-uterine valve (sp-ut, cluster 60_0) showed transcriptomes that resembled
those of neurons (Figure S1F), despite their morphological differences. UV1 was
previously shown to have neuroendocrine functions (Alkema et al., 2005).

Verification of the cell-type annotation and comparison with public datasets
We tested by microscopy the expression of 19 new marker genes (details below),
belonging to a panel of 7 different tissue types (muscles, neurons, seam cells, gland,
coelomocytes, glia, hypodermis; Figure 1E, Table S2) by fusing their regulatory regions
(promoters, introns and 3’UTRs) to a fluorescent-tag sequence in a plasmid. The large
majority of these expression constructs matched their annotation, and marker genes for
orphan clusters with putative annotations from the correlation analysis above were
expressed at their predicted locations in the animal. We occasionally observed
additional unpredicted ectopic locations not reflected in the single-cell data (Table S2),
possibly due to a failure of our transgenes to represent endogenous regulation
accurately.

We validated the quality of both our expression data and cluster annotations by
comparing our data to previously published datasets. Taylor et al. performed scRNA-seq
experiments on late larval neurons, and we observed a high level of consistency with
our annotated clusters (Taylor et al., 2021). In 88% of the cases, the most correlated
cluster annotations in our data and theirs were in agreement (Figure S1G, Table S3).
Kaletsky et al. characterized C. elegans gene expression in four young-adult tissues
(hypodermis, intestine, muscle, neurons) through FACS-sorted bulk RNA-seq (Kaletsky
et al., 2018). Our results agreed with theirs for the hypodermis, muscles and neurons.
However, we observed less consistent alignment for the intestine (Figure S1H).
Intestinal cells have been reported to become polyploid due to endo-reduplication
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(Hedgecock and White, 1985); thus, some intestinal cells could potentially have been
lost during FACS enrichment of diploid cells. Consistent with this, while we observed
strong consistency in our intestinal datasets pre- and post-FACS (Suppl. Notes 1), we
did observe more and higher-quality intestinal cells in the pre-FACS sample. Thus, we
have provided the intestinal markers derived from pre-FACS as well as post-FACS
samples in our tabulation (Table S4).

Novel Cell-Type Specific Gene Expression
Having obtained an unprecedented view of the transcriptionally-defined cell types in the
adult worm, we next sought to elucidate the gene expression programs of these cell
types. Using differential expression analysis, each cell type was found to express an
average of 6,247 genes (with an average expression of transcripts per million, or TPM >
10), of which an average of 669 genes were differentially expressed with log2 fold
change (log2FC) > 2 and FDR-corrected q-value < 0.01. To highlight genes that were
specific to each cell type and might serve as marker genes for the cell, we identified
genes whose expression was enriched more than four-fold in the cluster of interest
versus the cluster with the second highest expression (Table S5). In this way, we
identified an average of 14.4 marker genes per cell-type cluster. Some of these genes
were known cell-specific markers. For example, we recapitulated dhp-1 as a marker for
hypodermis, ceh-33 for head muscle, gcy-23 for the AFD neuron and gcy-14 for the
ASEL neuron (Table S5). We also identified many novel markers. For example, the
carbohydrate binding protein clec-166 emerged as a novel marker for M5 neurons,
distinguishing them better than does the known marker vab-15. We validated M5
neuron-specific expression of clec-166 in vivo using a fluorescent reporter under the
control of the clec-166 promoter and 3’-UTR (Figure 1E). Conversely, we also computed
and added to our dataset the most ubiquitously expressed genes (Table S5).

Cell-Type Specific Regulation and Transcription Factor Activity
Differential gene expression across cell types is driven by factors that regulate mRNA
production and stability. We sought to leverage transcription factor (TF) motif presence
in gene promoters to study cell type-specific TF regulation. We first constructed a binary
TF-gene potential matrix by identifying 269 known TF motifs from the CIS-BP database
in the -500 bp to 100 bp promoter region of each gene. This procedure located an
average of 3,378 potential target genes per TF. We quantified TF target activity in each
single cell by computing the AUCell statistic for these TF target gene sets in the top
1000 expressed genes.
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Figure 2. Transcription factor expression and activity across cell types
A) Heatmap showing TF gene expression (log2 reads per million, row-normalized) for
269 TFs (columns) across 211 cell types (rows). Hierarchical clustering was performed
on the rows and columns. Cell types are colored by high-level manual annotations.
B) Heatmap showing TF activity (AUCell scores of motif targets) for 269 transcription
factors across 211 cell types (row-normalized). Cell types are colored by high-level
manual annotations.
C) HLH-1 activity in the muscle. Left panel: UMAP showing cells belonging to cluster
4_0 (body wall muscle) in blue and other cells in gray. Middle panel: UMAP coloring
cells by hlh-1/TFEB TF expression in log2 reads per million. Aside from cluster 4_0, the
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other cluster with high hlh-1 expression is cluster 23_0, GLR cells. Right panel: UMAP
coloring cells by AUCell scores for HLH-1 targets, as defined by motif hits.
D) For each of the 48 TFs whose expression and activity significantly correlated in at
least one cell type/cluster, we plotted the Spearman correlation of its expression and
activity (AUCell score) in each individual cell type. Significant positive correlations by
permutation test are in red, significant negative correlations are shown in blue. TFs are
ordered by average correlation across all expressed cell types.
E) Scatterplot showing correlation between expression and activity (AUCell score) for
the crh-1 TF in the intestinal-muscle cluster (38_0) (top); scatterplot showing correlation
between expression and activity (AUCell score) for mab-23 in PHC and PVM neuron
cluster (54_0) (bottom).

Noting that many TFs are expressed only in a subset of cell types, we evaluated TF
expression and activity across the 211 cell-type clusters. Hierarchical clustering
revealed patterns of tissue-specific transcriptional regulation. For example, the
homeobox TF ceh-36 is expressed in a cluster of amphid neurons (AFD, AWCL, ASEL,
ASER), and ceh-36 target-gene activity highlights the same cluster of amphid neurons
(Figure 2A, 2B). To define cell-type specific TF activity systematically, we filtered for TFs
with cluster-specific expression (log2FC > 2 and FDR q-value < 0.01) and
cluster-specific TF motif activity (FDR q-value < 0.01 by Wilcoxon rank sum test). We
identified a total of 1,048 tissue-specific associations of the TF expression with its target
genes’ activity across the atlas (Table S6). Many TF-cell type relationships are
supported by previous publications, such as body-wall muscle specific HLH-1 activity
(Figure 2C), seam cell-specific ELT-1 activity, intestine-specific ELT-7 activity, and IL2
neuron-specific DAF-19 activity (Figure S2) (Brabin et al., 2011; Chen et al., 1994; De
Stasio et al., 2018; Sommermann et al., 2010).

Next, we evaluated the relationship between TF expression and activity in tissues where
the TF of interest is expressed. We regressed age as a covariate out of the gene
expression matrix to focus on cell-to-cell variation. We then computed the correlation
between TF mRNA expression and TF motif activity across the single-cell
measurements to focus on examples with strong correlative evidence for a regulatory
relationship. We observed a weak positive correlation (Spearman's r=0.134) averaged
across all TF-tissue combinations indicating that on average, TFs play activating roles in
gene regulation. TFs with poor expression and activity correlation may be due to RNA
abundance serving as a poor proxy for activity, poorly matched database motifs, and/or
TF families with many members that bind similar motifs.

We identified 48 TFs whose expression and activity were significantly correlated in at
least one cell type (q-value < 0.05 through permutation test). CRH-1, an ortholog of the
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human activating transcription factor 1 (ATF-1), had significantly correlated expression
and activity in 35 cell types. It had an average correlation of 0.55 across all cell types
(Figure 2D) and maximum correlation of 0.93 in the intestinal muscle cluster (38_0).
Other top TFs consistently showed an activating role (positive correlation between
expression and activity) across cell types, for example, DPY-27, MEF-2, JUN-1, GEI-3
and DAF-12 (Figure 2D). We also predicted 19 TFs with repressive activity across cell
types. MAB-23 had the most significant negative correlation (R=-0.61) in cluster 54_0
(annotated PHC or PVM neurons). The second most negatively correlated TF was
PAG-3 in the muscle cluster 38_0 (Figure 2E). Both TFs contain conserved domains
that are linked to transcriptional repression(Inoue and Nishida, 2010; Jafar-Nejad and
Bellen, 2004; Lints and Emmons, 2002).

C. elegans Aging Atlas
A prime goal of this study was to define the aging signature of C. elegans gene
expression. Since all C. elegans somatic cells appear to be post-mitotic during
adulthood (Sulston and Horvitz, 1977), our dataset is not likely confounded by cell
proliferation or replacement. Both shared and cell type-specific gene expression
changes have been observed previously during aging, but none of these studies had
access to a complete organism (Angelidis et al., 2019; Davie et al., 2018; Enge et al.,
2017; Kimmel et al., 2019). Our data enabled the first comprehensive analysis of
cell-type aging signatures across an entire animal. We first performed a coarse
differential-expression analysis of young cells (day 1, 3 and 5) versus old cells (days 8,
11 and 15) to visualize global trends. Figure 3A displays a heatmap of log2 fold change
for the 4,541 genes differentially expressed in at least one cluster, which shows
considerable heterogeneity between cell types. On average, each cell type cluster
contained 81 genes whose expression changed significantly with age (Figure S3A,
Table S7).

We first looked at genes whose expression changes were shared most broadly across
cell types. We found that these shared aging genes were more likely to be
down-regulated (Figure 3B, S3A), as is the case in mice (Zhang et al., 2021). We
ranked the most shared aging genes by the number of clusters in which they were up
and down-regulated. Surprisingly, considering our level of detection, we found that
regulation of only 10 genes is shared in more than 25% of cell types (Figure 3B). The
most frequently up-regulated genes are involved in and may enhance proteostasis.
These included the HSP70 chaperone paralogs F44E5.4 and F44E5.5, orthologs of
human HSPA6, which were expressed in 30% of clusters (Figure 3B, Table S8). Several
additional heat-shock protein genes were frequently up-regulated, including hsp-70,
hsp-110, hsp-16.41, and hsp-16.2. Gene set enrichment analysis (GSEA) confirmed
that the GO term for heat shock protein binding (q-value = 0.003) was enriched in
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commonly up-regulated genes. It also revealed that certain cells exhibited GO-term
enrichment for ribosome and translation (q-value < 2.2e-16) (Table S9). The most
commonly down-regulated aging gene was hsp-4/BIP, detected in 44% of clusters.
hsp-4 and the next top three down-regulated genes are involved in the ER-UPR (hsp-4,
cup-2, pdi-6, xbp-1). This suggests either that ER resilience decreases with age or that
cells adapt in a way such that these genes are no longer needed. Mitochondrial
respiratory chain components (hsp-3, nduo-6, cox7c, cyc2.1, ctc-3, cox6A) and
ribosomal protein genes (rps-3, rpl-7A, rps-0, rps-25, rps-9) were also down-regulated
(Table S9). The enrichment of different ribosomal proteins in the up vs. down-regulated
sets was curious and is described in greater detail below.

