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ABSTRACT

We present 2000 mock galaxy catalogues for the analysis of baryon acoustic oscillations (BAOs) in the Emission Line Galaxy

(ELG) sample of the extended Baryon Oscillation Spectroscopic Survey Data Release 16 (eBOSS DR16). Each mock catalogue

has a number density of 6.7 × 10−4h3Mpc−3, covering a redshift range from 0.6 to 1.1. The mocks are calibrated to small-scale

eBOSS ELG clustering measurements at scales of � 30 h−1Mpc. The mock catalogues are generated using a combination of

GaLAxy Mocks (GLAM) simulations and the quick particle-mesh (QPM) method. GLAM simulations are used to generate

the density field, which is then assigned dark matter haloes using the QPM method. Haloes are populated with galaxies using

a halo occupation distribution. The resulting mocks match the survey geometry and selection function of the data, and have

slightly higher number density that allows room for systematic analysis. The large-scale clustering of mocks at the BAO scale

is consistent with data and we present the correlation matrix of the mocks.

Key words: galaxies: haloes – large-scale structure of Universe.

1 IN T RO D U C T I O N

In modern cosmology, the study of the large-scale structure (LSS)

provides key information about the expansion history and growth

of structure in the Universe (Davis & Peebles 1983; Eisenstein

et al. 2005). Measurements of baryon acoustic oscillations (BAO;

Eisenstein & Hu 1998) and redshift-space distortions (RSD; Kaiser

1987) require spectroscopic surveys to cover large volumes and

to have accurate redshift measurements. In the past, large redshift

surveys have included 2dFGRS (Cole et al. 2005), the Sloan Digital

Sky Survey (SDSS-II; Eisenstein et al. 2005), 6dFGRS (Beutler

et al. 2012), WiggleZ (Blake et al. 2011), and SDSS-III Baryon

Oscillation Spectroscopic Survey (BOSS; Dawson et al. 2013).

The recently completed extended Baryon Oscillation Spectroscopic

Survey (eBOSS; Dawson et al. 2016) is a five year program of

⋆ E-mail: sicheng@nyu.edu

the Sloan Sky Digital Survey (SDSS-IV; Blanton et al. 2017) and

is aiming at measuring the distance–redshift relation with BAO at

the per cent-level using various galaxy tracers.

One important question for big redshift surveys is how to determine

the uncertainties in the measurements of cosmological parameters.

Simulated mock catalogues can be used to estimate the covariance

matrix of galaxy clustering and these errors are propagated to

cosmological parameter uncertainties by integrating over the pa-

rameter likelihood function (Dodelson & Schneider 2013; Percival

et al. 2014). This method requires accurate mock catalogues to

cover a huge volume and large number density of galaxies as the

survey geometry and redshift range grow larger. Determining the

uncertainties of a large survey such as eBOSS requires thousands of

mock catalogues, which can be computationally expensive. In recent

years, several quick methods such as quick particle mesh (QPM;

White, Tinker & McBride 2014), effective Zel’dovich approximation

(EZmocks; Chuang et al. 2015), and PerturbAtion Theory Catalog

generator of Halo and galaxY distributions (PATCHY; Kitaura,
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Yepes & Prada 2014) have been developed to generate mocks

efficiently. EZmocks use an ad hoc model to populate galaxies

directly on the dark matter field that is generated using the Zeldovich

approximation. A similar approach is used by PATCHY but using

Augmented Lagrangian Perturbation Theory instead, while the QPM

method selects dark matter particles that mimic the statistics of dark

matter haloes, and then populate galaxies in dark matter haloes using

a standard halo occupation approach.

We present a set of mock catalogues for the eBOSS ELG sample,

which have been tuned to reproduce the small-scale clustering

measurements. In this work, we focus on the ELG sample in the

0.6 < z < 1.1 redshift range. ELGs present a unique challenge for

error estimation. These galaxies typically lie in low-mass haloes but

can be mapped to very large volumes. Thus, even producing a single

N-body simulation that properly resolves ELG haloes but covers an

appropriate volume is a challenge. To circumvent this problem, we

use the GLAM N-body simulations (Klypin & Prada 2018) and the

QPM method to construct the ersatz halo catalogues. Galaxies are

then populated using the halo occupation distribution (HOD) model

to match the two-point statistics of the eBOSS ELG measurements.

We produce a set of 2000 accurate mock catalogues for the estimation

of the covariance matrix. The mock catalogues are calibrated to match

the ELG clustering at 10 h−1Mpc scales.

This study is part of a series of papers of the final eBOSS DR16

data and cosmological measurements. The BAO and RSD results are

presented in Bautista et al. (2020) and Gil-Marin et al. (2020) for

luminous red galaxies (LRGs); for emission line galaxies (ELGs)

see Raichoor (2020), Tamone et al. (2020), and de Mattia (2020);

and see Hou et al. (2020) and Neveux et al. (2020) for quasars. The

essential data catalogues are presented in Ross et al. (2020) and Lyke

et al. (2020), the N-body mocks for systematic errors are presented in

Rossi et al. (2020) and Smith et al. (2020), another set of approximate

mocks is presented in Zhao et al. (2020). The ELG mock challenge

result is presented in Alam et al. (2020), the ELG HOD analysis is

presented in Avila et al. (2020). The measurements of BAO in the

Lyα forest is presented in du Mas des Bourboux et al. (2020). The

mock catalogues produced in this paper are utilized in the BAO and

growth-of-structure analysis of the ELG sample in de Mattia (2020).

Lastly, the cosmological interpretation of the full eBOSS sample can

be found in Collaboration et al. (2020).

