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Abstract 

Objective: Borassus flabellifer or Asian Palmyra palm is widely distributed in South and Southeast Asia and is horti-

cultural and economic importance for its fruit and palm sugar production. However, its population is in rapid decline, 

and only a few genetic data are available. We sequenced the complete chloroplast (cp) genome of B. flabellifer to 

provide its genetic data for further utilization.

Results: The cp genome was obtained by Illumina sequencing and manual gap fillings providing 160,021 bp in 

length containing a pair of inverted repeats (IRs) with 27,256 bp. These IRs divide the genome into a large single copy 

region 87,444 bp and a small single copy region 18,065 bp. In total, 113 unique genes, 134 SSRs and 47 large repeats 

were identified. This is the first complete cp genome reported in the genus Borassus. A comparative analysis among 

members of the Borasseae tribe revealed that the B. flabellifer cp genome is, so far, the largest and the cp genomes of 

this tribe have a similar structure, gene number and gene arrangement. A phylogenetic tree reconstructed based on 

74 protein-coding genes from 70 monocots demonstrates short branch lengths indicating slow evolutionary rates of 

cp genomes in family Arecaceae.
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Introduction

Borassus flabellifer or Asian palmary palm (family Are-

caceae, subfamily Coryphoideae, Borasseae tribe) is a 

massive dioecious monocot plant with its single stem 

reaching 30  m in height and large fan-shaped leaves 

spanning 1–3 m in diameter [1]. Six species are present 

in the Borasseae tribe including B. aethiopum [2], B. 

akeassii [3], B. sambiranensis [4] and B. madagascarien-

sis [5], which are distributed in Africa, B. heineanus [6] 

found in New Guinea and B. flabellifer, which is solely 

found in Asia [1]. B. flabellifer is widespread in the South 

and Southeast Asia and is of horticultural and economic 

importance. �e fruit is widely consumed, and the 

flower sap has been used for palm sugar production for 

hundreds of years [7]. B. flabellifer is currently in rapid 

decline due to following reasons. First, it grows extremely 

slow requiring 12–20  years to reach maturity and pro-

duce its first inflorescence [8]. Second, urbanization and 

agricultural development has eliminated a large number 

of the wild population [9]. �ird, it reproduces via cross 

pollination, but there is currently no reliable mean for sex 

determination prior its first flowers [10]. Fourth, a clonal 

propagation method for this species is not well estab-

lished. With these reasons, conservation and breeding 

programs of B. flabellifer is urgently needed, and genetic 

data are required for supporting the programs.

To date, genetic data of  B. flabellifer are limited. A 

number of DNA markers including RAPD [11], ISSR 

[12], EST-SR and gSSR [13, 14] have been developed for 

studying the population in south and southeast Asia and 

demonstrated its low genetic diversity. However, more 
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sequence data are still needed for detailed studies on 

genetic diversity and evolution. In particular, the chlo-

roplast (cp) genome sequence would provide both spe-

cies specific and population specific makers for studying 

B. flabellifer. Here, we report the complete cp genome 

sequence of B. flabellifer obtained by using both next-

generation sequencing and manual gap fillings. �e cp 

genome structure, characteristic and gene organiza-

tion are described. Repetitive sequences were identified. 

Comparative genome analysis was performed to under-

stand the evolutionary relationship among the Borasseae 

tribe.

Main text

The complete cp genome sequence of B. flabellifer

Because B. flabellifer leaf materials are very hard and a 

direct isolation of cpDNA with high purity is often dif-

ficult to obtain, chloroplast was firstly isolated using 

a modified protocol from Triboush et  al. [15] and puri-

fied using a modified sucrose gradient method from 

Sandbrink et  al. [16] (Additional file  1: Figure S1). �e 

third leaf from the top (a fully expanded leaf with dark 

green and no more than 6-month-old) was collected and 

stored at 4  °C for 7  days to reduce accumulated starch 

before use. CpDNA was then isolated from the puri-

fied chloroplast using DNeasy Plant Mini Kit (Qiagen), 

and EcoRI restriction digests were used for verifying the 

purity of the cpDNA. Illumina Hiseq 2000 system gen-

erated 7,695,267 pair-end reads with an approximately 

100 bp average read length. After filtering and eliminat-

ing low quality reads and contaminants using FastQC 

[17] and Trimmomatic [18], a total of 1,539,053,400  bp 

was obtained. A sliding window size of 4 with an average 

of Phred score ≥ 20 and removal of 5′ and 3′ ends with 

Phred score ≤  3 were used as the trimming criteria. By 

mapping to the cp genome of C. nucifera (NC_022417) 

[19] using SOAPec v2.03, the reads provided an average 

of 100× sequencing depth coverage, and eight contigs 

covering 92% of the entire cp genome was obtained. Spe-

cific PCR amplification and sequencing were performed 

to fill the missing gaps. �e genome map was then drawn 

by GenomeVx [20].

