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ABSTRACT

We analyse the large-scale clustering in Fourier space of emission line galaxies (ELG) from
the Data Release 16 of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectro-
scopic Survey. The ELG sample contains 173,736 galaxies covering 1,170 square degrees
in the redshift range 0.6 < z < 1.1. We perform a BAO measurement from the post-
reconstruction power spectrum monopole, and study redshift space distortions (RSD) in the
first three even multipoles. Photometric variations yield fluctuations of both the angular and
radial survey selection functions. Those are directly inferred from data, imposing integral
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constraints which we model consistently. The full data set has only a weak preference for a
BAO feature (1.4σ). At the effective redshift zeff = 0.845 we measure DV(zeff)/rdrag =

18.33+0.57
−0.62, with DV the volume-averaged distance and rdrag the comoving sound hori-

zon at the drag epoch. In combination with the RSD measurement, at zeff = 0.85 we find
fσ8(zeff) = 0.289+0.085

−0.096, with f the growth rate of structure and σ8 the normalisation of the

linear power spectrum, DH(zeff)/rdrag = 20.0+2.4
−2.2 and DM(zeff)/rdrag = 19.17± 0.99 with

DH and DM the Hubble and comoving angular distances, respectively. These results are in
agreement with those obtained in configuration space, thus allowing a consensus measurement
of fσ8(zeff) = 0.315±0.095, DH(zeff)/rdrag = 19.6+2.2

−2.1 and DM(zeff)/rdrag = 19.5±1.0.
This measurement is consistent with a flat ΛCDM model with Planck parameters.

Key words: galaxies : distances and redshifts – cosmology : observations – cosmology : dark
energy – cosmology : distance scale – cosmology : large-scale structure of Universe

1 INTRODUCTION

Why the Universe expansion is accelerating has been one of the

most pressing questions of cosmology in the last two decades. The

Universe expansion history is most naturally probed through the

properties of the large scale structure. In particular, the distribution

of galaxies as measured by spectroscopic redshift surveys can be

studied through two types of clustering analyses, which we carry

out in this paper. The first type of analysis relies on the baryon

acoustic oscillation (BAO) feature (Eisenstein & Hu 1998) to mea-

sure the distance-redshift relation. The second type of analysis is

based on galaxy peculiar velocities. Indeed, redshifts of galaxies

are not only due to Hubble expansion but also depend on their pecu-

liar velocities. Thus, converting redshifts into comoving distances

assuming only the former contribution leads to galaxy coordinates

being biased along the line-of-sight (Kaiser 1987). As peculiar ve-

locities trace the gravitational potential field due to matter, these

so-called redshift space distortions (RSD) make clustering mea-

surements a way to test gravity and to measure the matter content

of the Universe.

In this work we study the clustering properties of the emission

line galaxy (ELG) sample, which is part of the extended Baryon

Oscillation Spectroscopic Survey (eBOSS, Dawson et al. 2016)

Data Release 16 (DR16, Ahumada et al. 2019) of the Sloan Dig-

ital Sky Survey IV (Blanton et al. 2017). ELG spectra were col-

lected by the BOSS (Baryon Oscillation Spectroscopic Survey)

spectrograph (Smee et al. 2013) located at Apache Point Obser-

vatory (Gunn et al. 2006), New Mexico.

This study is part of a coordinated release of the final eBOSS

measurements, also including BAO and RSD in the clustering of

luminous red galaxies (Gil-Marı́n et al. 2020; Bautista et al. 2020)

and quasars (Hou et al. 2020; Neveux et al. 2020). An essential

component of these studies is the construction of data catalogues

(Ross et al. 2020; Lyke et al. 2020), mock catalogues (Lin et al.

2020; Zhao et al. 2020a), and N-body simulations for assessing

systematic errors (Alam et al. 2020; Avila et al. 2020; Rossi et al.

2020; Smith et al. 2020). At the highest redshifts (z > 2.1), the co-

ordinated release of final eBOSS measurements includes measure-

ments of BAO in the Lyman-α forest (du Mas des Bourboux et al.

2020). The cosmological interpretation of these results in combina-

tion with the final BOSS results and other probes is found in eBOSS

Collaboration et al. (2020)1. Multi-tracer analyses to measure BAO

1 A summary of all SDSS BAO and RSD measurements with accompa-

nying legacy figures can be found at https://sdss.org/science/

and RSD using LRG and ELG samples are presented in Wang et al.

(2020); Zhao et al. (2020b).

Star-forming ELGs are an interesting tracer for clustering

analyses. Indeed, the star formation rate increases up to z ∼ 2,

where red galaxies are rarer. Also, the strong emission lines, such

as Hα or the [OII] doublet, ease the redshift measurement — thus

allowing reduced spectroscopic observing time. The eBOSS ELG

sample, with 173, 736 galaxies distributed in the redshift range

0.6 < z < 1.1 (effective redshift of zeff = 0.845), is the largest

and highest redshift ELG spectroscopic sample ever assembled and

the third one to be used for cosmology (Blake et al. 2011; Contr-

eras et al. 2013; Okumura et al. 2016). The eBOSS ELG sample

has already been used to study the evolution of star forming galax-

ies (Guo et al. 2019) and the circumgalactic medium of ELGs (Lan

& Mo 2018). Details about the eBOSS ELG target selection can

be found in Raichoor et al. (2016, 2017). The DR16 ELG clus-

tering catalogue is described in Raichoor et al. (2020), which also

includes a measurement of the isotropic BAO feature in configu-

ration space. Tamone et al. (2020) presents the RSD analysis in

configuration space.

In what follows, we present and analyse the clustering of

galaxies of the DR16 ELG catalogue in Fourier space. We perform

a RSD measurement using the observed galaxy density field, and an

isotropic BAO measurement after reconstructing the density field to

remove non-linear damping of the BAO signal.

The RSD analysis of the observed galaxy power spectrum al-

lows joint constraints to be derived on the product f(zeff)σ8(zeff),
and ratios DH(zeff)/rdrag and DM(zeff)/rdrag, at the effective

redshift of the sample zeff . In these combinations, f(z) is the log-

arithmic derivative of the linear growth factor with respect to the

scale factor a = 1/ (1 + z) (hereafter referred to as the growth

rate of structure) and σ8(z) is the amplitude of the linear matter

power spectrum measured in spheres of radius 8Mpc/h at red-

shift z. We also use DH(z) = c/H(z), the Hubble distance re-

lated to the Hubble expansion rate H(z), DM = (1 + z)DA(z),
the comoving angular diameter distance related to the proper an-

gular diameter distance DA and rdrag the comoving sound horizon

when the baryon-drag optical depth equals unity. The BAO only

analysis is sensitive to DM/rdrag, DH/rdrag or a combination of

both terms. In this work, we measure the ratio DV/rdrag with the

volume-averaged distance DV(z) =
(

D2
M(z)DH(z)z

)1/3
.

final-bao-and-rsd-measurements/. The full cosmological in-

terpretation of these measurements can be found at https://sdss.

org/science/cosmology-results-from-eboss/.
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The RSD model we use is based on state-of-the-art two-

loop order perturbation theory to ensure reliable modelling of the

power spectrum up to mildly non-linear scales. Besides the stan-

dard survey window function, we also model the radial integral

constraint generated by the survey radial selection function be-

ing estimated from observed data. We carefully review potential

sources of systematic errors, and apply correction schemes after

validation based on mock catalogues. After mitigation of system-

atic effects, we measure the first three even Legendre multipoles of

the pre-reconstruction power spectrum and the post-reconstruction

monopole and compare these measurements with model predic-

tions to derive cosmological constraints. We combine isotropic

BAO and RSD analyses at the likelihood level in order to release

the Gaussian assumption on the posteriors and strengthen our cos-

mological measurement.

The paper is organised as follows. Section 2 presents the

power spectrum estimators used to compute multipoles in a peri-

odic box and within a real survey geometry. All components of the

power spectrum RSD and BAO models are described in Section 3

and the fitting methodology is introduced in Section 4. Model val-

idation against N-body simulations is detailed in Section 5. Sec-

tion 6 briefly describes the eBOSS DR16 ELG sample and the

adopted scheme to correct for known systematic effects, as well

as approximate mocks used to test this procedure. We show the

impact of residual systematics on clustering measurements, and in-

troduce techniques to mitigate them in Section 7. Cosmological fits

and their implications are presented in Section 8. These measure-

ments are combined with configuration space results of Tamone

et al. (2020) in Section 9. We conclude in Section 10.

2 POWER SPECTRUM ESTIMATION

In this section we detail our measurements of the power spectrum

multipoles of the galaxy density field in a periodic box (used in

Section 5.2) and within a real, sky-cut geometry (used in Section 6

and beyond).

2.1 Periodic box

We define the density contrast:

δg(r) =
ng(r)

n̄g
− 1 (1)

where ng(r) is the galaxy density at comoving position r, and n̄g

its average over the whole box of volume V . Taking the Fourier

transform δg(k) of this field, power spectrum multipoles are calcu-

lated as:

Pℓ(k) =
2ℓ+ 1

V

∫

dΩk

4π
δg(k)δg(−k)Lℓ(k̂ · η̂)−P noise

ℓ (k) (2)

Lℓ being the Legendre polynomial of order ℓ and η̂ the unit global

line-of-sight η vector, which we choose to be one axis of the box.

The shot noise term is non-zero for the monopole only:

P noise
0 =

1

n̄g
. (3)

We use the implementation of the periodic box power spec-

trum estimator in the Python toolkit nbodykit (Hand et al. 2018).

The density contrast field δg(r) in Eq. (1) is interpolated on a

5123 mesh following the triangular shaped cloud (TSC) scheme.

In the following (see Section 5), the box size is 3000Mpc/h
and thus the Nyquist frequency is kN ≃ 0.5h/Mpc, more than

twice larger than the maximum wavenumber used in the RSD

analysis (k = 0.2h/Mpc). We checked that using a 7003 mesh

(kN ≃ 0.7h/Mpc) does not change our measurement in a de-

tectable way. Then, the term δg(k) in Eq. (2) is calculated with

a fast Fourier transform (FFT) of the interpolated density contrast

and the interlacing technique of Sefusatti et al. (2016) is used to

mitigate aliasing effects.

The integral over the solid angle dΩk in Eq. (2) is performed

in spherical shells of ∆k = 0.01h/Mpc, from k = 0h/Mpc. The

discrete k-space grid makes the angular mode distribution irregular

at large scales, an effect which we account for in the model (see

Section 3.3).

2.2 Real survey geometry

Following Feldman et al. (1994) (FKP) the power spectrum estima-

tor of Yamamoto et al. (2006) makes use of the FKP field:

F (r) = ng(r)− αsns(r) (4)

where ng(r) and ns(r) denote the density of observed and random

galaxies, respectively, at comoving position r. Random galaxies

come from a Poisson-sampled synthetic catalogue accounting for

the survey selection function. Observed and random galaxy den-

sities include weights, i.e. corrections for systematics effects and

FKP weights (Feldman et al. 1994). The scaling αs is defined by:

αs =

∑Ng

i=1 wg,i
∑Ns

i=1 ws,i

. (5)

with Ng , Ns and wg , ws the number and weights of observed

and random galaxies, respectively. Then, the power spectrum mul-

tipoles are given by Bianchi et al. (2015):

Pℓ(k) =
2ℓ+ 1

I

∫

dΩk

4π
F0(k)Fℓ(−k)− P noise

ℓ (k) (6)

with:

Fℓ(k) =

∫

d3rF (r)Lℓ(k̂ · η̂)eik·r, (7)

following the same notations as in Section 2.1. In this estimator,

we take for line-of-sight η̂ = r̂ where r̂ is the direction to the sec-

ond galaxy of the pair. This approximation introduces wide-angle

effects in the power spectrum multipoles as well as the associated

window function. However, these effects have been shown to not

impact current RSD and BAO studies significantly (Castorina &

White 2018; Beutler et al. 2019).

The normalisation term I is given by:

I = αs

Ns
∑

i=1

ws,ing,i. (8)

and the shot noise, which only contributes to the monopole in a

scale-independent way, is:

P noise
0 =

1

I





Ng
∑

i=1

w2
g,i + α2

s

Ns
∑

i=1

w2
s,i



 (9)

For the density ng,i, we take the redshift density n(z), computed

by binning (weighted) data in redshift slices of ∆z = 0.005 (see

Section 6.1 and Raichoor et al. 2020).

We use the implementation of the Yamamoto estimator in the

Python toolkit nbodykit (Hand et al. 2018) to measure power

spectra. Again, the FKP field (4) is interpolated on a 5122 mesh

with the TSC scheme. Terms Fℓ(k) of Eq. (7) are calculated with

MNRAS 000, 1–?? (2020)
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FFTs and the interlacing technique of Sefusatti et al. (2016) is used

to mitigate aliasing effects. Here we use a box size of 4000Mpc/h,

so the Nyquist frequency is kN ≃ 0.4h/Mpc. We again checked

that using a 7003 mesh (kN ≃ 0.55h/Mpc) does not change our

measurement significantly.

The integral over the solid angle dΩk in Eq. (6) is also per-

formed in spherical shells of ∆k = 0.01h/Mpc, starting from

k = 0h/Mpc, unless otherwise stated.

2.3 Fiducial cosmology

To obtain the FKP field as a function of comoving position r we

turn galaxy redshifts into distances assuming a fiducial cosmology.

This fiducial cosmology will be also used (unless otherwise stated)

to compute the linear matter power spectrum for the RSD and BAO

analyses in Section 3. For both purposes, we utilised the same fidu-

cial cosmology as in BOSS DR12 analyses (Alam et al. 2017)2:

h = 0.676, Ωm = 0.31, ΩΛ = 0.69, Ωbh
2 = 0.022,

σ8 = 0.80, ns = 0.97,
∑

mν = 0.06 eV.
(10)

Within this fiducial cosmology, that will be used throughout this

paper (unless otherwise stated), rfiddrag = 147.77Mpc.

3 MODEL

In this section we review the different ingredients of the RSD model

(Sections 3.1 to 3.5) and the isotropic BAO template (Section 3.6),

which will be used throughout this paper.

3.1 Redshift space distortions

The RSD model we use follows closely that of Taruya et al. (2010,

2013), hereafter referred to as the TNS model, as used in Beut-

ler et al. (2017b). The redshift-space galaxy power spectrum is ex-

pressed as a function of k the norm of the wavenumber k and its

cosine angle to the line-of-sight µ:

Pg(k, µ) = DFoG(k, µ, σv)
[

Pg,δδ(k) + 2fµ2Pg,δθ(k)

+f2µ4Pθθ(k) + b31A(k, µ, β) + b41B(k, µ, β)
]

, (11)

with β = f/b1 and b1 is the linear bias. We adopt a Lorentzian

form for the Finger-of-God effect (Jackson 1972; Cole et al. 1995):

DFoG(k, µ, σv) =

[

1 +
(kµσv)

2

2

]−2

, (12)

with σv the velocity dispersion.

Galaxy-galaxy and galaxy-velocity power spectra Pg,δδ(k)
and Pg,δθ(k) are given by:

Pg,δδ(k) = b21Pδδ(k) + 2b2b1Pb2,δ(k) + 2bs2b1Pbs2,δ(k)

+ 2b3nlb1σ
2
3(k)P

lin
m (k) + b22Pb22(k)

+ 2b2bs2Pb2s2(k) + b2s2Pbs22(k) +Ng, (13)

2 Note that only Ωm (and ΩΛ) matter for the redshift to comoving distance

(in Mpc/h) conversion.

and:

Pg,δθ(k) = b1Pδθ(k) + b2Pb2,θ(k)

+ bs2Pbs2,θ(k) + b3nlσ
2
3(k)P

lin
m (k), (14)

where 1-loop bias terms Pb2,δ(k), Pbs2,δ(k), σ
2
3(k), Pb2,θ(k) and

Pbs2,θ(k) are provided in McDonald & Roy (2009); Beutler et al.

(2017b). In this paper, power spectra Pδδ(k), Pδθ(k) and Pθθ(k),
as well as RSD correction terms A(k, µ, β) and B(k, µ, β), are

calculated at 2-loop order, following the RegPT scheme (Taruya

et al. 2012). We compute the linear matter power spectrum P lin
m (k)

in the fiducial cosmology (10) (except otherwise stated) with the

Boltzmann code CLASS (Blas et al. 2011) and keep it fixed in the

cosmological fits.

Second and third order non-local biases bs2 and b3nl are fixed

assuming local Lagrangian bias (Chan et al. 2012; Baldauf et al.

2012; Saito et al. 2014):

bs2 = −4

7
(b1 − 1) , (15)

b3nl =
32

315
(b1 − 1) . (16)

3.2 The distance-redshift relationship

The fiducial cosmology used to turn angular positions and red-

shifts into distances may differ from the underlying cosmology

of the data (or mock) galaxy sample. This leads to distortions

in the (k, µ) space which can be detected through the so-called

Alcock-Paczynski (AP) test (Alcock & Paczynski 1979). We de-

fine the scaling parameters (α‖, α⊥) to relate the observed radial

and transverse wavenumbers (k‖, k⊥) to the true ones (k′
‖, k

′
⊥) =

(k‖/α‖, k⊥/α⊥). In the (k, µ) = (
√

k2
‖ + k2

⊥, k‖/k) space, the

corresponding mapping (k, µ) → (k′, µ′) is given by Ballinger

et al. (1996):

k′ =
k

α⊥

[

1 + µ2

(

α2
⊥

α2
‖

− 1

)]1/2

, (17)

µ′ =
µα⊥

α‖

[

1 + µ2

(

α2
⊥

α2
‖

− 1

)]−1/2

. (18)

Then, the power spectrum multipoles including the AP effect are

expressed as:

Pℓ(k) =
2ℓ+ 1

2α‖α2
⊥

∫ 1

−1

dµPg

(

k′(k, µ), µ′(µ)
)

Lℓ(µ). (19)

In practice, the AP effect is mostly sensitive to the change in the po-

sition of the BAO feature imprinted in the power spectrum at rdrag,

the comoving sound horizon at the redshift at which the baryon-

drag optical depth equals unity (Hu & Sugiyama 1996). Thus, scal-

ing parameters are related to the true and fiducial cosmologies (fid):

α‖ =
DH(zeff)r

fid
drag

Dfid
H (zeff)rdrag

(20)

α⊥ =
DM(zeff)r

fid
drag

Dfid
M (zeff)rdrag

, (21)

with Dfid
H (zeff) the Hubble distance and Dfid

M (zeff) the comov-

ing angular diameter distance given at the effective redshift of

the galaxy sample zeff , the superscript fid denoting quantities in

the fiducial cosmology. Note that the α‖ and α⊥ dependence on

rdrag is an approximation, and assumes that the scale-constraint
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in the power spectrum on the distance-redshift relationship only

comes from BAO. Including this dependence in the (α‖, α⊥) pa-

rameters makes the power spectrum amplitude rescaling in the

AP transform (19) formally incorrect. We expect this effect to

be small for cosmological models that also fit the Planck con-

straints of Planck Collaboration et al. (2018), who robustly mea-

sured rdrag = 147.09± 0.26Mpc (from TT, TE, EE, lowE, CMB

lensing), close to the value of our fiducial cosmology in Eq. (10),

rfiddrag = 147.77Mpc. The impact of the fiducial cosmology on

data cosmological measurements will be tested in Section 8.