This paper is organized as follows: Section 2 describes the eBOSS

ELG sample used in the analysis. In Section 3, we present our small-

scale clustering measurements, with systematic corrections, that we

use to calibrate our mock catalogues. The procedure of creating

mock catalogues is described in Section 4. Section 5 compares the

large-scale clustering of the ELG sample and GLAM-QPM mocks,

and we present the covariance matrix. Finally we discuss our results

in Section 6. In this paper, the distances are measured in units of

h−1Mpc with the Hubble constant H0 = 100hkm s−1Mpc−1. We

assume a fiducial �CDM cosmology with parameters (�m, h, �bh2,

σ 8, ns) = (0.307, 0.678, 0.022, 0.828, 0.96) for the redshift–distance

relationship and mock catalogue generation.

2 DATA

The eBOSS survey was conducted using the Sloan Foundation 2.5-

m Telescope at Apache Point Observatory (Gunn et al. 2006) to

conduct spectroscopic observations. It used the same 1000-fibre

spectrographs as BOSS (Smee et al. 2013) to measure four tracers of

the underlying dark matter density field. In data release 16, the survey

has measured accurate redshifts of 174 816 LRGs in the redshift range

0.6 < z < 1.0 (Ross et al. 2020), 173 736 ELGs in the redshift range

0.6 < z < 1.1 (Raichoor 2020), 343 708 quasars within 0.8 < z <

2.2 (Lyke et al. 2020; Ross et al. 2020), and 210 005 Lyα quasars

within z > 2.1 (du Mas des Bourboux et al. 2020). Overall these data

sets constrain the redshift–distance relation to 1–3 per cent level at 4

redshifts (Dawson et al. 2016; Collaboration et al. 2020).

The eBOSS/ELG program started in September 2016 and it is

the first time ELG tracers have been used in SDSS for large-scale

clustering measurements. Preliminary work tested the feasibility

of using the BOSS spectrograph to conduct ELG observations

(Comparat et al. 2013) and the reliability of redshift measurements

(Comparat et al. 2015, 2016). The ELG target selection (Raichoor

et al. 2017) uses the DECam Legacy Survey (DECaLS; Dey et al.

2018). Its deep imaging data provides the opportunity to reach higher

redshift and higher efficiency, defined aspercentage of observed

ELGs having reliable zspec (Raichoor et al. 2017). The eBOSS/ELG

footprint covers an effective area of 369.5 deg2 in the north galactic

cap (NGC) and 357.5 deg2 in the south galactic cap (SGC), with an

overall number density of 313.0 deg−2 (Raichoor 2020).

We use the eBOSS DR16 ELG sample as our data set. This data set

includes 83 769 galaxies in SGC and 89 967 galaxies in NGC with

reliable redshift measurements over the redshift range 0.6 < z < 1.1.

Fig. 1 shows the footprint of ELG SGC and NGC data coloured by

completeness in each sector, where a sector is the geometric region

defined by the unique set of overlapping plates. The completeness in

each sector is defined as

C =
Nobs + Ncp

Ntarg

, (1)

where Nobs is the number of observed targets per sector, Ncp is the

number of galaxies with no spectra due to fibre collisions with other

targets, and Ntarg is the total number of targets.

3 G ALAXY CLUSTERI NG

Galaxies are not randomly distributed in the Universe. Density

perturbations, which are created in the early Universe, evolve under

gravitational attraction, and are the seeds of the LSS we see today. In

this paper, we study the statistics of the ELG galaxy distribution in

the eBOSS survey using the two-point correlation function, ξ (r) =
〈δ(x)δ(x + r)〉, which is a measure of the excess probability of finding

a pair of galaxies, separated by a distance r, compared to if the

galaxies were distributed randomly (Peebles 1980). Measurements

of clustering on large scales allow us to constrain cosmological

parameters via measuring the position of BAO peak and the shape

of the clustering signal. On small scales, clustering measurements

can be used to probe the relationship between galaxy properties

and dark matter haloes. At scales � 30 h−1 Mpc, clustering is more

sensitive to systematic errors in the imaging, while carrying less

information about galaxy-halo connection. Thus, we focus on small-

scale clustering to calibrate the adopted HOD model to generate the

ELG mocks. We will discuss the HOD model further in Section 4.3.

We use the Landy & Szalay estimator (Landy & Szalay 1993) to

measure the two-point correlation function,

ξ (r) =
DD(r) − 2DR(r) + RR(r)

RR(r)
, (2)

where DD(r), DR(r), and RR(r) are suitably normalized numbers of

galaxy–galaxy, galaxy–random, and random–random pairs in each

distance separation bin. The distance along the line of sight of

galaxies is inferred from their redshifts assuming a fiducial cos-

mological model. The peculiar velocities of galaxies will introduce

redshift-space distortions in ξ (r). In order to circumvent the effect of

MNRAS 498, 5251–5262 (2020)
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eBOSS ELG GLAM-QPM mocks 5253

Figure 1. The footprint of the ELG SGC and NGC survey, where the colour represents the completeness in each sector. The mean completeness in each sector

is 0.9909 for NGC and 0.9906 for SGC. Gaps and variations in the completeness maps are due to tiles that could not be observed, or locations in the footprint

where tiles did not overlap. See Raichoor (2020) for details.

redshift-space distortions, the correlation function is often measured

in two dimensions: perpendicular (rp) and along (π ) the line of sight.

Let v1 and v2 be the position vector of a pair of galaxies in redshift

space, s = v1 − v2 be the redshift-space separation, and l = (v1 −
v2)/2 be the mean position of galaxy pair. The distances π and rp can

then be defined as

π =
s · l

|l|
, rp =

√

s · s − π2. (3)

One can then measure ξ (rp, π ) from the data and random catalogues.