�e circular double-stranded DNA of the complete B. 

flabellifer cp genome is 160,021 bp in length (Fig. 1, Gen-

Bank Accession Number: KP_901247). It has a typical 

quadripartite structure composing of a pair of inverted 

repeat (IR) regions (27,256 bp each), a large single-copy 

(LCS) region (87,444  bp) and a small single-copy (SSC) 

region (18,065  bp). �e overall GC content is 37.23%. 

Genome annotation using DOGMA [21] and CpGA-

VAS [22] with Phoenix dactylifea [23] as a reference 

and tRNAs prediction using tRNA-ScanSE [24] pro-

vided that the cp genome contains 113 unique genes: 79 

protein-coding genes, 30 tRNA genes, and four rRNA 

genes (Additional file 2: Table S1). All of the four rRNA 

genes (rrn4.5, rrn5, rrn16 and rrn23), seven protein-

coding genes (rps19, rpl2, rpl23, ndhB, rps7, ycf1 and ycf 

2), two pseudogenes (ycf15, ycf68) and eight tRNA genes 

(trnH-GUG, trnI-CAU, trnL-CAA, trnV-GAC, trnI-

GAU, trnA-UGC, trnR-ACG, trnN-GUU) are located 

within the IR regions. �e LSC region contains 82 pro-

tein-coding genes and 21 tRNA genes, while the SSC 

region contains 13 protein-coding genes and one tRNA 

gene. �e rRNA, tRNA and protein-coding genes cover 

9040 bp (5.65%), 2873 bp (1.80%) and 79,368 bp (49.6%), 

respectively, of the complete genome.

Among 113 unique genes, there are 18 intron-con-

taining genes (Additional file  2: Table S1): 16 genes 

with a single intron and two genes with two introns. 

Among these, trnK-UUU (3216 bp) contains the largest 

intron, in which matK gene (1551  bp) is located. Four 

pairs of overlapped genes with different ranges of over-

lapped bases were observed including atpE and atpB 

(four overlapped bases), ndhK and ndhC (10 overlapped 

bases), psbD and psbC (53 overlapped bases) and ndhF 

and pseudo-ycf1 (60 overlapped bases). �e frequency 

of codons in this cp genome was calculated from the 

exons of protein-coding genes (pseudogenes were omit-

ted) using Maga 6 (Additional file  2: Table S2). �e 

observed initiation codons are AUG, GUG and ACG. 

�e GUG initiation codon was found to be specific for 

rps19 and ndhD, while the ACG initiation codon was 

found only for rpl2.

Simple sequence repeats (SSRs) and repetitive sequences

Identifications of SSRs and repetitive sequences using 

by REPuter program (under a cut off n ≥ 10 with 100% 

sequence identities) [25] and GMATo v1.2 [26] showed 

that the cp genome contains, in total, 134 SSR loci and 

47 large repeat loci (Additional file 2: Tables S3 and S4). 

Among the 134 SSRs, 98 and 20 loci are homopolymers 

and dipolymers, respectively. And, 108 loci are located in 

intergenic spacer (IGS) regions, while 26 loci are located 

in the protein-coding genes including cemA, matK, 

ndhD, ndhF, ndhH, rpoC2, rps14, rps19, rps4 and ycf1. 

