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Brad W. Lyke,10 Axel de la Macorra,11 Hélion du Mas des Bourboux,7 Faizan G. Mohammad,12,13

Eva-Maria Müller,14 Adam D. Myers,10 Jeffrey A. Newman,15 Will J. Percival,12,13,16 Graziano Rossi,17

Donald Schneider,18 M. Vivek,19,20 Pauline Zarrouk,1,21 Cheng Zhao22 and Gong-Bo Zhao23

Affiliations are listed at the end of the paper

Accepted 2020 September 1. Received 2020 August 20; in original form 2020 June 26

ABSTRACT

We measure the clustering of quasars of the final data release (DR16) of eBOSS. The sample contains 343 708 quasars between

redshifts 0.8 ≤ z ≤ 2.2 over 4699 deg2. We calculate the Legendre multipoles (0,2,4) of the anisotropic power spectrum and

perform a BAO and a Full-Shape (FS) analysis at the effective redshift zeff = 1.480. The errors include systematic errors that

amount to 1/3 of the statistical error. The systematic errors comprise a modelling part studied using a blind N-body mock

challenge and observational effects studied with approximate mocks to account for various types of redshift smearing and

fibre collisions. For the BAO analysis, we measure the transverse comoving distance DM(zeff)/rdrag = 30.60 ± 0.90 and the

Hubble distance DH(zeff)/rdrag = 13.34 ± 0.60. This agrees with the configuration space analysis, and the consensus yields:

DM(zeff)/rdrag = 30.69 ± 0.80 and DH(zeff)/rdrag = 13.26 ± 0.55. In the FS analysis, we fit the power spectrum using a model

based on Regularised Perturbation Theory, which includes redshift space distortions and the Alcock–Paczynski effect. The

results are DM(zeff)/rdrag = 30.68 ± 0.90 and DH(zeff)/rdrag = 13.52 ± 0.51 and we constrain the linear growth rate of structure

f(zeff)σ 8(zeff) = 0.476 ± 0.047. Our results agree with the configuration space analysis. The consensus analysis of the eBOSS

quasar sample yields: DM(zeff)/rdrag = 30.21 ± 0.79, DH(zeff)/rdrag = 3.23 ± 0.47, and f(zeff)σ 8(zeff) = 0.462 ± 0.045 and is

consistent with a flat �CDM cosmological model using Planck results.

Key words: galaxies: distances and redshifts – dark energy – distance scale – large-scale structure of Universe – cosmology:

observations.

1 IN T RO D U C T I O N

Understanding the expansion history of the Universe is one of the

crucial questions in cosmology. The latest results from the mea-

surements of the angular temperature and polarization fluctuations

in the cosmic microwave background (Planck Collaboration VI

2020) and the analysis of Type Ia supernovae light curves (Scolnic

et al. 2018) highly favour a Universe that can be described in the

framework of general relativity (GR) by a standard cosmological

model, �CDM. In this model, the Universe is made of collisionless

cold dark matter (CDM), baryons, photons, and neutrinos and

of an unknown component, usually called ‘dark energy’, which

behaves as a fluid of negative pressure. In the �CDM context,

a cosmological constant � is inserted in the equation of GR to

take account of the late-time acceleration of the expansion of the

Universe.

In the last 15 yr, this picture of the Universe has been shown

to work remarkably well using the phenomenon of baryon acoustic

⋆ E-mail: richard.neveux@cea.fr

oscillations (BAO) in the primordial plasma. BAO leave their imprint

on the distribution of matter in the Universe as a characteristic

separation scale between matter over-densities. This distance is

found in the separation of gravitationally collapsed structures such

as galaxies (Eisenstein et al. 2005; Cole et al. 2005; Alam et al. 2017)

and quasars (Ata et al. 2018) and can be used as a ‘standard ruler’

by large-scale surveys to measure the evolution of the expansion of

the Universe at different epochs.

As the effort to measure the BAO scale to increasingly better

precision continues, large-scale surveys have started to provide

valuable information on the linear growth rate of structure. This is of

significant importance as it is a promising way to test GR (Linder &

Cahn 2007).

The growth of structure is measured from coherent peculiar

velocities that lead to redshift space distortions (RSDs) along the

line of sight (Kaiser 1987). These distortions can be related to

f(z)σ 8(z), where σ 8(z) is the normalization of the linear power

spectrum on scales of 8 h−1Mpc at redshift z and f is the linear

growth rate of structure. Anisotropies in the clustering signal may

also appear because the cosmology assumed to convert redshift to

distance is different from the true cosmology. This is known as the
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Alcock–Paczynski effect (Alcock & Paczynski 1979) and is key to

constraining the cosmological expansion history.

In this paper, we present and analyse the power spectrum of

the complete quasar sample of the extended Baryon Oscillation

Spectroscopic Survey (eBOSS; Dawson et al. 2016), which is part of

the SDSS-IV program (Blanton et al. 2017). The observations were

made at the 2.5-m Sloan Foundation Telescope (Gunn et al. 2006) at

the Apache Point Observatory (New Mexico, USA) using the two-

arm optical spectrograph of BOSS (Smee et al. 2013). This study is

part of a coordinated release of the final eBOSS measurements of

BAO and RSD in the clustering of luminous red galaxies [(0.6 < z

< 1.0); Bautista et al. 2020; Gil-Marı́n et al. 2020], emission line

galaxies [(0.6 <z < 1.1); Raichoor et al. 2020; Tamone et al. 2020; de

Mattia et al. 2020], and quasars [(0.8 < z < 2.2); Hou et al. 2020].1 At

the highest redshifts (z > 2.1), the coordinated release of final eBOSS

measurements includes measurements of BAO in the Lyman-α forest

(du Mas des Bourboux et al. 2020). The cosmological interpretation

of these results in combination with the final BOSS results and other

probes is found in eBOSS Collaboration (2020).

Due to their high intrinsic luminosity, quasars can be used as

tracers of the large-scale structure at high redshifts (Myers et al.

2007; Croom et al. 2009; Ross et al. 2009; Shen et al. 2009; White

et al. 2012; Karagiannis, Shanks & Ross 2014; Eftekharzadeh et al.