3.3 Irregular µ sampling

Power spectrum multipoles are calculated on a discrete k-space

grid (Section 2), making the angular modes distribution irregular

at large scales. We account for this effect in the model using the

technique employed in Beutler et al. (2017b) which weights each

(k, µ) mode according to its sampling rate N(k, µ) in the k-space

grid:

P grid
g (k, µ) =

N(k, µ)
∫ 1

0
dµN(k, µ)

Pg (k, µ) . (22)

Though this correction should be applied after the convolution

by the window function (discussed hereafter), as in Beutler et al.

(2017b), for the sake of computing time we include it when inte-

grating the galaxy power spectrum over the Legendre polynomials

in Eq. (19). We checked that the impact of such a correction on the

cosmological parameters measured on the eBOSS ELG data is of

the order of 10−3, well below the statistical uncertainty.

3.4 Survey window function

The observed galaxy density is modulated by the survey selection

function. The resulting window function effect is accounted for

in the model using the formalism of Wilson et al. (2017); Beut-

ler et al. (2017b), and correctly normalised following de Mattia

& Ruhlmann-Kleider (2019). Indeed, because of the fine-grained

veto masks of the eBOSS ELG survey and the conventional choice

made to estimate the survey area entering the redshift density esti-

mation, the value of I in Eq. (8) used to normalise the power spec-

trum estimation in Eq. (6) is inaccurate. We thus use this value in

the normalisation of window functions in the model, so that I di-

vides both the power spectrum measurements and model, and com-

pensate. Therefore, the estimation of I does not impact the recov-

ered cosmological parameters. Figure 1 shows the window function

multipoles of the EZ mocks (reproducing the eBOSS ELG sample,

see Section 6.2): the monopole has a non-zero slope even below

. 5Mpc/h due to the fine-grained veto masks. For comparison

purposes, we also plot the window function without veto masks ap-

plied; in this case, the monopole stabilises faster on small scales.

The area entering the estimation of I used to normalise the un-

masked window function has been kept fixed to the masked case.

Since veto masks remove more area in the South Galactic Cap

(SGC) than in the North Galactic Cap (NGC) (see Raichoor et al.

2017), the unmasked SGC window function is relatively lower than

the masked case compared to NGC.

In Section 7 we further check that veto masks do not bias cos-

mological measurements with our treatment of the window func-

tion.

The window function convolution requires to perform Han-

kel transforms between power spectrum and correlation function

Figure 1. Window function multipoles (top: NGC, bottom: SGC) of the EZ

mocks (reproducing the eBOSS ELG sample), before (dashed lines) and

after (continuous lines) application of the veto masks. Contrary to previous

clustering analyses imposing window functions to converge to 1 on small

scales, we properly normalise these window functions by the same term as

the power spectrum estimation. The height difference between the window

function monopoles is explained by the area covered by veto masks (see

text).

multipoles. We use for this purpose the FFTLog software (Hamil-

ton 2000). As in Beutler et al. (2017b) we only consider correla-

tion function multipoles ξℓ(s) up to ℓ = 4 in our calculations. We

checked that adding ξ6(s) has a completely negligible impact on

the model prediction.

3.5 Integral constraints

The mean of the observed density contrast F (r) of Eq. (4) on the

survey footprint is forced to 0, as imposed by the definition of αs in

Eq. (5), leading to a so-called global integral constraint (IC), which

we model following de Mattia & Ruhlmann-Kleider (2019).

Moreover, in this analysis, as well as in other BOSS and

eBOSS clustering analyses (e.g. Ross et al. 2012; Beutler et al.

2017b; Gil-Marı́n et al. 2016), redshifts of the random catalogue

sampling the selection function are randomly drawn from the data

(following the so-called shuffled scheme). As discussed in de Mat-

tia & Ruhlmann-Kleider (2019), this leads to the suppression of

radial modes and impacts the power spectrum multipoles on large

scales. We will see in Section 7 that this effect, if not accounted for,

would be one of the largest systematics in the eBOSS ELG sample.

We thus model this effect following the prescription of de Mattia

& Ruhlmann-Kleider (2019) by replacing the global integral con-

straint by the radial one for observed data and approximate mocks

using the shuffled scheme. The impact of the global and radial in-
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Figure 2. Power spectrum multipoles (top: NGC, bottom: SGC; blue:

monopole, red: quadrupole, green: hexadecapole) of the RSD model. The

window function effect only is taken into account in continuous lines, and

the additional impact of the global and radial integral constraints (IC) are

shown in dashed and dotted lines, respectively. For this figure we choose

f = 0.8, b1 = 1.4, b2 = 1, σv = 4Mpc/h.

tegral constraints on the power spectrum multipoles is shown in

Figure 2. One can alternatively try to subtract the effect of the ra-

dial integral constraint from the data measurement (see e.g. Wang

et al. 2020).

Note that the integral constraint formalism will also be used

to account for our mitigating angular observational systematics, as

suggested in de Mattia & Ruhlmann-Kleider (2019) and detailed in

Section 7.

3.6 Isotropic BAO

In this paper we perform an isotropic BAO measurement on the

eBOSS ELG sample. We checked that the amplitude of the power

spectrum measured at k ≃ 0.1h/Mpc on post-reconstruction

mock catalogues (see Section 6.2) is roughly constant over µ,

suggesting that the BAO information is isotropically distributed.

Thus, the monopole is optimal for single-parameter BAO-scale

measurement, which can be used to constrain the following combi-

nation (Eisenstein et al. 2005; Ross et al. 2015):

α = α
1/3

‖ α
2/3
⊥ . (23)

To fit the isotropic BAO feature, we use the same power spec-

trum template (dubbed wiggle template) as in previous analyses of

BOSS and eBOSS (e.g. Beutler et al. 2017a; Gil-Marı́n et al. 2016;

Ata et al. 2018):

P (k, α) = Psm(k)Odamp(k/α) (24)

where:

Odamp(k) = 1 + [O(k)− 1] e−
1
2
Σ2

nlk
2

. (25)

O(k) is obtained by taking the ratio of the linear matter power spec-

trum P lin
m (k) to the no-wiggle power spectrum of Eisenstein & Hu

(1998), augmented by a five order polynomial term, fitted such that

O(k) oscillates around 1. We take:

Psm(k) = B2
nwPnw(k) +

i=2
∑

i=−2

Aik
i, (26)

where Pnw(k) = P lin
m (k)/O(k). The number of broadband pa-

rameters Ai is found such that the BAO template Eq. (24) can re-

produce the mean of the EZ mocks (see Section 6.2) within 10% of

the uncertainty on the data power spectrum measurement. To spec-

ify the BAO detection and for plotting purposes in Section 8.1, we

will use the no-wiggle template obtained by removing the oscilla-

tion pattern in Eq. (24) (i.e. keeping only the Psm(k) factor).

We cannot include a correction for the irregular µ sam-

pling (Section 3.3) as the power spectrum template in Eq. (24) is

isotropic; this is not an issue since the correction seen in the case

of the RSD model is very small.

We also neglect the integral constraints (Section 3.5), as their

impact will be shown to be negligible in Section 7. The effect of the

survey window function is accounted for according to Section 3.4

through the (dominant) monopole term only, since the power spec-

trum template is isotropic. This is legitimate since broadband terms

typically absorb these smooth distortions of the power spectrum.

We checked that totally ignoring the window function effect leads

to a negligible change of ≃ 10−3 in the α measurement with the

eBOSS ELG data.

4 FITTING METHODOLOGY

This section details how the previously described RSD and BAO

models are compared to the data to derive cosmological measure-

ments.

4.1 Reconstruction

For the isotropic BAO analysis, the galaxy field is reconstructed to

enhance the BAO feature in its 2-point correlation function (Eisen-

stein et al. 2007). This step (partially) removes RSD and non-linear

evolution of the density field. We follow the procedure described

in Burden et al. (2015) and Bautista et al. (2018). We perform

three reconstruction iterations, assuming the growth rate parame-

ter f = 0.82 and the linear bias b = 1.4. The density contrast

field is smoothed by a Gaussian kernel of width 15Mpc/h. The

choice of these reconstruction conditions and the assumed fiducial

cosmology were shown to have very small impact on the BAO mea-

surements in Vargas-Magaña et al. (2018) and Carter et al. (2020).

In this paper, isotropic BAO fits are performed on both pre-

and post-reconstruction monopole power spectra, while the RSD

analysis makes use of the monopole, quadrupole and hexadecapole

of the pre-reconstruction power spectrum. As we will see in Sec-

tion 8, the posterior of the RSD only measurement is significantly

non-Gaussian, making it hard to combine with the isotropic BAO

posteriors. We thus also use jointly the above pre-reconstruction

multipoles with the post-reconstruction monopole (taking into ac-

count their cross-covariance) to perform a combined RSD and
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isotropic BAO fit. Further use of this new combination technique

can be found in Gil-Marı́n et al. (2020); Zhao et al. (2021).

4.2 Parameter estimation

In the RSD analysis, fitted cosmological parameters are the growth

rate of structure f and the scaling parameters α‖ and α⊥. Since

f is very degenerate with the power spectrum normalisation σ8,

we quote the combination fσ8. As discussed in Gil-Marı́n et al.

(2020); Bautista et al. (2020), we take σ8 as the normalisation of

the power spectrum at 8 × αMpc/h (instead of 8Mpc/h), with

α = α
1/3

‖ α
2/3
⊥ as measured from the fit. We emphasise that the

quoted fσ8 measurement can be straightforwardly compared to any

fσ8 prediction, as usual. The sensitivity of our RSD measurements

on the assumed fiducial cosmology is discussed in Section 5.4. We

consider 4 nuisance parameters for the RSD fit: the linear and sec-

ond order bias coefficients b1 and b2, the velocity dispersion σv

and Ag = Ng/P
noise
0 , with Ng the constant galaxy stochastic term

(see Eq. 13) and P noise
0 the measured Poisson shot noise (see Eq. 9).

Again, b1 and b2 are almost completely degenerate with σ8, so we

quote b1σ8 and b2σ8.

For the isotropic BAO fit, the fitted cosmological parame-

ter is α. Nuisance parameters are Bnw and the broadband terms

(Ai)i∈[−2,2] in Eq. (26). These last terms are fixed by solving the

least-squares problem for each value of α, Bnw. The non-linear

damping scale Σnl is fixed using N-body simulations in Section 5.5.

For the combined RSD and post-reconstruction isotropic BAO

fit, we use parameters from both analyses. We rely on Eq. (23) to

relate α from the isotropic BAO fit to the α‖ and α⊥ scaling pa-

rameters of the RSD fit. We fix Bnw to b1, as this choice introduced

no detectable bias in the fits of the EZ mocks (see Section 7). The

varied parameters are reported in Table 1.

The fitted k-range of the RSD measurement is 0.03 −
0.2h/Mpc for the monopole and quadrupole and 0.03 −
0.15h/Mpc for the hexadecapole. We choose such a minimum k to

avoid large scale systematics and non-Gaussianity. For the isotropic

BAO fit we use the monopole between 0.03 and 0.3h/Mpc.

4.3 Likelihood

As is in some other eBOSS analyses (e.g. Raichoor et al. 2020;

Neveux et al. 2020; Bautista et al. 2020), we use a frequentist ap-

proach to estimate the scaling parameter α for the isotropic BAO

analysis. Bayesian inference is used to obtain posteriors for the

eBOSS ELG RSD (and RSD + BAO) measurements. For the sake

of computing time, we use a frequentist estimate of the cosmologi-

cal parameters from the N-body based and approximate mocks and

to perform data robustness tests.

In the frequentist approach, we perform a χ2 minimisation us-

ing the Minuit (James & Roos 1975) algorithm3, taking large

variation intervals for all parameters. We check that the fitted pa-

rameters do not reach the input boundaries. Errors are determined

by likelihood profiling: the error on parameter pi is obtained by

scanning the pi → minpj 6=i
χ2(p) profile until the χ2 difference

to the best fit reaches ∆χ2 = 1 (while minimising over other pa-

rameters pj).

In the case of N-body mocks with periodic boundary condi-

tions (see Section 5.2), we compute an analytical covariance matrix

following Grieb et al. (2016). In the case of data (see Section 6.1)

3 https://github.com/iminuit/iminuit

or sky-cut mocks (from N-body simulations in Section 5 or approx-

imate mocks in Section 6), the power spectrum covariance matrix

is estimated from approximate mocks (lognormal, EZ or GLAM-

QPM mocks). We thus apply the Hartlap correction factor (Hartlap

et al. 2007) to the inverse of the covariance matrix C measured

from the mocks:

Ψ = (1−D)C−1, D =
nb + 1

nm − 1
(27)

with nb the number of bins and nm the number of mocks. To prop-

agate the uncertainty on the estimation of the covariance matrix, we

rescale the parameter errors (Dodelson & Schneider 2013; Percival

et al. 2014) by the square root of:

m1 =
1 +B (nb − np)

1 +A+B (np + 1)
, (28)

with np the number of varied parameters and:

A =
2

(nm − nb − 1) (nm − nb − 4)
, (29)

B =
nm − nb − 2

(nm − nb − 1) (nm − nb − 4)
. (30)

When cosmological fits are performed on the same mocks used to

estimate the covariance matrix, the covariance of the obtained best

fits should be rescaled by:

m2 = (1−D)−1 m1. (31)

In Appendix A we propose a new version of this formula, ac-

counting for a combined measurement of several independent like-

lihoods, which we use when fitting both the NGC and SGC. The

magnitude of the rescaling (A22) is of order 5.5% at most (for the

combined RSD + BAO measurements).

In the Bayesian approach, which we use to produce the pos-

terior of the eBOSS ELG RSD and RSD + BAO measurements,

the uncertainty on the covariance matrix estimation is marginalised

over following Sellentin & Heavens (2016):

L(xd|p) ∝
{

1 +
1

nm − 1

[

x
d − x

t(p)
]T

C
−1
[

x
d − x

t(p)
]

}−nm
2

(32)

where we note the power spectrum measurements (data) xd and

the model (theory) xt as a function of parameters p. The combined

NGC and SGC likelihood is trivially the product of NGC and SGC

likelihoods.

Our posterior is the product of Eq. (32) with flat priors on all

parameters, infinite for all of them, except for f , b1 and σv , which

are lower-bounded by 0 (see Table 1).

To sample the posterior distribution we run Markov Chain

Monte Carlo (MCMC) with the package emcee (Foreman-Mackey

et al. 2013). We run 8 chains in parallel and check their convergence

using the Gelman-Rubin criterion R− 1 < 0.02 (Gelman & Rubin

1992).

5 MOCK CHALLENGE

In this section we validate our implementation of the RSD TNS

model and isotropic BAO template (presented in Section 3) against

mocks based on N-body simulations, which are expected to more

faithfully reproduce the small-scale, non-linear galaxy clustering.

We estimate the potential modelling bias in the measurement of

cosmological parameters. We refer the reader to Alam et al. (2020)

and Avila et al. (2020) for a complete description of this mock chal-

lenge.
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Table 1. Varied parameters, and their priors in the case of Bayesian inference (MCMC). Priors are all flat, with infinite bounds, except for those mentioned

below. No MCMC is run for the BAO only analysis. In all cases (including MCMC), parameters (Ai)i∈[−2,2] are solved analytically (see text)

.

RSD BAO RSD + BAO

varied parameters f , α‖, α⊥, b1, b2, σv , Ag α, Bnw, (Ai)i∈[−2,2] f , α‖, α⊥, b1, b2, σv , Ag , (Ai)i∈[−2,2]

NGC/SGC specific b1, b2, σv , Ag Bnw, (Ai)i∈[−2,2] b1, b2, σv , Ag , (Ai)i∈[−2,2]

priors (MCMC) f > 0, b1 > 0, σv > 0 - f > 0, b1 > 0, σv > 0

5.1 MultiDark mocks

A first set of mocks is based on the zsnap = 0.859 snapshot

of the MultiDark simulation MDPL2 (Klypin et al. 2016) of vol-

ume 1 (Gpc/h)3 and 38403 dark matter particles of mass 1.51 ×
109M⊙/h, run with the flat ΛCDM cosmology4:

h = 0.6777, Ωm = 0.307115, Ωb = 0.048206,

σ8 = 0.8228, ns = 0.9611.
(33)

Dark matter halos were populated with galaxies following

two halo occupation distribution (HOD) models: a standard HOD

(SHOD), and a HOD quenched at high mass (HMQ, see Alam et al.

2020 for details). Eleven types of mocks were produced for each

HOD; in addition to the baseline (type 1), these include 50% vari-

ations in the halo concentration in dark matter and the velocity dis-

persion of satellite galaxies (types 2, 3, 4, 5), a shift in the posi-

tion of the central galaxy (type 6) and assembly bias prescriptions

(types 7, 8 and 9). In the last two types of mocks (types 10 and 11),

galaxy velocities were upscaled (downscaled) by 20%, for which

we thus expected a 20% increase (decrease) of the fσ8 measure-

ment. The galaxy density reached 3 × 10−3 (h/Mpc)3, about 10
times the mean eBOSS ELG density, such that the shot noise is

very low.

We derived a covariance matrix from a set of 500 lognormal

mocks produced with nbodykit, in the MDPL2 cosmology of

Eq. (33), assuming a bias of 1.4 and with the same density of 3 ×
10−3 (h/Mpc)3. We checked that the agreement between N-body

based and lognormal mocks was satisfactory on the whole k-range

of the cosmological fit.

Both N-body based and lognormal mocks were analysed with

the fiducial cosmology of Eq. (10), as for the eBOSS ELG data.

We thus accounted for the appropriate window function and global

IC effect (Section 3.5) in the model, and we included the correc-

tion for the irregular µ distribution (Section 3.3) at large scales. As

reported in Alam et al. (2020) (Figure 4), the fitted cosmological

parameters were found to be within 1σ of the expected values, even

for mocks with rescaled galaxy velocities, where the offset in the

fitted fσ8 values corresponds to the 20% offset in velocity. How-

ever, the obtained uncertainties were only half of those expected

with the eBOSS ELG sample, which was not sufficient to derive an

accurate modelling systematic budget. We thus focused on larger

mocks.

5.2 OuterRim mocks

Two other sets of mocks were based on the zsnap = 0.865 snap-

shot of the OuterRim (Heitmann et al. 2019) simulation of vol-

ume 27 (Gpc/h)3 and 10, 2403 dark matter particles of mass

4 https://www.cosmosim.org/cms/simulations/mdpl2/

1.85× 109M⊙/h, run with the flat ΛCDM cosmology:

h = 0.71, ωcdm = 0.1109, ωb = 0.02258,

σ8 = 0.8, ns = 0.963.
(34)

A first set of mocks using the SHOD and HMQ HODs was pro-

duced, with 6 types, corresponding to types 1, 4, 5, 6, 10 and 11

of the MultiDark-based mocks, with a density between ≃ 3 ×
10−3 (h/Mpc)3 (SHOD) and ≃ 4× 10−3 (h/Mpc)3 (HMQ).

A second set of OuterRim mocks was produced based on re-

sults from models of galaxy formation and evolution (Avila et al.