To analyze gene expression patterns at a more functional level, we performed GSEA,
this time for each individual cluster based on the log2 fold change in old versus young
cells. Out of the 2,166 C. elegans GO terms, we found 279 GO terms associated with
age in at least one cell-type cluster (q-value < 0.01). We collapsed these to 100
representative GO terms through hierarchical clustering to remove redundancy (see
Suppl. Notes 2, Table S10). Consistent with the most shared signatures revealed above,
we observed that pathways related to energy metabolism, including mitochondrial
respiration, ATP synthesis, glycolytic process and tricarboxylic acid cycle, were the most
frequently down-regulated (Figure 3C; Suppl. Notes 2). Overall, we observed that only a
small number of GO terms changed globally and consistently across cell types (Figure
3A, S3C).
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Figure 3. Analysis of shared and tissue-specific aging signatures.
A) Heatmap showing log2 fold change (log2FC) in old versus young cells for 4,541
genes differentially expressed in at least one of the 211 clusters. Clusters are annotated
by high level cell-type annotations.
B) Bar plots show the top 20 differentially-expressed genes ranked by the number of
cell types where they are up-regulated (left) and down-regulated (right)
C) GSEA results for 20 representative GO terms with significant changes in the most
clusters. The rows represent GO terms, and columns represent cell type clusters. The
top color bar shows the high-level tissue annotation. Color in the heatmap indicates the
signed -log10(FDR q-value) of the GSEA results. Positive indicates that the gene-set
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abundance is enriched in old cells, whereas negative indicates that the gene set is
enriched in young cells.
D) Heatmap of differential gene expression log2FC in young versus old for genes in the
ERUPR GO term (GO:0030968). The rows represent genes, and the columns represent
cell types.
E) Boxplot with jitter showing expression of rpl-3 in coelomocytes (cluster 12_0) in log2
(count per 10k) at each time point (top); boxplot with jitter showing expression of rpl-3
with age in vulva muscle (cluster 7_0) in log (count per 10k) at each time point (bottom).
F) Heatmap of differential gene expression log2FC in young versus old for lysosomal
genes. The rows represent genes, and the columns represent non-neuronal cell types.

Cell-type specific aging regulation
We sought to explore more specific aging signatures that are only observed in single or
a subset of cell types. The ER-UPR gene set was down-regulated in several clusters,
but in fewer cell types than were the energy metabolism gene sets, and more
prominently in neurons compared to non-neuronal tissues (Figure 3D). Conversely,
cytosolic chaperones, including hsp-70, hsp-110, hsp-16.41, hsp-16.2 and F44E5.4/5,
were up-regulated more strongly past day 3 in a subset of neurons including the amphid
neurons (Figure 3D, S3B). Among other gene sets, G-protein-coupled signaling was
down-regulated and neuropeptide signaling was up-regulated in the nervous system.

For the large majority of genes, expression changed with age in fewer than 10 clusters
(Figure S3C). Among the most noticeable cell-type specific age-related change in our
data was the strong movement of ribosomal protein-coding mRNAs with age (Figure
3C, Figure S3B, S3C). Expression of small and large ribosomal subunit genes, as well
as translational elongation genes, changed together in either direction depending on the
cell type. As an example, the large subunit protein-coding gene rpl-3 was highly
up-regulated in vulva muscles with age but highly down-regulated in coelomocytes
(Figure 3E). Previous studies have shown that the overall amount of translation in bulk
worm population extracts trends downward with age, correlating with a decrease of bulk
ribosomal-protein turnover (Depuydt et al., 2016; Walther et al., 2015) and an increase
in ribosomal-protein aggregation (David et al., 2010). Similar mass spectrometry protein
turnover analysis revealed heterogeneity among ribosomal protein levels with age
(Dhondt et al., 2017) that could be linked to the cell-type heterogeneity that we observe
in our expression dataset.

A closer examination of the cell-type specific GSEA results revealed additional
tissue-specific pathway changes (Suppl. Notes 2). Cuticular collagen matrix genes
(GO:0005581) were significantly down-regulated specifically in the hypodermis, seam
cells, phasmid sheath glia, and one intestinal cluster, whereas another subset of
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extracellular matrix genes coding for basal membrane constituents was down-regulated
in muscle cell types (Suppl. Notes 2). The intestinal cells down-regulate several
lysosomal protease genes with age (cpr-1/4/6, asp-3/4, cpl-1, cpz-1), whereas many
muscles up-regulate lysosomal genes, including proteases and enzymes predicted to
be involved in polysaccharide and lipid catabolism (asp-4, cpl-1, cpz-1, spp-10, bgal-1,
cpl-1) (Figure 3F). Notably, increased activity of GLB1, the homolog of the
beta-galactosidase bgal-1 in worms, is a conserved hallmark of cell senescence in
mammals (Dimri et al., 1995). The proteasome subunit genes represented another
example of tissue-specific aging dynamics; they were stable in most cell types but were
up-regulated in several muscle clusters and down-regulated in the somatic gonad and
some uterine epithelial cells (Suppl. Notes 2).

To extend and complement our GO-term based analysis of aging signatures described
above, we also looked at the activity of C. elegans gene sets known to be co-regulated
across a wide range of perturbations. To this end, we used a collection of 209 gene
expression modules described previously (Cary et al., 2020) and derived using Deep
EXtraction Independent Component Analysis (DEXICA) of a large, diverse collection of
C. elegans microarray experiments. We asked which DEXICA modules changed the
most with age (Figure S3D). Some of the most commonly age-dependent modules were
related to ribosomal biogenesis, collagen synthesis, the ER-UPR and mitochondria
(Figure S3D), confirming some of the GO-term results described above. Interestingly,
this analysis also highlighted DNA damage response and DNA repair, which were not
identified by GO-term analysis (Figure S3D). This gene set was significantly and mostly
monotonically up-regulated with age in 35 clusters, as exemplified by motor neuron and
seam cell clusters (Figure S3E).
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Figure 4. Dynamic gene expression analysis with age reveals six major temporal
trajectories.
A) In each panel, a colored line represents the average trajectory of genes in that
module for a particular cell type and the black line represents the averaged trajectory
over all cell types. Gene modules are defined as genes showing a similar aging
trajectory (Methods).
B) Heatmap showing the fraction of clusters in which the corresponding GO term (rows)
is significantly up-regulated (red), or significantly down-regulated (blue) with age
between each consecutive time point pair (columns).
C) Heatmap showing the GSEA result for the ER-UPR (GO:0030968), measured by
signed -log10(FDR) between each pair of consecutive time points for each cell type
(left, non-neuronal cells; right, neurons and glia).
D) Boxplot with jitter showing expression of the ER chaperone genes hsp-3 (top) and
hsp-4 (bottom) in the AIN interneuron (cluster 91_0) in log (count per 10k) at each time
point (top).
E) Left: heatmap showing the GSEA result for neuropeptide signaling (GO:0007218)
measured by signed -log10(FDR) between each pair of consecutive time points for
neuron and glial cell types; Right: heatmap showing the GSEA result for axon guidance
(GO:0008045) measured by signed -log10(FDR) between each pair of consecutive time
points for neuron and glial cell types. See Figure S4B for results for non-neuronal cells.
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F) Boxplot with jitter showing expression of flp-24 (top) and unc-73 (bottom) in the M2
motor neuron (cluster 53_0) in log (count per 10k) at each time point (top).

Dynamic Gene Expression Changes with Age
To characterize dynamic gene expression changes with better temporal resolution, we
studied trajectories for the 4,232 genes significantly differentially expressed in the young
versus old comparison in at least one cluster (|logFC| > 1 and q-value < 0.01). We
computed an average trajectory for each gene across cell types and grouped the genes
into six age modules through hierarchical clustering as in (Schaum et al., 2020). We
then associated each gene module with GO terms by GO enrichment analysis (Figure
4A, S4A, Table S11).

The six age modules showed diverse aging trajectories. Modules 3 and 4 contained
genes up-regulated with age. Module 4 contained immune response genes that showed
an early adulthood up-regulation that stabilized later in life. In contrast, module 3 genes
(enriched for axon guidance and neuronal development) were up-regulated only in late
life. Modules 1, 5, and 6 contained genes that were down-regulated with age, with
different trajectory shapes. Genes in module 5 (mitochondrion, oxidation-reduction)
steadily declined with age, while genes in module 6 (ER-UPR) and 1 (translation)
declined early and late, respectively. Module 2 was also enriched for translation genes.
While these genes exhibited an early increase with age, the trend reversed in late age
(Table S11).

Next, we explored the time-series data from a pathway-centric view. We performed
differential expression analysis followed by GSEA for cells in consecutive time points in
each cell type cluster. Figure 4B shows the result for the same pathways as Figure 3C
with finer time-scale resolution. Consistent with gene trajectory analysis, we observed
that oxidation-reduction processes underwent a consistent decline throughout the aging
process, whereas the neuropeptide signaling pathway increased sharply during days
1-3.

For specific pathways of interest, we then explored the pathway-change dynamics in
each cell-type cluster. For example, we found that the ER-UPR pathway was
significantly down-regulated only during days 1-5 in specific subsets of neuronal and
non-neuronal clusters including the epithelium, coelomocytes and muscles (Figure 4C).
As an example, we examined hsp-3 and hsp-4 mRNA levels in AIN interneurons
(cluster 91_0) and confirmed that they indeed experience the most dramatic decrease
early in aging (Figure 4D). Pathway dynamic change analysis also revealed early
increase of neuropeptide pathways during aging and late increase of several gene sets
involved in neuronal growth like axon guidance and neuron projection morphogenesis

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.15.496201doi: bioRxiv preprint 

https://paperpile.com/c/AyldiX/v8dQo
https://doi.org/10.1101/2022.06.15.496201


pathways (Figure 4E). We examined the expression of specific genes in M2 motor
neurons (cluster 53_0). Neuropeptide flp-24 mRNA levels increased dramatically from
days 1-3, while mRNA of unc-73, a key gene for axon guidance (Steven et al., 1998),
only started to increase at day 8 (Figure 4F). This observation is consistent with
previous reports describing ectopic neurite branching in old neurons (Pan et al., 2011;
Tank et al., 2011; Toth et al., 2012).

In conclusion, our aging atlas revealed that the decline of carbon and mitochondrial
metabolism is the most consistent aging signature, occurring across many cell types
and continuously during the entire course of aging. Other functions including ER-UPR,
ribosome, lysosome, proteasome and collagen trimers shifted significantly with age in a
cell-type-specific or tissue-specific fashion. Moreover, the temporal resolution of our
dataset enabled us to identify the distinct aging trajectories of various pathways.

Global Transcriptional Characterization Reveals Cell-Type Specific Aging Patterns
Gene expression drift is a common correlate of aging (Kimmel et al., 2020; Rangaraju et
al., 2015; Tarkhov et al., 2019). We sought a full transcriptome quantification for how
extensively gene expression changes with age in each cell type. We first quantified the
average magnitude of transcriptome change between consecutive time points by
maximum mean discrepancy (MMD) (Kimmel et al., 2020) and Methods). MMD is a
statistical test measuring the distance between two distributions (Gretton et al., 2012);
here, the cell embeddings in different time points. We assume that the degree to which
MMD deviates with time is a proxy for how much each cell type is altered by aging, and
we refer to it as the aging magnitude.