2015; Laurent et al. 2016). The Data Release 14 of the first 2 yr

of eBOSS data (Ata et al. 2018; Gil-Marı́n et al. 2018; Hou et al.

2018; Zarrouk et al. 2018) demonstrated how well quasars are suited

for cosmological clustering analyses and currently provide the most

precise clustering information on large scales in the redshift range of

0.8 < z < 2.2. With the Data Release 16, the number of quasars is

more than doubled. We present the measurement of the redshift space

power spectrum with the first three even Legendre multipoles. We

perform both a standard ‘BAO-only’ analysis where we focus on the

BAO features of the power spectrum and a ‘Full-Shape’ RSD analysis

using the TNS model (Taruya, Nishimichi & Saito 2010). The BAO-

only analysis allows us to constrain the Hubble distance, DH(z)/rdrag,

and the transverse comoving distance, DM(z)/rdrag. In addition, we

also constrain these two quantities together with the linear growth

rate of structure, f(z)σ 8(z), using the ‘Full-Shape’ RSD analysis.

The analysis presented in this paper uses the complete 5 yr of the

eBOSS sample and is accompanied by several companion papers.

The clustering catalogues used in this analysis are described in Ross

et al. (2020) and specific information relevant to the complete DR16Q

quasar catalogue is given in Lyke et al. (2020). The quasar mock

challenge upon which the model of the power spectrum is tested

is described in Smith et al. (2020). Approximate mocks used for

determining the covariance matrix and testing observational system-

atic effects are described in Zhao et al. (2020). The analysis of the

quasar sample in configuration space is presented in Hou et al. (2020)

and a consensus analysis of the work presented here is common to

both articles. Cosmological implications of the measured quasar-

clustering properties are discussed in eBOSS Collaboration (2020).

This paper is structured as follows. In Section 2, we give an

overview of the quasar sample, the estimator of the power spectrum

and the set of mocks that we used for the estimation of the covariance

and the assessment of the systematic errors. In Section 3, we discuss

1A summary of all SDSS BAO and RSD measurements with accompanying

legacy figures can be found here: https://www.sdss.org/science/final-bao-and

-rsd-measurements/. The full cosmological interpretation of these measure-

ments can be found here: https://www.sdss.org/science/cosmology-results-f

rom-eboss/

the measurement of the BAO scales. In Section 4, we present the

Full-Shape RSD analysis and describe the systematic errors that

affect the measurement. Our final result and the consensus analysis

performed in our companion paper on the two-point correlation

function analysis are presented in Section 5.

2 C ATA L O G U E S , M E T H O D S , A N D M O C K S

In this section, we describe the DR16 QSO catalogue and the method

used to calculate the power spectrum. We describe the EZmocks used

for computing the covariance and testing systematic effects and the

mocks from the OuterRim N-body simulation used for testing the

RSD and BAO models.

2.1 Data catalogues

The creation of the catalogues is fully described in Ross et al. (2020),

and we summarize in this section the information relevant to the

eBOSS DR16 quasar sample. Quasar targets were selected according

to the procedure presented in Myers et al. (2015). It is based on the

SDSS-I-II-III optical imaging data in the ugriz photometric pass

bands (Fukugita et al. 1996) and on the Wide-Field Infrared Survey

Explorer (Wright et al. 2010). The selection algorithm uses the

‘extreme deconvolution’ technique (Bovy et al. 2011) to select a

homogeneous quasar targets sample over the footprint. The set of

selected targets is then processed by the tiling algorithm (Blanton

et al. 2003) to assign spectrograph fibres to a maximum number of

targets. The most important feature of this algorithm is that it assigns

a fibre to each target of a ‘decollided set’ for which at least one object

in a collision group (separated by less than 62”, the physical size of

the fibre holder) has a fibre assigned. The weight of the unobserved

targets is transferred to the other members of the collision group

that received a fibre. Each fibred object then has a close pair weight,

wcp, that allows the large-scale angular clustering to be recovered.

In Section 3.2.1, we present the impact of fibre collisions on our

measurements and the techniques used to mitigate it. The probability

to reliably measure the redshift depends on the signal-to-noise ratio

of the spectrum and correlates spatially with both the coordinate

in the focal plane and the location of the spectrum on the CCD of

the spectrograph. In practice, this probability is best measured as a

function of the number ID of the spectrograph fibre, and an additional

correction for the overall spectrograph signal-to-noise ratio in the i-

band is applied. The inverse of this probability is used as a weight,

wnoz, to account for missing objects due to redshift failures. Then,

a weight, wsys, is used to account for the fact that the density of

targets depends on the imaging conditions (Ross et al. 2012; Ata

et al. 2018; Bautista et al. 2018). It is determined from a multivariate

linear regression of the angular density of targets with respect to

four different photometric quantities such as extinction (E[B-V])

and depth in the g-band corrected for extinction (see Ross et al.

2020 for details on the full procedure). Finally, following Feldman,

Kaiser & Peacock (1994), we apply a weight, wFKP = (1 + n̄P0)−1

to minimize the estimator variance. This weight depends on the

weighted number density of the sample, n̄, and on P0 the power

spectrum at a typical scale. In the present sample, we use a value

of P0 = 6000 (Mpc/h)3 that is the value of the power spectrum at

k = 0.14 h · Mpc−1 that is in the middle of the range of scales under

consideration and where the BAO signal is the most prominent in

our analysis. The total weight, wtot, that is applied to each object for

the power spectrum measurement is given by the product of these
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Table 1. Effective area and number of quasars used in the clustering analyses.

Cap NGC SGC Total

Weighted area (deg2) 2860 1839 4699

Quasars used 0.8 < z < 2.2 218 209 125 499 343 708

weights,

wq = wcp · wnoz · wsys · wFKP. (1)

The clustering of our sample is calculated by comparing our data to

a random catalogue that has no physical clustering but is designed

to have the same angular and radial selection function as the data.