2020). Three different HODs were considered: the mean number

of satellite galaxies was fixed to a power-law (in the halo mass),

but central galaxies followed either a smoothed step function (erf ,
HOD-1), a Gaussian (HOD-2) or a Gaussian extended by a decay-

ing power-law (baseline), based on results obtained by Gonzalez-

Perez et al. (2018). The fraction of satellite galaxies fsat was var-

ied. Satellites were either directly assigned the positions and ve-

locities of random particles in the dark matter halo (part.) or they

were sampled from a Navarro et al. (1996) profile (NFW); in the

latter case the virial theorem (Bryan & Norman 1998; Avila et al.

2018) was used to sample velocities. The concentration was varied

and the probability law for sampling satellites was also changed

(Poisson, nearest integer, binomial, e.g. Jiménez et al. (2019)).

These variations led to minor changes in the fitted cosmologi-

cal parameters. Finally, velocities of satellite galaxies were biased

with respect to dark matter by a factor αv (αv = 1 in the base-

line case), which is referred to as the satellite velocity bias (Guo

et al. 2015), or were given an infall component following a Gaus-

sian of mean vt = 500 km/s and dispersion 200 km/s (Orsi &

Angulo 2018). The number density of the 24 mocks we analysed

ranges between ≃ 2×10−4 (h/Mpc)3 (part. and some NFW) and

≃ 2× 10−3 (h/Mpc)3 (NFW).

We analysed these mocks with the OuterRim cosmology, im-

posing periodic boundary conditions. Therefore, there is no win-

dow effect and we only included the correction for the irregular µ
distribution (Section 3.5) at large scales. A Gaussian covariance

matrix was calculated following Grieb et al. (2016) for each of

these mocks, taking their measured power spectrum as input.

No evidence for an overall systematic bias of the model was

found when analysing these mocks, as reported in Alam et al.

(2020).

5.3 Blind OuterRim mocks

We participated in a blind mock challenge dedicated to the ELG

sample (see Alam et al. (2020), Section 8). For simplicity, only ve-

locities and HOD parameters were changed, while the background

cosmology was kept fixed. Therefore, only the value of fσ8 was

blind. 30 to 40 realisations for each of the 6 types of mocks (3 for

SHOD and HMQ) were produced with a density of the order of the

eBOSS ELG mean density (≃ 2 × 10−4 (h/Mpc)3). The Outer-

Rim boxes were analysed the same way as in Section 5.2. Though
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velocities were scaled by as much as 50%, no significant system-

atic shift in fσ8 could be seen, confirming the robustness of our

RSD model.

The systematic uncertainties resulting from this blind mock

challenge were derived in Alam et al. (2020) (Section 9): 1.6% on

fσ8, 0.8% on α‖ and 0.7% on α⊥
5. We do not scale these errors

by a factor of 2 as in Alam et al. (2020), since we further take

into account the effect of the fiducial cosmology in Section 5.4 in a

conservative way.

5.4 Fiducial cosmology

As Hou et al. (2020); Neveux et al. (2020); Gil-Marı́n et al. (2020);

Bautista et al. (2020) we test the dependence of the measurement of

cosmological parameters with respect to the cosmology — dubbed

as template cosmology — used to compute the linear power spec-

trum for the RSD model (P lin
m (k) in see Section 3.1). To this end,

we reanalyse the first set of OuterRim mocks (type 1, 4, 5, 6, with

SHOD and HMQ HODs) presented in Section 5.2, but using differ-

ent template cosmologies. We consider first the fiducial cosmology

of the data analysis (10) and also scale each of the cosmological

parameters (h, ωcdm, ωb and ns) of (34) by ±10% to ±20% (typ-

ically 30σ variations of Planck Collaboration et al. (2018) CMB

(TT, TE, EE, lowE, lensing) and BAO constraints).

Note that for simplicity we do not change the fiducial cos-

mology (34) used in the analysis (power spectrum estimation and

Gaussian covariance matrix) and thus rescale the fitted α‖ and α⊥

accordingly to determine σ8 as in Section 4.2.

Results are shown in Figure 3. Scaling parameters are well

recovered. The best fit fσ8 value is primarily sensitive to the tem-

plate h and ns values. Taking the root mean square of the difference

(averaged over all types, HODs, and lines-of-sight) to the expected

values gives the following systematic uncertainties: 2.6% on fσ8

and 0.4% on scaling parameters. Note that without the σ8 rescal-

ing described in Section 4.2 the systematic uncertainties related to

the choice of template cosmology would have been twice larger for

fσ8.

We add the above uncertainties in quadrature to those derived

in Section 5.3 to obtain the final RSD modelling systematics: 3.0%
on fσ8 and 0.9% on α‖ and 0.8% on α⊥.

5.5 Isotropic BAO

We also test the robustness of the isotropic BAO analysis with re-

spect to variations in the HOD and template cosmology. Again,

we consider the first set of OuterRim mocks (type 1, 4, 5, 6, with

SHOD and HMQ HODs) presented in Section 5.2, apply them re-

construction (with the parameters set in Section 4.1), and measure

their power spectrum using the OuterRim cosmology (34).

Using the isotropic BAO model described in Section 3.6, we

first find (with the OuterRim cosmology as template cosmology) a

damping parameter Σnl value of 8Mpc/h (4Mpc/h) to fit the pre-

reconstruction (post-reconstruction) power spectrum. We use these

values in the rest of the paper, unless stated otherwise.

We then perform the post-reconstruction isotropic BAO fits

with the different template cosmologies introduced in Section 5.4.

Results are shown in Figure 4. The measured α value shows very

5 This systematic budget was consistently updated using our prescription

for σ8 discussed in Section 4.2 — leading to a minor relative decrease of

4% on the systematics for fσ8.

Figure 3. Ratio of the RSD best fits to the OuterRim-based mocks (of

type 1, 4, 5, 6 with SHOD and HMQ HODs, using three line-of-sight axes

— x, y, z) to their expected values, using different template cosmologies.

The gray shaded area represents an error of 3% on fσ8 and 1% on the

scaling parameters on either side of the reference values in the OuterRim

cosmology.

Figure 4. Ratio of the isotropic BAO best fits to the OuterRim-based mocks

(of type 1, 4, 5, 6 with SHOD and HMQ HODs, using three line-of-sight

axes — x, y, z) to their expected values, using different template cosmolo-

gies. The gray shaded area represents an error of 0.5% on α on either side

of the reference value in the OuterRim cosmology.

small dependence with the template cosmology, as also found in

e.g. Carter et al. (2020). The same is true for the HOD model. Tak-

ing the root mean square of differences between best fit and ex-

pected values gives a systematic uncertainty of 0.2% on α, which

we take as BAO modelling systematics.

In addition, in order to quantify how typical the data BAO

measurements are (see Section 8.1), we generate accurate mocks

designed to match the ELG sample survey geometry. An Outer-

Rim box (satellite fraction of 0.14, no velocity bias) is trimmed to

the eBOSS ELG footprint, including veto masks and radial selec-

tion function. We then cut 6 nearly independent mocks for NGC

and SGC with 3 different orientations. The original box was repli-

cated by 20% to enclose the total SGC footprint. As the ELG den-

sity in the OuterRim box is much larger than the observed ELG

density, we draw 4 disjoint random subsamples for each sky-cut

mock. The number of galaxies in the mock samples match that of

the data to better than 1%. Then, we randomly generate 1000 fake

mock power spectra following a multivariate Gaussian. The Gaus-

sian mean comes from the pre- and post-reconstruction power spec-

trum measurements of the above sky-cut OuterRim mocks, and its

covariance matrix is given by the baseline EZ mocks. These fake

post-reconstruction power spectra will be used to quantify the prob-

ability of the BAO measurements of the data in Section 8.1.
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Table 2. Statistics of the eBOSS ELG sample. Ntarg is the number of tar-

gets (after veto masks are applied). Nused is the number of objects in the

final clustering catalogues, in 0.6 < z < 1.1 (except otherwise stated). The

effective area is the unvetoed area multiplied by the tiling completeness.

NGC SGC ALL

Ntarg 113, 500 116, 194 229, 694
Nused 83, 769 89, 967 173, 736
Nused in 0.7 < z < 1.1 79, 106 84, 542 163, 648
Effective area (deg2) 369.5 357.5 727.0

6 DATA AND APPROXIMATE MOCKS

In this section we briefly describe the eBOSS ELG sample and the

approximate EZ and GLAM-QPM mocks used to produce the co-

variance matrix of the measured power spectrum multipoles and to

assess the impact of observational systematics on the final cluster-

ing measurements.

6.1 Data

We use the ELG clustering catalogues from SDSS DR16 published

in Raichoor et al. (2020). We refer the reader to that paper for a

complete description of the different survey masks and weighting

schemes adopted to account for variations of the survey selection

function in the data.

Contrary to other BOSS and eBOSS surveys making use of

the SDSS-I-II-III optical imaging data, ELG targets were selected

from the data release 3 and 5 of the Dark Energy Camera Legacy

Survey (DECaLS Dey et al. 2019) in the grz bands (see Raichoor

et al. 2017). DECaLS photometry, which is at least one magni-

tude deeper than the SDSS imaging in all bands, will be used by

the next generation survey Dark Energy Spectroscopic Instrument

(DESI Collaboration et al. 2016). However, the homogeneity of the

imaging quality over the eBOSS ELG footprint was not fully un-

der control in this early version of DECaLS, a point we will further

discuss below.

The footprint and redshift density of the eBOSS ELG sur-

vey are shown in Figure 5. The eBOSS ELG sample selects star-

forming ELGs in the redshift range 0.6 < z < 1.1 and within

tiling chunks6 eboss21 and eboss22 in the SGC and chunks

eboss23 and eboss25 in the NGC. The number of targets

(Ntarg) and ELGs (Nused) in the final clustering sample is given

in Table 2.

Three types of weights are introduced to correct for variations

of the selection function in the data. The systematic weight wsys,i

corrects for fluctuations of the ELG density with imaging quality.

The close-pair weight wcp,i accounts for fibre collisions. Finally,

wnoz,i corrects for redshift failures.

A synthetic (random) catalogue is built to sample the sur-

vey selection function of the weighted data. Angular coordinates

of the synthetic catalogue are uniformly random, and random ob-

jects outside the footprint, including veto masks, are removed. Data

redshifts are assigned to random objects, following the shuffled

scheme proposed in Ross et al. (2012). The previously mentioned

anisotropies of the DECaLS imaging quality induce fluctuations

of the eBOSS ELG redshift density which shall be introduced in

6 Regions in which the fibre assignment (determining the positions of the

plates and fibres) is run independently.

the synthetic catalogue (Raichoor et al. 2020). We found the main

driver for these fluctuations to be imaging depth. We therefore as-

sign data redshifts to randoms in 3 separate sub-regions (dubbed

chunk z) of each tiling chunk defined according to their value

of imaging depth. The depth-bins are chosen such that the red-

shift distribution is considered sufficiently (i.e. within shot noise

and cosmic variance) constant within each chunk z. In the syn-

thetic catalogue, wsys,i accounts for the tiling completeness while

wcp,i and wnoz,i are all set to 1. wsys,i is then scaled such that the

weighted number of random objects and data objects match in each

chunk z.

Each data and random object is weighted by the total weight

wtot,i = wFKP,iwcomp,i with wcomp,i = wsys,iwcp,iwnoz,i its

completeness weight and wFKP,i the FKP weight:

wFKP,i =
1

1 + ng,iP0
, (35)

where we take P0 = 4000 (Mpc/h)3, close to the measured power

spectrum monopole at k ≃ 0.1h/Mpc (see Figure 6). The redshift

density ng,i is calculated in each chunk by binning data weighted

by wcomp,i into redshift slices of size ∆z = 0.005, starting at

z = 0, and dividing the result by the comoving volume of each

shell, assuming the fiducial cosmology of Eq. (10). The effective

area used for the calculation is given by the number of randoms

weighted by the tiling completeness in the final clustering sample

divided by their original density (see Table 2 and Raichoor et al.

2020).

In order to match the definition used for other eBOSS tracers

and analyses, the effective redshift zeff of the ELG sample between

0.6 < z < 1.1 is calculated as:

zeff =

∑

i,j wtot,iwtot,j(zg,i + zg,j)/2
∑

i,j wtot,iwtot,j
, (36)

where the sum is performed over all galaxy pairs between

25Mpc/h and 120Mpc/h. We measure zeff = 0.845 for the com-

bined NGC and SGC (NGC alone: 0.849, SGC alone: 0.841). We

checked that this result varies by less than 0.4% when including

pairs between 0Mpc/h and 200Mpc/h. In Appendix B we pro-

vide a definition of the effective redshift more specific to the power

spectrum analysis, which quantitatively gives the same value as that

adopted in Eq. (36). We also compute the effective redshift corre-

sponding to the cuts 0.7 < z < 1.1, which will be used in Sec-

tion 8: zeff = 0.857 for the combined NGC and SGC (NGC alone:

0.860, SGC alone: 0.853). The typical variation (using Eq. (10))

corresponding to the ≃ 0.8% difference between the effective red-

shift of NGC and SGC is 0.2% on fσ8, 0.4% on DH/rdrag and

0.6% on DM/rdrag, small compared to the statistical uncertainty

(see Section 8).

Figure 6 displays the power spectrum multipoles as measured

on the data (blue curve). In the following sections we briefly recap

the creation of EZ and GLAM-QPM mocks, as well as the imple-

mentation and correction of observational systematics. For more

details we refer the reader to Raichoor et al. (2020).

6.2 EZ mocks

The generation of EZ mocks is detailed in Zhao et al.

(2020a). The 1000 EZ mocks (NGC, SGC) are built from

EZ boxes of side 5Gpc/h, with a galaxy number density

of 6.4 × 10−4 (h/Mpc)3 at different snapshots zsnap =
0.658, 0.725, 0.755, 0.825, 0.876, 0.950, 1.047 used to cover the

redshift ranges 0.6 − 0.7, 0.7 − 0.75, 0.75 − 0.8, 0.8 − 0.85,
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Figure 5. eBOSS ELG footprint. Top left: comoving redshift density. Top right: tiling completeness in NGC. Bottom: tiling completeness in SGC.

0.85 − 0.9, 0.9 − 1.0, and 1.0 − 1.1, respectively. The fiducial

cosmology of these mocks is that of the MultiDark simulation (ex-

cept for σ8), i.e. flat ΛCDM with:

h = 0.6777, Ωm = 0.307115,Ωb = 0.048206,

σ8 = 0.8225, ns = 0.9611.
(37)

Mocks are trimmed to the tiling geometry and veto masks. We

implement in the mocks the observational systematics seen in the

data. The data redshift distribution is applied to the mocks in each

chunk z. We introduce angular systematics by trimming mock

objects according to a map built from the data observed density

with a Gaussian smoothing of radius 1 deg. Contaminants, such

as stars, or objects outside the redshift range 0.6 < z < 1.1 are

added to the catalogues, such that the target density matches in av-

erage that of the observed data. Fibre collisions are modelled us-

ing an extension of the Guo et al. (2012) algorithm implemented

in nbodykit, accounting for the plate overlaps and target prior-

ity. We include the TDSS (Ruan et al. 2016) targets (”FES” and

”RQS1”) which were tiled at the same time as eBOSS ELGs. Fi-

nally, some objects are declared as redshift failures following their

nearest neighbour in the observed data. All systematic corrections

(weighting scheme and n(z) dependence in the imaging depth) are

applied the exact same way to the mocks as in the data clustering

catalogues.

Figure 7 shows the different systematics and corrections ap-

plied successively to the EZ mocks. One can already see that angu-

lar photometric systematics (photo) are the dominant ones. Another

important effect is due to the shuffled scheme used to assign red-

shifts to randoms from the mock data redshift distribution, which

leads to the aforementioned radial integral constraint, clearly visi-

ble in the quadrupole and hexadecapole at large scale.

Figure 6 displays the power spectrum measurement of the

eBOSS ELG sample (blue curve), together with the mean of the

EZ mocks with veto masks only applied (baseline, orange). Ac-

counting for the shuffled scheme in the mocks (green) resolves part

of the difference between data and mocks in the quadrupole and

hexadecapole on large scales. Including all systematics and correc-

tions (red), the agreement with observed data is improved in the

quadrupole.

6.3 GLAM-QPM mocks

The generation of GLAM-QPM mocks is detailed in Lin et al.

(2020). The 2003 GLAM-QPM mocks are built from boxes of side

3Gpc/h, with cosmology:

h = 0.678, Ωm = 0.307, ωb = 0.022,

σ8 = 0.828, ns = 0.96.
(38)

Mocks are trimmed to the tiling geometry and veto masks.

Contrary to EZ mocks, we do not implement variations of the

redshift distribution with imaging depth, nor imaging systematics.

However, all other systematics (fibre collisions and redshift fail-

ures) are treated the same way as for EZ mocks. Again, all system-

atic corrections are applied the exact same way to the mocks as in

the data catalogues.

7 TESTING THE ANALYSIS PIPELINE USING MOCK

CATALOGUES

In this section we first check our analysis pipeline and review how

the observational systematics introduced in the approximate mocks

impact BAO and RSD measurements. Although some systematic

effects are difficult to model accurately in mocks, these can still be

used to derive reliable estimates for part of the systematic uncer-

tainties, a point we discuss also in this section. The other systematic

uncertainties will be estimated from the data itself in Section 8.

In all tests, to fit each type of mocks, we use the covariance

matrix built from the same mocks, unless otherwise stated.

For reasons that will be justified in Section 8, we will use

NGC and SGC (NGC + SGC) or SGC only power spectrum mea-

surements and vary the redshift range. The baseline result will

use NGC + SGC, and the redshift ranges 0.7 < z < 1.1 and

0.6 < z < 1.1 for the RSD and BAO fits, respectively.

7.1 Survey geometry effects

The model presented in Section 3 neglects the evolution of the

cosmological background within the redshift range of the eBOSS
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Figure 6. Power spectrum measurements (left: monopole, middle: quadrupole, right: hexadecapole, top: NGC, bottom: SGC) of the eBOSS data (blue) and

the mean and standard deviation (shaded region) of the EZ mocks without (orange) and with (red) all systematics. EZ mocks with the shuffled scheme only

(green) do not include observational systematics. The fitted k-range of the RSD measurement is 0.03 − 0.2h/Mpc for the monopole and quadrupole and

0.03− 0.15h/Mpc for the hexadecapole.

Figure 7. Power spectrum measurements (left: monopole, middle: quadrupole, right: hexadecapole, top: NGC, bottom: SGC) of the EZ mocks, with different

systematics and corrections applied successively. The blue shaded region represents the standard deviation of the mocks with veto masks only. Bottom panels:

difference of the various schemes to the reference (with veto flag only), normalised by the standard deviation of the mocks. Note that redshift failures, as

implemented in the EZ mocks, partially cancel the effect of fibre collisions.