For cell-type clusters with enough cells to evaluate MMD changes between consecutive
time points, we observed significant changes in at least two consecutive time points at a
threshold of FDR q-value < 0.01 for 158/165 cell types. We verified that the MMD metric
was independent of the number of cells in the cluster (Figure 5A, S5A). More broadly,
cell types with similar ontological relationships and baseline transcriptional profiles had
more similar aging magnitudes, suggesting the hypothesis that cellular function
influences aging rate (Figure S5B). For 7 cell types, changes during aging were
insignificant by the permutation test (Table S12). Interestingly, the magnitude of this
change for the other 158 clusters exhibited substantial heterogeneity both between
different cell types and within a single tissue type (Figure 5A). An amphid neuron cluster
(63_0) changed the most during aging, whereas cluster 3_0 (related to germline)
changed the least (Figure S5C). In general, neuron clusters exhibited a significantly
greater aging magnitude than did non-neuronal clusters (p < 1.64e-06, MMD Wilcoxon
rank sum test, Figure 5B).
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Complementary to global transcriptional changes, prior studies have observed
increased variance in mRNA abundance with age (Martinez-Jimenez et al., 2017). We
considered two distinct strategies to quantify variance in our data and compare across
age. First, for each cell type cluster, we focused on the range of expression profiles
observed by computing the average Euclidean distance from each cell to the population
centroid at each time point (cell-cell variation). We observed increased cell-cell variation
in 116 clusters, but surprisingly, we also observed reduced cell-cell variation in 49
clusters (Figure 5C). Thus, cell-to-cell variance increases in the majority of cell types but
can narrow with age in many cell types. Similar observations were made comparing the
cell types from several organs of young and old mice (Kimmel et al., 2019).

Second, we focused on the variability of each individual gene, which could reflect large
transcriptional bursts rather than steady, consistent transcription. We quantified the
biological variability in mRNA abundance (gene variability) within a homogenous cell
population (same age, same cell type) by fitting a negative binomial regression model to
each gene and computing the variance of the analytical Pearson residual (Hafemeister
and Satija, 2019; Lause et al., 2020). The Pearson residual is intuitively a measurement
of goodness-of-fit with respect to a null distribution, assuming all cells share the same
transcriptional profile (Lause et al., 2020). To focus on variance at the cell-type level, we
summed every gene’s statistic for each cell type cluster. Out of the 146 cell-type clusters
for which we have sufficient data from each time point, we observed 110 cell-type
clusters with increased expression variance during aging and 36 with reduced variance
(Figure 5D). Thus, we observe that most cell types show increased variability with age,
consistent with previous work (Bahar et al., 2006). Interestingly, we observed that
neurons not only show a greater change in terms of MMD measurement, but they also
tend to show a greater change in cell-cell variation and gene-variability with age (Figure
S5D).

Finally, we explored the relation across these various approaches to quantifying global
aging magnitude across the different cell types (Table S13). We included MMD
transcriptome change, cell-cell variation, and gene variability. Given the intriguing set of
metabolic genes and chaperones observed to change with age across many cell types
above, we also quantified this core aging signature in each cell type cluster by looking
at the average log fold changes of a set of shared differentially expressed genes
between young and old cells. We named Sig_up (or Sig_down) the genes observed in
more than 50 clusters that have an average log2FC > 0.5 (or log2FC < -0.5).
Interestingly we observed weak positive correlations among the distinct statistics
(Figure 5E, S5E), suggesting that aging results in a global transcriptional change that
can be observed across multiple axes with concordance.
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Figure 5. Global aging characterization reveals difference in magnitude, cell-cell
variation, and gene variability during aging across cell types
A) Transcriptome changes during aging estimated by MMD (maximum mean
discrepancy) for all cell type clusters. For each cell type cluster, we first computed MMD
between each consecutive pair of time points (d3-vs-d1, d5-vs-d3, d8-vs-d5, d11-vs-d8
and d15-vs-d11), and reported the mean MMD across all time points. Coelomocyte
clusters and seam cell clusters are labeled. Clusters 12_0, 110_0, 11_3 refer to the cell
types analyzed by microscopy in Fig.6.
B) Boxplot comparing MMD estimates in neurons versus non-neuronal cell types. MMD
statistics are significantly larger for neurons compared to non-neuronal cells (***
p < 1.64e-06, Wilcoxon rank sum test).
C) Cell-type clusters ranked by rate of change in cell-cell variation (% per day) during
aging. Coelomocyte clusters and seam cell clusters are labeled.
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D) Cell-type clusters ranked by their percentage change in variance of Pearson residual
(% per day), which quantifies gene expression variance. Coelomocyte clusters and
seam cell clusters are labeled.
E) Heatmap of Spearman’s correlations between the different quantifications of aging in
the transcriptional space across cell type clusters. MMD, cell-cell variation, expression
variability, sig_up, average increase in gene expression for 34 commonly up-regulated
genes; sig_down, average decrease in gene expression for 114 commonly
down-regulated genes.

We hypothesized that cell types that trended toward greater or lesser MMD values
across multiple statistics could be more reliably highlighted as faster- or slower-aging
cells. Previous studies in worms have reported that late-life muscle mitochondrial
fragmentation is associated with health decline and predicts increased mortality (Hahm
et al., 2015; Roux et al., 2016). Thus, we asked whether the extent of mitochondrial
fragmentation in vivo might correlate with the magnitude of age-specific gene
expression changes. We selected uterine seam cells (clusters 11_3) and two
coelomocyte clusters (clusters 12_0 and 110_0) for this experiment. In the
transcriptional space, uterine seam cells appear to age faster than coelomocytes,
supported by greater MMD (0.10 vs. 0.07 and 0.04), cell-cell variation (3.04 vs. -1.54
and -0.47), and gene variability (3.23 vs. 2.66 and -3.12). Using fluorescent microscopy,
we scored age-related change in mitochondria morphology concomitantly in the
coelomocytes and the uterine seam of many individuals (Figure 6A). We observed that,
on average during aging, the uterine seam cells have more fragmented mitochondria
than the coelomocytes (Figure 6A, 6B, S6B), which in turn retain a more youthful tubular
mitochondrial network compared to the uterine seam cell (Figure 6C, S6C). In addition,
we compared aging mitochondria in two other cell types, body wall muscles (cluster 4_0
and 4_1) and excretory glands (cluster 89_0) (Figure S6D-F). Our observations
confirmed again a concordance with the changes in magnitudes of gene expression of
these two cell types. Together, these in vivo studies support the hypothesis that the
larger changes in overall gene expression between early and late time points reflects a
faster cellular aging rate.

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.15.496201doi: bioRxiv preprint 

https://paperpile.com/c/AyldiX/bDhY0+STiIq
https://paperpile.com/c/AyldiX/bDhY0+STiIq
https://doi.org/10.1101/2022.06.15.496201


Figure 6. Quantification of mitochondrial morphology changes with age in two cell types
corroborate the rates of change measured by gene expression
A) Two representative images showing mitochondrial morphology at mid-age in
coelomocytes (cluster 12_0) and uterine seam cells (cluster 11_3), which exhibit a small
and large magnitude of aging, respectively, according to expression data. GFP
expression was driven by tissue-specific promoters and the protein was targeted to the
mitochondrial matrix. Additional images of young and old cells are shown in figure S6A.
dM: depleted mitochondria. fM: fragmented mitochondria. tM: tubular mitochondria. IG:
autofluorescent intestinal granules. C1,C2: Coelomocytes 1 and 2. Scale bar: 10𝝻m
B) Mitochondrial fragmentation score during aging in coelomocytes and uterine seam
cells. ** p=0.01. Dashed lines: linear regression.
C) Comparison of coelomocytes and uterine seam mitochondrial fragmentation score in
the same animal during aging. * linear regression different from zero p=0.04.

Transcription Factor Regulation during Aging

Transcription factors play a crucial role in the regulation of longevity across many
organisms (Kenyon, 2010). Assessing TF activity with single-cell resolution across age
can uncover new relevant regulators that bulk tissue analysis may have missed, since
most TFs act in a limited number of cells (Figure 2A). We summarized TF expression
change across age for each cluster by its log2FC and target gene change by a t-statistic
comparison of target gene AUCell scores in young versus old cells. We observed that
for 22 putative activators (Figure 2D), TF targets changed expression in the same
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direction as the TF itself during aging (mean correlation = 0.35, Figure S7A). For 17
putative repressors (Figure 2D), TF targets changed in the opposite direction as the TF
itself during aging (mean correlation = -0.26, Figure S7A).

Figure 7A shows the top 20 TFs with the most positive average log2FC across cell
types (see Figure S7A, S7B for changes in AUCell scores). Remarkably, of the eight top
most globally age-regulated TFs, seven are well-known positive regulators of C.
elegans longevity listed in the GenAge database (of the Human Aging Genomic
Resources): skn-1, daf-16, hlh-30, fkh-7, fkh-9, daf-12, dpy-27 (Kaletsky et al., 2016;
Tacutu et al., 2018). Two other TFs that are consistently up-regulated but in fewer cell
types, nhr-23, nhr-25 are longevity regulators as well (Tacutu et al., 2018). We observed
that skn-1/Nrf2’s age-dependent expression change showed interesting cell type
specificity; whereas skn-1/Nrf2 expression increased in most cell types, it decreased in
glial cells. Likewise, for some glial cell type clusters, the skn-1/Nrf2 expression decrease
was accompanied by a decrease in its predicted targets as well (Figure 7C). gei-3 is a
broadly expressed TF that has not previously been associated with aging. We found
universal up-regulation of gei-3 and its predicted targets (Figure 7D), suggesting that it
could be an interesting new longevity regulator.

Figure 7B shows the top 20 TFs whose expression decreases the most during aging. In
contrast to the up-regulated TFs, the majority of down-regulated TFs were cell type
specific. Only xbp-1 and unc-4 are known lifespan regulators (Tacutu et al., 2018). xbp-1
mRNA abundance decreased universally across cell types. xbp-1 is a key regulator of
the ER-UPR (Imanikia et al., 2019), which we also observed to have decreased
expression as a gene set with age in many cell types (Figure 3F, 4C). In summary, TF
expression changes with age often, but not always, correlate with the activity of their
targets. Moreover, we observed that TFs universally up-regulated with age across many
tissues are enriched with TFs whose normal function is known to extend lifespan.

microRNA regulation during aging
In addition to TFs, microRNAs, which can trigger mRNA degradation(Bartel, 2004),
have been explored as longevity regulators in C. elegans (Pincus et al., 2011). We
examined the enrichment of miRNA targets for genes differentially expressed during
aging for each cell type cluster for the 60 miRNA families in the targetScan database
(Methods). The miRNAs had an average of 157 predicted targets. We found 16 miRNA
families whose targets are significantly enriched (q-value < 0.01) for differentially
expressed genes with age in at least one cell type (Figure S7C, Table S14), four of
which were reported to change in expression during aging in a previous bulk study
(Lencastre et al., 2010). Our result is consistent with a previous finding that the majority
of miRNA targets are up-regulated with age, suggesting that their expression is
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de-repressed following the decline of miRNA levels(Ibanez-Ventoso and Driscoll, 2009).
Among them, miR-34 and miR-238 are known to be involved in regulation of C. elegans
lifespan (Lencastre et al., 2010; Yang et al., 2013). This analysis showed that a subset
of gene expression changes observed during aging is likely due to changes of
microRNA levels, and that the majority of these are regulated in a cell-type specific way.
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Figure 7. ​​Changes in transcription factor expression and activity during aging.
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A) Heatmap of TFs expression log2FC during aging for top 20 TFs with the most
positive average log2FC across cell types in which they are expressed. A blank
indicates that the TF is not expressed in that cell type.
B) Heatmap of TFs expression log2FC during aging for top 20 TFs with the most
negative average log2FC across cell types that they are expressed in. A blank indicates
that the TF is not expressed in that cell type.
C) Left panel: expression log2FC of skn-1 in each cell type cluster. Right panel:
scatterplot of the expression log2FC and changes in AUCell scores for skn-1.
D) Left panel: expression log2FC of gei-3 in each cell type cluster. Right panel:
scatterplot of the expression log2FC and changes in AUCell scores for gei-3.
E) Left panels: decline in maximum speed (healthspan) after RNAi treatment targeting
transcription factors up-regulated with age in many tissues. (red curves). Right panels:
Survival after RNAi treatment targeting the same genes as in A. (green curves).