The random catalogue is obtained by randomly drawing objects in

the angular coverage of the footprint of the data, and the redshift of

each object is randomly drawn from the redshift distribution of the

data. Contrary to what was done in the DR14 analysis (Gil-Marı́n

et al. 2018), the random catalogues are not downsampled by the

completeness but are weighted by the completeness (CeBOSS) of the

sector to match the data. The weights of the objects in the random

catalogue are then

wr = CeBOSS · wFKP. (2)

The weighted area and the number for quasars used for the present

analysis are given in Table 1. The number of objects in the random

catalogue is taken to be 50 times the number of objects in the data

catalogue.

2.2 Estimation of the power spectrum and extraction of

cosmological parameters

We study the quasar survey through its power spectrum:

P (k) = (2π )3δD(k + k′)〈δ(k)δ(k′)〉, (3)

where δ(k) is the density perturbation field and δD is the Dirac

distribution.

For the calculation of the power spectrum, we use the method

of Yamamoto et al. (2006). First, we construct a weighted object

over-density field, F(r) (Feldman et al. 1994), at each position r,

F (r) = nq(r) − αnr(r), (4)

where nq is the number density field for the quasar catalogue and nr

is the number density of objects in the random catalogue described in

Section 2.1. Both are including the weights described in equations (1)

and (2). The random field is scaled by α =
∑

i wq,i∑
i wr,i

to ensure that the

mean weighted densities of data and random are the same. Then,

following Bianchi et al. (2015), the power spectrum multipoles are

given by:

Pℓ(k) =
2ℓ + 1

I

∫

d	k

4π

[

F0(k)Fℓ(−k) − P noise
0 (k)

]

, (5)

where I is the normalization of the power spectrum, defined as

I = α

Nr
∑

i=1

wr,inq,i, (6)

and Lℓ is the ℓth order Legendre polynomial. 	k is the solid angle

in Fourier Space, and Fℓ(k) is defined as

Fℓ(k) =

∫

d3rF (r)Lℓ(k̂ · r̂)eik·r. (7)

Figure 1. Top panel: Power spectrum of the SGC data with all weights

applied (solid circle) or without the photometric weight (open circle); the

effect on the NGC (not shown here) is smaller. Represented are the multipoles

of the power spectrum: monopole (blue), quadrupole (red), and hexadecapole

(green). Lower panel: Impact of the NGC (dashed line) and SGC (dotted

line) window function on the power spectrum multipoles of a baseline power

spectrum (solid line, same colour scheme as in the top panel).

The shot noise component, P noise
ℓ (k), is expressed as

P noise
0 (k) =

∑

i

w2
q,i + α2

∑

i

w2
r,i . (8)

In practice, we use the nbodykit package (Hand et al. 2018)

to calculate the power spectrum multipoles using the method

of Hand et al. (2017). First, the weighted density field is mapped

on to a cubic grid using the Triangular Shaped Cloud interpolation

method. Each cap is enclosed in a box of dimensions Lbox =

[3100, 6500, 2700] h−1Mpc. The cell size is chosen to be 7 h−1Mpc,

yielding a Nyquist frequency of kNyq = 0.449 h · Mpc−1 well above

the maximum wavenumber of our analysis (kmax = 0.3 h · Mpc−1).

Then, the Fℓ(k) term can be computed with a Fast Fourier Trans-

form, and the interlacing technique is used to reduce the effect of

aliasing (Sefusatti et al. 2016). In the top panel of Fig. 1, we show

the impact of photometric weights in the calculation of the power

spectrum for the South Galactic Cap, which is known to be the most

MNRAS 499, 210–229 (2020)
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affected by photometric systematics, as demonstrated in Zarrouk

et al. (2018). We observe that the correction brought by the photo-

metric weight changes the multipoles on scales k < 0.05 h · Mpc−1.

In Section 4.3.1, we use the approximate mocks to evaluate the

impact of applying and correcting for systematic effects.

The observed density of quasars is measured according to a

survey-specific selection function that must be folded into the model.

Following the method described in Beutler et al. (2016), the selection

function multipoles are determined in configuration space from the

weighted number of pairs in the ‘random’ catalogue as

Wℓ(r) ∝
∑

μ

∑

x1

∑

x2

RR(r, μ)Lℓ(μ), (9)

with RR(r, μ) being the random–random pair counts in bins of

separation r and μ, where μ is defined as the cosine of the angle

between the line of sight and the line connecting the two objects

of a pair. As proposed in de Mattia & Ruhlmann-Kleider (2019),

the window function is normalized by the quantity I (equation 6),

in order to be consistent with the estimator of the power spectrum,

which ensures that the model fitting is independent of the choice

of normalization. The effect of the window function on the power

spectrum multipoles, using the power spectrum model described in

Section 4.1, is shown in the bottom panel of Fig. 1. Small differences

between the two galactic caps are observed and arise from the

difference in angular size and shape of their respective footprints

(the SGC footprint is indeed smaller and patchier).

As a single line of sight is used for each galaxy pair, wide-angle

effects may arise and are taken into account using the formalism

described in Beutler, Castorina & Zhang (2019), which consists

of expanding the survey window function in s/d, the ratio of pair

separation to the comoving distance from the observer.

In the analyses performed hereafter, we assume a fiducial cosmol-

ogy to convert redshifts to distances along the line of sight and to

calculate a power spectrum template:

h = 0.676, 	m = 0.31, 	� = 0.69,

	bh
2 = 0.022, σ8 = 0.80. (10)

To fit to the data, we allow for variations of the dilation scales

along (α‖) and perpendicular (α⊥) to the line of sight, following the

test proposed by Alcock & Paczynski (1979). Changing the dilation

scales in configuration space is equivalent to setting k′
‖ = k‖/α‖ and

k′
⊥ = k⊥/α⊥. This change of scales corresponds to the transformation

from (k, μ) to (k
′

, μ
′

) where

k′ =
k

α⊥

[

1 + μ2

(

1

F 2
− 1

)]1/2

μ′ =
μ

F
[

1 + μ2
(

1

F 2 − 1
)]−1/2

, (11)

where F = α‖/α⊥.