ELG sample. To test the impact of this assumption on cluster-

ing measurements, we first fit 300 EZ periodic boxes at redshift

zsnap = 0.876 (see Section 6.2), using a Gaussian covariance ma-

trix, as in Section 5.2. We compare these measurements to those

obtained on the mean of the no veto EZ mocks, that is includ-

ing the (approximate) light-cone and global (tiling) footprint. In

this case, we apply the corresponding window function treatment

(Section 3.4) and the global integral constraint (Section 3.5) in the

model. To ease the comparison, which we present in Table 3, we

extrapolate the best fits to the EZ boxes at redshift zsnap = 0.876
to the effective redshift zeff = 0.845 of the EZ mocks, using their

input cosmology of Eq. (37). The difference between the extrapo-

lated mean of the best fits to the EZ boxes and the best fit to the

mean of the EZ mocks is 0.2% on fσ8, 0.4% on DH(z)/rdrag
and 0.2% on DM(z)/rdrag, fully negligible compared to the dis-

persion of the mocks (12%, 6% and 5% respectively, see Table 5),
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validating our modelling approximation of the eBOSS ELG survey

as a single snapshot at redshift zeff = 0.845. We finally apply veto

masks to EZ mocks and in the window function calculation. In this

case, again, the change in best fit parameters is ≃ 0.1%, compatible

with the error bars (baseline versus no veto). We also checked that

increasing the sampling of the window function in the s → 0 limit

has virtually no impact (0.01%) on the cosmological measurement.

These tests validate our treatment of the window function with the

fine-grained eBOSS ELG veto masks.

The total shifts between the baseline sky-cut mocks and the

EZ boxes are 0.1%, 0.5% and 0.1% for fσ8, α‖ and α⊥. We take

them as systematic shifts (under the generic denomination survey

geometry).

7.2 Fibre collisions

Fibre collisions are shown to be the dominant observational sys-

tematics in the eBOSS QSO sample (Neveux et al. 2020; Hou et al.

2020). The impact of fibre collisions can be seen on EZ mocks by

comparing the green to the orange curves in Figure 7. Here we test

their effect on cosmological fits to GLAM-QPM mocks, as these

mocks are not further impacted by photometric systematics.

We report in Table 5 the best fits to 2003 GLAM-QPM base-

line mocks with only geometry and veto masks applied (baseline)

and to the mocks where fibre collisions are simulated (fibre colli-

sions). We find a systematic shift of 2.5% on fσ8 (22% of the dis-

persion of the mocks), 0.6% on α‖ (9%) and 0.5% on α⊥ (10%).

The impact of fibre collisions can be mitigated following Hahn

et al. (2017), if the fraction of collided pairs fs and the fibre col-

lision angular scale Dfc are known. In the Hahn et al. (2017) cor-

rection, fs = 1 corresponds to all galaxy pairs closer than the fibre

collision angular scale being unobserved. Because of tile overlaps,

this fraction is reduced. The fraction of collided pairs fs can then

be estimated in several ways:

• tile overlap: the fraction of the survey area without tile

overlap, estimated using the synthetic catalogue. This assumes all

collisions are resolved in tile overlaps;

• collision fraction: the number of targets which were collided

with another one (including the relevant TDSS targets), divided

by the number of targets that would be assigned a fibre without

tile overlap. This number is simulated with the same algorithm

as that used for the EZ and GLAM-QPM mocks to implement

fibre collisions, except the effect of tile overlaps (see Section 6.2

and 6.3);

• simulated collision fraction: same as collision fraction, but

also simulating the number of data targets which were collided

with another one (including the relevant TDSS targets), taking into

account tile overlaps;

• EZ simulated collision fraction: same as simulated collision

fraction, in the EZ mocks;

• GLAM-QPM simulated collision fraction: same as simulated

collision fraction, in the GLAM-QPM mocks.

All these estimates are calculated with veto masks applied and

are reported in Table 4, using 50 mocks (for EZ and GLAM-QPM

simulated collision fraction). They all agree within 2%. The mod-

elling of fibre collisions in Hahn et al. (2017) is actually based on

their impact on the projected correlation function. Figure 8 displays

the ratio of the projected correlation function of the GLAM-QPM

mocks with fibre collisions corrected by wcp,i to the true one (with-

out fibre collisions): fs, given by the height of the step function

Figure 8. Ratio of the wcp,i-corrected projected correlation function to the

true projected correlation function, presented in the form 1−(1+ξcp)/(1+
ξtrue), as obtained in 379 GLAM-QPM mocks and in the model of Hahn

et al. (2017) (left: NGC, right: SGC). See text for details, and Figure 8

of Hahn et al. (2017) for comparison.

(see Hahn et al. 2017), is in very good agreement with the above

estimates provided in Table 4. We therefore choose the correspond-

ing values fs = 0.46 for NGC and fs = 0.38 for SGC.

For the fibre collision angular scale Dfc, we take the comov-

ing distance corresponding to the fibre collision radius 62′′ at the

effective redshift of the eBOSS ELG sample zeff = 0.845. The ob-

tained value, 0.61Mpc/h, provides good modelling of the effect

as can be seen in Figure 8. For the redshift cut 0.7 < z < 1.1, a

similar calculation provides Dfc = 0.62Mpc/h.

The parameters fs and Dfc being determined, the Hahn et al.

(2017) correction can be included in the RSD model. Best fits to the

GLAM-QPM mocks with fibre collisions are in very good agree-

ment with the baseline mocks once the correction is included: the

potential remaining systematic bias is 0.3% on fσ8, 0.1% on α‖

and 0.0% on α‖ — 3%, 2% and 0% of the dispersion of the mocks,

respectively (fibre collisions + Hahn et al. versus baseline in Ta-

ble 5). We therefore include this correction as a baseline in the fol-

lowing.

Note that Bianchi & Percival (2017); Percival & Bianchi

(2017) developed a method to correct for such missing observa-

tions in the n-point (configuration space) correlation function using

n-tuple upweighting; for an application to the eBOSS samples (in-

cluding ELG), we refer the reader to Mohammad et al. (2020). This

method has been very recently extended to the Fourier space anal-

ysis by Bianchi & Verde (2019). We do not apply this technique

to the eBOSS ELG sample, since most of this analysis was com-

pleted before this publication and because the effect of fibre colli-

sions appears subdominant, especially after the Hahn et al. (2017)

correction.

7.3 Radial integral constraint

As mentioned in Section 6.2, the shuffled scheme, used to assign

data redshifts to randoms is responsible for a major shift of the

power spectrum multipoles (purple versus red curves in Figure 7).

As discussed in de Mattia & Ruhlmann-Kleider (2019), this damp-

ing of the power spectrum multipoles on large scales is not specific

to the shuffled scheme, but to any method measuring the radial se-

lection function on the observed data itself. We report in Table 5

the cosmological measurements from RSD fits without (baseline,

GIC) and with the shuffled scheme (shuffled, GIC), while keeping

the global integral constraint (GIC) in the model: the induced sys-

tematic shift is 0.4% on fσ8 (4% of the dispersion of the mocks),

4.4% on α‖ (66%) and 3.9% on α⊥ (78%). Modelling the radial

MNRAS 000, 1–?? (2020)



14 A. de Mattia et al.

Table 3. Comparison of the RSD measurements on EZ boxes at redshift zsnap = 0.876 and extrapolated at zeff = 0.845 (given their cosmology), with those

from the sky-cut EZ mocks, with and without veto masks. For the EZ boxes we quote the mean and standard deviation of the best fit measurements, divided

by the square root of the number of realisations (300). For the sky-cut mocks, error bars are given by the ∆χ2 = 1 level on the mean of the mocks.

fσ8 DH/rdrag DM/rdrag

EZ boxes at zsnap = 0.876 0.43088+0.00017
−0.00017 18.2186+0.0034

−0.0034 20.7175+0.0027
−0.0027

EZ boxes at zeff = 0.845 0.43391+0.00017
−0.00017 18.5590+0.0034

−0.0034 20.1526+0.0026
−0.0026

Mean of EZ mocks no veto (zeff = 0.845) 0.4346+0.0017
−0.0017 18.477+0.033

−0.033 20.103+0.028
−0.028

Mean of EZ mocks baseline (zeff = 0.845) 0.4341+0.0017
−0.0017 18.472+0.033

−0.034 20.127+0.031
−0.030

Table 4. Different estimates of the fibre collisions fraction fs. See text for

details.

NGC SGC

tile overlap 0.44 0.35
collision fraction 0.47 0.39
simulated collision fraction 0.46 0.38
EZ simulated collision fraction 0.46± 0.005 0.38± 0.004
GLAM-QPM simulated collision fraction 0.46± 0.005 0.39± 0.005

integral constraint (RIC) removes most of this bias: the remaining

shift is 0.2% on fσ8 (2% of the dispersion of the mocks), 0.2% on

α‖ (3%) and 0.3% on α⊥ (5%).

7.4 Remaining angular systematics

In Section 6 we mentioned the large angular photometric system-

atics of the eBOSS ELG sample, which we attempted to introduce

in the EZ mocks (orange versus blue curves in Figure 7). These

systematics bias cosmological measurements from RSD fits, as can

be seen in Table 5: comparing the fits on contaminated mocks, in-

cluding the fibre collision correction of Section 7.2 (all syst., fc) to

uncontaminated mocks (baseline, GIC), one notices a bias of 8.8%
on fσ8, 2.4% on α‖ and 1.6% on α⊥, corresponding to a signifi-

cant shift of respectively 75%, 35% and 32% of the dispersion of

the best fits to the mocks.

We propose to mitigate these residual systematics by rescal-

ing weighted randoms in HEALPix7 (Górski et al. 2005) pixels

such that the density fluctuations F (r) of Eq. (4) are forced to

0 in each pixel (a scheme which will be referred to as the pixe-

lated scheme in the following). This leads to an angular integral

constraint (AIC), which we model and combine with the radial IC

following de Mattia & Ruhlmann-Kleider (2019). In Table 5 we re-

port the RSD measurements without (baseline, GIC) and with the

full angular and radial integral constraints (ARIC) modelled, ap-

plying the shuffled and pixelated schemes to the uncontaminated

mock data, for two pixel sizes: nside = 64 (≃ 0.84 deg2) and

nside = 128 (≃ 0.21 deg2). The combined radial and angular

integral constraint is correctly modelled, generating only a small

potential bias of 1.1% on fσ8, 0.5% and 0.4% on scaling param-

eters (which amounts to 10%, 8% and 7% of the dispersion of the

mocks, respectively) for nside = 64. A similar shift is seen with

nside = 128. The pixelated scheme increases statistical uncertain-

ties by a reasonable fraction of ≃ 10%.

Finally, Figure 9 shows the best fits to the baseline (blue) and

7 http://healpix.jpl.nasa.gov/

contaminated (red) EZ mocks. Measurements obtained when ap-

plying the pixelated scheme (nside = 64) to the contaminated

mocks and modelling the ARIC are shown in blue. The systematic

bias quoted at the beginning of the section is clearly reduced and

becomes 2.5% on fσ8 (21% of the dispersion of the mocks), 0.4%
on α‖ (6%) and 0.5% on α⊥ (12%) with nside = 64, slightly less

with nside = 128 (see Table 5, all syst & pix64, fc with respect to

baseline, GIC).

7.5 Likelihood Gaussianity

In Section 4 we assumed that we could use a Gaussian likelihood

to compare data and model. While this may be accurate enough by

virtue of the central limit theorem when the number of modes is

high enough, it may break down on large scales where statistics is

lower and mode coupling due to the survey geometry, and, in our

specific case, RIC and ARIC, occurs (see e.g. Hahn et al. 2019).

Comparing the median of the fits to each individual baseline

EZ mocks to the fit to the mean of the mocks (see first two rows

of second series of results in Table 5, baseline, GIC versus mean

of mocks baseline, GIC), we observe shifts of 2.2% on fσ8 (19%
of the dispersion of the mocks), 1.3% on α‖ (21%) and 0.9% on

α⊥ (18%). This bias could be due to either non-Gaussianity of the

power spectrum likelihood or model non-linearity.

To test a potential bias coming from the breakdown of such a

Gaussian assumption, we produce 1000 fake power spectra follow-

ing a Gaussian distribution around the mean of the EZ mocks, with

the covariance of the mocks, and fit them with our model (using the

same covariance matrix). Results are reported in Table 5 (fake all

syst. & pix64, fc). Shifts with respect to the true mocks (all syst. &

pix64, fc) are 0.2% on fσ8, 0.1% on α‖ and 0.2% on α⊥.

We therefore conclude that one can safely use the Gaussian

likelihood to compare data and model power spectra. We also at-

tribute the shifts between the fit to the mean of the EZ mocks and

the median of the fits to each mock to model non-linearity.

7.6 Isotropic BAO

In Table 6 and hereafter, as in Ata et al. (2018); Raichoor et al.

(2020), we qualify BAO detections as α measurements for which

the best fit value and its error bar (determined by the ∆χ2 = 1
level) are within the range [0.8αexp, 1.2αexp] (αexp being the ex-

pected α value, given the fiducial and mock cosmologies). Statis-

tics are provided for the Ndet mocks with BAO detections. As we

include covariance matrix corrections (Hartlap factor D, given by

Eq. (27)) and correction to the parameter covariance matrix (m1

factor, see Eq. (A22)) in the α measurement on each mock, we

follow Percival et al. (2014) and provide the standard deviation

S of the α measurement corrected by
√
m2, with m2 given by

Eq. (A32).
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Table 5. Impact of systematics on RSD and RSD + BAO measurements on the GLAM-QPM and EZ mocks. We quote the median and the 16% and 84%

percentiles as a metric of the centre and dispersion of the measurements.

fσ8 α‖ α⊥

RSD only GLAM-QPM mocks

baseline 0.442+0.050
−0.050 0.997+0.064

−0.066 0.990+0.048
−0.054

fibre collisions 0.453+0.050
−0.049 0.990+0.063

−0.066 0.995+0.048
−0.054

fibre collisions + Hahn et al. 0.443+0.049
−0.050 0.998+0.063

−0.066 0.990+0.048
−0.055

RSD only EZ mocks tests of IC

mean of mocks baseline, GIC 0.4341+0.0017
−0.0017 0.9997+0.0018

−0.0019 0.9926+0.0015
−0.0015

baseline, GIC 0.444+0.050
−0.052 0.987+0.061

−0.066 0.984+0.050
−0.053

shuffled, GIC 0.446+0.049
−0.054 0.943+0.060

−0.069 1.022+0.053
−0.052

shuffled, RIC 0.443+0.051
−0.054 0.985+0.061

−0.064 0.986+0.049
−0.052

shuffled & pix64, ARIC 0.449+0.053
−0.057 0.982+0.063

−0.064 0.987+0.055
−0.053

shuffled & pix128, ARIC 0.450+0.054
−0.061 0.983+0.064

−0.066 0.987+0.055
−0.053

RSD only EZ mocks mitigation

all syst. fc 0.405+0.049
−0.054 0.964+0.065

−0.069 0.999+0.055
−0.054

all syst. & pix64 fc 0.433+0.054
−0.056 0.990+0.069

−0.067 0.978+0.052
−0.059

all syst. & pix128 fc 0.438+0.056
−0.057 0.987+0.070

−0.068 0.979+0.054
−0.058

fake all syst. & pix64 fc 0.434+0.054
−0.059 0.991+0.060

−0.058 0.979+0.053
−0.055

RSD + BAO EZ mocks

mean of mocks baseline, GIC 0.4384+0.0016
−0.0017 1.0031+0.0017

−0.0019 0.9979+0.0012
−0.0016

baseline, GIC 0.445+0.048
−0.048 0.994+0.057

−0.051 0.994+0.037
−0.040

shuffled & pix64, ARIC 0.449+0.050
−0.051 0.987+0.057

−0.055 0.995+0.041
−0.044

all syst., fc 0.404+0.049
−0.049 0.973+0.055

−0.054 1.010+0.043
−0.048

all syst. & pix64, fc 0.434+0.053
−0.051 1.000+0.058

−0.056 0.989+0.046
−0.048

all syst. & pix64, fc, Bnw free 0.434+0.053
−0.052 1.002+0.057

−0.056 0.989+0.045
−0.048

all syst. & pix128, fc 0.439+0.054
−0.051 0.998+0.059

−0.057 0.990+0.046
−0.047

RSD + BAO EZ mocks 0.7 < z < 1.1

all syst. & pix64, fc 0.436+0.054
−0.058 0.998+0.061

−0.055 0.991+0.045
−0.051

photo syst. & pix64 0.451+0.055
−0.054 0.987+0.061

−0.057 0.996+0.043
−0.046

photo + cp syst. & pix64, no fc 0.457+0.051
−0.055 0.986+0.056

−0.064 1.001+0.042
−0.047

photo + cp syst. & pix64, fc 0.446+0.051
−0.055 0.993+0.059

−0.063 0.996+0.042
−0.046

all syst. & pix64, fc, no wnoz,i 0.435+0.056
−0.057 1.002+0.063

−0.056 0.992+0.043
−0.050

all syst. randnoz & pix64, fc 0.446+0.054
−0.051 0.989+0.058

−0.061 0.994+0.046
−0.051

all syst. randnoz & pix64, fc, no wnoz,i 0.445+0.056
−0.056 0.992+0.059

−0.060 0.995+0.045
−0.050

all syst. & pix64, fc, GLAM-QPM cov 0.435+0.058
−0.061 1.000+0.065

−0.061 0.988+0.045
−0.053

all syst. & pix64, fc, no syst. cov 0.435+0.056
−0.059 1.002+0.061

−0.058 0.992+0.044
−0.050

all syst. & pix64, Σnl = 6Mpc/h 0.435+0.056
−0.060 0.997+0.062

−0.058 0.987+0.046
−0.049

all syst. & pix64, fc +1/2 k-bin 0.439+0.055
−0.058 0.996+0.064

−0.053 0.993+0.046
−0.052

fake all syst. & pix64, fc 0.437+0.058
−0.066 0.999+0.061

−0.062 0.992+0.048
−0.059

As stated in Section 5.5, we fix Σnl to 8Mpc/h (respec-

tively 4Mpc/h) when fitting pre-reconstruction (respectively post-

reconstruction) power spectra. Pre-reconstruction α measurements

on both EZ and GLAM-QPM mocks are biased slightly high, as can

be seen from Table 6 (baseline pre-reconstruction versus baseline).

This is in line with the expected shift of the BAO peak caused by

the non-linearity of structure formation (Padmanabhan et al. 2009;

Ding et al. 2018). On the contrary, post-reconstruction α measure-

ments do not show any bias, at the 0.43/
√
1000 ≃ 0.1% level.

The radial integral constraint effect was noticed to have a sig-

nificant impact on RSD cosmological measurements (Section 7.3).

We find its impact to be negligible on the post-reconstruction

isotropic BAO measurements (shuffled versus baseline). We thus

do not model any RIC correction for the isotropic BAO fits, as it

would have required an increased computation time.

Adding all observational systematics and their correction

scheme (all syst.), the isotropic BAO fits to EZ mocks shift by a

negligible 0.1%, while no change is seen with GLAM-QPM mocks

(which do not include angular photometric systematics).