The projected correlation function (Davis & Peebles 1983) can be

recovered by integrating over the line-of-sight direction to remove

the effect of RSD,

wp(rp) = 2

∫ πmax

0

ξ (rp, π )dπ. (4)

In this paper, we choose πmax = 80 h−1 Mpc as the upper limit in

the integral, as the clustering measurements are noisy for large π .

The correlation function ξ (rp, π ) can be alternatively expressed as

a function of s and μ, where μ = cos θ is the cosine of the angle

between the pair separation vector and line of sight. It is often useful

to compress the redshift-space information in the two-dimensional

correlation function into the multipole moments,

ξl(s) =
2l + 1

2

∫

ξ (s, μ)Pl(μ)dμ, (5)

where Pl(μ) are Legendre polynomials. For the purposes of con-

straining our HOD model, we use wp(rp), ξ 0(s), and ξ 2(s). Higher

order multipoles are too noisy to contribute significantly to the fit.

We consider the effects of imaging systematics, redshift failures,

and fibre collisions. These are corrected for using a weighting scheme

similar to (Anderson et al. 2014), where each ELG is weighed by

wELG = wFKPwsyswcpwnoz, (6)

where wFKP is the FKP weight (Feldman, Kaiser & Peacock 1994),

wsys is the imaging systematics weight, wcp is the close-pair weight

and wnoz is the redshift failure weight. We describe them in detail

below. Unlike Anderson et al. (2014), here we treat wcp and wnoz

independently.

The systematic weights, wsys, are calculated by using a linear fit

of the ELG target density in various photometric variables: galactic

extinction, stellar density, H I density, grz-band image seeing, and

grz-band image depth (Raichoor 2020). The close-pair weights, wcp,

are calculated by upweighting galaxies in collided pairs by coefficient

Ntarget/Nfibre, where Ntarget is the total number of targets in the collision

group and Nfibre is the number of targets in the collision group that

has been assigned fibres. The redshift failure weights, wnoz, are the

inverse of two fitting functions to the plate-averaged signal-to-noise

ratio (pSN) and the fibre position in the focal plane. Details of the

systematic model is described in the eBOSS ELG catalogue paper

(Raichoor 2020).

The FKP weights are defined as

wFKP(z) =
1

1 + n(z)PFKP

, (7)

where n(z) is the weighted number density at redshift z and we choose

the same value of PFKP = 4000 h−3 Mpc3 as in Raichoor (2020).

We use FKP weights to account for different number densities of

observed ELGs in different redshift intervals.

In addition to using the close pair weights to up-weight galaxies

in collided pairs, we also apply an angular weighting to correct the

small-scale clustering measurements, using the ratio of the angular

correlation functions (Hawkins et al. 2003). This ratio is given by

F (θ ) =
1 + wz(θ )

1 + wt (θ )
, (8)

where wz(θ ) is the angular correlation function of galaxies with

fibres assigned and wt(θ ) is the angular correlation function of

the parent target samples. We find that the average ratio F(θ ) for

angular separations θ < 62 arcsec is around 0.6 and is not sensitive

to the value of θ , thus we upweight each galaxy–galaxy pair below

62 arcsec by 1/F(θ ) = 1.667.

Fig. 2 presents our results of the small-scale clustering from 0.34

to 70 h−1 Mpc in 12 logarithmic bins, after applying the weighting

described above. The lower limit is set by shot noise in the pair

counts. We refer to these data as ‘small-scale’ to separate them from

clustering at the BAO scale. The SGC and NGC are divided into 25

roughly equal spherical areas and the errors are estimated using the

jackknife resampling technique. There is no significant difference

seen between the clustering of the SGC and NGC. We refer to these

data as small-scale clustering to separate them from clustering at the

BAO scale.

4 M O C K G E N E R AT I O N

In order to construct accurate mocks to interpret the ELG clustering,

we combine GaLAxy Mocks (GLAM) simulations with the quick

particle-mesh (QPM) scheme. The whole process can be summarized

in the following steps:

(i) In the first step, we run 2000 large GLAM N-body simulations

with box size of 3000 h−1 Mpc. This box size is large enough to cover

the whole footprint of ELGs up to redshift z = 1.1.

(ii) In the second step, we apply the QPM code to assign dark

matter haloes within the density field of the GLAM simulations.

MNRAS 498, 5251–5262 (2020)
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5254 S. Lin et al.

Figure 2. Projected correlation function, wp (upper panel), redshift-space

monopole, ξ0 (middle panel), and quadrupole, ξ2 (lower panel) for ELGs

in the SGC (blue) and NGC (red). Correlation functions are shown for

separations between 0.3 and 70 h−1 Mpc, for ELGs in the redshift range

0.6 < z < 1.1. Dotted curves in the lower panel indicate negative values.

The errorbars are estimated using jackknife resampling, with 25 jackknife

samples.

(iii) In the third step, we populate the haloes with galaxies using an

HOD model that is calibrated to reproduce the small-scale clustering

measurements of the data.

(iv) In the fourth step, we cut the mock catalogues according to

the ELG survey geometry. We compare the large-scale clustering of

the mocks with the data.

In the next sub-sections, we will describe the details of generating

the mock galaxy catalogues.