Screen for Novel Longevity Transcription Factors

Based on the observation that TFs whose expression changes in many tissues during
aging are enriched for longevity regulators, we investigated 55 TFs whose expression
(or target activity) changed with age but were not linked previously to aging (Figure 7A;
Table S15). We used RNA interference (RNAi) to turn down their expression starting
from early adulthood and systematically recorded animal movement rates and survival
over time. To do this, we adapted a real-time computer vision “Worm Tracker”
(Swierczek et al., 2011) to an automated, high throughput format (Kerr et al. 2022).

We found that RNAi of three such TF genes, gei-3, lsy-2, and mef-2 accelerated the
rate of movement decline and mortality (Figure 7E). gei-3 RNAi produced the largest
effect, similar to that of RNAi inhibition of a positive control longevity regulator, the heat
shock TF hsf-1 (Figure 7E, S7D). lsy-2 and mef-2 RNAi produced similar but less
dramatic effects both on lifespan and movement (Figure 7E). Importantly, RNAi initiated
at hatching did not affect developmental speed nor survival of larvae (Figure S7E). The
survival phenotype only appeared after the worms reached adulthood, suggesting these
TFs are genuine longevity regulators. In addition, we identified two TFs, lin-1 and ztf-28,
whose RNAi extended healthspan. We recorded increased movement speed compared
to control consistently towards the end of life, a period characterized by a lethargic state
(Zhang et al., 2016). Upon these RNAi treatments, a subset of animals could pass the
movement detection threshold for up to 30% longer than the control. Surprisingly,
neither lin-1 nor ztf-28 RNAi affected lifespan (Figure 7E), suggesting a decoupling of
mortality and health decline. We observed a similar phenotype for the knockdown of
another positive control, the translation initiator eif-1, (Figure S7D) which was previously
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reported to increase lifespan in other conditions (Curran and Ruvkun, 2007). While little
is known about ztf-28, lin-1 is a well-studied gene involved in vulval cell fate
determination during development (Beitel et al., 1995). Our analysis shows that
increased lin-1 expression with age is more prominent in the muscles, possibly leading
to a detrimental effect on movement. All five of these TF hits have homologs in the
human genome.

Discussion

Resource
In this study, we present a single-cell atlas of the adult nematode C. elegans. To date,
the Tabula Muris Senis consortium has offered the most comprehensive view into the
gene expression changes at the cellular level in many cell types and organs (Tabula
Muris Consortium et al., 2018; Zhang et al., 2021). Due to the small size and cell
number of C. elegans, using this organism, we could extract virtually every cell type
from a large number of animals, in parallel in the same laboratory, reducing the variation
between the tissues and time points due to non-biological factors. The dataset provides
an original and near-complete resource for cell-type specific expression in C. elegans
adulthood and a history of gene expression changes that accompany aging. The quality
of our dataset was assessed and validated both by comparison to imaging experiments
and to previous scRNA-seq of larval stages.

Regulatory sequences for cell-type specific marker genes are an invaluable tool to
genetically target and perturb a given cell type. Their identification has historically been
empirical and often fortuitous (Dupuy, 2004; Hope, 1991). This scRNA-seq dataset
provides a new collection of adulthood marker genes for every cell type, including many
cell types previously lacking such specific promoters. To enable additional analyses, we
have made the entire dataset accessible through an online interface. Users can query
the cell-type specific expression of single genes, GO terms or custom gene sets. They
can also explore gene expression changes during aging. Finally, we have made our
analysis of TFs and their target gene sets across cell types and age available through
the interface.

Aging signatures and TFs
Our analysis brings to light a high level of heterogeneity of coherent gene expression
changes with age between cell types. The list of genes whose expression changes
broadly across many clusters/cell types during aging is surprisingly short (Figure 3A,
S3C). For instance, we observe that only 12 genes change with age in more than 50
cell types/clusters (Figure 3B). To some extent, this may be explained as different cell
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types express different cell identity genes whose age-dependent changes could be cell
type specific. Consistent with this, the more global gene changes largely involve broadly
expressed metabolic and other “housekeeping” genes. The most common aging
signature that we observe is a down-regulation of cytoplasmic and mitochondrial carbon
metabolism genes, as well as mitochondrial respiration genes (Figure 3B, 3C). The
decline of mitochondrial respiration is one of the most conserved aging phenotypes
observed across distant phylogenies (López-Otín et al., 2013), including C. elegans
(Brys et al., 2010).

That said, we observed considerable, non-random variation in expression of genes that
do not define cell identity but rather processes involved in molecular repair and
resilience. For example, we observed frequent down-regulation of ER genes, including
ER stress response, occurring more widely in the neurons (Figure 3D). This discovery
complements the discovery by Kimmel et al. in mice that the most commonly
down-regulated GO terms in aging kidney, lung, and spleen comprise proteins targeted
to the ER (Kimmel et al., 2019). These observations across distant species suggest that
down-regulation of ER functions could be a recurrent aging mechanism, perhaps a
causal one. Our analysis found that the loss of ER stress response gene expression is
an event limited to early aging. It could explain the early decline of C. elegans’ ability to
respond to ER stress (Ben-Zvi et al., 2009). Also among our common up-regulated
aging signatures were cytosolic chaperones including small heat shock proteins and the
HSP-70 family (Figure 3B, S3B), as previously seen in bulk analysis (Lund et al., 2002).
The gradual demise of proteostasis with age is a common hallmark of aging
(López-Otín et al., 2013) and has been reported by several methods in worms (Ben-Zvi
et al., 2009; David et al., 2010), suggesting that these chaperones are up-regulated as a
compensatory process that may help to restore homeostasis. How each tissue is
differently affected has not been reported previously. Our scRNA-seq indicated a
particularly strong up-regulation of chaperone gene expression in the neurons (Figure
3D, S3B), suggesting this tissue is subjected to higher protein stress with age. Likewise,
we find a strong DNA-repair signature in specific cell types including neurons, valves,
and epithelium cells (Figure S3D).

The xbp-1 transcription factor controls one of the branches of the ER-UPR stress
response and is among the most broadly down-regulated genes with age (Table S8).
Frakes et al. found that restoring xbp-1 activity specifically in some glia cells can trigger
a signal that activates the ER-UPR stress response in the peripheral tissues, like the
intestine, and in turn increases longevity (Frakes et al., 2020). Interestingly, we found
that glia clusters experienced the strongest drop of xbp-1 mRNA with age, suggesting
that this loss could drive aging (Figure 3D, S3B).
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When considering aging signatures in each cell type at the level of functional GO terms,
we found that the great majority of gene expression changes are cell-type specific or
only shared in a limited subset of tissues (Figure 3A). Signatures including the
ribosomal genes or the protein folding stress response are present in many cell types
but not universal. Others, for example, genes encoding proteins associated with the
extracellular matrix, lysosome, innate immunity, proteasome, DNA repair, or neuronal
growth, are more specific and linked to the intrinsic functional specificities of the cell
types (Figure 3). Ribosomal mRNA trajectories are among the most differentially
regulated signatures of our dataset, exhibiting a strong down-regulation in some cells
but an up-regulation in others (Figure 3E). A similar effect is also emerging from the
analysis of scRNA-seq data of aging mice (Zhang et al., 2021). Interestingly, though this
effect is different, even reversed, between different cell types, it is consistent within the
cell population of a cell type cluster, suggesting that the cause of this change in mRNA
abundance is not haphazard but rather part of a cell-type program. Different cells could
change expression of different gene sets depending on their specific functions (gut
barrier, secretory, metabolic, mechanosensory, innate-immunity and so forth). These
coordinated gene changes may influence the rate of aging; for example by increasing
proteostasis or repair or even by reducing ribosomal protein levels, as was shown
experimentally in yeast and in worms (Hansen et al., 2007; Kaeberlein et al., 2005).

One of our most surprising discoveries was that canonical life-extending TFs together
comprise the most broadly up-regulated TFs with age. These included daf-16/FOXO3,
hlh-30/TFEB, and skn-1/NRF2 (Lapierre et al., 2013; Martínez Corrales and Alic, 2020),
three conserved stress-response TFs, as well as daf-12, dpy-27, fkh-9 and fkh-7, which
have also been found to promote longevity in worms (Hsin and Kenyon, 1999; Kaletsky
et al., 2016; Mansfeld et al., 2015; Tacutu et al., 2012). These pro-longevity genes are
all known stress-response TFs, suggesting that their up-regulation occurs in response
to cellular stress, potentially alleviating the cellular burden of aging and preventing it
from causing damage even sooner.

By testing other TFs whose age-dependent expression changes similarly in multiple cell
types, we found five new TFs influencing lifespan and/or healthspan. gei-3, homologous
to CIC (Capicua) in mammals, is altered across most cell types during aging (Figure 7D)
and has the strongest effect on lifespan and healthspan (Figure 7E). CIC was shown to
function as a tumor suppressor in two different cancer models (Bunda et al., 2019; Lee
et al., 2020). Our other hit, LIN-1 belongs to the eukaryotic ETS-domain TF family.
Recently, expression data from long-lived people observed lower levels of ETS1 TF
(Xiao et al., 2022). Our result validates the use of scRNA-seq to find new TFs that
influence longevity and suggests an examination of TFs whose expression changes
globally with age in other organisms.
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Magnitude of Aging
We characterized the global aging pattern of the transcriptome in every tissue by
looking at the maximum mean discrepancy (MMD), cell-to-cell variation and
gene-variability. Such methods were used previously (Bahar et al., 2006; Kimmel et al.,
2020; Martinez-Jimenez et al., 2017), but have not been compared carefully to each
other or validated experimentally. Our analysis revealed increased MMD for 96% of the
cell type clusters, increased cell-cell variation in 70% and increased gene-variability in
75% of the cell type clusters. This suggests that the majority of cells change both their
baseline transcriptome profile and cell-to-cell variance during aging. We observed a
modest correlation between these independent measurements, suggesting that some
are coordinated (Figure 5E). Age-dependent changes in mitochondrial morphology in
vivo were used as a proxy to measure aging rate independently. In two separate
experiments, we compared the mitochondrial morphology change of two cell types
showing different transcriptional aging patterns (Figure 6, S6). In both cases, we found
that cell types with greater mitochondrial network aging rate also exhibit greater global
transcriptional changes (including MMD, cell-cell variation, and gene variability).
Nonetheless, there are cell types where different aspects of global aging patterns are
inconsistent with each other. For instance, the ALA neuron (cluster 140_0) has a
pronounced increase in cell-to-cell variation with age and a relatively small change in
MMD. Thus, aging could be driven either by cell-type dependent conserved programs or
in a more cell-type independent and chaotic way. A comparable effect exists during
replicative aging of S. cerevisiae in which several aging events were observed, leading
to distinguishable death phenotypes (Li et al., 2020). Finally, we note that in some cell
types, cell-to-cell variability actually decreased, indicating that the paradigmatic,
entropic, loss of order need not accompany aging.