As in Section 7.5 we again generate and fit (fake all syst.) 1000
fake power spectra following a Gaussian distribution with mean

and covariance matrix inferred from the contaminated EZ mocks. A

negligible shift of 0.1% of α is seen with respect to the true mocks

(all syst.), showing that one can safely use a Gaussian likelihood

to compare data and model power spectra. A small shift of 0.1% is

seen between the fit to the mean of the mocks and the mean of the

MNRAS 000, 1–?? (2020)



16 A. de Mattia et al.

Table 6. Isotropic BAO measurements on EZ and GLAM-QPM OuterRim mocks in different conditions. We quote statistics for the Ndet mocks with BAO

detection, i.e. mocks for which α− σlow > 0.8αexp and α+ σup < 1.2αexp. 〈α〉 is the mean α, 〈σ〉 the mean ∆χ2 = 1 error (= (σlow + σup) /2). S is

the standard deviation of α, rescaled by
√
m2, with m2 given by Eq. (A32) (the uncorrected value is provided in brackets)

. Expected values αexp are given at the top of each sub-table (in the 〈α〉 column).

〈α〉 〈σ〉 S (uncorrected) Ndet/Ntot
〈

χ2
〉

/dof

EZ mocks 1.0003

baseline pre-reconstruction 1.004 0.047 0.051 (0.049) 942/1000 40.7/(54− 13) = 0.992
mean of mocks baseline 1.0017 0.0011 − − 671/(54− 13) = 16.4
baseline 1.000 0.033 0.043 (0.042) 981/1000 41.4/(54− 13) = 1.01
shuffled 1.000 0.033 0.043 (0.042) 979/1000 41.4/(54− 13) = 1.01
all syst. 1.002 0.033 0.042 (0.042) 979/1000 41.5/(54− 13) = 1.01
photo syst. 1.000 0.034 0.043 (0.042) 978/1000 41.4/(54− 13) = 1.01

photo + cp syst. 1.001 0.034 0.043 (0.042) 983/1000 41.6/(54− 13) = 1.01
all syst., no wnoz,i 1.001 0.034 0.043 (0.042) 985/1000 42.3/(54− 13) = 1.03

all syst. rand noz 0.999 0.034 0.043 (0.042) 982/1000 41.5/(54− 13) = 1.01
all syst. rand noz, no wnoz,i 1.000 0.034 0.044 (0.043) 986/1000 42.1/(54− 13) = 1.03
all syst., GLAM-QPM cov 1.000 0.036 0.044 (0.043) 981/1000 39.8/(54− 13) = 0.970
all syst., no syst. cov 1.000 0.034 0.043 (0.042) 986/1000 42.0/(54− 13) = 1.03
all syst. + 1/2 k-bin 1.002 0.034 0.044 (0.043) 977/1000 41.4/(54− 13) = 1.01
all syst. Σnl = 6Mpc/h 1.002 0.038 0.042 (0.041) 974/1000 41.5/(54− 13) = 1.01
fake all syst. 1.001 0.034 0.044 (0.043) 982/1000 41.8/(54− 13) = 1.02

GLAM-QPM mocks 0.9992

baseline pre-reconstruction 1.002 0.046 0.047 (0.047) 1907/2003 41.2/(54− 13) = 1.01
baseline 0.998 0.031 0.040 (0.040) 1969/2003 42.5/(54− 13) = 1.04
all syst. 0.997 0.032 0.043 (0.042) 1973/2003 42.4/(54− 13) = 1.03

Figure 9. Best fits to the baseline (black) and fully contaminated (red) EZ

mocks. In blue, the pixelated scheme is applied on contaminated mocks

to mitigate angular systematics. Dotted vertical lines in the histograms and

crosses in the scatter plots point to the median of the best fit values, while

the size of the crosses is given by the 16% and 84% percentiles.

fits to each individual mock, which we label as model non-linearity

in the following.

To support the data robustness tests presented in Section 8, we

apply systematics successively to the EZ mocks.

Fibre collisions lead to a negligible α shift of 0.1% (photo +

cp syst. versus photo syst.).

Redshift failures do not impact the α measurement (all syst.

versus photo + cp syst.). Ignoring the correction weight wnoz,i and

removing redshift failures from the mocks used to build the co-

variance matrix is equally harmless (all syst. no wnoz,i versus all

syst.). A negligible shift is seen as well when the correction weight

wnoz,i is not used, and redshift failures are removed from the mocks

used to build the covariance matrix (all syst. rand noz & pix64,

fc, no wnoz,i). Note however that the modelling of redshift failures

in the mocks is complex since we have no perfect knowledge of

the corresponding systematics in the observed data. In the above,

redshift failures are implemented in the EZ mocks following a de-

terministic process: a mock object is declared a redshift failure if

the redshift of its nearest neighbour in the data could not be reli-

ably measured. Such a scheme overestimates the angular impact of

redshift failures. We therefore produce and analyse a second set of

mocks, where redshift failures are applied to the EZ mocks with a

probability following the model fitted on the data catalogue. In this

case (rand noz), shifts in the measured α due to redshift failures are

equally small.

The recovered α does not change when k-bin centres are

shifted by half a bin (0.005h/Mpc, all syst. + 1/2 k-bin). Fitting

the EZ mocks with the covariance matrix estimated from GLAM-

QPM mocks results in a small 0.1% shift of α measurements. The

same behaviour is seen when using the covariance matrix from EZ

mocks without systematics (with the shuffled scheme only, no syst.

cov).

Based on the previous tests, we determine two systematic ef-

fects to be included in the final systematic budget: the model non-

linearity, since it can only be measured on mocks, and fibre colli-

sions, as we believe our modelling of the effect in the EZ mocks

(see Section 6.2) to be quite representative of the actual data fibre

collisions. We directly take the shift in α attributed to model non-

linearity as a systematic bias. The 0.1% α shift attributed to fibre

collisions is below twice the mock-to-mock dispersion divided by

the square root of the number of mocks (common detections), i.e.
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Figure 10. Kolmogorov-Smirnov test on the residuals of EZ mocks, with

Σnl = 6Mpc/h, for the BAO fits.

2 × 3.8%/
√
962 ≃ 0.2%, a value which we take as a system-

atic uncertainty, following the same procedure as in Neveux et al.

(2020); Gil-Marı́n et al. (2020).

One would notice that the mean error on α measurements

on EZ and GLAM-QPM mocks (defined by the ∆χ2 = 1 level,

see Section 4.3) is systematically and significantly lower than the

dispersion of the best fit values. The value of the damping pa-

rameter Σnl = 4Mpc/h is chosen to match the BAO amplitude

seen in the reconstructed OuterRim mocks (see Section 5.5). How-

ever, the BAO amplitude is significantly less pronounced in the

EZ mocks (see e.g. Raichoor et al. 2020), hence favouring a larger

Σnl = 6Mpc/h. When this value is used, the distribution of the

residuals (α − 〈α〉)/σ of mocks with BAO detection is consistent

with a standard normal distribution, as shown by the Kolmogorov-

Smirnov test8 of Figure 10. Using a lower Σnl artificially decreases

the error on the BAO fits to EZ or GLAM-QPM mocks. Since we

determined Σnl on the more accurate OuterRim-based mocks, we

conclude that statistical errors quoted on the data measurement are

fairly estimated.

7.7 Combination of RSD and BAO measurements

As already mentioned in Section 4, we combine the RSD and BAO

likelihoods, taking into account the cross-covariance between pre-

and post-reconstruction power spectrum measurements.

In Table 5, one can notice a small shift between the RSD and

the RSD + BAO fit to the mean of the baseline EZ mocks: 1.0% on

fσ8, 0.3% on α‖ and 0.5% on α⊥, which we quote as systematic

error related to the technique of combining RSD and BAO likeli-

hoods. These shifts may come from residual systematic differences

between BAO template and mocks which contaminate the RSD part

of the likelihood through its cross-covariance with the BAO part.

We do not investigate this effect further since these biases remain

small (< 10%) compared to the dispersion of the mocks (and thus

to the data measurement errors).

Again, RSD + BAO measurements on contaminated (all syst,

fc) mocks are strongly biased: 9.2% on fσ8 (86% of the dispersion

of the mocks), 2.1% on α‖ (41%) and 1.6% on α⊥ (42%). When

8 Non-parametric statistical test to determine the consistency between a

sample and a probability law or another sample, based on the supremum of

the difference of their cumulative distribution function.

applying the pixelated scheme (nside = 64), one recovers reason-

able systematic shifts with respect to (baseline, GIC) of 2.5% on

fσ8, 0.6% on α‖ and 0.5% on α⊥. These shifts reduce further

when using nside = 128, but we choose the pixelated scheme with

nside = 64 as it induces a bias which we estimate small enough for

our analysis since it represents 24% of the dispersion of the mocks

on fσ8, 11% on α‖ and 13% on α⊥. In addition, the pixelated

scheme (which involves integrating over all scales of the model

correlation function) has only been tested up to nside = 64 with

N-body based mocks in de Mattia & Ruhlmann-Kleider (2019).

Moreover, the data clustering measurement is also plagued by the

complex dependence of n(z) with imaging quality, which we only

partly removed through the chunk z splitting of the radial selec-

tion function in Section 6.1. This will require estimating the po-

tential residual systematics from the data itself (see Section 8.2),

which will prove to be large so that the previously mentioned shifts

become subdominant.

We note the potential systematic bias induced by applying the

radial and angular integral constraints (shuffled & pix64, ARIC ver-

sus baseline, GIC): 0.8% on fσ8, 0.6% on α‖ and 0.1% on α⊥.

These shifts are more than twice the mock-to-mock dispersion, di-

vided by the square root of the number of mocks (0.4% on fσ8,

0.1% on α‖ and α⊥). We therefore account for the ARIC mod-

elling in our systematic budget by taking an error of 0.8% on fσ8,

0.6% on α‖ and 0.1% on α⊥.

The isotropic BAO template of Eq. (24) contains a bias term

Bnw, which we so far forced to be equal to the linear bias b1 of the

RSD model (see Eq. 13). We try to let it free (Bnw free) and see no

shift on cosmological parameters. We thus keep Bnw = b1 in the

following.

As in Section 7.5 we generate and fit (fake all syst.) 1000 fake

power spectra following a Gaussian distribution with mean and co-

variance matrix inferred from the contaminated EZ mocks. Negli-

gible shifts of 0.3% on fσ8, 0.1% on α‖ and 0.1% on α⊥ are seen

with respect to the true mocks (all syst. & pix64, fc), showing that

using a Gaussian likelihood to compare data and model power spec-

tra is accurate enough. However, we find small systematic shifts of

1.6% on fσ8 (15% of the dispersion of the mocks), 1.0% on α‖

(17%) and 0.4% on α⊥ (11%) between the median of the best fits

to each individual mock and the fit to the mean of the mocks (base-

line, GIC versus mean of mocks baseline, GIC). As in Section 7.5,

we attribute this bias to the model non-linearity, which one would

note is slightly reduced compared to the RSD only analysis.

We check that the error bars measured on each individual

mock (defined by the ∆χ2 = 1 level, see Section 4.3) are

correctly estimated by performing a similar test as done on the

post-reconstruction isotropic BAO fits in Section 7.6. For this

Kolmogorov-Smirnov test shown in Figure 11, we use Σnl =
6Mpc/h, and keep only mocks for which the best fit α‖ and α⊥

and their error bars (divided by the α‖ and α⊥ expected values)

are within the range [0.8, 1.2]. The residuals seem to be in cor-

rect agreement with a standard normal distribution, as expected.

We checked that the fσ8 residuals remain very compatible with a

standard normal distribution when considering all mocks (i.e. with-

out cut on α‖ and α⊥ best fits and error bars).

7.8 Further tests

In Section 8, we will justify our choice to fit the data with the red-

shift cut 0.7 < z < 1.1. The expected shift on fσ8 due to the

change in effective redshift is 0.3%. As can be seen in Table 5 (all
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Figure 11. Kolmogorov-Smirnov test on the residuals of EZ mocks, with

Σnl = 6Mpc/h, for the RSD + BAO fits.

syst. pix64, fc), the effect of this redshift cut on the EZ mocks is

negligible.

As in Section 7.6, to support the data robustness tests pre-

sented in Section 8, we apply systematics successively to the EZ

mocks.

Fibre collisions shift fσ8, α‖ and α⊥ by 1.1%, 0.6% and

0.0%, respectively (photo + cp syst. & pix64, fc versus photo syst.

& pix64). The α⊥ shift lies below twice the mock-to-mock dis-

persion divided by the square root of the number of mocks, 0.2%,

which we therefore take as a systematic uncertainty for this param-

eter. This is not the case for fσ8 (0.5%) and α‖ (0.2%), for which

we take the measured shifts 1.1%, 0.6% as systematic uncertainty,

following the same procedure as in e.g. Neveux et al. (2020). In

Section 7.2 our several estimates of the fs parameter required for

the Hahn et al. (2017) fibre collision correction differed by 2% at

most. To assess the impact of this additional uncertainty, we com-

pare best fits with and without the Hahn et al. (2017) fibre collision

correction: we find shifts on fσ8, α‖ and α⊥ of 1.3%, 0.1% and

0.5%, respectively. Multiplying these variations by the uncertainty

of 2% leads to a very small additional uncertainty, which we thus

neglect.

Despite the weights wnoz,i and the pixelated scheme, redshift

failures (red versus green curves in Figure 7) produce shifts of

2.3%, 0.5% and 0.5% on fσ8, α‖ and α⊥ (all syst. & pix64, fc ver-

sus photo + cp syst. & pix64, fc). These shifts become 2.6%, 0.9%
and 0.4% on fσ8, α‖ and α⊥ when the correction weight wnoz,i

is not used, and redshift failures are removed from the mocks used

to build the covariance matrix (all syst. & pix64, fc, no wnoz,i). A

much smaller systematic shift is seen with respect to angular pho-

tometric systematics and fibre collisions only (photo + cp syst. &

pix64, fc) for EZ mocks with the stochastic implementation of red-

shift failures (all syst. rand noz & pix64, fc): 0.1% on fσ8, 0.4%
on α‖ and 0.1% on α⊥.

We finally test the robustness of our analysis when using a co-

variance matrix measured from the GLAM-QPM mocks (without

angular photometric systematics), from EZ mocks without system-

atics (no syst. cov), and when shifting the k-bin centres by half a

bin (0.005h/Mpc, all syst. + 1/2 k-bin). In all these cases, best fits

to the EZ mocks remain stable.

We therefore conclude that our analysis pipeline is robust

enough to perform the BAO and RSD + BAO measurements on

the eBOSS ELG data. Based on the previous tests, four systematic

effects estimated on mocks (survey geometry, model non-linearity,

ARIC modelling, fibre collisions) will be included in the final sys-

tematic budgets presented in the next section.

Figure 12. Isotropic BAO fit (top: NGC, bottom: SGC), in the baseline case:

NGC + SGC, 0.6 < z < 1.1, Σnl = 4Mpc/h. Both data (points with

error bars from EZ mocks) and model (continuous line) are divided by the

no-wiggle power spectrum.

8 RESULTS

In this section we present isotropic BAO, RSD, and combined

RSD + BAO measurements on the eBOSS DR16 ELG data, dis-

cuss robustness tests of those results and provide the final error

budget, including statistical and systematic contributions. In partic-

ular, systematic uncertainties are estimated from data itself where

we consider mocks cannot give a reliable estimate.

8.1 Isotropic BAO measurements

As decided in Section 5.5, we take Σnl = 4Mpc/h as fiducial

value for the BAO damping and BAO templates are computed

within the fiducial cosmology (10), except otherwise stated. Fig-

ure 12 shows the BAO oscillation pattern fitted to the observed ELG

NGC + SGC data. One would note that NGC does not show a clear

BAO feature, contrary to SGC. The best fit α and its 1σ error are

provided for both SGC and NGC + SGC fits in Table 7. For both

fits, α ± σ lies well in [0.8, 1.2]9, the criterion used in Section 7.6

to qualify detections in the mocks. However, in the NGC alone, the

best fit α value is 0.79, such that the aforementioned criterion is

not met. The same test, using the same BAO template in fiducial

cosmology (10), is applied to EZ mocks (with Σnl = 6Mpc/h, to

match their BAO signal amplitude) and to sky-cut OuterRim mocks

of Section 5.5 (with Σnl = 2.4Mpc/h, to match their BAO sig-

nal amplitude), as reported in Table 8 (α ± σ /∈ [0.8, 1.2] line).

Sky-cut OuterRim mocks (hereafter OR mocks), based on N-body

simulations, provide the expected BAO detections in the absence of

non-Gaussian contributions due to systematics10. In contrast, EZ

mocks include known data systematics, but their BAO amplitude is

lower than expected given their cosmology. Altogether, we expect

the correct BAO detection rate to lie between values derived from

EZ mocks and OR mocks. One notices that 9% of the EZ mocks

9 Here we assume that fiducial cosmology (10) agrees with the true one

such that the BAO peak positions differ by much less than 20%.
10 We note however that in the OuterRim cosmology (34) the BAO am-

plitude (and hence signal-to-noise of BAO fits) is slightly larger than

the Planck Collaboration et al. (2018) best fit model.
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Table 7. Isotropic BAO best fits on the eBOSS DR16 ELG sample. Error

bars are defined by the ∆χ2 = 1 level.

α χ2/dof

SGC only z cuts

0.6 < z < 1.1 0.997+0.032
−0.035 12.4/(27− 7) = 0.619

0.65 < z < 1.1 0.989+0.034
−0.034 13.1/(27− 7) = 0.655

0.7 < z < 1.1 0.995+0.039
−0.038 13.1/(27− 7) = 0.654

0.75 < z < 1.1 0.993+0.040
−0.038 20.1/(27− 7) = 1.01

SGC only 0.6 < z < 1.1

no chunk z 0.991+0.035
−0.036 13.8/(27− 7) = 0.692

no chunk z G-Q cov 0.988+0.034
−0.036 15.2/(27− 7) = 0.762

Σnl = 6Mpc/h 0.993+0.040
−0.040 13.1/(27− 7) = 0.653

no wnoz,i 0.997+0.032
−0.033 11.7/(27− 7) = 0.584

GLAM-QPM cov 0.997+0.034
−0.036 12.3/(27− 7) = 0.613

no syst. cov 0.997+0.033
−0.033 13.1/(27− 7) = 0.654

500 mocks in cov 1.000+0.032
−0.033 12.6/(27− 7) = 0.632

+ 1/2 k-bin 1.003+0.030
−0.031 16.2/(27− 7) = 0.810

OR cosmo (rescaled) 0.999+0.025
−0.026 13.3/(27− 7) = 0.664

NGC + SGC z cuts

0.6 < z < 1.1 (baseline) 0.986+0.025
−0.028 42.8/(54− 13) = 1.04

0.65 < z < 1.1 0.984+0.026
−0.027 42.5/(54− 13) = 1.04

0.7 < z < 1.1 0.982+0.028
−0.032 44.8/(54− 13) = 1.09

0.75 < z < 1.1 0.961+0.035
−0.041 49.0/(54− 13) = 1.19

NGC + SGC 0.6 < z < 1.1

no chunk z 0.973+0.031
−0.036 42.1/(54− 13) = 1.03

no chunk z G-Q cov 0.970+0.029
−0.031 40.2/(54− 13) = 0.980

Σnl = 6Mpc/h 0.979+0.033
−0.038 43.4/(54− 13) = 1.06

no wnoz,i 0.984+0.025
−0.026 46.1/(54− 13) = 1.12

GLAM-QPM cov 0.988+0.026
−0.027 38.8/(54− 13) = 0.946

no syst. cov 0.984+0.026
−0.026 40.3/(54− 13) = 0.984

500 mocks in cov 0.991+0.025
−0.027 38.8/(54− 13) = 0.946

+ 1/2 k-bin 0.991+0.025
−0.027 52.1/(54− 13) = 1.27

OR cosmo (rescaled) 0.992+0.022
−0.023 40.2/(54− 13) = 0.980

OR cosmo (rescaled), 0.988+0.026
−0.029 40.4/(54− 13) = 0.986

Σnl = 6Mpc/h

and 2.5% of the OR mocks fail to meet the α ± σ ∈ [0.8, 1.2]
criterion in both the NGC and SGC. Therefore, the probability that

α does not lie in [0.8, 1.2] within errors, for either the NGC or the

SGC, ranges from 5% (OR mocks) to 17% (EZ mocks), such that,

with this criterion, the behaviour of the data is not very unexpected.