Provided the constraints on α‖ and α⊥ come only from the BAO

location, these quantities are related to the Hubble distance DH ≡

c/H(z), where H(z) is Hubble expansion, and to the transverse

diameter distance DM(z) independently of the choice of fiducial

cosmology through the following expressions:

α‖ =
DH(z)/rdrag

Dfid
H (z)/rfid

drag

, α⊥ =
DM(z)/rdrag

Dfid
M (z)/rfid

drag

, (12)

where the quantities with the superscript ‘fid’ are determined within

the fiducial cosmology and rdrag is the comoving sound horizon at

z = zdrag, where zdrag is the redshift at which the baryon-drag optical

depth equals unity (Hu & Sugiyama 1995). In the case of spherically

averaged clustering measurements, the analysis is sensitive to an

isotropic dilation scale, αiso, that can be expressed as

αiso =
DV(z)/rdrag

Dfid
V (z)/rfid

drag

, (13)

where DV(z) corresponds to the spherically averaged BAO distance

that we can link to the other cosmological parameters through the

relation (Eisenstein et al. 2005; Ross, Percival & Manera 2015):

DV(z) = [czDH(z)DM(z)]1/3. (14)

The linear growth rate of structures, f, is determined from a

‘Full-Shape’ fit of the power spectrum multipoles. In practice, the

non-linear power spectrum is calculated assuming a linear power

spectrum of known normalization, which is proportional to σ 8, the

amplitude of matter perturbations below scales of 8 h−1Mpc. In linear

theory, f and σ 8 are completely degenerate (Percival & White 2009),

and hence, our measurement is sensitive to the product, f(z)σ 8(z), at

the effective redshift of the survey.

The definition of the effective redshift adopted in this analysis is

zeff =

∑

i

∑

j wiwj (zi + zj )/2
∑

i

∑

j wiwj

= 1.480 ± 0.001, (15)

where the sums are restricted to separations between 25 and

120 h−1Mpc, as this corresponds to the scales over which the fits are

performed in configuration space. The error quoted is the statistical

error on the unweighted redshift distribution.

2.2.1 Parameter estimation

For both the BAO analysis (Section 3) and the full-shape RSD

analysis (Section 4), the best-fitting model parameter values are

obtained by finding the point in parameter space that maximizes

the likelihood function,

L ∝ e−χ2/2, (16)

with the quantity χ2 defined by

χ2 = (Pmeas − Pmodel)
tW (Pmeas − Pmodel). (17)

Pmeas is the data vector of the power spectrum multipoles measure-

ment in intervals of wavenumber k, and Pmodel is the corresponding

vector for the model. In this expression, W is the inverse of the co-

variance matrix computed from EZmocks, described in Section 2.3.1,

which we correct for the finite number of mocks following Hartlap,

Simon & Schneider (2007):

W =
N − n − 2

N − 1
C−1, (18)

where N is the total number of mocks, and n is the number of

data points. Furthermore, due to the uncertainty in the covariance

matrix, a correction on the variance of the fit parameters is applied,

following Percival et al. (2014). The total χ2 combines the NGC and

the SGC with a common set of α⊥, α‖ and fσ 8 parameters (or just α⊥

and α‖ for the BAO-only analysis). The nuisance and bias parameters

are allowed to differ for the two galactic caps. We determine the

covariance matrices independently in each cap assuming that there

is no cross-correlation between the two caps. Therefore, the number

of points n to be used in equation (18) corresponds to the number of

data points in a single cap (i.e. 84 over the full k-range, including all

even multipoles up to ℓ = 4).

We use, for the final result of the Full-Shape RSD analysis, the

likelihood function defined in equation (16) to produce Monte Carlo

MNRAS 499, 210–229 (2020)
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Markov Chains with the EMCEE package (Foreman-Mackey et al.

2013). We check the convergence of the chains with the Gelman–

Rubin convergence test requiring R < 0.01. The χ2 minimization is

performed using the MINUIT2 program libraries. In this case, param-

eter errors are determined from finding the �χ2 = 1 abscissa along

the 1D χ2 profile for each parameter. After ensuring that the errors of

both techniques are compatible, we apply this frequentist method for

all the results of this paper concerning mocks as well as the various

tests done on the data as it is much faster (usually, the fit outperforms

the MCMC running by a factor of 1000 in terms of CPU time).

2.3 Mocks

We present, in the following, the two sets of mocks that we use:

the approximate EZmocks are used to estimate the observational

systematic errors and the computation of the covariance matrix, and

the mocks created from N-body simulations are used to derive the

modelling systematic errors.

2.3.1 EZmocks

To determine the covariance matrix to be used in the fits to the data

and to test our analysis pipeline, we use a set of 1000 approximate

light-cone mock catalogues that are extensively described in Zhao

et al. (2020). These mocks, dubbed EZmocks, are made using the

framework of the Effective Zel’dovich approximation developed

in Chuang et al. (2015). The number of mocks (i.e. 1000) is

chosen such that the correction given in equation (18) is below

10 per cent. The simulation box is a cube with a comoving side

length of 5 h−1Gpc. The �CDM cosmology assumed when creating

the EZmocks has the following parameters:

h = 0.6777, 	m = 0.307115, 	� = 0.692885,

	b = 0.048206, σ8 = 0.8225, ns = 0.9611. (19)

For the quasars, the light-cone mocks are built from seven simulation

snapshots, and the clustering signal in the mocks is tuned to match

the one of the final DR16 quasar catalogues (see Fig. 2). At the scale

of the second BAO wiggle, k ∼ 0.14 h · Mpc−1, the data are in excess

of power compared to the EZmocks. That is due to a stronger BAO

signal in the data. The EZmocks are mocks generated with a fast

technique, which is a good approximation of an N-body simulation

mock at large scales, but may fail to reproduce the non-linear gravity

interactions at small scales accurately. This might explain the mild

lack of power on the monopole of the EZmocks corrected for shot

noise for both caps at k > 0.25 h · Mpc−1.

In practice, it is the monopole not corrected for shot noise of the

EZmocks that is used in the determination of the covariance matrix.

For this quantity, we see that the EZmocks tend to overestimate

the monopole by 3 per cent, and this will result in a conservative

overestimation of the errors on the fit parameters by the same amount.