4.1 GLAM simulations

GLAM (Klypin & Prada 2018) is a new parallel version of the

particle-mesh (PM) code that can quickly produce a large number of

N-body simulations. We use the GLAM code to generate the matter

density field for our mock catalogues since the computational speed

is much faster than for QPM simulations. We used MareNostrum-

4 computer at Barcelona Supercomputer Center to generate 2000

realizations in the adopted cosmology (see Section 1). The volume

of each simulation is 3 h−1 Gpc, which is large enough to cover

the ELG redshift range 0.6 < z < 1.1. We used 15003 particles

with a mass per particle of 6.8 × 1011h−1 M⊙. The simulations were

started at z = 100 and a constant time-step is used at low redshifts

but periodically increases at high redshifts. The total number of

time-steps is 94, which is large enough to satisfy both accuracy

and stability of the integration of the particle trajectories inside

dense regions (Klypin & Prada 2018). Under this set of simulation

parameters, the total number of CPU hours is 52 000. In order to

make the process as efficient as possible, we incorporate QPM as a

module in the GLAM code, so halo catalogue creation is done on

the fly. This procedure prevents extra time consumption due to I/O

of large files, and saves disk storage.

4.2 From N-body simulation to halo catalogues

There are many benefits to first create halo catalogues and then

generate galaxy mocks using galaxy-halo models. One of which is

that we can model multiple target samples with different biases within

the halo occupation framework. The other advantage is that we can

study and test different galaxy-halo models for the same sample.

Here, we use a modified version of the QPM method described

in White et al. (2014) to generate halo catalogues from the GLAM

simulations. First, we use Fourier methods on a mesh grid to estimate

the density field of the GLAM simulations, which is then mapped to

a halo mass. We calibrate the mapping scheme so as to match the

bias of haloes from high-resolution simulations (Tinker et al. 2008),

which is calibrated down below 1011 h−1 M⊙. We group particles

in the GLAM simulations by their density μ = ln (1 + δ) in eight

equally spaced bins, then calculate the bias of each group. The bias

is then mapped to a halo mass using the halo bias function, b(Mh), of

Tinker et al. (2010), We then fit a smooth function to μ(Mh) of the

particles. The result fitting function is

μ(Mh) = 0.5 + 0.1 log10(Mh/M0) +
(Mh/M0)0.7

1 + (Mh/M0)−0.35
, (9)

where Mh is the halo mass and M0 = 1013.5h−1M⊙ is the transition

scale from a logarithmic function to power law. The shape of the

function is shown in Fig. 3 compared to the function adopted in White

et al. (2014). Note that White et al. (2014) only use haloes with Mh >

1013h−1 M⊙. Compared with White et al. (2014), our fitting function

allows us to resolve low-mass haloes down to 1011h−1 M⊙. This is

important for the ELG samples because ELGs are relatively young

galaxies and are more likely to reside in smaller haloes compared

to LRGs (Gonzalez-Perez et al. 2018). Our fitting function differs

from White et al. (2014) at high masses because they are at different

redshifts. We aim to produce mocks at redshift z = 0.84 for eBOSS

ELG sample, while White et al. (2014) uses redshift z = 0.55 for the

BOSS LRG sample.

Secondly, we select a subset of particles based on the density to

stand in for haloes, and these haloes are assigned the same positions

and velocities as the particles. Particles are sampled using a Gaussian

sampling function. A particle with density μ0 is assigned a halo mass

Mh with a probability of

P (Mh|μ0, σ ) =
1

√
2πσ 2

exp

(

(μ(Mh) − μ0)2

2σ 2

)

, (10)

where the function μ(Mh) is defined in equation (9), and we fix

σ = 0.1. The width σ does not have a significant effect for the

large-scale bias, as shown in White et al. (2014). Since the total

number of particles in each simulation is finite, there are not enough

MNRAS 498, 5251–5262 (2020)
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Figure 3. Fitting function describing the relationship between the dark

matter overdensity and halo mass, where μ = ln (1 + δ). The fitting function

used in this work (blue) is approximately logarithmic approximation at low

halo masses, transitioning to a power law at the high halo mass end. For

comparison, the mapping used in White et al. (2014) is shown in orange. The

scatter of the mapping is 0.1 dex, as described in equation (10). Only haloes

with Mh > 1013h−1M⊙ are used in White et al. (2014). The functions differ

at high masses since they are for haloes at different redshifts.

particles at low halo masses. This imposes a mass resolution in our

halo catalogues at a mass Mh > 2 × 1011h−1 M⊙. We note that

this halo mass limit is actually below the formal resolution of the

simulations themselves. However, the halo mass assigned to a given

particle is independent of the resolution and only a function of the

local density. The only requirement to approximate haloes below the

GLAM resolution is that there are more particles in the simulation

than the expected number of haloes at a given halo mass limit, which

sets our limit here.

Finally, in order to have the correct halo mass function, we divided

the halo masses into Nh bins, where the number Nh is large so that

the change in b(Mh) between each bin is small. For each mass bin

we calculate the number of particles we need to sample to match

the mass function n(Mh) of Tinker et al. (2008), then we loop over

all particles, assigning particles as haloes with the corresponding

probability.

In Fig. 4, we show the average halo mass function from 10 halo

catalogues. The 10 catalogues are generated independently from

different GLAM simulations. Compared to the QPM mocks used for

BOSS LRG sample (Alam et al. 2017), our halo catalogues agree

very well to the halo mass function in Tinker et al. (2008) at low

halo mass. This verifies that our method yields the correct halo mass

function. The small discrepancy at the high halo mass end is due

to the power-law formalism we choose for μ(Mh), which means

it is less likely to have haloes with mass larger than 1015 h−1 M⊙.

Since the fraction of ELGs in haloes with Mh � 1015 h−1 M⊙ is

negligible, this discrepancy will not have a significant impact on our

mocks.