In summary, we present in this study a near-comprehensive single-cell atlas for adult C.
elegans gene expression with cell type-specific RNA signatures, allowing an
unprecedented comparison of specific cell type aging. Gene expression only represents
one layer of the overall cellular complexity, but the differential regulation we observe
exposes a surprising aspect of cellular aging– a minor shared aging signature and an
unanticipated level of divergence between the different cell types. The dysregulation of
energy metabolism, including mitochondrial respiration, is the most universal change; a
decline in ER function is pervasive as well, yet to a lesser extent. The diversity of aging
trajectories is remarkable because it involves essential functions like the ribosomal
protein genes, the proteasome or DNA repair. It is particularly surprising considering the
low complexity of the C. elegans lineage, whose somatic cells are all post-mitotic.
Significantly, the age-related gene expression shifts are not random but occur at the
level of entire functional gene sets, suggesting a dynamic reorganization in patterns of
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cellular homeostasis. Another layer of dysregulation leads to increased cell-to-cell
variability within cell types, one that is only modestly correlated with the functional
changes in expression. In addition, our dataset allows the study of TF expression and
activity changes with age, leading to the unexpected discovery that the expression of
many TFs that promote longevity increases animal-wide with age. We believe this atlas
will help the community to analyze and interpret the aging process with increasingly
high levels of resolution, leading to a better understanding of how individual cells and
tissues change their patterns of gene expression in ways that may promote, or forestall,
a global loss of homeostasis and resiliency.

Contact information for resources

Further information and requests for resources and reagents should be directed to and
will be fulfilled by the lead contacts, David Kelley (drk@calicolabs.com) and Cynthia
Kenyon (cynthia@calicolabs.com). C. elegans strains generated in this study are made
available upon request. Strains will be made publicly available through the
Caenorhabditis Genetics Center (CGC) after the first personal request. Any additional
information required to reanalyze the data reported in this paper is available from the
lead contacts upon request. Single-cell RNA sequencing data have been deposited on
our website at c.elegans.aging.atlas.research.calicolabs.com/ as well as on GEO (link
available upon request) and are publicly available as of the date of publication.
Accession numbers are listed in the table S15.

Methods
Experimental model and growth conditions
All C. elegans and bacteria strains as well as the products used in this study are
detailed in Table S15.
Worms were cultured on Nematode Growth Media (NGM) following standard methods,
at 20°C or 25°C as indicated in OP50 E. coli (Brenner, 1974). Live E. coli colonize old
worms leading to their premature death (Podshivalova et al., 2017). We chose to feed
our population with killed OP50 to collect data during the geriatric period of the end of
their life. For dead OP50, bacteria were treated with antibiotics, the only method we
found to efficiently kill E. coli without altering their nutritive property. OP50 was grown in
LB at 37°C overnight to saturation, then diluted in a large volume to OD 0.2 and cultured
at 37°C until it reached OD 1 to 2. Gentamicin sulfate was then added to the culture at
200µg/mL and kept in the incubator for 5 hours. The resulting culture was centrifuged to
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pellet bacteria and resuspended in 1/75 the initial volume of LB gentamicin sulfate
16.7µg/mL.

2-layer agar plates were used to prevent worms from digging and to protect them from
drying out. 15 mL autoclaved regular NGM containing 2% agar was poured in 10 cm
plates. After 24 hours, 25 mL autoclaved NGM with 3% pure agarose was poured on
top. Both layers contained gentamicin sulfate 16.7 µg/ml and carbenicillin 25 µg/ml,
added in the solutions after autoclaving. After 24 hours, we added 0.5 mL dead bacteria
solution under a sterile hood and we added another 0.5 ml when the lawn was dry. The
plates were stored at 4°C.

For an aging time course assay, a population of approximately 200,000 C. elegans was
required. Twenty gon-2(q388) L4s larvae (P0) were sampled and transferred to 5
regular OP50 6cm plates (twenty per plate). The F1 eggs were collected in
S-Basal-PEG without bleach according to (Roux et al., 2016) and transferred to new
plates. 3 days later, the F2 eggs were collected from plates without males, and 300-500
of them were added to new plates. At the end of day-1 of adulthood, the F2s lay
thousands of eggs per plate (we added a few drops of 50x concentrated OP50 to avoid
starvation). At least 30,000 F2s eggs were collected in solution using the same method,
they were used as parents of the last generation. They were washed 4 times in 12 mL
S-basal-PEG and left overnight at 20°C to hatch. 2500 F2 L1s were transferred on each
10 10cm OP50 plate (25,000 L1s total). They were incubated 48 hours at 20°C until
they reached the L4 stage. 300 µL of 50x concentrated OP50 were added on top of the
bacterial loan to avoid starvation. They were then shifted to 25°C and incubated 24
hours. A total of 300,000-400,000 eggs were recovered. Parents were discarded by
centrifugation and the eggs were treated for 30 seconds in bleaching solution, washed
immediately 5 times in S-Basal-PEG and incubated in solution at 25°C for 12 hours to
allow hatching (100% of them should hatch). We estimated the L1s concentration using
a stereo-microscope. We transferred around 200,000 L1s into ‘2-layers’ 10cm-plate with
2500 L1s per plate. 0.5 mL of dead OP50 was added to the plates every day from day 4
to day 10. We closely monitored the plates to discard the contaminated ones. Most
worms were gonad-less, but because q388 mutation in gon-2 is not fully penetrant at
25°C, some worms retained their fertility (about 1-2 eggs per 100 worms). For this
reason, we kept the population at 25°C the entire aging time course to prevent the
development of the fertile worms. Spontaneous apparition of rare males is tolerated,
they represented around 1% of the last generation.

For the same experiment in live bacteria, we replaced dead bacteria with live 50-times
concentrated saturated OP50 and used 2-layers 10cm plates without antibiotics.
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The two strains CF4596 and CF4569 were grown in presence of 1µM auxin passed the
L4 stage of their final generation. Both strains contain an AID tag in C-terminus of daf-2
locus, included for potential follow up studies under daf-2(-) condition. The rationale for
using CF4596 strain in this study over an intact daf-2 strain is that it will serve in future
studies as a control against the long-lived strain CF4569 grown with auxin. We
confirmed previous observation (Venz et al., 2021) that the AID insertion in the daf-2
C-terminal locus did not impair DAF-2 function in absence of TIR1 or auxin (absence of
abnormal dauer formation at 27°C, data not shown). The control was the same strain
without the AID (CF4649, see below). CF4596 does not express TIR1 and is insensitive
to auxin. CF4569 expresses TIR1 that can target DAF-2::AID to degradation upon auxin
treatment (Zhang et al., 2015). This strain behaves like a daf-2 loss-of-function in
presence of auxin (100% dauer and long lived, not shown and (Venz et al., 2021)).
During our preliminary experiments, CF4569 as well as a population of CF4086 grown
in live OP50, were single-cell sequenced (see Single cell gene expression quantification
paragraph below for details). We used these datasets to help increase the resolution of
the high-dimensional single-cell data plotting (UMAP) for the condition we analyzed in
depth, CF4596 in killed bacteria.

Our use of a mutation like gon-2(q388), which prevents somatic gonad and germ cell
development, was required to remove the overabundance of germ cells that mask the
somatic cell-signal. There were two potential concerns with this strain. First, the gonad
is required for development of certain other organs such as the vulval. However, since
the strain is not fully penetrant, we were still able to identify gonadal and
gonad-dependent cells though presumably at a relatively low abundance (see below,
“Comparison to CF512 gon-2+/+ strain)”. Second, loss of the germ cells is known to
extend worm lifespan through activation of multiple stress-resistant transcription factors.
However, this life extension requires the presence of the somatic gonad (Hsin and
Kenyon, 1999), which is missing in gon-2 mutants. As expected from laser ablation
studies (Hsin and Kenyon, 1999), gon-2(q388) mutation has only a marginal effect on
lifespan (David et al., 2010).

Strain editing
Nucleotide sequences used for our CRISPR editing strategies are detailed in Table S15.
For CF4596 and CF4569, mu465[daf-2::AID] allele was generated by inserting AID in
the C-terminal of the daf-2 locus. A CAS9-nuclease directed endonuclease reaction
coupled to an oligo of the AID flanked with two 31bp homologies covering the outside
region of daf-2 stop codon was used to direct the homology-based repair as described
previously (Paix et al., 2015). As a selection method, we used dauer formation on 100
µM auxin. A more detailed protocol of our strategy is available upon request.
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CF4649 was generated to be used as a control to test whether mu465[daf-2::AID] could
affect DAF-2 activity (in absence of TIR1). CF4649 is a crispR edition of CF4596, where
a double Cas9 cut of the AID was done to reverse daf-2::AID into daf-2+/+ by
homologous recombination using an oligo.

All our CrispR reactions were carried out with a dpy-10(cn64) heterozygous co-edition
marker (Paix et al., 2015). All our final clones were selected to be dpy-10+/+.

Single cell isolation
The following protocol is inspired by the study from Zhang and collaborators (Zhang et
al., 2011) and from Kalestky et al. (Kaletsky et al., 2016). We implemented a list of
modifications to apply the protocol to adults. Bulk RNA sequencing performed before
and after the dissociation protocol during our preliminary tests has shown some
marginal ER-UPR stress response induction due to the worm dissociation. Following a
previous report (Kaletsky et al., 2016), we tried to add the RNA transcription inhibitor
actinomycin D to the dissociation buffer to prevent stress response. None of the
concentrations we tested prevented this response. Instead, we found that shortening
the time between the SDS/DTT treatment and the mechanical extraction on ice was the
best way to limit this response to insignificant levels.

Approximately 30,000 CF4596 worms were harvested per time point and washed 4
times in S-Basal/PEG 0.01%. During the last wash, we harvested 1500 worms that we
snap-froze in 1mL trizol to extract total RNAs to control for the cell extraction related
stress. The other worms were pelleted in a 15mL tube. From the SDS/DTT treatment
and before the cells were isolated in solution at 4°C, the procedure was conducted as
fast as possible within 20 to 25 minutes. We measured the volume of the worm pellet
(around 500µL) and added 3 times the volume of lysis buffer to it (200 mM DTT, 0.25%
SDS, 20 mM HEPES pH 8.0, 3% sucrose, stored at –20°C and used freshly thawed).
The time of incubation in the lysis buffer was variable and critical. It was carefully
monitored under a stereo-microscope using 5 µL aliquots. We stopped the reaction
before the animals’ cuticles broke but when the cuticles showed signs of loosening. In
young worms, the head started to swell, and the mouth was starting to protrude. In old
worms, this time was shortened by 1-2 minutes. Old worms were ready when the vulva
of some of them started releasing internal substance. The animals’ body thrashing
slowed down but they remained alive. The incubation time varied between 3 to 6
minutes. We stopped the reaction by adding 12 mL of M9/PEG, 0.01%. The worms
were quickly pelleted at around 200 rcf for 30 seconds. We repeated this wash twice
and resuspended the pellet in 3 mL M9/PEG 0.03% to transfer it into a 5 ml eppendorf
tube. After pelleting the worms at 150 rcf for 20 seconds, the supernatant was removed
and replaced with 1 mL freshly prepared pronase solution in L15 Leibovitz medium
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(L1518 Sigma adjusted to 340 m Osm with sucrose 28mM final; pronase 15mg/mL) as
described in (Zhang et al., 2011). The pronase incubation was carried out at room
temperature with gentle rocking for 5 to 15 minutes until about 5-30% of the worms
broke open. The tube was then placed on ice while the solution was passed through a
21 G 1-inch needle in a 1 mL syringe back and forward 30 times. If necessary, a few
additional passages through a 25 G 1-inch syringe were added. The release of cells
gave the solution a cloudy aspect. The debris and the unopened worms were separated
from the cells at 150 rcf for 1 minute and the supernatant (cell suspension #1) was
transferred to a new tube. 250uL L15-FBS 10% (FBS heat inactivated) was added to
the 1 mL cell suspension #1 at 4°C to inactivate the pronase. The debris pellet was then
treated again with 1 mL fresh pronase solution rocking at room temperature for an
additional 3 minutes and returned on ice for a second mechanical cell extraction. The
solution was passed through the 21 G needle another 30 times (cell suspension #2) and
250 µL L15-inactivated FBS 10% was added to it. The two cell suspensions were then
pooled at 4°C and passed through a 35 µm nylon mesh (C. Murphy lab protocol),
pre-wet with L15 340mOsm 2% inactivated FBS, to filter debris. We used a commercial
cell strainer as the nylon mesh holder, after its original filter was cut out (Suppl. Notes
3A). The resulting cell suspension was centrifuged 7.5 minutes at 500 rcf 4°C. The
resulting pellet was gently suspended in 3 mL 4°C egg buffer BSA (8 mM NaCl, 3 mM
MgCl2-6H2O, 3 mM CaCl2, 5 mM HEPES, 48 mM KCl, pH 7.3, BSA added the same day
10 mg/mL). Hemocytometer C-Chip was used to estimate the cell concentration through
a DIC microscope (see below), before and after the cell sorting. First, the cell
suspension was centrifuged 7.5 minutes at 500 rcf 4°C and the pellet was gently
resuspended in 400 µL 4°C egg buffer with 10 mg/ml BSA. Four mL 4°C methanol
100% was added very slowly to the cells while slowly vortexing and the fixed cells were
stored at -20°C. In the hemocytometer, small and larger cells could be seen (Suppl.
Notes 3B). The cell count was between a few million up to 20 million cells in total per
isolation. If the cell count was too low, the SDS/DTT incubation time was increased.