Furthermore, the power spectrum monopole for the quasar sample

is increasingly dominated by shot noise as k increases. As the

weighted number of objects in the mocks are matched to the data

by construction, the shot noise terms are the same and the impact of

the lack of power at small scales is reduced. Quantifying the residual

impact this has on the measurement of the cosmological parameters

is addressed in the studies of systematic effects in the next sections.

Mocks are also used to estimate the impact of systematic effects

present in the data. To do so, the approximate EZmocks are modified

2MINUIT, Function Minimization and Error analysis, James F., CERN 1994.

Figure 2. Multipoles of the power spectrum measured with the DR16 eBOSS

quasar sample (dots) compared to the EZmocks (dashed line). The standard

deviation of the mocks is indicated by the shaded area. The NGC and the

SGC are shown in the top and bottom panels, respectively. The monopole is

shown in blue and the shot noise contribution is subtracted, the quadrupole

in red, and the hexadecapole in green.

to reflect the effects induced by observational conditions. First, mock

‘data’ catalogues are created by taking mock quasars in the redshift

range of 0.75 < z < 2.25. The mock catalogues are downsampled

by an amount that allows to match the radial selection function

of the data at the end of the procedure. Then, contaminants (stars,

galaxies, and ‘legacy’ quasars), which were known before the quasar

survey and that fulfilled the quasar target selection conditions, are

added to this catalogue. The fibre assignment algorithm (based on

nbodykit; Hand et al. 2018) is run on this set of targets using the

plate geometry of the DR16 data. As in the data, objects that could not

receive a fibre are treated by up-weighting the objects in the collision

group that did receive a fibre. The effects of the imaging conditions

are modelled by varying the number of targets according to the

weight maps measured in the data. We use the spectroscopic success

rate as a function of the identification number of the spectrograph

fibre measured in the data as well as the plate signal-to-noise ratio to

randomly remove objects. As a consequence, the objects in the mock

catalogues receive a weight to cope for the spectroscopic success rate

variations, as was described for the data catalogues.

2.3.2 OuterRim mocks and the quasar mock challenge

To test the model adopted for the power spectrum, we compare it

against accurate mock catalogues of known cosmological parame-

ters. For this purpose, we have performed a quasar mock challenge,

MNRAS 499, 210–229 (2020)
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which is described in details in Smith et al. (2020). We refer the

reader to this article, and we briefly summarize the content and give

the results here. The mocks are built from one snapshot (z = 1.433)

of the OuterRim N-body simulations (Habib et al. 2016) that was

available at the beginning of this work. Non-linear effects are mildly

increasing with time; therefore, the tests of the model are performed

conservatively since the effective redshift of the DR16 quasar sample

corresponds to earlier times. The OuterRim simulation covers a cubic

box of length L = 3 h−1Gpc with periodic boundary conditions and

uses 102403 dark matter particles. The mass of each particle in the

simulation is hence mp = 1.85 × 109 M⊙h−1 and dark matter haloes

are detected using a Friends-of-Friends algorithm. Initial conditions

are calculated at z = 200 in the Zel’dovich approximation using the

cosmological parameters:

h = 0.71, 	cdmh2 = 0.1109, 	� = 0.735,

	bh
2 = 0.02258, σ8 = 0.80, ns = 0.963, (20)

which are consistent with WMAP7 (Komatsu et al. 2011). To

populate dark matter haloes with quasars, we consider various Halo

Occupation Distribution (HOD) models. An HOD describes the

probability that a halo of a given mass contains central or satellite

quasars. Central quasars are placed at the centre of the halo, while

satellites are placed either according to an NFW profile (Navarro,

Frenk & White 1996) or by drawing a particle from a 1 per cent

subsample of the particles belonging to the halo. The list of HOD

parameters can be found in Smith et al. (2020). For each HOD model,

we generate 100 random realizations. We also reproduce the effect

of redshift uncertainties, which are due to broad emission lines in

the quasar spectra, and have been shown to be the leading effect,

which impacts the recovery of cosmological parameters (Zarrouk

et al. 2018). Three redshift-smearing prescriptions were applied: no

redshift smearing, Gaussian smearing, and a realistic smearing case

with non-Gaussian tails. A fourth set of mocks has been created

starting from the realistic smearing case and assigning 1.5 per cent

of objects with a catastrophic redshift. We use these ‘non-blind’

mocks to tune the functional form of the damping term that enters

our model of the power spectrum (see Section 4.1), which plays a

leading role at small scales.

In a second stage, Smith et al. (2020) implemented the rescaling

technique described in Mead & Peacock (2014) (itself based on the

work of Angulo & White 2010) to create ‘blind’ mocks, whose the

true cosmology was revealed only at the end of the analysis. For this

part of the mock challenge, two snapshots (z = 1.376 and z = 1.494)

of the OuterRim N-body simulations have been rescaled to eight

different cosmologies at z = 1.433 and for three types of HOD. No

modifications to the models were undertaken after the cosmologies

were un-blinded.

3 BAO ANA LYSIS

In this section, we present the BAO-only analysis by first explaining

the model, and then we present the results and the systematic tests

performed.

3.1 Model

The modelling of the power spectrum for extracting the dilation

scales parallel and perpendicular to the line of sight is based on the

method described in Kirkby et al. (2013). In this method, the 2-point

correlation function, which is the Fourier transform of the power

spectrum, is decomposed into a ‘smooth’ term that characterizes

the broad-band shape and into a ‘peak’ term representing the BAO

wiggle part of the power spectrum. In the fiducial analysis, the smooth

term is not affected by the dilation scaling but in the analysis named

‘smooth-term coupling’, we apply the dilation to both terms. The

Fourier transform of these two terms, Psm(k, μ) and Ppeak(k, μ), is

used to model the measured power spectrum through:

P (k, μ) =
[

Psm(k, μ) + Ppeak(k, μ)e−�nlk
2
] b2(1 + βμ2)2

1 + (kμ�s )2

2

, (21)

where �nl is an anisotropic damping term of the BAO feature, b

represents the linear bias of the quasars, β = f/b is linear enhancement

of the power spectrum due to RSDs, and �s is another damping

term accounting for random velocities at small scales and redshift

uncertainties. Given the low density of the quasar sample, the BAO

reconstruction technique cannot be applied successfully as the matter

field is not accurately sampled.