In Fig. 5, we compare the halo bias calculated from the halo

catalogues with the halo bias of Tinker et al. (2010). The result

are in very good agreement for Mh < 1013.5 h−1 M⊙. The small

discrepancy at higher halo mass is due to lack of information of the

bias in high-density regions: there is insufficient number of particles

Figure 4. The halo mass function from the GLAM-QPM mocks generated

in this work (blue points) compared to BOSS LRG mocks (orange points),

which are created using the QPM method (White et al. 2014). For both, we

show the average mass function of 10 mocks. The errorbars are the standard

deviation among the 10 halo catalogues. As a comparison, we also plot the

halo mass function from Tinker et al. (2008) at redshift z = 0.55 (red) and

z = 0.84 (blue).

Figure 5. The average halo bias from 10 GLAM-QPM halo catalogues

(blue), where the error bars indicate the standard error on the mean. The

orange curve indicates the fitting function of Tinker et al. (2010) at redshift

z = 0.84.

that have high density to compute the bias. Considering that the mean

halo mass of ELGs is around 1012 h−1 M⊙, this discrepancy should

be negligible.

4.3 Halo occupation distribution for ELGs

We use the HOD to model galaxy bias (Benson et al. 2000; Peacock &

Smith 2000; Seljak 2000; Scoccimarro et al. 2001; Berlind &

MNRAS 498, 5251–5262 (2020)
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Weinberg 2002; Zheng et al. 2009; White et al. 2011). The HOD

formalism describes the relation between a typical class of galaxies

and dark matter haloes by the probability P(N|M) that a halo with

mass M contains N such galaxies. The population of galaxies can

be split into central galaxies, which reside at the centre of the halo,

and satellite galaxies. Here, we assume that the satellite galaxies

in each halo follow the same radial distribution as the dark matter,

corresponding to a NFW profile (Navarro, Frenk & White 1997)

where we use the concentration–mass relation of Macciò et al.

(2007). The HOD model is a complete description of galaxy bias, i.e.

given an HOD model and the halo population from a cosmological

model, one can calculate any galaxy clustering statistic on any

scale.

HOD modelling has been applied to interpret galaxy clustering

in several surveys (Zheng 2004; Zheng & Weinberg 2007; Blake,

Collister & Lahav 2008; Wake et al. 2008; Zheng et al. 2009; Parejko

et al. 2013; Park et al. 2016). Most of the studies use five parameter

HOD models: the occupation function for central galaxies 〈Ncen〉 is

a softened step function with three parameters and the occupation

function for satellite galaxies 〈Nsat〉 is a power law with two free

parameters. However, the step function for central galaxies may not

model ELGs well, since one would expect that most of the galaxies in

higher mass haloes are quenched or have attenuated star formation.

Therefore, it is less likely that central galaxies with strong emission

lines will be found in massive haloes. Currently, the HOD of ELGs

are not well understood. Favole et al. (2017) studied the HOD of

[OII] emitters in the local Universe using the (Sub)Halo Abundance

Matching method. Gonzalez-Perez et al. (2018) studied the properties

of the host haloes of [OII] emitters, and they found that the central

galaxy occupation 〈N〉[OII]cen can be formalized as the sum of a

Gaussian and a step function with amplitude below unity. Zehavi

et al. (2011) studied colour dependence of galaxy clustering by fitting

an HOD model to red/blue galaxy populations of the SDSS DR7

main galaxy sample, and their central galaxy occupation function

is modelled as the difference between two softened step functions.

Based on the results of previous works, we use a Gaussian function

with three free parameters for central galaxies and a power law for

satellite galaxies,

〈Ncen〉 = fmax × exp

[

−
(log M − log Mmin)2

2σ 2
log M

]

, (11)

〈Nsat〉 =

{

0, M < Mcut
(

M−Mcut

M1

)α

, M ≥ Mcut

(12)

where Mmin is the characteristic halo mass that has the maximum

probability of hosting a central galaxy, and σ log M is the standard

deviation width in log mass and fmax is the maximum probability

that a halo host a central galaxy. For satellite galaxies, α is

the power-law slope, M1 is the amplitude and Mcut is the cut-

off mass. Central galaxies move with the velocities of their host

haloes. Satellite galaxies have peculiar velocities with respect to

their host haloes drawn from a Gaussian velocity distribution, with

velocity dispersion calculated from the virial theorem for that halo

mass.

This formalism is simplified from previous studies, but it is

sufficient to model the ELG clustering. The six free parameters in our

HOD model are {fmax, Mmin, σ log M, Mcut, M1, α}. The units of Mmin,

M1, and Mcut are h−1 M⊙, while α, fmax, and σ log M are dimensionless

quantities. We perform a coarse HOD parameter space search for

parameter optimization. A value for each parameter is selected for

{Mmin, Mcut, M1, α}while fixing fmax = 0.15 and σ log M = 0.25. There

is significant degeneracy between these two parameters and the large-

Table 1. HOD parameter space for parameter optimization.

Parameter space

Mmin (h−1 M⊙) 1.0 × 1012, 1.5 × 1012, 2.0 × 1012

M1 (h−1 M⊙) 2.0 × 1013, 5.0 × 1013, 8.0 × 1013

Mcut (h−1 M⊙) 7 × 1011, 4 × 1012

α 0.8, 1.0, 1.2

Table 2. HOD parameters for our fidu-

cial galaxy mocks.