Cell sorting and single cell RNA sequencing
It was always preferable to use a minimum number of 3-4 million cells maintained at
4°C. We found that the use of re-hydrated methanol-fixed cells was the best way to
preserve cellular RNA integrity and was compatible with the 10x chromium droplet
encapsulation technology. The cell suspension in methanol was centrifuged 7.5 minutes
at 500 rcf 4°C and the cells were gently re-hydrated with 2 mL egg buffer BSA with
2U/µL RNase inhibitor. DAPI was added at 3 µM and incubated for 10 minutes on ice.
The cells were filtered through a 40 µM strainer and sorted with BDFACS Aria Fusion
with the 100µm nozzle running at a frequency of 31.0 kHz. Cytometer performance was
assessed by running CS&T QC beads. Sort drop delay was determined using Accudrop
beads. DAPI was excited with the 405 nm violet laser and its emission detected with a
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450/50 bandpass filter. DAPI positive cells were selected by plotting Forward Scatter
(FSC) vs. DAPI-compatible filter and gating on events positive for DAPI, selecting
against negative events which we presumed to be debris. Among DAPI positive events,
only the 2N DNA population was gated (Suppl. Notes 3C) and sorted into 1mL PBS
BSA 2x RNAse inhibitor 4U/µl. The use of cells from early day 1 adult cells was
necessary to spot the 1N, 2N and 4N DNA cell populations, older worms lost the 1N
DNA population. A minimum of 50,000-80,000 cells were sorted to load a single 10x
Chromium channel. The sorting solution was transferred to a 5 mL eppendorf and
centrifuged 7.5 minutes at 500 rcf 4°C, the pellet was resuspended in PBS BSA 10
mg/ml with 2U/µl RNAse inhibitor. The flow-sorted somatic cells were processed into
libraries using 10x Genomics Chromium Single Cell 3' V3 Chemistry as directed by the
manufacturer, with a few exceptions.

16,000 cells were loaded to aim for 10,000 cells per channel processed into a 10X
Genomics Chromium chip, 3 channels per time point were used. cDNA was amplified
for 12 cycles. Between 1/4 and 7/8 of the cDNA was moved forward into library
construction, and the index PCR was cycled 12 times. Final libraries were brought to 2.4
nM and processed on an Illumina cBot and HiSeq4000 sequencer.

Healthspan
Healthspan was measured as the decline of movement over time at 25°C with live
OP50 or HT115 E. coli. It was recorded using an automated version of the Multi-Worm
Tracker (MWT) computer vision system (Kerr et al. 2022), with images acquired using
PixeLINK PL-D725MU cameras (5 megapixels, configured to run at 50 frames per
second) with Navitar NMV-25M1 lenses (25 mm focal length, F 1.4 aperture). Worms
were segmented using the core Multi-Worm Tracker algorithms available from
https://github.com/ichoran/mwt-core.git, and analyzed using Choreography from
https://github.com/ichoran/choreography.git (Swierczek et al., 2011). The MWT was run
using a target object size of 12 to 200 pixels and using the new asymmetric background
adaptation rate feature to be more sensitive to slow-moving animals (rate 5, asymmetry
-3, for 8-fold faster acceptance of new dark regions than removal of old dark regions).
Choreography was run using −p 0.04 −M 1.5 −t 30 −s 0.2 −S –shadowless options and
the Reoutline::exp, Respine, and SpinesForward standard plugins, and −N all -o
area,speed,midline,loc_x,loc_y was used to output a time course for each animal
tracked. With these parameters, an animal had to have moved at least half a body
length anytime within a 1 min time interval to be detected, but could be picked up in as
little as 5 seconds if it moved enough. After detection, tracking continued even if the
animal was still. The Choreography output was analyzed using custom code to calculate
maximum speed (computed as displacement over 0.2 seconds, then median filtered
using a 5-sample window) over various time intervals; this code is available at

37

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.15.496201doi: bioRxiv preprint 

https://github.com/ichoran/choreography.git
https://paperpile.com/c/AyldiX/sQrRo
https://doi.org/10.1101/2022.06.15.496201


https://github.com/ichoran/metrology.git. The animals were assayed as follows: prior to
recording, three mechanical taps were delivered to the animals’ housing to induce
movement. Recordings started within 5 seconds and lasted for 490 s: animals were first
allowed to calm down from being handled (300 s), then subjected to twelve taps at a 10
second inter-stimulus interval. Animals respond to this tap train with a prolonged
increase in speed, in addition to exhibiting per-tap responses; each animal’s maximum
speed was measured 30-40 seconds after taps ceased. Tracking was performed using
4 separate plates per condition, starting with approximately 40 L4 animals per plate.
Animals were tracked every 6 hours for their whole lifespan. We computed the average
maximum velocity of each worm population (plate) because of all movements
measures, maximum velocity correlates the best with longevity according to (Hahm et
al., 2015). 0 on the Y axis corresponds to the late L4 stage. A publication dedicated to
the high-throughput automated multi worm tracker is in preparation (Kerr et al. 2022).

Lifespan
All lifespans assays were carried out at 25°C with live OP50 or HT115 E. coli. Lifespans
were measured either by the standard method (referred to as Manual) or using
consecutives images from the Multi-Worm Tracker (referred to as Automated). Manual
lifespan was scored by testing movement as described previously (Apfeld and Kenyon,
1999). Animals were scored as dead when they failed to move after prodding.
Automated lifespan was scored by looking at a series of pictures of the same plate
using ImageJ. Consecutive images of the same plate are captured every 6 hours as
part of the healthspan assay; these were overlaid in red, green, and blue to provide a
visual cue of movement: motionless animals are in shades of gray, while even animals
that only move their heads slightly appear at least partly colored. Animals were scored
as dead when they did not show any movement for a period of 18 hours. The lifespan
curves shown in Figure 7 are representative of at least 3 independent experiments. All
results are reported in Table S15. Lifespans measured in parallel manually or through
automated imaging provided the same results (Rex Kerr et al, 2022).

Candidate TF gene RNA interference screen for healthspan effect
To choose our candidates, we considered the universality and the extent to which TF
gene expression or TF targets activity changed with age in clusters. Candidates were
censored if they were known aging regulators in the GenAge database. We were limited
to the RNAi clones that were present in our library (C.elegans Ahringer RNAi library
from Source Bioscience Ltd)(Kamath et al., 2003) . We selected TFs based on the
following criteria: (1) Highest number of clusters in which the TFs are expressed and
significantly changing with age (15 TFs up-regulated, 11 TFs down-regulated). (2)
Highest average fold change with age regardless of the cluster number (10
up-regulated, 3 down-regulated). (3) Most changing AUcell predicted TF targets activity
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changes (8 TF up-regulated, 8 down-regulated) (Table S15). RNAi feeding plates were
prepared as follows. 750 uL of saturated bacterial culture was diluted with 750 uL LB
100 μg/ml carbenicillin and after 2 hours at 37°C, isopropyl β-d-1-thiogalactopyranoside
(IPTG) was added at 4 mM concentration. After 4h at 30°C,150uL of the RNAi culture
was added on a NG 1mM IPTG 100μg/ml carbenicillin plate. The bacteria were spread
equally with a sterilized glass stick on the surface without reaching the plastic edges to
reduce the thickness of the bacterial loan. The plates were incubated for 24h at 30°C.
CF512 worms were grown for 2 generations at 15°C and harvested as overnight
synchronized arrested L1s at 25C (see growth conditions for details). They were
incubated 24 h at 25°C on OP50 NG plates to reach the L4 stage. For the initial
healthspan screen, 40 L4s were added to each RNAi plate. The plates were sealed with
parafilm with 4 holes to enable some gas exchange and their inside lid surface was
treated with fogtech-DX anti-fog solution. Four plates per condition were loaded into the
healthspan automated reader on separate racks, each rack containing one or two
control plates. Our RNAi control strain was transformed with L4440 empty-vector
plasmid. In the first batch, we screened 58 RNAi knockdowns, described in Table S15.
In the second batch, we analyzed 11 RNAi if they showed some difference with control
in the first batch. In the third batch, we analyzed the 5 confirmed RNAi hits, all of their
previously observed movement phenotypes were confirmed (Table S15, S16). In
parallel, manual lifespan measurements were performed on the best hits for the batch 2
and 3. The results are summarized in (Table S16). Additionally, we applied the RNAi
treatments, corresponding to all five TF hits, starting from L1 larvae and followed their
development. We found that none of the RNAis prevented or slowed down their growth,
showing that the gene knockdown used were not essential or toxic to the worms.

Microscopy
The worms were mounted between glass slides on fresh 4%-agarose pads in 1.5 uL 5
mM levimasole in S-Basal. The confocal microscope used for experiments in figures 1
and 6 was a Nikon Ti-E Microscope/Yokogawa CSU-22 Spinning Disk with a
Photometrics Evolve camera, a Prior motorized stage with Piezo Z-drive, a NEOS
AOTF adapter and controller for Micro-Manager 1.4 software. The objective lens was a
Plan ApoVC 60X/1.4 with oil. The laser wavelengths used were 405, 491, 561, 640 nm
at 100 mW. Images were analyzed with NIS Elements 4.13 and ImageJ/FIJI. Images
shown are a maximum density projection of Z-stacks acquisition of the entire cell of
interest with 0.3 μm steps.