The power spectrum is then decomposed into Legendre multi-

poles (ℓ = 0, 2, 4), which are Fourier transformed to obtain the

corresponding correlation functions. The window function is applied

on the correlation function multipoles using the method presented

in Beutler et al. (2016) and involves multipoles of the window

function determined up to the ℓ = 8 order. A final Fourier transform

is applied to the correlation function multipoles to obtain the window

function convolved power spectrum multipoles.

Furthermore, to fit the broad-band part of the power spectrum, we

add three polynomial terms to each multipole,

P
f

ℓ (k) = Pℓ(k) +
a0,ℓ

k
+ a1,ℓ + a2,ℓ · k, (22)

where the ax, ℓ are allowed to vary in the fitting procedure and are

different for the two galactic caps.

The anisotropic non-linear damping of the BAO, �nl, is modelled

as

�nl = (1 − μ2)�2
⊥/2 + μ2�2

‖/2. (23)

The values of the damping parameters �‖, �⊥ and �s are obtained

from fitting the non-blind N-body mocks, described in Section 2.3.2.

First, we used the set of mocks without redshift-smearing effects

to determine �‖ and �⊥. Then, we fix �‖ and �⊥ to the obtained

values and fit the mocks with realistic smearing to determine �s.

This procedure yields (in units of h−1Mpc):

�‖ = 8.5 ± 0.6 �⊥ = 2.9 ± 0.9 �s = 4.5 ± 1.1. (24)

In Fig. 3, we present the BAO wiggle part of the power spectrum

for the data and for the average of the EZmocks. Also plotted is the

average of the 100 realizations from one set of OuterRim non-blind

mocks (note that it is at a different cosmology than the EZmocks). The

data show a clear detection of the BAO for both galactic caps, and the

amplitude of the oscillation is found to be larger than in the EZmocks.

The amplitude of the oscillation in the EZmocks is itself smaller than

the expectation in the case of the Zel’dovich approximation.

For the fiducial analysis, the fit is performed over wave numbers

k = [0.02, 0.23] h · Mpc−1 that cover the first three visible BAO

oscillations. We use 22 free parameters: the two dilation scale

parameters, two bias parameters (one for each cap), and 18 broad-

band terms (three for each cap and each multipole), with intervals

of allowed variations of b = [0, 10] and α‖ , ⊥ = [0.8, 1.2] that are

large enough that boundaries are never hit. The three damping terms

are fixed to [�‖, �⊥, �s] = [8, 3, 4] h−1Mpc since letting them free

in the fit may result in an artificial improvement of the statistical

precision (Hinton, Howlett & Davis 2020).

MNRAS 499, 210–229 (2020)
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Figure 3. Comparison of the BAO wiggles in the power spectrum of the data

and mocks. The dots represent the DR16 data, the dashed lines are the best

fit, and the black line shows the mean of the NGC EZmocks. The green line

shows the mean of one realization of the OuterRim mock challenge (mock3)

with realistic smearing. For the latter, the BAO feature appears shifted as a

consequence of their intrinsic cosmology being different.

We use the mock challenge (Smith et al. 2020) to determine the

systematic error originating from the modelling of the BAO feature

in the power spectrum multipoles. The analysis is performed on

all sets of OuterRim mocks in the non-blind and blind challenges,

which includes the effects of different cosmologies, redshift error

prescriptions, and different HOD models. The systematic errors are

found to be

�(α‖)|model = 0.0098 �(α⊥)|model = 0.0055 (25)

and are obtained from the standard deviation (w.r.t. the expected

value) of the non-blind ‘realistic smearing + catastrophic redshifts’

mocks added in quadrature with that of the blind mocks.

3.2 Results

We perform the BAO-only analysis of the monopole, quadrupole,

and hexadecapole of the power spectrum measured from the QSO

DR16 catalogue, as described in Section 3.1. The covariance matrix

is computed from the 1000 EZmocks. Fig. 3 shows the best-fitting

model (dashed lines) to the data (points) with NGC and SGC fitted

simultaneously. The results obtained from the BAO analysis in

Table 2. Average α‖ and α⊥ values obtained for the 1000 EZmocks under

different type of systematic effects and methods (first four rows) and results

obtained for data with different model prescriptions and different damping

values (bottom two rows). The ‘no wf’ line stands for the analysis performed

without taking into account the window function correction, the ‘coupled’

line shows the impact of coupling the sideband of the model, and the lines

wnoz + wsys and fibre collisions show the effect of the redshift failures +

photometric systematics or the collisions of fibres, respectively.

Tests on EZmocks α‖ α⊥

Reference 0.9938 ± 0.0027 0.9959 ± 0.0019

No wf � = 0.0007(2) � = 0.0011(1)

Coupled � = 0.0031(11) � = 0.0021(6)

No wf, coupled � = 0.0068(13) � = 0.0040(7)

wnoz + wsys � = 0.00108(228) � = 0.00138(156)

Fibre collisions � = −0.00296(121) � = −0.00026(92)

Fourier Space are in terms of α:

α‖ = 1.035 ± 0.045 α⊥ = 1.017 ± 0.029, (26)

where the errors are statistical only. In this section, we estimate

the systematic errors on this measurement using a series of tests

performed on the EZmocks and we verify on the data that the choices

made for the analysis do not bias the results.

3.2.1 Systematic tests

The results of systematic checks that were performed on the EZmocks

are summarized in Table 2. For these studies, the reference dilation

scales are taken from mock catalogues with all observational sys-

tematic effect applied and corrected for using the standard weighting

scheme (see equation 1). The reference model has the window

function (wf) applied and the smooth-term is decoupled from the

BAO peak term. Changing the prescription for the window function

or smooth-term coupling induces changes that are at maximum

0.7 per cent (central value averaged over 1000 mocks). The magni-

tude of the difference is in agreement with the modelling systematic

error quoted from the mock challenge (see equation 25).