Best fit

Mmin 1.5 × 1012 h−1 M⊙
M1 8 × 1013 h−1 M⊙
Mcut 7 × 1011 h−1 M⊙
α 1.0

fmax 0.15

σ log M 0.25

scale galaxy bias. These parameters were chosen to match expected

ELG bias as well as meet the expectation that only a minority of

haloes would house ELG galaxies in the sample. But these choices

prevent the halo occupation model from going significantly below

the halo resolution limit of the GLAM-QPM catalogues. The full

parameter space is shown in Table 1. In subsequent sections, we

will demonstrate that the ELG clustering is relatively insensitive to

the choice of parameters. Thus, we did not explore the whole HOD

parameter space, which would be out of the scope of this paper. For

the purpose of mock generation, our method is sufficient to model

the large-scale bias of ELGs, with reasonable choices for the satellite

fraction of the target sample.

There are 54 sets of parameter in total. For each set, we generate

a galaxy mock and measure the redshift-space monopole ξ 0(s),

quadrupole ξ 2(s), as well as projected correlation function wp(rp).

We calibrate the HOD by finding the set of parameters which most

closely match the clustering of the data at scales between 10 and

30 h−1Mpc, as one would interpret the linear bias at this scale. We

also require that the HOD model match the data at <1h−1Mpc,

which constraints the fraction of ELGs that are satellite galaxies.

At intermediate scales, i.e. s ∼ 1 h−1 Mpc, the QPM scheme does

not model the bias well. We will illustrate this point presently.

At larger scales, the uncertainty in the clustering measurements

from the data is large due to sample variance, and the clustering

measurements are more prone to residual photometric systematics.

The best-fitting HOD parameters that we use to generate ELG mocks

are listed in Table 2. We tested the effect of varying fmax and σ log M,

and found that this does not significantly change the clustering

measurements.

The occupation function of central galaxies and satellite galaxies

is shown in the upper left panel of Fig. 6. The satellite fraction is

17.4 per cent, in accordance with ∼ 20 per cent satellite fraction of

star-forming galaxies in Tinker et al. (2013). This is also in agreement

with Favole et al. (2016), where it was found that 22.5 ± 2.5 per cent

of ELGs at redshift 0.8 are satellite galaxies. The galaxy number den-

sity produced by our HOD is 6.7 × 10−4 h3 Mpc−3, which is slightly

higher than the peak ELG number density 6.4 × 10−4 h3 Mpc−3.

This is intended to be so, as the higher number density allows studies

of systematic corrections. This HOD implies that ELGs reside in

haloes with mass larger than 1011h−1 M⊙, and most of the central

galaxies in haloes with mass larger than 1013h−1 M⊙ are quenched,

which is in agreement with the HOD analysis at redshift z ∼ 0.85

MNRAS 498, 5251–5262 (2020)
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eBOSS ELG GLAM-QPM mocks 5257

Figure 6. HOD model and galaxy clustering comparison between the GLAM-QPM mocks and ELG data. The upper left panel shows the best-fitting HOD

model for the eBOSS ELG sample (black), where the dashed curve indicates the central HOD, dotted curve the satellite HOD, and the solid curve is the total

HOD. The satellite fraction of our HOD model is 17.4 per cent. As a comparison, we also show the HOD prediction for eBOSS ELG in the redshift range 0.8

< z < 0.9 from Gonzalez-Perez et al. (2018) (blue) and Guo et al. (2019) (red). The remaining three panels show the measurements of wp(rp), ξ0(s), and ξ2(s),

respectively. The red curves are measurements from ELG data, averaged between the SGC and NGC, weighted by area. The errorbars are estimated using the

jackknife resampling technique, with 25 jackknife samples. The green curves are the mean of the clustering of 100 GLAM-QPM mocks using the best-fitting

HOD parameters in Table 2. The errorbars are the standard deviation, indicating the 1σ scatter.

of Tinker et al. (2013). We also compare our result with the HOD

study of eBOSS ELGs in Gonzalez-Perez et al. (2018) and Guo et al.

(2019) at redshift 0.8 < z < 0.9. The amplitude of our HOD function

is higher than the results of Gonzalez-Perez et al. (2018) and Guo

et al. (2019) because we aim to match the peak number density of

eBOSS ELG targets for the purpose of producing mock catalogues.

In addition, their results are for ELGs in the redshift bin 0.8 < z <

0.9, while we cover a wider redshift range. Fig. 6 also compares the

clustering measurements between mocks and data. The clustering

is measured from 100 mocks generated with the HOD parameters

in Table 2. The errorbars represent the 1σ scatter between mocks.

The mocks agree with data at scales from a few h−1 Mpc to around

20 h−1 Mpc. At scales around s ∼ 1 h−1 Mpc, the mocks are less

clustered than the data. The reason is that the method of sampling

the density field to find haloes does not yield the correct number

of haloes with small separations, thus leading to a deficit in the

correlation function at the transition scale between one-halo and two-

halo galaxy pairs. The lower halo mass region of the ELG sample

accentuates this effect relative to earlier mocks with LRGs. Due to

this fact, we do not perform a χ2 test on different HOD parameters

because we do not want the clustering measurements at small scale

(s ∼ 1 h−1 Mpc) have undue influence on the selection of HOD

parameters.

Instead, we test the impact of HOD parameters to the small-scale

clustering of ELGs by changing one parameter around the best-fitting

parameter set. As shown in Fig. 7, we fix fmax = 0.15, σ log M = 0.25

and perturb other parameters around our fiducial parameter set in

Table 2. The red curve shows the fiducial HOD parameter set, the

blue and green curves show the clustering after the perturbation.