This is in line with conclusions drawn in the configuration space

BAO analysis (Raichoor et al. 2020).

To further quantify the BAO signal we compute the χ2 differ-

ence between the best fits obtained with the wiggle and no-wiggle

power spectrum templates (see Section 3.6). The χ2 profiles us-

ing the wiggle and no-wiggle power spectrum templates are shown

in Figure 13. Combining NGC and SGC we find ∆χ2 = −1.95
(1.4σ) at a best fit value denoted αNSGC in the following. Note

however that the best fit α value may not be relevant to compute the

∆χ2 criterion when too far from the true one if the data (or mock)

vector is too noisy. Therefore, for data or mock fits performed on

each cap (NGC and SGC) separately, we quote in Table 8 the ∆χ2

value evaluated at the corresponding NGC + SGC best fit value

rather than at the respective NGC or SGC best fits, which are more

subject to noise. We also provide the ∆χ2 taken at the expected α

Figure 13. χ2 profiles of the isotropic BAO fits for different lower redshift

cuts, fitting NGC + SGC, relative to the minimum value obtained with the

wiggle power spectrum template. Continuous (respectively dashed) lines

show the χ2 profile using the wiggle (respectively no-wiggle) power spec-

trum template. Systematic uncertainties of Table 9 are not included.

value, given our fiducial cosmology, αexp (αexp = 1 for data). We

find that for NGC + SGC, the mean ∆χ2(α = αNSGC) is lower

in the mocks, meaning a better BAO detection. However, 18% EZ

mocks and 7% OR mocks have larger ∆χ2 values, i.e. worse BAO

detection, than the data (see N
(

> ∆χ2(α = αNSGC)
)

line in Ta-

ble 8). So according to this criterion, the behaviour of the data is

not very unexpected. A similar conclusion holds when taking ∆χ2

at α = αexp (see N
(

> ∆χ2(α = αexp)
)

in Table 8). Focusing

on the SGC, ∆χ2(α = αNSGC) is smaller (better BAO detection)

in data than in 85% of the EZ mocks and 60% of the OR mocks.

However, only 1.8% of EZ mocks and 0.6% of OR mocks show

a larger ∆χ2(α = αNSGC) (worse BAO detection) than the NGC

data. Therefore, the probability for such a poor BAO detection to

happen in either NGC or SGC is approximately twice higher, of

the order of a few percents. Again similar conclusions hold when

taking ∆χ2 at α = αexp. We emphasise however that the above

figures are tied to the statistics used to qualify the BAO detection.

We have seen that contrary to SGC the poor BAO detection

in the NGC is statistically unlikely (even given the known obser-

vational systematics implemented in the EZ mocks). Let us now

discuss whether one can combine the two caps. We note that NGC

photometry is shallower than SGC and thus more prone to (po-

tentially unknown) photometric systematics (Raichoor et al. 2020).

SGC only and combined NGC + SGC fits are similar, to the 1.1%
level (0.6 < z < 1.1 in Table 7), which is statistically expected, as

seen in 755/1000 EZ mocks (considering both tails). Hence, there

is no hint of a strong, unexpected systematic shift in the combined

fit, due the addition of potentially contaminated NGC data. We also

note that this 1.1% shift is smaller than 1.3%, the uncertainty re-

lated to photometric systematics included in our systematic budget

(see Table 9), and hence is already accounted for if the NGC was

the major source of photometric systematics. As a conclusion, we

do not see any reason to reject NGC data in the fit. Moreover, com-

bining NGC + SGC turns out to be more optimal than considering

SGC alone, even given the poor BAO detection in NGC. To check

this, we select EZ mocks with ∆χ2(α = αNSGC) > 0 in the NGC

but ∆χ2(α = αNSGC) < 0 in the SGC among mocks for which

the NGC + SGC combination fulfils α ± σ ∈ [0.8, 1.2]. The dis-

persion of α measurements in the obtained sample of 130 mocks

is 0.048 for NGC + SGC, less than 0.058 for SGC alone. In addi-

tion, a Kolmogorov-Smirnov test (similar to that of Figure 10) does

not show any misestimation of error bars (p-value of 0.533 for the
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Table 8. Data versus mock BAO detection, according to different criteria.

The BAO signal is noticeable in eBOSS SGC post-reconstruction data, not

in NGC data, where α and its error bar are not within [0.8, 1.2] (α ± σ /∈
[0.8, 1.2]). N (α± σ /∈ [0.8, 1.2]) is the number of mocks not satisfying

this criterion, for EZ mocks (using Σnl = 6Mpc/h) with all systematics

implemented and for OuterRim mocks (using Σnl = 2.4Mpc/h). The

χ2 difference ∆χ2 between the wiggle and no-wiggle template best fits for

data and mocks is provided at the α value measured in the NGC + SGC

combination (∆χ2(α = αNSGC)) and at the fiducial α value (∆χ2(α =
αexp)). N

(

> ∆χ2(α = αNSGC)
)

and N
(

> ∆χ2(α = αexp)
)

are the

number of mocks which show a larger ∆χ2 than the data (and hence weaker

BAO detection) at α = αNSGC and α = αexp, respectively.

NGC SGC NGC + SGC

data

∆χ2(α = αNSGC) 3.58 −5.53 −1.95
∆χ2(α = αexp) 3.97 −5.61 −1.63

all syst. EZ mocks

N (α± σ /∈ [0.8, 1.2]) 91 90 26
∆χ2(α = αNSGC) −3.22 −2.43 −5.65
N

(

> ∆χ2(α = αNSGC)
)

18 846 184
∆χ2(α = αexp) −2.62 −1.92 −4.54
N

(

> ∆χ2(α = αexp)
)

21 881 269

sky-cut OuterRim mocks

N(α± σ /∈ [0.8, 1.2]) 25 23 6
∆χ2(α = αNSGC) −5.38 −4.48 −9.85
N

(

> ∆χ2(α = αNSGC)
)

6 601 68
∆χ2(α = αexp) −4.72 −4.07 −8.79
N

(

> ∆χ2(α = αexp)
)

17 654 102

residuals to be consistent with a standard normal distribution). A

similar reduction of error bars is seen in data in Table 7 (+0.025
−0.028

versus +0.032
−0.035). Hence, we find it legitimate to combine NGC and

SGC measurements.

To further check that error bars are still correctly estimated in

the low signal-to-noise regime, we select NGC + SGC EZ mocks

for which ∆χ2(α = αNSGC) is larger than that observed in the

data (while still restricting to α ± σ ∈ [0.8, 1.2]). Again, in this

sample of 165 EZ mocks, a Kolmogorov-Smirnov test shows no

hint for a misestimation of error bars (the p-value for the residu-

als to be consistent with a standard normal distribution is 0.459).

Therefore, the method to estimate statistical uncertainties in data

appears to be correct. We note however that data statistical error

bars (+0.025
−0.028, see Table 7) are smaller than those seen in mocks

on average (σ ≃ 0.033, see Table 6); 246/1000 EZ mocks have

smaller statistical error bars than data (using Σnl = 4Mpc/h
for both data and mocks). In a sample of EZ mocks for which

∆χ2(α = αNSGC) is within ±1 of the data ∆χ2(α = αNSGC),
which may be considered as representative of the data affinity for

BAO, we find 6/157 mocks to have smaller statistical error bars

than the data11. Due to the low average BAO amplitude in the EZ

mocks and the additional residual systematics in the data, this frac-

tion slightly underestimates the probability to obtain smaller error

bars than in data. Altogether, though small, data statistical error

bars are not too unlikely.

11 This fraction increases to 39/157 when comparing data total error bars

(including systematics, see Table 9) to mock statistical error bars.

We now turn to stability tests performed on data. Beforehand,

we emphasise that despite the low significance of the BAO signal,

a robust measurement of the BAO position is possible because the

relative amplitude of oscillations is imposed as a prior in the BAO

model (Section 3.6). In other words, though a model without BAO

is not disfavoured by the data, a model with BAO far from the max-

imum of the likelihood is a significantly worse fit to the data.

In Raichoor et al. (2020) (Fig. 10), variations of the redshift

density with photometric depth were noted to be relatively higher

in the low redshift end, 0.6 < z . 0.7. We therefore test the ro-

bustness of our measurement with the lower z-limit. Best fits do

not move significantly with the lower z cut (given the change in the

sample statistics), as can also be seen in Figure 13. For example,

between 0.6 < z < 1.1 and 0.7 < z < 1.1 the best fit α moves by

0.4%. This is not significant as a larger shifts happen in 378/1000
(considering both tails: 741/1000) EZ mocks. We thus use the full

redshift range 0.6 < z < 1.1 for our isotropic BAO measurement.

The α measurement remains very stable with the assumed Σnl

value in SGC only. For NGC + SGC, some 0.8% shift (27% of the

statistical uncertainty) is obtained between Σnl = 4Mpc/h and

Σnl = 6Mpc/h. A larger shift happens for 97/1000 (considering

both tails: 214/1000) EZ mocks. To account for the uncertainty in

the expected amplitude of the BAO signal, we include this shift as

an additional uncertainty.

We estimate the potential residual systematics due to the im-

perfect modelling of the variations of the survey selection func-

tion with imaging quality (see Section 6.1) by comparing the mea-

surement obtained with the baseline correction to that without any

mitigation. Namely, random redshifts are taken separately in each

chunk (instead of chunk z) to measure the data power spectrum.

The covariance matrix is built from mocks where we do not intro-

duce photometric systematics nor variations of the redshift density

with chunk z. We take care to change the model window func-

tions (see Section 3) accordingly. A shift in α of 1.3%, which we

take as systematic uncertainty, is noticed between these two config-

urations. One would notice that a variation of 0.6% is seen in the

SGC alone. Hence, the shift of the NGC + SGC best fit appears to

be mainly driven by the NGC, as can be expected since photometry

is shallower in the NGC than in the SGC.

The residual systematics remaining after the redshift failure

correction (see Section 6.1) are similarly estimated by compar-

ing the measurement obtained with the baseline correction to that

without any mitigation (no wnoz,i). Namely, no wnoz,i are applied

to measure the data power spectrum, while we do not introduce

redshift failures in the mocks to construct the covariance matrix.

This leads to a shift in α of 0.2%; a larger variation is seen in

438/1000 (considering both tails: 851/1000) EZ mocks, making

it quite likely. Note however that data and EZ mock shifts are ex-

pected to match since a mock object is deterministically declared

a redshift failure if the redshift of its nearest neighbour in the data

could not be reliably measured. As mentioned in Section 7.8, a sec-

ond set of mocks was produced with redshift failures being ran-

domly drawn from the model fitted to the data; in this case, we find

a larger variation in 378/1000 (considering both tails: 826/1000)

EZ mocks. Hence, the shift seen in the data is well explained by

the mocks. We conservatively include it in the systematic budget to

account for the uncertainty in the redshift failure correction.

Changing the covariance matrix for that based on GLAM-

QPM mocks, which does not include angular nor radial photomet-

ric systematics leads to a small α shift of 0.4% in the no chunk z

case (no chunk z G-Q cov versus no chunk z). Similarly, in the

baseline case, using a covariance matrix built from GLAM-QPM or
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Table 9. Error budget for post-reconstruction isotropic BAO measurements

on the eBOSS DR16 ELG sample. Percentages are provided with respect

to the α value. The last three lines (statistics, systematics and total) recap

the absolute statistical error bar, the systematic contribution (total minus

statistics), and the total error bar, respectively.

source α

linear

model non-linearity (from EZ mocks) 0.1%

quadrature

modelling systematics (from mock challenge) 0.2%
damping term Σnl 0.8%
photometric systematics 1.3%

fibre collisions (from EZ mocks) 0.2%
redshift failures 0.2%

statistics +0.025
−0.028

systematics +0.006
−0.005

total +0.031
−0.033

EZ mocks without systematics (only the shuffled scheme) induces

small shifts of 0.2% (GLAM-QPM cov versus baseline). A larger

shift is observed in the former case for 283/1000 (considering both

tails: 732/1000) EZ mocks, in the latter case for 377/1000 (con-

sidering both tails: 713/1000) EZ mocks. The parameter covari-

ance matrix correction Eq. (A22) already leads to an increase of

0.7% of the statistical error, which is higher than obtained by sum-

ming the shifts above in quadrature (0.3%). We therefore do not

include any systematic uncertainty related to the choice of the co-

variance matrix. Dividing the number of mocks used to build the

covariance matrix by 2, we find a shift in α of 0.5% (500 mocks in

cov versus baseline). This would lead to a 1.9% increase of the er-

ror if added in quadrature, while the increase of error bars required

to account for the change in covariance matrix between these two

configurations is 1.5%. Hence, the shift seen in the fit is compatible

with a statistical fluctuation and we conclude that the estimation of

the covariance matrix is robust enough for this measurement.

Moving the centre of the k-bin by half a bin (0.005h/Mpc,

+ 1/2 k-bin) leads to a α shift of 0.5%, which is compatible with a

statistical fluctuation since a larger shift is observed for 307/1000
(considering both tails: 595/1000) EZ mocks. We therefore do not

include any additional uncertainty related to the choice of k-bins in

our systematic budget.

Finally, we change the fiducial cosmology Eq. (10) for the

OuterRim cosmology Eq. (34), and for comparison purposes we

report the α value rescaled to our fiducial cosmology. Some shift

can be seen (OR cosmo versus baseline), which we relate to the

change of damping term. Indeed, we checked that analysing a

power spectrum in our fiducial cosmology with an OuterRim tem-

plate leads to a preferred Σnl ≃ 5.4Mpc/h. The measurement ob-

tained with Σnl = 6Mpc/h and OuterRim cosmology (OR cosmo

Σnl = 6Mpc/h) is indeed close (within 0.2%) to the measurement

using Σnl = 4Mpc/h and our fiducial cosmology (0.6 < z < 1.1
(fiducial)). This shift can be seen in 428/1000 (considering both

tails: 840/1000) EZ mocks and is within the 0.2% modelling un-

certainty derived in Section 5.5. We therefore do not include any

additional uncertainty due to the assumed fiducial cosmology.

Overall, despite the mild preference for BAO in the eBOSS

ELG sample, the BAO measurement appears relatively robust. The

final error budget is reported in Table 9. Since the 0.1% α shift at-

tributed to model non-linearity is closer to a bias than a systematic

uncertainty, we decided to be conservative and to add it linearly to

the statistical uncertainty. All other contributions to the systematic

budget are uncertainties due to the model accuracy (modelling sys-

tematics) or our limited knowledge of the survey selection function

(photometric systematics, fibre collisions, redshift failures) or are

analysis choices (damping term). We thus add them in quadrature

to the statistical uncertainty.

Our final post-reconstruction isotropic BAO measurement is

α = 0.986+0.031
−0.033, including statistical and systematic uncertain-

ties.

In terms of the volume-averaged distance DV(z), we find:

DV(zeff = 0.845)/rdrag = 18.33+0.57
−0.62, (39)

independently of the assumed fiducial cosmology.

In order to generate the BAO likelihood profile for further cos-

mological inference, we first rescale ∆χ2(α) = χ2(α) − χ2(α0)
(with α0 the best fit value) by the inverse of the parameter co-

variance rescaling (A22). To include the systematic error budget

we further rescale ∆χ2(α) by the ratio (σα,stat/σα,tot)
2
, with

σα,tot and σα,stat the total and statistical upper (lower) error bars

when α > α0 (α < α0). We finally provide the BAO likelihood

e−∆χ2(DV/rdrag)/2, with DV = αDfid
V .

8.2 Combined RSD and BAO measurements

RSD and combined RSD + BAO measurements are reported un-

der different fitting conditions in Table 10. As in Section 8.1, we

take Σnl = 4Mpc/h as fiducial value for the BAO damping and

RSD and BAO templates are computed within the fiducial cosmol-

ogy (10), except otherwise stated. We quote results for the com-

bined caps NGC + SGC and SGC alone.

As already noted in Section 8.1, variations of the redshift den-

sity with photometric depth were observed to be relatively higher

in the low redshift end. We therefore test the robustness of our mea-

surement with respect to the lower redshift cut. For the RSD + BAO

measurement, shifts of 6.4%, 4.1% and 0.4% are seen for fσ8,

α‖ and α⊥, respectively, when changing the redshift range 0.6 <
z < 1.1 to 0.7 < z < 1.1 for the pre-reconstruction power spec-

trum (RSD part of the likelihood). Larger shifts are observed for

159/1000 (considering both tails: 296/1000) EZ mocks for fσ8,

19/1000 (32/1000) for α‖ and 374/1000 (732/1000) for α⊥. The

somewhat low probability of the change in α‖ may point towards

some unaccounted systematics in the lower redshift end. These po-

tential systematics were without effect on the BAO measurement,

as noted in Section 8.1.

For our final measurement we therefore conservatively choose

the redshift range 0.7 < z < 1.1 for the RSD part of the like-

lihood, and keep 0.6 < z < 1.1 for the BAO part, as decided

in Section 8.1. Following Eq. (36), the effective redshift for the

redshift range 0.6 < z < 1.1 is 0.845 while it is 0.857 for

0.7 < z < 1.1. We choose the effective redshift as 0.85 for the

combined RSD + BAO measurement, and check that the expected

variations of fσ8, DH/rdrag and DM/rdrag over the redshift range

0.845−0.857 within our fiducial cosmology are small (0.3%, 0.7%
and 1.1%, respectively) compared to the statistical uncertainty on

data (24%, 9% and 4%, respectively).