We quantify the change in dilation scale parameters for different

combinations of systematic effects applied to the EZmocks. We show

in Section 4.3.1 that the deviations are smooth and can be accounted

for by the second-degree polynomial broad-band terms of the BAO

model. As a consequence, the difference between the best-fitting

parameters with and without observational effects is consistent with

zero, and we use the statistical error on these offsets (see Table 2) as

a systematic error,

�(α‖)|obs = 0.0037 �(α⊥)|obs = 0.0036. (27)

We perform further robustness tests on the data and the results are

summarized in Table 3 and displayed in Fig. 4. When the observed

shift in dilation scale parameters is larger than 1 per cent, we compare

them with the standard deviation of the mock-by-mock differences

(see values within parentheses in Table 3).

We measure the difference in the best-fitting parameters between

the decoupled and the coupled smooth-term prescriptions, and we

observe variations of the order of 0.019 for α‖ and 0.001 for α⊥.

Using the EZmocks, we found that the standard deviations of the

mock-by-mock differences are σ mocks(α‖) = 0.029 and σ mocks(α‖) =

0.017. Therefore, the observed variation is within statistics and we

do not assign any additional systematic error to cope with this effect.

Then, we show the impact of the different weights on the cos-

mological parameters estimation. It appears that taking into account

MNRAS 499, 210–229 (2020)
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Table 3. Best fit and 1-sigma error bars for robustness tests performed on the DR16 data for the BAO-only analysis in

Fourier Space. When the shift with respect to the DR16 final result is larger than 0.01, we indicate within parentheses ()

the standard deviation of the mock-by-mock differences.

α‖ α⊥ χ2(ndof) red.χ2

DR16 final result 1.035 ± 0.045 1.017 ± 0.029 87.63 (126-22) 0.84

No wf 1.033 ± 0.043 1.018 ± 0.028 (126-22)

Coupled 1.016 ± 0.048 1.016 ± 0.031 (126-22)

(0.029) (0.017)

No weight 1.018 ± 0.050 1.010 ± 0.034 70.86 (126-22) 0.68

No wsys 1.019 ± 0.045 1.015 ± 0.030 85.32 (126-22) 0.82

No wcp 1.034 ± 0.047 1.011 ± 0.031 78.36 (126-22) 0.75

No wnoz 1.035 ± 0.047 1.017 ± 0.031 79.90 (126-22) 0.77

No ℓ = 4 1.045 ± 0.048 1.015 ± 0.030 46.39 (84-16) 0.68

(0.017) (0.013)

k = [0.02,0.30] 1.029 ± 0.043 1.027 ± 0.029 107.46 (168-22) 0.74

(0.017) (0.014)

k = [0.05,0.23] 1.021 ± 0.042 1.011 ± 0.028 71.57 (108-22) 0.83

(0.036) (0.022)

k shift 1/2 1.034 ± 0.042 1.023 ± 0.030 92.41 (126-22) 0.89

�s = 4 − 2 Mpc/h 1.031 ± 0.042 1.016 ± 0.029 86.06 (126-22)

�s = 4 + 2 Mpc/h 1.040 ± 0.049 1.017 ± 0.030 89.50(126-22)

NGC 1.026 ± 0.065 1.013 ± 0.033 46.63 (63-12) 0.91

SGC 1.041 ± 0.063 1.040 ± 0.065 41.12 (63-12) 0.81

Isotropic BAO αiso = 1.025 ± 0.020 26.76 (42-9) 0.81

Figure 4. Best-fitting values of α‖ and α⊥ for the tests performed on DR16

quasar sample for the BAO-analysis (values are taken from Table 3). Green

points show the impact of taking into account the different weights while blue

points are for consistency/robustness tests.

photometric weight has the largest impact although the overall effect

is smaller than half the statistical precision. The fibre collision and

spectroscopic redshift weights have only a marginal effect on the

best-fitting parameters. Not taking into account the hexadecapole in

the fit changes α‖ by 0.010 and α⊥ by 0.02.

Changing the fitting range for the BAO analysis is also studied.

First, the upper bound is increased to k = 0.3 h · Mpc−1 bringing in

scales for which BAO oscillations are no longer visible in the data.

Adding these data produces an effect of �α⊥ = 0.010, which is the

largest deviation in the tests that were done for this parameter. It

is due to the fact that the added data put a stronger constraint on

the broad-band terms in a region without BAO signal and therefore

remove the ability of the model to account for broad-band variations

in the region of higher BAO significance. Adding more terms in

the broad-band polynomial expansion could relieve this effect but

this goes beyond the validation of the model that was performed in

the mock challenge. Removing scales below k < 0.05 h · Mpc−1 has

a noticeable effect on the radial dilation scale �α‖ = 0.014 as it

removes scales where the amplitude of the BAO wiggles is large as

can be seen for the mocks in Fig. 3. The differences when changing

the upper or lower bound of the k-range are within one standard

deviation of the differences observed in the EZmocks. Shifting the

k-bins by half the bin width (�k = 0.005 h · Mpc−1) has a minor

impact.

We also study the variation in the best-fitting parameters when

changing the strength of the damping terms that are determined using

the OuterRim mocks. We observe variations that are at the level of

0.1 per cent for extreme changes of ±30 per cent in �‖ and �⊥. In

the case of �s, the sensitivity on α‖ is larger, reaching 0.5 per cent

for variations of ��s = ±50 per cent as shown in the bottom part of

Table 3. The observed changes in cosmological parameters are taken

as a systematic error due to the knowledge of the damping strength:

�(α‖)|damping = 0.005 �(α⊥)|damping = 0.001. (28)

Furthermore, the error on α‖ is affected by the change in the damping

term as our data have a sharp BAO feature and the fit prefers less

damping. The statistical errors that we measure using our fiducial

choice of damping parameters are close to the average of the errors

on α‖ and α⊥ for the various cases that were studied.

The fit was also performed for each galactic cap separately and

the differences observed are within the variations expected from the

statistics. One should note that, because the strength of the BAO

for each cap is different, the precision on the best-fitting parameters

does not follow the difference in surface area of each sub-sample

(see Table 1).

The systematic errors on α‖ and α⊥ for the BAO analysis are

summarized in Table 4. The dominant contribution stems from the

error in the modelling. Adding systematic errors contributions in

quadrature, we obtain a 1.2 per cent error on α‖ and 0.7 per cent on

α⊥. These errors represent approximately 25 per cent of the statistical

errors.