Mmin and M1 affect the clustering of ELGs the most. This is because

Mmin is the mean halo mass of the Gaussian function for central

galaxies, so this parameter determines the halo mass scale that central

galaxies reside in, and determines the ELG linear bias. M1 affects

the mass of haloes that satellite galaxies reside in, so a smaller M1

would result in satellite ELGs being placed in higher mass haloes,

increasing the linear bias. There is no significant change in the

clustering even if we increase Mmin and M1 by a factor of 2. The

impact of Mcut and α is even less. We conclude that by choosing

suitable HOD parameters, we can produce mock catalogues with

small-scale clustering that is in reasonable agreement with the data,

and the large-scale bias is relatively insensitive to the parameters

chosen.

MNRAS 498, 5251–5262 (2020)
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Figure 7. The impact of varying the fiducial HOD parameters on the redshift-space monopoles and quadrupoles. Redshift-space monopoles are vertically

shifted by 50 to conveniently visualize. Our results for the fiducial set of HOD parameters (see Table 2) are shown with red curves, and each panel shows the

result of perturbing one parameter at a time. The upper left panel shows the impact of varying Mmin, and the upper right panel shows the impact of varying M1.

The lower panels show the impact of varying Mcut and α on the ELG clustering. The measured clustering of the eBOSS ELGs is indicated by the black points.

5 LA R GE- SCALE C LUSTERING AND

C OVA R I A N C E M AT R I X

5.1 Large-scale clustering

We generate 2000 galaxy mocks with the HOD parameters presented

in Table 2, and cut the mock to the ELG chunk geometry as well as

redshift distribution n(z). We measure the redshift-space monopole

and quadrupole up to 200 h−1 Mpc using the same method and

systematic weights as described in Section 3. We choose 40 equally

spaced bins for s from 0 to 200 h−1 Mpc.

The large-scale clustering of the mocks is shown in Fig. 8, in

comparison with the data. The shaded area indicates the 1σ and 2σ

scatter in the 2000 mocks. The BAO feature can be clearly seen in

the mocks, but there is some visible discrepancy between the mocks

MNRAS 498, 5251–5262 (2020)
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Figure 8. Large-scale clustering of ELG data and mocks. The upper

panel shows redshift-space monopoles and lower panel shows redshift-space

quadrupoles. The ELG SGC and NGC clustering are coloured in blue and

red, respectively. The clustering of GLAM-QPM mock is shown in black,

with the grey region showing the 1σ and 2σ range.

and data at the BAO scale, and also between the SGC and NGC.

We first present the covariance matrix in Section 5.2, then test the

statistical significance of the differences between SGC and NGC in

Section 5.3.

In Fig. 9, we compare the monopole and quadrupole of the

ELG correlation function yielded by our GLAM-QPM mocks to

that produced by the set of 1000 EZMocks of Zhao et al. (2020).

The shape and amplitude of the clustering signals between the two

mock sets are similar, despite the fact that they are achieved in

very complementary ways. Whereas in the QPM method, ersatz halo

populations are created and then populated with HOD models, in

the EZMock approach the matter density field is mapped directly

on to the galaxy density field, without haloes. The EZMocks further

incorporate the effects of redshift evolution within the ELG sample,

Figure 9. Comparison of the large-scale clustering between the GLAM-

QPM mocks and EZMocks of Zhao et al. (2020). The upper panel shows the

monopole and the lower panel shows the quadrupole. For both mocks, the

lines and shaded regions indicate the 1σ errors on each quantity.

as well as some systematic errors accrued in target selection through

the imaging data. These effects yield slightly higher sample variance

estimates in the clustering, as seen in Fig. 9.

5.2 Covariance matrix

Given a set of mock catalogues, the covariance matrix is defined as

Covij =
∑ns

k=1(xk
i − μi)(x

k
j − μj )

ns − 1
, (13)

where xi is the clustering measurement at the ith bin; index k indicates

kth realization of mocks; ns is the total number of mocks; i, j are bins

of separation; μi is the mean of xk
i .

The correlation matrix Cij is given by

Cij = corr(xi, xj )

=
∑ns

k=1(xk
i − μi)(x

k
j − μj )

√

∑ns

k=1(xk
i − μi)2

∑ns

k=1(xk
j − μj )2

. (14)

The correlation matrix of the large-scale clustering measurements

of the GLAM-QPM mocks is shown in Fig. 10. These corre-

lation matrices are all reasonable: clustering measurements be-

tween two bins with distance separated within ∼ 20 h−1 Mpc are

correlated.

MNRAS 498, 5251–5262 (2020)
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Figure 10. Correlation matrix of the GLAM-QPM mocks. The upper panel

shows the correlation matrix of the monopole and the lower panel shows

correlation matrix of the quadrupole. We use 40 equally spaced bins in s from

0 to 200 h−1 Mpc.

In Fig. 11, we show the correlation matrix for the ELG redshift-

space monopole measurements at small scales. The result is as

expected, with a correlation between galaxy pairs on scales s �

2.5 h−1 Mpc, where the pairs are from two distinct haloes. Monopole

measurements are uncorrelated on scales s � 2.5 h−1 Mpc, where

galaxy pairs are within the same halo and galaxies are randomly

sampled from the halo density profile.

5.3 NGC and SGC difference

We use the GLAM-QPM mocks produced in this paper to test

the consistency of the NGC and SGC measurements. For the

redshift-space monopole at small scales, we measure the cross-χ2 =
(ξ0SGC

− ξ0NGC
)T C−1

tot (ξ0SGC
− ξ0NGC

) with 12 data points between 0.34

and 70 h−1 Mpc, where the covariance matrix Ctot = CNGC + CSGC

is estimated using the GLAM-QPM mocks. We measure χ2/d.o.f. =
22.3/12 and conclude that on small scales, the SGC and NGC

clustering measurements are compatible.