Transmitted DIC microscopy images were captured using a Leica DM6B with a
Micropublisher 6 digital camera (QImaging) and 40x 0.8 Dry FLUO/BF/POL/DIC
objective. Images were acquired using µManager software. The dissecting microscope
used was a Leica MZ16FA microscope (Leica, Bannockburn, IL, USA).
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Mitochondria morphology scoring
Worms were mounted individually as described above. Z-stacks of the cells of interest
were acquired and maximum density projections were computed on NIS Elements 4.13.
DIC images were used as a validation that the right cells were captured. Then, GFP
fluorescence images were isolated and treated with photoshop to mask any background
fluorescence or details that could inform on the age of the worms. The extent of
mitochondrial fragmentation was scored blind by two persons independently as shown
in Figure S6. If more than one cell of a given cell type was scored in the same animal,
the scores were averaged. Every visible cell was imaged. The cells far from the
objective were often blurry and impossible to score. If one of the two cell types could not
be imaged, the worm was discarded. The worms imaged came from two independently
aged populations.

Single cell gene expression quantification
Single cell-sequencing libraries were prepared from three independent populations
across multiple time points. A population of CF4086 was grown in live OP50 bacteria
and harvested at days 2, 4, 6, 8, and 10 of adulthood. A population of CF4596 was
grown in killed OP50 bacteria and harvested at days 1, 3, 5, 8, 11, and 15. A population
of CF4569 was grown in killed OP50 bacteria and harvested at days 1, 3, 5, 8, 11, and
15. A total of 200,000 cells were sequenced. In the current study we focused only on
the population grown in killed OP50 bacteria. This choice is explained in the
“Experimental model and growth conditions” section. Additional cells were only used to
learn cell embeddings and clustering in order to better perform cell type annotation.

Sequence alignment and counting were performed against C. elegans genome
assembly CE11 WS268, with Cell Ranger 3.0.0, employing STAR alignment tool (Dobin
et al., 2013). Following alignment, we implemented the approach in Cell Ranger to filter
out empty droplets and used Cell Ranger output “filtered_feature_bc_matrices'' for
downstream analysis.

Raw data process and initial filtering
We applied CellBender v2.1 on raw 10x feature barcode matrices for ambient RNA
removal and empty droplet detection with parameters --expected-cells 10000 and
--total-droplets-included 20000 (Fleming et al., 2019). The filtered matrices were then
processed with the Scanpy single cell analysis toolkit for raw data quality control (Wolf
et al., 2018). We filtered out genes expressed in less than or equal to 5 cells and filtered
out cells with 20% or more UMIs from mitochondria or ribosomal RNA.

scVI denoising with and without age-correction
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We applied scVI 0.6.0 to learn latent representations of each cell and also to construct a
denoised expression matrix (Lopez et al., 2018). We trained an scVI model with a single
hidden layer of size 768, a latent space of 128 dimensions, and a dropout rate of 0.2 on
all cells. The initial learning rate is set at 0.001 and early stopping was implemented
with a patience of 40 epochs, lr_patience=20 and learning rate dropping factor of 0.1.

In addition to the scVI model described above, to annotate cell types de novo without
age as a confounder, we re-preprocessed the data with scVI, controlling for the time
point sample as a batch effect and decoding the latent embeddings back to gene
expression space as denoised profiles (referred to as age-corrected model).
Subsequently, we used this age-corrected scVI model to perform clustering and
annotation since we did not want changes due to aging to confound cell clustering and
cell type annotation.

Germline, sperm, embryonic cell annotation and removal
We curated marker gene sets of 136 genes for germline, 18 genes for sperm and 16
genes for embryonic cells (listed in Table S17). We implemented a modified version of
AUCell to annotate germline, sperm and embryonic cells (Aibar et al., 2017).

For each of the marker gene sets, we computed an AUCell score for every cell using
the top 10,000 highly expressed genes according to the scVI denoised expression
matrix. Then we computed AUCell scores for every cell using 10,000 random
size-matched gene sets. For each cell, we compared AUCell scores of target gene sets
versus random gene sets to derive an empirical p-value quantifying the deviation from a
null distribution. For sperm and embryonic gene sets, we annotated the cell to be sperm
or embryonic if the FDR adjusted p-value was less than 0.01.

This thresholding strategy was insufficient for germline annotation, because the overall
distribution of germline scores was shifted to the right of the null distribution. Since we
observed that the AUCell scores for the germline gene set were clearly bimodal, we
used Otsu’s threshold for germline annotation.

We detected 0.2% sperm cells, 0.3% embryonic cells and 11.0% germline cells in the
dataset. These cells were removed computationally from downstream analysis (Suppl.
Notes 1A).

Doublet detection and removal
We applied Solo for doublet detection (Bernstein et al., 2019). Solo is trained to predict
doublets for each library independently on top of the trained scVI representation, with
cl_hidden = 128 and cl_layers = 1. We annotated 11.8% doublets in the live bacteria
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samples and 11.9% in the dead bacteria samples. These cells were removed from
downstream analysis.

Additional ambient RNA removal
We still observed ambient RNA contamination in the day-1 sample even after
CellBender ambient removal (Suppl. Notes 1B). Among the most abundant mRNAs in
the ambient profile (aggregated profile across empty droplets), we found cuticle
collagen genes (including col-140, col-119, etc.) in almost all cells before ambient RNA
and doublet removal. Even though CellBender successfully cleaned these cuticle
collagen gene mRNAs in the majority of day-1 cells, there were still a number of cells in
each cell-type cluster where it was not fully removed. Thus, we performed additional
day-1 cell filtering to account for the remaining ambient RNA issue. For cells in day-1
animals, we first determined whether each cell type cluster had true cuticle collagen
expression by examining the median col-140 expression level. col-140 is the most
highly expressed collagen mRNA that we observed, and expression of collagen genes
were highly correlated. Thus, we made the assumption that if col-140 has 0 count in
more than half of the cells for a cell type cluster, the cell type cluster does not express
cuticle collagen genes and all the collagen mRNA that we observe in this cell type
cluster is due to ambient RNA contamination. There were 14 clusters where collagen
gene expression was real according to this criteria (which we call “cuticle_clusters”), the
rest are “non-cuticle clusters”. The majority of them have already been described to
express collagen: hypodermis, seam, CEPsheath, etc. For every cell in day-1 animals,
we computed the AUCell score of GO term “structural constituent of cuticle”, which
contains 220 collagen genes. We examined the distribution of the cuticle AUCell scores
for “cuticle clusters” and “non-cuticle clusters’, and observed a clear separation. We
removed all day-1 cells in the “non-cuticle cluster” with cuticle AUCell score >0.1. We
removed a total of 4,698 out of 19,246 cells from the day-1 sample (Suppl. Notes 1B).

Clustering and sub-clustering
Leiden algorithm was performed with default resolution of 1 on the nearest neighbor
graph computed on scVI age-corrected latent representations (Traag et al., 2019). This
resulted in 147 clusters we named super-clusters. We performed systematic and
manual annotation to define an anatomy (cell type) associated with each super-cluster
(see below for detail).

During super-cluster cell type annotation, we observed that some super-clusters have
clear substructure with diverse annotations and aging trajectories. This suggested
sub-clustering effort is required for accurate anatomy annotation.
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For cells in each super-cluster, we re-computed a nearest neighbor graph based on the
age-corrected latent representation, and performed community detection using Leiden
with increasing resolutions: 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. At
each resolution, we visualized the sub-cluster structure on the uncorrected UMAP and
compared that with the distribution of time points and anatomy AUCell scores. We then
manually selected the resolution which allows cells from all time points to be
represented within each sub-cluster while separating clearly different anatomy terms.
For example, we determined that Leiden sub-clustering with a resolution of 0.6 was
optimal for super-cluster 3, which resulted in 6 sub-clusters. This is the maximum
resolution we could achieve such that most time points (ages) are represented in each
sub-cluster (Figure 1B, S1E). Using this pipeline, after dividing some of the
super-clusters, we obtained a total of 211 clusters.

Cell-level AUCell anatomy scoring
To obtain a database of genes with known anatomic expression, we downloaded all
available “Expression Pattern'' gene annotations from WormBase (version WS269)
using WormMine. “Expression Pattern'' annotations are derived using expression
reporters (e.g. GFP) or by performing in situ mRNA hybridization. For each anatomy, we
only used the marker genes scored as “certain” by WormBase. The resulting matrix
linked expression of 5375 unique genes to 2438 unique anatomical terms (WBbt IDs)
that represented functional systems (e.g. nervous system), anatomies (e.g. head
ganglion) or cells (e.g. ASIL, ABplaapapppa). We filtered this matrix to contain only
cell-level anatomies. This resulted in a matrix linking 1950 genes to 532 cell types, with
a median of 17 unique genes per cell anatomy (Table S1).

We used gene sets associated with these cell anatomies to compute anatomy AUCell
scores for each anatomy term (Table S1), which we subsequently used for cell type
annotation. For each of the anatomy terms, we computed AUCell scores for each cell
using the top 10,000 expressed genes based on the age-corrected scVI denoised
expression matrix.

Anatomy annotation for each cluster
We applied two systematic and one manual annotation method to the 211 clusters for
anatomy (cell type) annotation (Table S1). For cell type annotation, we used the
age-corrected scVI denoised expression matrix.

Anatomy annotation based on differentially expressed genes (DEGs)
We first performed one-versus-all differential expression analysis to identify up to 200
DEGs for each cluster based on a Wilcoxon rank sum test on the denoised gene
expression matrix (q-value < 0.05, log2FC > 0). Then for each DEG gene set, we
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performed a hypergeometric test against each of the 532 WormBase anatomy terms.
After correcting for multiple hypothesis testing, anatomy terms with Benjamini-Hochberg
adjusted p-value <0.1 were considered potential candidate anatomy associated with the
super-cluster.

Anatomy annotation based on AUCell scores
AUCell was implemented to compute cell level anatomy scores as described above. In
order to summarize the cell level AUCell anatomy scores at the cluster level, we
computed a summarized score for each cluster by comparing the set of scores for cells
in the cluster with scores of the rest of the cells using an AUC rank statistic analogous
to the AUCell method. We then assigned each anatomy term to the top three clusters
with the highest scores.

Manual annotation
We inspected the AUCell score distribution of each anatomy term on the entire UMAP
and manually assigned each anatomy term to one or multiple Leiden clusters.

Finally, we compared the annotations for each cluster from the three methods. If
different anatomies matched a given cluster, we picked the one with the highest
average expression in this cluster. However, we prioritized the specificity over the level
of expression; I.e. if one anatomy was more highly expressed than another one in a
given cluster, the lower expressed one was retained if it was expressed solely in this
cluster and the other one was not.

Cluster-averaged transcriptome correlation
We computed aggregated cluster expression profiles by taking the average of all cells in
each of the 211 clusters and projected the profiles to 50 dimensional space using PCA.
Then we computed pairwise Pearson correlation for all clusters.

Comparison to CF512 gon-2+/+ strain
Because we used a strain carrying gon-2(q388) mutation that partially prevents the
development of the gonadal tissues, we verified the integrity of these clusters by
comparing them (strain CF4596) with those from CF512, a strain carrying a wild-type
copy of gon-2 that was profiled with single-cell RNA-seq for a preliminary experiment
(full data set not published). CF512 carries fer-15(b26) and fem-1(hc17) alleles that
prevent the normal development of their sperm cells.

We preprocessed the CF512 sample using the same workflow described above. 24,524
cells from CF512 cells passed quality control. We then performed Leiden clustering. We
identified clusters associated with sheath cells, distal tip, vulva uv1 and uv3 in the
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CF512 sample using AUCell scores of the corresponding Wbbt anatomy terms
(Wbbt:0005828, Wbbt:0004520, Wbbt:0006793, WBbt:0006791). We compared
transcriptional profiles of cells in these clusters with the cells in the corresponding
clusters in our CF4596 sample (Suppl. Note 1D).