Best fit models of ELG power spectra in the NGC and SGC

are compared with data in Figure 14, while Figure 15 shows the

posteriors of the RSD and RSD + BAO measurements. One would

note that the RSD + BAO combination helps reducing the posterior
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Table 10. RSD and RSD + BAO best fits on the eBOSS DR16 ELG sample. Error bars are defined by the ∆χ2 = 1 level, except in the Bayesian case, where

we consider the minimum interval which contains 68% of the MCMC samples.

fσ8 α‖ α⊥ χ2/dof

RSD only SGC only z cuts

0.6 < z < 1.1 0.348+0.078
−0.079 0.974+0.100

−0.084 0.952+0.071
−0.062 31.7/(46− 7) = 0.812

0.65 < z < 1.1 0.367+0.086
−0.085 0.982+0.097

−0.093 0.968+0.090
−0.073 29.2/(46− 7) = 0.749

0.7 < z < 1.1 0.38+0.10
−0.11 1.013+0.087

−0.098 1.04+0.13
−0.13 29.8/(46− 7) = 0.763

0.75 < z < 1.1 0.33+0.23
−0.10 0.98+0.11

−0.16 0.936+0.328
−0.082 31.3/(46− 7) = 0.802

RSD only SGC only 0.7 < z < 1.1

GLAM-QPM cov 0.429+0.081
−0.082 1.022+0.082

−0.079 1.120+0.098
−0.100 28.6/(46− 7) = 0.733

no syst. cov 0.409+0.077
−0.082 1.027+0.076

−0.074 1.110+0.087
−0.098 29.3/(46− 7) = 0.752

+ 1/2 k-bin 0.374+0.093
−0.099 1.023+0.083

−0.079 1.052+0.104
−0.098 25.0/(46− 7) = 0.640

OR cosmo (rescaled) 0.371+0.090
−0.106 1.029+0.075

−0.082 1.07+0.10
−0.12 24.9/(46− 7) = 0.638

RSD + BAO SGC only z cuts

0.6 < z < 1.1 0.327+0.084
−0.105 1.017+0.133

−0.087 0.967+0.059
−0.061 51.0/(73− 12) = 0.837

0.65 < z < 1.1 0.348+0.090
−0.107 1.013+0.120

−0.087 0.976+0.064
−0.066 46.1/(73− 12) = 0.756

0.7 < z < 1.1 0.335+0.099
−0.124 1.004+0.122

−0.097 0.986+0.071
−0.083 50.0/(73− 12) = 0.819

0.75 < z < 1.1 0.33+0.12
−0.16 1.01+0.16

−0.12 0.964+0.087
−0.096 52.4/(73− 12) = 0.859

RSD + BA0 SGC only 0.7 < z < 1.1

GLAM-QPM cov 0.425+0.088
−0.092 0.950+0.095

−0.103 1.033+0.058
−0.066 53.5/(73− 12) = 0.877

no syst. cov 0.386+0.079
−0.085 0.979+0.079

−0.073 1.028+0.057
−0.062 47.6/(73− 12) = 0.780

+ 1/2 k-bin 0.31+0.11
−0.12 1.04+0.12

−0.10 0.973+0.074
−0.078 47.6/(73− 12) = 0.780

OR cosmo (rescaled) 0.31+0.10
−0.11 1.01+0.11

−0.11 0.983+0.069
−0.070 45.4/(73− 12) = 0.743

RSD only NGC + SGC z cuts

0.6 < z < 1.1 0.250+0.124
−0.067 1.15+0.11

−0.28 0.919+0.038
−0.039 87.6/(92− 11) = 1.08

0.65 < z < 1.1 0.259+0.116
−0.068 1.15+0.10

−0.27 0.922+0.040
−0.041 83.9/(92− 11) = 1.04

0.7 < z < 1.1 0.382+0.053
−0.056 0.871+0.109

−0.061 0.901+0.043
−0.050 81.3/(92− 11) = 1.00

0.75 < z < 1.1 0.365+0.062
−0.073 0.905+0.146

−0.080 0.887+0.045
−0.053 66.6/(92− 11) = 0.822

RSD only NGC + SGC 0.7 < z < 1.1

GLAM-QPM cov 0.308+0.104
−0.074 1.08+0.11

−0.27 0.942+0.047
−0.083 80.3/(92− 11) = 0.991

no syst. cov 0.388+0.052
−0.054 0.865+0.106

−0.061 0.910+0.046
−0.052 83.2/(92− 11) = 1.03

+ 1/2 k-bin 0.376+0.055
−0.134 0.887+0.272

−0.071 0.910+0.047
−0.048 68.5/(92− 11) = 0.846

OR cosmo (rescaled) 0.289+0.128
−0.075 1.08+0.11

−0.27 0.933+0.043
−0.075 73.4/(92− 11) = 0.906

RSD + BAO NGC + SGC z cuts

0.6 < z < 1.1 0.271+0.059
−0.057 1.129+0.078

−0.090 0.938+0.030
−0.030 140/(146− 21) = 1.12

0.65 < z < 1.1 0.281+0.059
−0.057 1.122+0.076

−0.085 0.938+0.031
−0.031 137/(146− 21) = 1.10

0.7 < z < 1.1 (baseline) 0.289+0.068
−0.066 1.085+0.087

−0.107 0.941+0.035
−0.034 141/(146− 21) = 1.13

0.75 < z < 1.1 0.319+0.068
−0.069 1.062+0.088

−0.092 0.937+0.037
−0.037 123/(146− 21) = 0.984

RSD + BAO NGC + SGC 0.7 < z < 1.1

no chunk z 0.261+0.059
−0.058 1.109+0.070

−0.074 0.928+0.036
−0.036 153/(146− 21) = 1.23

no chunk z GLAM-QPM cov 0.262+0.061
−0.061 1.137+0.077

−0.078 0.926+0.035
−0.034 136/(146− 21) = 1.09

Σnl = 6Mpc/h 0.283+0.101
−0.069 1.086+0.096

−0.284 0.934+0.036
−0.036 141/(146− 21) = 1.13

no wnoz,i 0.306+0.071
−0.068 1.088+0.089

−0.112 0.939+0.034
−0.034 144/(146− 21) = 1.15

GLAM-QPM cov 0.305+0.066
−0.065 1.101+0.078

−0.081 0.956+0.037
−0.035 132/(146− 21) = 1.06

no syst. cov 0.326+0.072
−0.078 1.03+0.10

−0.11 0.952+0.037
−0.038 125/(146− 21) = 1.00

500 mocks in cov 0.301+0.071
−0.070 1.084+0.082

−0.092 0.941+0.037
−0.036 127/(146− 21) = 1.02

+ 1/2 k-bin 0.287+0.067
−0.064 1.082+0.081

−0.087 0.943+0.035
−0.033 140./(146− 21) = 1.12

OR cosmo (rescaled) 0.271+0.066
−0.063 1.098+0.075

−0.086 0.938+0.034
−0.032 129/(146− 21) = 1.03

Bayesian 0.289+0.060
−0.075 1.085+0.104

−0.090 0.941+0.036
−0.037 141/(146− 21) = 1.13

MNRAS 000, 1–?? (2020)



DR16 eBOSS ELG BAO and RSD measurements 23

Figure 14. Combined RSD + BAO fit (left: NGC, right: SGC): data points with error bars from the EZ mocks and best fit model as continuous line for the

power spectrum multipoles (top) and the BAO oscillation pattern (bottom), normalised residuals for every power spectrum multipole (middle).

tails while not changing the central values. In particular, the com-

bination of RSD with BAO removes secondary local minima in the

contours. An illustration of this ill-shaped RSD only posteriors is

the large change for the RSD only best fit to the NGC + SGC data

in the redshift range 0.7 < z < 1.1 with respect to 0.6 < z < 1.1,

as reported in Table 10. In particular, the bump seen on the left side

of the peak in the α‖ marginal RSD only posterior in Figure 15 cor-

responds to the position of the best fit value α‖ = 0.871+0.109
−0.061. We

checked that the overall shift in the RSD only posterior contours

when changing the redshift range is much smaller than that of the

RSD only best fits and consistent with that of the RSD + BAO case.

Note that in the following the systematic budget will be derived for

the RSD + BAO combination, for which the shape of the posterior

is more Gaussian.

As in Section 8.1, we test the robustness of our result with

respect to the choice of the Σnl value: we find a 1.9% shift on fσ8,

0.1% on α‖ and 0.8% on α⊥ between Σnl = 4Mpc/h and Σnl =
6Mpc/h, which we add to our uncertainty budget. Larger shifts are

seen in 104/1000 (both tails: 142/1000), 402/1000 (861/1000)

and 211/1000 (345/1000) EZ mocks for fσ8, α‖ and α⊥.

The uncertainty in the modelling of the selection function vari-

ations with photometry is estimated similarly to Section 8.1: we

compare the baseline correction, using the pixelated scheme, to the

best fit measurement (no chunk z) obtained without any angular

mitigation scheme nor modelling of the variations of the radial se-

lection function with chunk z. The covariance matrix is also built

from EZ mocks without angular nor radial photometric systemat-

ics. We measure shifts of 9.4% on fσ8, 2.2% on α‖ and 1.4% on

α⊥, which we take as additional systematic uncertainty.

Similarly, the impact of redshift failures is estimated by com-

paring the baseline measurement with the best fit obtained on the

data without including the wnoz,i correction weight (no wnoz,i). We

measure shifts of 6.1% on fσ8, 0.3% on α‖ and 0.3% on α⊥,

which we take as systematic uncertainty. Larger variations hap-

pen for 176/1000 (considering both tails: 368/1000), 479/1000
(856/1000) and 409/1000 (882/1000) EZ mocks, respectively. If

we rather consider EZ mocks where redshift failures are stochas-

tic, based on the model fitted to the observed data, we find larger

shifts for 146/1000 (considering both tails: 318/1000), 499/1000
(880/1000) and 403/1000 (862/1000) EZ mocks for fσ8, α‖ and

α⊥, respectively.

Dividing the number of mocks used to build the covariance

matrix by 2, we find a shift of 4.3% on fσ8, 0.1% on α‖ and 0.0%
on α⊥ (500 mocks in cov versus baseline). This would lead to a

1.7%, 0.0% and 0.0% increase of the error if added in quadrature,

less than 5.8%, the typical increase of error bars required to account

for the change in covariance matrix between these two configura-

tions. We thus conclude that the RSD + BAO covariance matrix is

stable with respect to the number of mocks.

Changing the covariance matrix built from contaminated EZ
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Figure 15. Posteriors of the RSD and RSD + BAO measurements. System-

atic uncertainties of Table 11 are not included.

mocks for the one obtained from GLAM-QPM mocks, we find a

5.6% shift on fσ8, 1.5% on α‖ and 1.6% on α⊥. Larger vari-

ations happen for 171/1000, 218/1000, 107/1000 EZ mocks,

respectively (considering both tails: 363/1000, 402/1000 and

290/1000). Even larger shifts are seen when using a covariance

matrix based on EZ mocks without systematics (only the shuffled

scheme, no syst. cov): 12.9% shift on fσ8, 4.7% on α‖ and 1.2%
on α⊥. These changes happen for 12/1000, 18/1000, 252/1000
EZ mocks, respectively (considering both tails: 27/1000, 50/1000
and 428/1000).

One would also notice a large change (26.7% on fσ8, 5.4%
on α‖ and 4.7% on α⊥) for the SGC only measurements with

the GLAM-QPM covariance matrix (GLAM-QPM cov). A larger

shift in fσ8 happens for 4/1000 EZ mocks (considering both tails:

18/1000). One may be concerned by some possible coupling be-

tween the data and the covariance matrix from contaminated EZ

mocks, as the map of angular systematics injected in these mocks

was inferred directly from the smoothed observed data density (see

Section 6.2). In Appendix C we show that we cannot find any evi-

dence for this coupling based on EZ mocks.

The variations in the best fit parameters with the covariance

matrix being very untypical, for conservativeness we include in our

systematic budget the largest shifts seen in the NGC + SGC fit,

namely those obtained with a covariance matrix based on EZ mocks

without systematics (only the shuffled scheme, no syst. cov), i.e.

12.9% on fσ8, 4.7% on α‖ and 1.2% on α⊥.

Moving the centre of the k-bin by half a bin (0.005h/Mpc)

leads to a shift of 0.6% for fσ8 and 0.2% for α‖ and α⊥.

A larger fσ8 shift is observed for 393/1000 (considering both

tails: 931/1000) EZ mocks, 463/1000 (884/1000) for α‖ and

539/1000 (922/1000) for α⊥. As in Section 8.1, since these shifts

are compatible with mocks, we do not include them in the system-

atic budget.

Changing the fiducial cosmology of Eq. (10) for the OuterRim

cosmology of Eq. (34), we find moderate shifts of 6.0% on fσ8,

Table 11. Error budget for RSD + BAO measurements on the eBOSS DR16

ELG sample. Percentages are provided with respect to the parameter value.

The last three lines (statistics, systematics and total) recap the absolute sta-

tistical error bar, the systematic contribution (total minus statistics), and the

total error bar, respectively.

source fσ8 α‖ α⊥

linear

survey geometry (from EZ mocks) 0.1% 0.5% 0.1%
RSD + BAO combination (from EZ mocks) 1.0% 0.3% 0.5%
model non-linearity (from EZ mocks) 1.6% 1.0% 0.4%
ARIC modelling (from EZ mocks) 0.8% 0.6% 0.1%

quadrature

modelling systematics (from mock challenge) 3.0% 0.9% 0.8%
damping term Σnl 1.9% 0.1% 0.8%
photometric systematics 9.4% 2.2% 1.4%
fibre collisions (from EZ mocks) 1.1% 0.6% 0.2%
redshift failures 6.1% 0.3% 0.3%
covariance matrix 12.9% 4.7% 1.2%

statistics +0.060
−0.075

+0.104
−0.090

+0.036
−0.037

systematics +0.024
−0.021

+0.029
−0.031

+0.012
−0.011

total +0.085
−0.096

+0.13
−0.12

+0.048
−0.049

1.2% on α‖ and 0.3% on α⊥ (which are rescaled to the fiducial

cosmology Eq. (10) for comparison purposes). Larger shifts are ob-

served for 263/1000 (considering both tails: 349/1000) EZ mocks

for fσ8, 283/1000 (474/1000) for α‖ and 312/1000 (831/1000)

for α⊥ and hence are fully compatible with a statistical fluctua-

tion. Since we accounted for the change of fiducial cosmology in

the systematic modelling budget, we do not quote any other related

systematic uncertainty.

The final error budget is reported in Table 11. The systematic

bias related to the analysis methodology, namely the survey ge-

ometry, the RSD and BAO combination, the model non-linearity

and the modelling of the angular and radial integral constraints

(ARIC) are summed together in quadrature and added linearly to

the statistical error bars. Other contributions are uncertainties due to

our limited understanding of the ELG small-scale clustering (mod-

elling systematics) or the survey selection function (photometric

systematics, fibre collisions, redshift failures) or consist in analy-

sis choices (damping term, covariance matrix, fiducial cosmology).

These other terms are added in quadrature to the statistical error

bars.

Including both statistical and systematic uncertainties, our fi-

nal combined RSD + BAO measurement is (in the Bayesian case):

fσ8 = 0.289+0.085
−0.096, α‖ = 1.08+0.13

−0.12 and α⊥ = 0.941± 0.049.

In terms of angular distance and Hubble parameter, we find:

fσ8(zeff = 0.85) = 0.289+0.085
−0.096

DH(zeff = 0.85)/rdrag = 20.0+2.4
−2.2 (40)

DM(zeff = 0.85)/rdrag = 19.17± 0.99

As can be seen in Figure 15, the linear bias combination b1σ8

is correlated with fσ8. Fixing σ8 to the fiducial cosmology in

Eq. (10) we find bNGC
1 = 1.49 ± 0.10 and bSGC

1 = 1.52+0.10
−0.11, in

agreement with previous studies (e.g. Comparat et al. 2013). Best

fit values and errors for all parameters are given in Appendix D. No

discrepancy can be seen between NGC and SGC nuisance param-
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eters (b1σ8, b2σ8, σv and Ag). ANGC
g and ASGC

g are compatible

with zero, as expected with nearly Poisson shot noise.

To include the systematic error budget in the above

RSD + BAO posteriors, we rescale the distance of each MCMC

sample (fσ8, α‖, α⊥) to the median values by the ratio of total to

statistical only errors. For example, the new fσ8 position is:

σfσ8,tot

σfσ8,stat
[fσ8 −median(fσ8)] + median(fσ8). (41)

σfσ8,tot and σfσ8,stat are the upper (lower) total and statistical

error bars with respect to the median when fσ8 > median(fσ8)
(fσ8 < median(fσ8)). We proceed similarly for α‖ and α⊥.

9 CONSENSUS

BAO and RSD analyses of the eBOSS ELG sample are also per-

formed in configuration space, as detailed in Raichoor et al. (2020);

Tamone et al. (2020).

Post-reconstruction isotropic BAO measurements in Fourier

and configuration space are compared for each mock in Figure 16.

Both measurements are well correlated (ρ = 0.8). Raichoor et al.

(2020) measurement, DV(zeff = 0.845)/rdrag = 18.23 ± 0.58
(statistical only) is < 0.2σ away from our Fourier space measure-

ment, DV(zeff = 0.845) = 18.33+0.46
−0.52 (statistical only). A larger

difference in the best fits occurs for 223/956 EZ mocks includ-

ing all systematics (considering both tails: 684/1000), while we

find 387/956 EZ mocks (considering both tails: 473/1000) with a

larger difference in the mean of the lower and upper error bars. The

good agreement between configuration and Fourier space measure-

ments is shown by the data cross in Figure 16, lying close to the

diagonal. We choose the Fourier space measurement as consensus

as it has a lower statistical uncertainty.

This measurement, DV(zeff = 0.845)/rdrag = 18.33+0.57
−0.62,

is 0.6σ below the Planck Collaboration et al. (2018) CMB-based

(TT, TE, EE, lowE, lensing) prediction.

Combining RSD and BAO measurements in configuration

space and including systematic uncertainties, Tamone et al. (2020)

find:

fσ8(zeff = 0.85) = 0.35± 0.10

DH(zeff = 0.85)/rdrag = 19.1+1.9
−2.0 (42)

DM(zeff = 0.85)/rdrag = 19.9± 1.0.

These values are 0.7σ, 0.5σ and 0.7σ away from our Fourier

space median fσ8, DH/rdrag and DM/rdrag values, respectively.

Comparing the best fits instead, differences are 0.4σ, 0.4σ and

0.7σ, respectively. Again comparing best fits, larger differences

occur in 386/1000 (considering both tails: 543/1000), 193/1000
(358/1000) and 246/1000 (311/1000) EZ mocks including all

systematics. Considering posterior medians instead, larger dif-

ferences occur in 158/1000 (considering both tails: 185/1000),

119/1000 (234/1000) and 256/1000 (324/1000) best fits to EZ

mocks including all systematics. To combine these two measure-

ments, since posteriors are not Gaussian but show comparable error

bars, we translate them such that their two medians are located at

the mean median and take the mean of the two posteriors as consen-

sus. This method leads to an unbiased measurement if both mea-

surements are unbiased, and is conservative about the final error

bars. We show the two posteriors and their combination in Fig-

ure 17. The consensus RSD + BAO eBOSS ELG measurement is

thus:

fσ8(zeff = 0.85) = 0.315± 0.095

DH(zeff = 0.85)/rdrag = 19.6+2.2
−2.1 (43)

DM(zeff = 0.85)/rdrag = 19.5± 1.0.

These measurements are 1.4σ, 0.5σ and 0.9σ from the Planck

Collaboration et al. (2018) CMB-based (TT, TE, EE, lowE, lensing)

predictions for fσ8, DH/rdrag and DM/rdrag, respectively.

We interpolate the consensus MCMC posterior (including sys-

tematic error bars) on a grid of fσ8, DH/rdrag and DM/rdrag
which is used, together with the BAO likelihood profile (includ-

ing systematic error bars), for the combined eBOSS cosmological

constraints presented in eBOSS Collaboration et al. (2020).