In order to see whether the difference between SGC and NGC

at large scales is significant, we compute the cross-χ2 for both the

Figure 11. Correlation matrix for the ELG redshift-space monopole mea-

surements at small scales. Distance separations are binned logarithmically

from 0.34 to 70 h−1 Mpc.

monopole and the quadrupole measurements. We choose 10 linear

s bins from 77.5 to 122.5 h−1Mpc, since we are most interested

in the BAO scale at s ∼ 100 h−1Mpc. In Fig. 12,the results are

χ2/d.o.f. = 12.53/10 for monopoles and χ2/d.o.f. = 14.91/10 for

quadrupoles. The corresponding p-value is 0.25 and 0.14, meaning

that the difference is insignificant and we cannot reject the null

hypothesis that the difference between the SGC and NGC is caused

by cosmic variance. We also build the χ2 distribution from our

mock sample by selecting 200 NGC mocks and 200 SGC mocks

(all from different GLAM simulations) and building the sample

distribution from 40 000 χ2 values from each SGC–NGC pair. Our

sample distribution agrees with the χ2 distribution with d.o.f. = 10

perfectly well, indicating that our covariance matrix are valid for

robust BAO and RSD analysis, as is done in de Mattia (2020).

6 SU M M A RY

We present 2000 GLAM-QPM mock catalogues for the eBOSS

DR16 ELG sample. We use GLAM simulations to produce the dark

matter density field and the QPM method to assign dark matter haloes

to particles in the simulation. The haloes are then populated with

ELGs using an HOD methodology. We have calibrated the HOD

parameters for the eBOSS ELG sample to model the large-scale

bias of ELGs. The majority of central galaxies falls in haloes with

mass between 1011 and 1013 h−1 M⊙, and the satellite fraction of our

HOD model is 17.4 per cent. The eBOSS ELG survey geometry and

radial selection functions are applied to our mocks. This set of mock

catalogues is used in the eBOSS ELG RSD analysis in de Mattia

(2020).

We have shown that the GLAM-QPM mock catalogues agree with

ELG data at large scales, in general, within 2σ for monopole. For

quadrupole the ELG SGC data shows higher clustering signal than

GLAM-QPM mocks. We examined the cross-χ2 value for SGC and

NGC around BAO scales, and find χ2/d.o.f. = 10.09/10 for the

monopole and χ2/d.o.f. = 14.86/10 for the quadrupole. We cannot

conclude that the difference between SGC and NGC are due to

reasons other than cosmic variance.

MNRAS 498, 5251–5262 (2020)
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Figure 12. Cross-χ2 value from the SGC and NGC clustering measurements (vertical line), calculated using the covariance matrix from the GLAM-QPM

mocks, given by χ2 = (ξSGC − ξNGC)T C−1
tot (ξSGC − ξNGC). The left-hand panel shows the χ2 for the monopole and the right-hand panel is for the quadrupole.

We choose 10 r bins from 77.5 to 122.5 h−1 Mpc to study the clustering signal around BAO peak (r ∼ 100 h−1 Mpc). We also show the χ2 distribution from

40 000 pairs of NGC and SGC mocks (blue histogram), in order to see where the data falls in the distribution. A χ2 distribution with d.o.f. = 10 is shown by

the green curve.

AC K N OW L E D G E M E N T S

SL is grateful to the support from CCPP, New York University.

JLT and MRB are supported by NSF Award 1615997. FP and

AK acknowledge support from the Spanish Ministry of Science

and Innovation (MICINU) grant GC2018-101931-B-100. GR ac-

knowledges support from the National Research Foundation of

Korea (NRF) through grants nos. 2017R1E1A1A01077508 and

2020R1A2C1005655 funded by the Korean Ministry of Education,

Science and Technology (MoEST), and from the faculty research

fund of Sejong University. The GLAM simulations used in this

paper were done on MareNostrum-4 at the Barcelona Supercomputer

Center in Spain.

Funding for the Sloan Digital Sky Survey IV has been provided

by the Alfred P. Sloan Foundation, the U.S. Department of En-

ergy Office of Science, and the Participating Institutions. SDSS-

IV acknowledges support and resources from the Center for High-

Performance Computing at the University of Utah. The SDSS web

site is www.sdss.org.

SDSS-IV is managed by the Astrophysical Research Consor-

tium for the Participating Institutions of the SDSS Collaboration

including the Brazilian Participation Group, the Carnegie Institution

for Science, Carnegie Mellon University, the Chilean Participation

Group, the French Participation Group, Harvard-Smithsonian Center

for Astrophysics, Instituto de Astrofı́sica de Canarias, The Johns

Hopkins University, Kavli Institute for the Physics and Mathematics

of the Universe (IPMU)/University of Tokyo, Lawrence Berke-

ley National Laboratory, Leibniz Institut für Astrophysik Potsdam

(AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg),

Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-

Institut für Extraterrestrische Physik (MPE), National Astronomical

Observatory of China, New Mexico State University, New York

University, University of Notre Dame, Observatário Nacional/MCTI,

The Ohio State University, Pennsylvania State University, Shanghai

Astronomical Observatory, United Kingdom Participation Group,

Universidad Nacional Autónoma de México, University of Arizona,
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DATA AVAI LABI LI TY

The GLAM-QPM mock galaxy catalogues will be published along

with eBOSS DR16 galaxy catalogue release, and will also be placed

at the Skies and Universes site (Klypin, Prada & Comparat 2017).1
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