Neither pentapolymer nor hexapolymer was observed in 

the protein-coding regions. All 47 large repeat sequences 

contain four non-tandem direct repeats, six inverted 

repeats and 37 tandem repeats. �e sizes of the repeat-

ing unit were in the range of 11–39 bp (Additional file 2: 

Table S4). Noting that most of the large repeats are 

located in the IGSs inside the single-copy regions, espe-

cially in the large single-copy region. Only eight repeats 

including one direct repeat and seven tandem repeats are 

located in the coding sequence of three protein-coding 

genes: rpoC2, ycf1, and ycf2.
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Comparative analysis of the plastid genomes 

among the Borasseae tribe and phylogenetic analysis 

among monocots

�e cp genomes of 4 species including B. flabellifer, Bis-

marckia nobilis (NC_020366.1) [27], Borassodendron 

machadonis (NC_029969.1) [27] and Lodoicea maldivica 

(NC_029960.1) [27], which are members of Borasseae 

tribe are in the range between 158,144 and 160,021  bp 

(Additional file  2: Table S5). �e differences in the cp 

genome sizes are due to the lengths of the LSC, SSC 

and IR regions. �e cp genome of B. flabellifer is, so far, 

the largest among the Borasseae tribe with the long-

est LSC and SSC regions. �ese long LSC and SSC 

regions contain the same number of genes as in the 

other three cp genomes. Comparative analysis using 

mVISTA [28] showed that the four cp genomes are highly 

Fig. 1 The complete chloroplast genome of B. flabelifer. Genes shown on the outside of the map are transcribed clockwise, and those shown on 

the inside are transcribed counter-clockwise. Genes functioning in related processes are coded with colors
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similar (Fig. 2). Among the four sequence regions, both 

IR regions are more conserved than the LSC and SSC, 

which contain several variable regions in the intergenic 

regions such as between ndhF-rpl32, trnG-trnR and 

rpl32-trnL. Besides, there are 11 small variable regions 

inside the coding regions of accD, ccsA, matK, ndhA, 

ndhD, ndhF, rbcl, rpl16, rpoC2, rps16 and ycf1. Not-

ing that ycf1 and rpoC2 also carry both SSRs and large 

repeats.

A phylogenetic tree based on the maximum likelihood 

method were reconstructed with raxmlGUI [29] using 74 

protein-coding genes from 70 monocot species. �e evo-

lutionary relationship among monocots is presented with 

high bootstrap supports (Fig.  3). Previously, phyloge-

netic relationship among subfamilies, families and orders 

of the Commelinid clade using cp genomes has been 

described [27, 30, 31], and our result is consistent with 

these reports. Tribes within subfamily Coryphoideae was 

previously divided into two major clades: [(Phoeniceae, 

Livistoneae)(Sabaleae, Cryosophileae)) and (Chuni-

ophoeniceae (Caryota (Coryphoideae, Borasseae))] [27], 

and, here, we provide a confirmation for this clustering 

with 100% bootstrap supports. �e phylogenetic tree 

showed that B. machadoris is closely related to B. fla-

bellifer as supported by 100% bootstrap replicates. Fur-

thermore, our phylogenetic tree showed that the branch 

lengths of all members of the family Arecaceae are short, 

suggesting slow evolutionary rates of the cp genomes in 

this family.

Limitations

�e complete cp genome of B. flabellifer reported here 

provides a valuable resource for genetic analysis of this 

and related palm species. A number of SSRs, repetitive 

Fig. 2 Visualization of the alignment of four Borassaseae cp genome sequences. VISTA-based identity plot shows sequence identity among four cp 

genomes and B. flabellifer cp genome as a reference. A cut-off of 70% identity was used for the plot and sequence identity is shown as a percentage 

between 50 and 100% on y-axis. On x-axis, B. flabellifer genes are indicated on top lines, and arrows represent their orientation. Genome regions are 

distinguished by colors. CNS indicates conserved non-coding sequences
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Fig. 3 A phylogenetic tree of monocots reconstructed based on the maximum likelihood method using 74 protein-coding genes of the cp 

genomes. The number presented above and below each branch represents bootstrap values calculated from 1000 replicates. Those without the 

value indicates 100% bootstrap support
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sequences and highly variable regions identified here 

would provide useful markers for studying the genetic 

diversity and microevolution of this species, although 

these have to be priory verified in a number of B. flabel-

lifer populations. Indeed, further verification of these 

markers would provide an insight for establishing breed-

ing and conservation programs for this palm species. 

Because the complete genome sequences of other plants 

in genus Borassus are not yet available, we were able to 

describe the evolutionary relationship among the mem-

bers of Borasseae tribe, but not within the genus. Further 

analysis at the genus level will provide insight into recent 

evolutionary of palm species.
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