10 CONCLUSIONS

In the above, together with Raichoor et al. (2020); Tamone

et al. (2020), we presented the first measurement of the pre-

reconstruction RSD and post-reconstruction BAO signal in the

eBOSS ELG sample.

We started by testing our implementation of the RSD

TNS (Taruya et al. 2010) model and isotropic BAO template using

N-body based simulations. These models proved robust enough for

our analysis. However, this analysis was complicated by various

observational and analysis artefacts.

First, the fine-grained veto masks applied to the eBOSS ELG

data led us to revise the way window functions are normalised in the

model. We also noticed that measuring the expected redshift distri-

bution from observed data itself (using the shuffled scheme) led to

a significant bias of cosmological parameters, which we corrected

by modelling the induced radial integral constraint as in de Mat-

tia & Ruhlmann-Kleider (2019). Fibre collisions have been found

to have a moderate impact, which we modelled following Hahn

et al. (2017). Finally, residual angular systematics due to the inho-

mogeneous photometry, which could not be treated following the

standard technique of template regression, were mitigated using the

pixelated scheme as discussed in de Mattia & Ruhlmann-Kleider

(2019).

For this study, to test our analysis pipeline, we implemented

the survey geometry and realistic systematics into mock catalogues:

depth-dependent radial selection function, angular photometric sys-

tematics, fibre collisions and redshift failures. We proved on mocks

that our analysis is robust to these systematics when including all

the corrections mentioned above. We derived residual systematic

uncertainties from both our mock studies and robustness tests run

on data.

As another extension over previous work, we combined RSD

and post-reconstruction BAO measurements at the likelihood level

to avoid assuming them Gaussian and strengthen our cosmological

measurements.

Taking into account statistical and systematic uncertainties,

the post-reconstruction isotropic BAO analysis in Fourier space

provides a measurement of the ratio of the volume-averaged dis-

tance to the sound horizon at the drag epoch:

DV(zeff = 0.845)/rdrag = 18.33+0.57
−0.62,

which is the BAO consensus measurement of the eBOSS ELG sam-

ple. The Fourier space RSD + BAO measurement, including statis-
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Figure 16. Post-reconstruction isotropic BAO measurements in the EZ mocks including all systematics, in Fourier and configuration space (left: best fits, right:

errors, taken to be the mean of the upper and lower error bars). The red cross shows the eBOSS ELG data.

Figure 17. Fourier and configuration space, and combined posteriors of

the final eBOSS ELG RSD + BAO measurements (including systematic

uncertainties).

tical and systematic uncertainties, is:

fσ8(zeff = 0.85) = 0.289+0.085
−0.096

DH(zeff = 0.85)/rdrag = 20.0+2.4
−2.2

DM(zeff = 0.85)/rdrag = 19.17± 0.99.

Combined with configuration space results of Tamone et al. (2020),

we find:

fσ8(zeff = 0.85) = 0.315± 0.095

DH(zeff = 0.85)/rdrag = 19.6+2.2
−2.1

DM(zeff = 0.85)/rdrag = 19.5± 1.0.

Some observational systematics may remain, due to our in-

complete understanding of the relation between the ELG target

density and the imaging properties in the early DECaLS release

used in the eBOSS ELG target selection. We note that DESI (DESI

Collaboration et al. 2016) will target ELG with the Legacy Imag-

ing Surveys (Dey et al. 2019) that includes DECaLS. Though this

latest photometric survey is deeper and more isotropic, fainter

ELG targets are targeted, such that one may expect significant 3-

dimensional fluctuations of the survey selection function due to

photometric variations as seen in the eBOSS ELG sample. Under-

standing these fluctuations will be key to the clustering analysis of

the DESI ELG sample.

In conclusion, this work was the opportunity to deal with anal-

ysis systematics (impact of fixing the template cosmology, integral

constraints) and observational systematics (3-dimensional fluctua-

tions of the survey selection function) which were not fully tackled

in previous SDSS clustering analyses and are of importance for the

next generation of spectroscopic surveys, including DESI (DESI

Collaboration et al. 2016) and Euclid (Laureijs et al. 2011).
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Jiménez E., Contreras S., Padilla N., Zehavi I., Baugh C. M., Gonzalez-

Perez V., 2019, MNRAS, 490, 3532

Kaiser N., 1987, MNRAS, 227, 1
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APPENDIX A: COVARIANCE CORRECTIONS

In this section we justify the corrections applied to the parameter

covariance for our combined NGC and SGC cosmological fit. For-

mula Eq. (28) is (formally) incorrect when combining two indepen-

dent Gaussian likelihoods (e.g. NGC and SGC). Indeed, an intuitive

use of Eq. (28) would take nb as the number of bins in either NGC

or SGC and np the total number of parameters. Then, however, the

constraint np 6 nb inherent to this formula appears artificial. In-

deed, there is no issue with having np > nb as long as np is less

than the total number of bins. Another approach would be to take

nb as the total number of bins in NGC and SGC; though this would

be correct if we estimated the combined NGC and SGC covariance

from mocks, this does not apply to our case where we impose the

cross-covariance between NGC and SGC to be zero. Therefore, we

have to revise Eq. (28) in the context of a block-diagonal covariance

matrix.

The Hartlap (Hartlap et al. 2007) correction is applied to the

inverse NGC covariance matrix to obtain the precision matrix:

Ψ
NGC =

(

1−DNGC
)(

C
NGC

)−1

, DNGC =
nNGC
b + 1

nNGC
m − 1

(A1)

with nNGC
b the number of bins and nNGC

m the number of mocks in

NGC; similarly for SGC. The full precision matrix Ψ is a block-

diagonal matrix built from ΨNGC and ΨSGC. To obtain the cor-

rections to the parameter covariance the errors on each precision

matrix must be propagated through the Fisher information. The es-

timator for parameter pα, whose true value is assumed to be zero

without loss of generality, is (Eq. (24) in Dodelson & Schneider

2013):

p̂α = [F +∆F ]−1
αα′

∂xt
i

∂pα′
Ψij

(

xd
j − xt

j

)

, (A2)

where xd
i and xt

i =
〈

xd
i

〉

are the data measurement and its true

value. Fαβ is the true Fisher matrix:

Fαβ =
∂xt

i

∂pα
Ψt

ij

∂xt
j

∂pβ
, (A3)

with Ψt =
(

Ct
)−1

the true inverse covariance matrix and simi-

larly:

∆Fαβ =
∂xt

i

∂pα
∆Ψt

ij

∂xt
j

∂pβ
(A4)

with ∆Ψij = Ψij − Ψt
ij . Then, Dodelson & Schneider (2013)

recall that the leading order parameter covariance is 〈p̂αp̂β〉 ∋ F−1
αβ

and derive the next-to-leading (second order) contribution:

〈p̂αp̂β〉 ∋ F−1
αα′

[

∂xt
i

∂pα′

∂xt
i′

∂pβ′
Ct

jj′(∆Ψ)ij(∆Ψ)i′j′

]

F−1
ββ′ (A5)

−
[

F−1∆FF−1∆FF−1]

αβ
(A6)

Similarly to Taylor et al. (2013); Dodelson & Schneider (2013) we

write the covariance of the precision matrix fluctuations as:

〈∆Ψij∆Ψi′j′〉 =
(

ANGC
iji′j′ +ASGC

iji′j′

)

Ψt
ijΨ

t
i′j′ (A7)

+
(

BNGC
iji′j′ +BSGC

iji′j′

)

(

Ψt
ii′Ψ

t
jj′ +Ψt

ij′Ψ
t
ji′
)

(A8)

where ANGC
iji′j′ is constant (equal to ANGC) if indices iji′j′ all lie in

the same block NGC, zero elsewhere (i.e. cross-covariance terms

between NGC and SGC are zero), and similarly for SGC and B

terms. We recall that:

ANGC =
2

(nNGC
m − nNGC

b − 1) (nNGC
m − nNGC

b − 4)
, (A9)

BNGC =
nNGC
m − nNGC

b − 2

(nNGC
m − nNGC

b − 1) (nNGC
m − nNGC

b − 4)
, (A10)
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and similarly for SGC. Let us consider the contribution from the A
terms first. From Eq. (A5) one gets the contribution:

〈p̂αp̂β〉 ∋ F−1
αα′

[

ANGCFNGC
α′β′ +ASGCF SGC

α′β′

]

F−1
ββ′ (A11)

where we split the total Fisher information F = FNGC + F SGC

(since NGC and SGC are independent). Eq. (A6) gives:

〈p̂αp̂β〉 ∋ −F−1
αα′F

−1

β′α
′′F

−1

β
′′
β

(

ANGCFNGC
α′β′ FNGC

α
′′
β
′′

+ASGCF SGC
α′β′ F SGC

α
′′
β
′′

)

(A12)

Let us move to the B terms. From Eq. (A5) one gets the contribu-

tion:

〈p̂αp̂β〉 ∋ F−1
αα′

[

BNGC
(

nNGC
b + 1

)

FNGC
α′β′

+BSGC
(

nSGC
b + 1

)

F SGC
α′β′

]

F−1
ββ′ , (A13)

and from Eq. (A6):

〈p̂αp̂β〉 ∋ −F−1
αα′F

−1

β′α
′′F

−1

β
′′
β

(

BNGCFNGC
α′α

′′FNGC
β′β

′′

+BSGCF SGC
α′α

′′F SGC
β′β

′′ +BNGCFNGC
α′β

′′FNGC
β′α

′′ +BSGCF SGC
α′β

′′F SGC
β′α

′′

)

.

(A14)

Formulae above could be evaluated numerically, but we will con-

sider a simpler case in the following. We assume that FNGC
αβ

and F SGC
αβ are block-diagonal, with specific parameters for NGC

and SGC which are uncorrelated, and a set of common param-

eters αβ for which the Fisher information content can be writ-

ten FNGC
αβ = fNGCFαβ (respectively F SGC

αβ = fSGCFαβ), with

fNGC + fSGC = 1. We also assume the common parameters to

be uncorrelated to the NGC and SGC specific parameters12. Then,

the contribution from the A and B terms to the covariance of the

common parameters is simply the sum of terms C1 (from Eq. (A5))

and C2 (from Eq. (A6)):

〈p̂αp̂β〉 ∋
[

CNGC
1 + CSGC

1 − CNGC
2 − CSGC

2

]

F−1
αβ (A15)

where:

CNGC
1 = ANGCfNGC +BNGCfNGC

(

nNGC
b + 1

)

(A16)

and

CNGC
2 = ANGC

(

fNGC
)2

+BNGCfNGC
(

nNGC
eff + fNGC

)

(A17)

where we use the effective number of parameters nNGC
eff = nNGC

sp +
fNGCnco, with nNGC

sp the number of parameters specific to NGC

(similarly for SGC) and nco the number of parameters in common.

The contribution to the covariance of the specific parameters is ob-

tained for e.g. NGC by forcing fNGC = 1 (then fSGC = 0) and

keeping nNGC
eff fixed. In this case, errors from the NGC precision

matrix only contribute to the parameter covariance. In the simpli-

fied case where nco = 0, the known result of Dodelson & Schnei-

der (2013):

〈p̂αp̂β〉 ∋ BNGC
[

nNGC
b − nNGC

sp

]

F−1
αβ (A18)

is recovered. Adding up A and B contributions, the parameter co-

variance is:

Vαβ =
[

1 + CNGC
1 + CSGC

1 − CNGC
2 − CSGC

2

]

F−1
αβ . (A19)

12 This is of course not the case in practice.

The parameter variance estimated from the likelihood is (Eq. (16)

in Percival et al. 2014):

σ2
αβ = [F +∆F ]−1

αβ , (A20)

whose second order term is just Eq. (A6) (Eq. (15) in Percival et al.

2014). Then:

σ2
αβ =

[

1 + CNGC
2 + CSGC

2

]

F−1
αβ . (A21)

Therefore, the full correction to apply to the parameter covariance

estimated from the likelihood is:

m1 =
Vαβ

σ2
αβ

=
1 + CNGC

1 + CSGC
1 − CNGC

2 − CSGC
2

1 + CNGC
2 + CSGC

2

. (A22)

As noted by Percival et al. (2014), in case the mocks used to pro-

duce the covariance matrix are fitted, the covariance of the mea-

surements xi is just Cij :
〈(

xd
i − xt

i

)(

xd
j − xt

j

)〉

= Cij (A23)

=
(

1−DNGC
ij

)

Ψ−1
ij +

(

1−DSGC
ij

)

Ψ−1
ij

(A24)

where DNGC
ij = DNGC if ij lie in the NGC block, zero otherwise,

and similarly for SGC. Then:

〈p̂αp̂β〉 = [F +∆F ]−1
αα′ [F +∆F ]−1

ββ′

∂xt
i

∂pα′

∂xt
i′

∂pβ′
(A25)

Ψii′Ψjj′

〈(

xd
i − xt

i

)(

xd
j − xt

j

)〉

(A26)

= [F +∆F ]−1
αα′ [F +∆F ]−1

ββ′ (A27)
{(

1−DNGC
)

[F +∆F ]NGC
α′β′ (A28)

+
(

1−DSGC
)

[F +∆F ]SGC
α′β′

}

(A29)

= [F +∆F ]−1
αβ

[(

1−DNGC
)

fNGC +
(

1−DSGC
)

fSGC
]

.

(A30)

Hence, the covariance of best fit parameter values obtained from

the mocks should be rescaled by:

m2 =
Vαβ

〈p̂αp̂β〉
=

Vαβ

σ2
αβ

σ2
αβ

〈p̂αp̂β〉
(A31)

= m1

[(

1−DNGC
)

fNGC +
(

1−DSGC
)

fSGC
]−1

.

(A32)

to be compared with the parameter covariance derived from the

likelihood (applying the Harlap factor of Eq. (A1) and m1 of

Eq. (A22)).

APPENDIX B: EFFECTIVE REDSHIFT

In this section we derive another definition of the effective redshift,

more specific to the Fourier space analysis.

With the Yamamoto estimator, in the local plane parallel

approximation, assuming the (perfectly known) survey selection

function varies slowly compared to the correlation function, and

with infinite dΩk sampling we measure (in average):

〈

P̂ℓ(k)
〉

=

∫

d3rn̄2(r)Pℓ(k, z(r))
∫

d3rn̄2(r)
(B1)

where n̄(r) is the expected mean density of weighted galaxies in
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the absence of clustering and Pℓ(k, z) is the true galaxy power

spectrum at redshift z. Taylor expanding the power spectrum about

the effective redshift zeff :

Pℓ(k, z) = Pℓ(k, zeff) + P ′
ℓ(k, zeff)(z − zeff) + · · · (B2)

and substituting this expression into Eq. (B1), we find that the ex-

pected value of the Yamamoto estimator can be approximated at

first order by the quantity that we actually model:

P̃ℓ(k) =

∫

d3rn̄2(r)Pℓ(k, zeff)
∫

d3rn̄2(r)
(B3)

if we use the effective redshift:

zeff =

∫

d3rn̄2(r)z(r)
∫

d3rn̄2(r)
≃
∑Ng

i=1 wtot,ing,izg,i
∑Ng

i=1 wtot,ing,i

(B4)

We checked that the value obtained with this definition of the ef-

fective redshift agrees with Eq. (36) to the 0.5% level.

APPENDIX C: COUPLING BETWEEN DATA AND

COVARIANCE MATRIX

Some concern may be raised about a possible coupling between the

data power spectrum measurements and the covariance matrix built

from the 1000 EZ mocks. Indeed, angular systematics were imple-

mented in these mocks based on a map of the observed ELG density

(smoothed by a Gaussian beam of radius 1 deg). By construction,

this systematic map includes data clustering angular modes which

diffuse in the clustering of the contaminated EZ mocks. To check

the importance of this effect, we generate a new systematic map

based on the angular target density measured on one contaminated

EZ reference mock, and contaminate the other 999 EZ mocks with

this new map. Best fits to the reference mock using the original co-

variance matrix and using the new one are compared. Performing

RSD fits to the SGC, we find small shifts of 3.5% for fσ8, 0.2% for

α‖ and 0.3% for α⊥, which are not significant since larger shifts

are seen in 116/999, 471/999 and 440/999 EZ mocks (consider-

ing both tails: 219/999, 901/999 and 783/999).

Redshift failures are also implemented in the mocks based on

the observed data. We check the potential bias due to this tuning

following the same procedure as for photometric systematics. With

both photometric systematics and redshift failures coming from one

mock, we find small shifts in SGC RSD fits of 1.9% for fσ8, 1.2%
for α‖ and 0.3% for α⊥, which are again not significant since larger

shifts are seen in 279/999, 257/999 and 418/999 EZ mocks (con-

sidering both tails: 498/999, 463/999 and 783/999). We therefore

see no evidence for a systematic bias due to coupling between data

measurements and the covariance matrix built from contaminated

EZ mocks.

APPENDIX D: RSD + BAO FULL BEST FIT

We report all RSD + BAO best fit parameters to eBOSS ELG

NGC + SGC in Table D1.
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Table D1. Parameters for the eBOSS ELG combined RSD + BAO likelihood. We provide the best fit, as well as the mean and the median of the MCMC

samples. Error bars are given around the best fit. The ∆χ2 = 1 errors in parameter x are given by the x values for which χ2 is increased by 1 compared to

the best fit, when minimising with respect to all other parameters. The 68% interval for parameter x corresponds to the smallest interval of x which contains

68% of the MCMC samples. We also quote the standard deviation of the MCMC samples. The [16%, 84%] interval is given by the 16% and 84% percentiles

of the MCMC samples. Systematic uncertainties of Table 11 are not included.

parameter best fit mean median ∆χ2 = 1 68% interval standard deviation [16%, 84%] interval

fσ8 0.289 0.282 0.281 +0.068
−0.066 0.289+0.060

−0.075 0.067 0.289+0.061
−0.074

α‖ 1.085 1.082 1.089 +0.087
−0.107 1.085+0.104

−0.090 0.103 1.085+0.094
−0.102

α⊥ 0.941 0.942 0.940 +0.035
−0.034 0.941+0.036

−0.037 0.061 0.941+0.035
−0.039

bNGC
1 σ8 0.779 0.770 0.774 +0.048

−0.066 0.779+0.042
−0.044 0.046 0.779+0.035

−0.053

bSGC
1 σ8 0.795 0.782 0.787 +0.046

−0.079 0.795+0.038
−0.046 0.045 0.795+0.029

−0.057

bNGC
2 σ8 −0.23 −0.14 −0.18 +0.97

−0.75 −0.23+0.77
−0.76 0.72 −0.23+0.87

−0.66

bSGC
2 σ8 −0.1 −0.01 −0.02 +1.2

−1.0 −0.06+0.89
−0.85 0.79 −0.06+0.93

−0.81

ANGC
g 0.02 0.04 0.01 +0.24

−0.15 0.02+0.12
−0.17 0.17 0.02+0.20

−0.13

ASGC
g −0.04 0.02 −0.04 +0.35

−0.15 −0.04+0.14
−0.16 0.20 −0.04+0.26

−0.11

σNGC
v 2.53 2.14 2.23 +0.73

−0.93 2.53+0.72
−1.18 0.94 2.53+0.54

−1.42

σSGC
v 3.05 2.73 2.81 +0.73

−0.82 3.05+0.66
−0.98 0.88 3.05+0.51

−1.16
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