Comparison to Kaletsky et al. worm tissue bulk RNA-seq
We downloaded the tissue-specific marker genes for hypodermis, intestine, muscle and
neurons from Table S9 of Kaletsky et al.’s publication (Kaletsky et al., 2018). We then
computed the Jaccard index between their marker genes with marker genes for each of
our 211 cell type clusters. Our marker genes are defined by absolute value of log2 fold
change > 2 and adjusted p-value < 0.01 in the cell type differential expression analysis.

Comparison to Taylor et al. L4 larvae sc-RNAseq
We downloaded the preprocessed neuron single cell expression matrix cds file from
cengen.org (Taylor et al., 2021). We computed an average expression profile for each of
the 115 neuron cell types from the Taylor et al. study and each of the 133 neuron
clusters in our study. Then we computed the pairwise Pearson’s correlation between the
transcriptional profiles of our neuron cell types and the neuron cell types annotated in
Taylor et al. For each of the 115 neuron cell types in Taylor et al. study, we also reported
the cell type cluster in our dataset that best correlates with it (Table S3).

Comparison of intestinal cluster pre- and post-FACS
We processed the pre-FACS sample in the same way as the post-FACS sample. After
filtering out germ cells in the pre-FACS sample, we performed Leiden clustering on the
sample and identified the intestine cluster based on expression of key transcription
factors elt-2 and elt-7.

We evaluated the quality of the annotated intestinal clusters in the post-FACS sample
by comparing to intestinal cells in the pre-FACS sample. We correlated all cell type
clusters in the post-FACS sample with the intestine cluster in the pre-FACS sample. We
also compared the overlap of marker genes derived from intestinal clusters from pre-
versus post-FACS samples (Supp. Note 1E-J).

Transcription factor activity inference
For motif analysis, we used the C. elegans motifs in the CIS-BP database for 269
unique TFs (Weirauch et al., 2014). We selected a single motif for each TF based on
evidence precedence rules. First, we preferred directly-measured motifs over inferred
motifs. In cases with multiple direct motifs, we chose the motif based on the following
ranked order: ChIP-seq, HocoMoco, DeBoer11, PBM, SELEX, B1H, High-throughput
Selex CAGE, PBM:CSA:DIP-chip, ChIP-chip, COMPILED, DNaseI footprinting.
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We used the FIMO software to find motif hits for the 269 TFs in promoter regions of C.
elegans genes, defined as -500bp upstream to +100bp downstream of the 5’ end in the
WS271 gene annotation (Grant et al., 2011). If the gene falls in an operon, we
considered the gene to be regulated by the promoter of the first 5’ gene in the operon.
We ran FIMO with default parameters and defined significant hits at a 1e-4 p-value
threshold. We constructed a binary TF-gene interaction matrix based on the presence of
a significant FIMO motif hit in the promoter associated with the gene.

We defined the target gene set for each TF based on the binary TF-gene interaction
matrix. We then inferred the TF activity for each cell by computing AUCell scores of the
TF targets using the scVI denoised matrix.

In order to study the role of TFs in each tissue, for each TF-tissue combination, we
computed the Spearman’s correlation between TF expression and TF activity (AUCell)
across single cells after regressing out age as a covariate using scanpy.pp.regress_out.
This is a conservative way to quantify TF-target relationship, since the only variation left
in the data is cell-to-cell heterogeneity. We only considered TF-tissue combinations
where there are more than 5 cells in the cell type cluster and the average expression of
the TF is greater than 10 RPM. We then evaluated the significance of the correlation
between expression and activity in each TF-tissue combination using a permutation
test. For cells in a particular cell type cluster, we generated a null distribution of TF
expression-activity correlations by sampling 10,000 fake expression-activity pairs and
computing the Spearman’s correlations. A fake expression-activity pair is defined as a
pair of expression and AUCell vectors such that the expression vector is from TF-A, and
the AUCell vector is from TF-B and the motifs of TF-A and TF-B are sufficiently different
from each other (Pearson’s correlation < 0.6). TF expression-activity correlations with a
permutation test FDR adjusted p-value < 0.05 are considered significant.

Differential expression analysis during between young and old cells
In order to characterize common and tissue-specific changes during aging, we
performed differential expression analysis of young (d3, d5) versus old cells (d8, d11,
d15) for each cluster using scanpy rank_genes_groups function for all genes using
Wilcoxon test. A cell type cluster was skipped if there were less than 5 young cells or 5
old cells.

Gene set enrichment analysis (GSEA)
For gene set enrichment analysis, we downloaded all GO pathways relevant for C.
elegans using the R package EnrichmentBrowser, including Biological Process (BP),
Cellular Components (CC) and Molecular Function (MF) pathways.
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For each cell type cluster, we ranked all genes by the differential expression log2FC in
the old versus young comparison. GSEA was performed on the ranked gene set using
the command line tool gsea-v3.0 with 2,166 BP, CC and MF GO pathways after
excluding any gene sets smaller than 5 or larger than 2000.

By default, GSEA tests for enrichment of each gene set in each cell type cluster in both
directions (increasing and/or decreasing with age). We summarize the result by
reporting the -log10 FDR q-value and normalized enrichment score for the direction
which the gene set is more enriched in and assign a sign based on the direction (+ if
enriched in genes that increase with age, - if enriched in genes that decrease with age).

To help with interpretation, we performed hierarchical clustering on the 2,166 GO
pathways based on their normalized enrichment score across cell type clusters. Then
we clustered the 2,166 GO pathways into 200 GO clusters and represented each GO
cluster by the GO term with the largest number of genes.

Dynamic gene expression changes
Gene trajectory analysis
In order to characterize nonlinear transcriptional changes during aging, we first grouped
genes that share a similar aging trajectory into gene modules. For the 4,232
differentially expressed genes with a fold change > 2 and FDR-adjusted p-value < 0.01,
we first computed a cell type-specific aging trajectory for each gene in each cell type
cluster where it is expressed by z-scaling the expression vector across days 1-11. Day
15 was excluded from the trajectory dynamic gene expression analysis because there
were too few cells. For each gene, we computed an averaged trajectory across cell
types. We identified modules by hierarchical clustering on the cell-type-averaged
trajectory with Euclidean distance and complete linkage and then cut the tree into six
modules. We associated each gene module with GO pathways by performing GO
enrichment analysis using R package “GOstats”. For each of the gene modules, we also
computed a module aging trajectory for each cell type cluster by taking the average
across genes.

Time-series GSEA analysis
We performed differential expression analysis for each cell type cluster for each pair of
consecutive time points except for d15 (d1 vs. d3, d3 vs. d5, d5 vs. d8 and d8 vs. d11)
using the scanpy rank_genes_groups function, similarly to the previous young versus
old analysis. We performed GSEA using the command line tool gsea-v3.0 with 2,166
BP, CC and MF GO pathways on the genes ranked by the “score” column for each
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comparison. We considered a pathway to be significantly associated with aging if the
FDR-adjusted p-value < 0.01.

Maximum mean discrepancy
Following prior work, we implemented maximum mean discrepancy (MMD) to quantify
the magnitude of transcriptional change during aging (Kimmel et al., 2020). MMD
quantifies the difference between two populations p and q given samples from each
population by taking the difference between the mean function values of the two
samples over some smooth function f (Gretton et al., 2012). Intuitively, when the
function f is rich enough, the difference between the mean function values will be 0 if
and only if p=q. In our case, we apply a radial basis kernel function and the MMD
between young cells and old cells for each cluster type cluster is computed as:

𝑀𝑀𝐷2(𝑥, 𝑦) = 𝐸
𝑥,𝑥'
[𝑘(𝑥, 𝑥')] + 𝐸

𝑦,𝑦'
[𝑘(𝑦, 𝑦')] − 𝐸

𝑥,𝑦
[𝑘(𝑥, 𝑦)]

Where x represents sample from the young cell population, y represents sample from
the old cell population and represents the radial basis kernel (Gretton et al., 2012).𝑘

Cell-cell variation
We quantified the transcriptional variation for a group of cells (cell-cell variation) by
measuring the Euclidean distance of each cell to the group centroid in gene expression
space (Kimmel et al., 2019). We computed this statistic for cells in each cell type and
each time point. Then for each cell type cluster, we estimated the rate of change in
cell-cell variation per day. For a specific cluster, if the cell-cell variation at d1 is A and at
d3 is B, then the rate of change per day is estimated by (B/A)^(½). We computed the
rate of change for each pair of consecutive time points and reported the average across
time points.

Gene variability
We quantified the biological variability in mRNA abundance (gene variability) within a
homogenous cell population (same age and cell type) by fitting a negative binomial
regression model to each mRNA species and computing the variance of the analytical
Pearson residual(Hafemeister and Satija, 2019; Lause et al., 2020). The Pearson
residual is intuitively a measurement of goodness-of-fit with respect to a null distribution
assuming all cells share the same transcriptional profile (Lause et al., 2020). To focus
on variance at the cell-type level, we summed every gene’s statistic for each cell type
cluster and generated a cell type by time point matrix of gene variability estimates. Then
we computed the rate of change in gene variability with age for each cell type cluster
similarly to the analysis we performed for cell-cell variation.

Transcription factor aging analysis
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For each of the 230 TFs in the CIS-BP database, we evaluated the change in TF
expression during aging in each cell type cluster by computing the TF expression
log2FC in young (d1, d3, d5) versus old (d8, d11, d15). We evaluated the changes in TF
activity during aging by the difference in mean AUCell scores in young (d1, d3, d5)
versus old (d8, d11, d15) cells.

microRNA regulation during aging
We downloaded predicted targets for each of the 60 miR families in the targetScan
database release 6.2. For each cell type cluster, we evaluated the enrichment of targets
for each of the 60 microRNA in significantly up-regulated and significantly
down-regulated genes (|log2FC|>1 and FDR-corrected p-value<0.01) using a
hypergeometric test. We considered a microRNA target gene set to be significantly
enriched in the age-associated up-regulated (or down-regulated) genes if the FDR
corrected hypergeometric test p-value <0.01.

DEXICA module analysis
GSEA was performed for each cell type cluster in young vs. old cells as described
above, but using 418 DEXICA hemi-modules (Cary et al., 2020) as gene sets.
Hemi-modules were ranked by the total number of cell type clusters with significant
(FDR-adjusted p-value < 0.01) enrichment with age (in either direction) to identify the
top 25 age-related DEXICA hemi-modules (detailed in Table S18). Hierarchical
clustering was performed on cell type clusters but not hemi-modules, preserving
hemi-module order from most to least frequently enriched with age. m36a comprises
487 genes and changes in expression of these genes (as calculated using AUCell
scores) at each time point were visualized in significant cell-type clusters.

Limitation of the study
Our isolation of C. elegans adult cells allows for a near complete coverage of cell types
for sequencing. To do so, we used genetics as well as a ploidy-based sorting method in
order to enrich somatic cells against a large amount of germ cells. As a result, our final
dataset contains a small amount of germ cells that have been selected to be diploid and
are not representative of the diversity of germline cells and oocytes with N and 4N
ploidy.

The intestine is another cell type affected by the sorting step. Intestinal nuclei undergo
endoreduplication during early development to become polyploid(Hedgecock and White,
1985). Nevertheless, our final UMAP contains several intestinal clusters. These clusters
should be considered carefully. Our manuscript features an additional section with an
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independent dataset for this cell type derived from a prior sequencing experiment
without ploidy sorting.
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