MNRAS 499, 210–229 (2020)
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Table 4. Systematic errors on the estimate of the cosmological parameters

from the BAO analysis.

α‖ α⊥

Observational 0.0037 0.0036

Modelling 0.0098 0.0055

Damping 0.005 0.001

Total systematics 0.012 0.007

Statistical error 0.045 0.029

Fraction 27% 24%

Figure 5. χ2 profile of the αiso BAO parameter in Fourier and configuration

space. We show the χ2 profile for the BAO model (solid curves) and the χ2

difference between a model without BAO peak and the minimum of the BAO

model (dashed lines).

3.2.2 Results from the BAO analysis and consensus

The results of our analysis are compared to the BAO analysis per-

formed in configuration space, which is described in our companion

paper (Hou et al. 2020). In Fig. 5, we show the variation of the

minimum χ2 of our model as a function of the assumed isotropic

dilation scale αiso and compare it with the χ2 for the model without

BAO oscillations. This shows that our data confirm the presence of

the BAO signal at the 5- to 6-σ level, in agreement with the results

obtained in configuration space (Hou et al. 2020).

In Fig. 6, we compare the parameters measured in configuration

and Fourier Space for the 1000 approximate mocks. After selecting

mocks for which there is a clear detection of the BAO signal in either

analysis (the selection criteria is 0.82 < [α‖, α⊥] < 1.18 keeping

742/1000 mocks), the Pearson correlation coefficients reach ρ(α‖) =

0.795 and ρ(α⊥) = 0.821. The errors in α‖ and α⊥ obtained in

configuration space are comparable to the errors from the power

spectrum fits, although the errors in configuration space, on average,

tend be larger in the low S/N regime. The DR16 measurements are

shown by the red points in the left-hand panel Fig. 6. The errors

measured from the DR16 data are at the edge of the distribution

of the EZmocks for both analyses. This is expected since the BAO

signal observed in the data is stronger than the average BAO signal

in the mocks, as was shown in Fig. 3.

In the right-hand panel of Fig. 6, we compare the likelihood con-

tours obtained for the Fourier and configuration space BAO analyses

as well as the consensus result. The results are in good agreement,

as the difference between the two represents only 30 per cent of the

standard deviation of the mock-by-mock differences for both a‖ and

a⊥.

Then, following Sánchez et al. (2017), we perform a consensus

analysis by computing :

Dc = �−1
c

m
∑

i=1

m
∑

j=1

�tot,jiDi, (29)

where Dc is the parameter consensus vector, �c is the inverse of the

consensus covariance matrix, m is the number of different statistical

analyses (in this case, m = 2), and � tot is the inverse of the total

covariance matrix (each � tot, ji term is a p × p matrix with p the

number of parameters). The cross-covariance matrix elements are

measured using the approximate mocks while the diagonal comes

from the covariance matrix of the individual data fits. We convert the

dilation scale parameters to the cosmological parameters DH/rdrag and

DM/rdrag with equation (12). The final results of these cosmological

parameters for the BAO analysis in Fourier and configuration spaces

and their consensus are given in Table 5. We present the consensus

covariance matrix including the statistical errors, the modelling

Figure 6. Left: Comparison of the cosmological parameters and errors measured in the BAO analysis of the 2-point correlation function analysis, from Hou

et al. (2020) (vertical axis), and of the power spectrum analysis (horizontal axis). The blue points show values of the EZmocks fit while the red point stands for

the DR16 measurement. Right: Likelihood contour for the two analyses and the consensus. The orange (blue) contours represent the power spectrum (2-point

correlation function) analysis; the black contours represent the consensus.

MNRAS 499, 210–229 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
9
/1

/2
1
0
/5

9
0
4
7
6
4
 b

y
 g

u
e
s
t o

n
 0

9
 A

p
ril 2

0
2
1



eBOSS DR16 quasar sample Fourier Space analysis 219

Table 5. Final results of the BAO-only analyses in Fourier and configuration spaces and their consensus.

DH(zeff)/rdrag DM(zeff)/rdrag DV(zeff)/rdrag

Fourier Space 13.34 ± 0.60 30.60 ± 0.90 26.50 ± 0.55

Configuration space 13.22 ± 0.58 30.82 ± 0.85 26.52 ± 0.44

BAO-only consensus 13.26 ± 0.55 30.69 ± 0.80 26.51 ± 0.42

systematics, and the observational systematics:

Cbao =

⎛

⎝

DH/rdrag DM/rdrag

0.3047 0.1707

− 0.6373

⎞

⎠ . (30)

The consensus results are used to derive the cosmological implica-

tions of the eBOSS data (eBOSS Collaboration 2020).

4 FULL-SHAPE R SD ANALYSIS

In this section, we present the Full-Shape RSD analysis of the eBOSS

DR16 quasar power spectrum. First, we briefly describe the power

spectrum model and then we present the various tests performed both

on the EZmocks and on the data to estimate the systematic errors in

our measurement. Finally, we present the results we obtain and per-

form a consensus analysis with the measurement in the configuration

space for the same sample as presented in Hou et al. (2020).

4.1 Model

The RSD model used in this analysis is based on the work of Taruya

et al. (2010). We use the implementation of de Mattia et al. (2020)

and we refer the reader to Section 3.1 of this paper for further details.

In this model, the non-linear power spectrum for a tracer of the matter

distribution, with bias b1, is given by:

Pq(k, μ) = Pq,δδ(k) + 2f μ2Pq,δθ (k) + f 2μ4Pq,θθ (k)

+ b3
1A(k, μ, f /b1) + b4

1B(k, μ, f /b1), (31)

where Pq, δδ , Pq, δθ , and Pq, θθ are the quasar–quasar, quasar–velocity,

and velocity–velocity power spectra, respectively, and A and B are

correction terms to account for the non-linearity of the real to redshift

space mapping. The 1-loop bias terms are taken from McDonald &

Roy (2009) and all terms are calculated at two-loop order following

the RegPT scheme (Taruya 2014).It is worth noting that in the bias

expansion of Pq, δδ , there is an additional term, Ng = AgP
noise
0 , to

account for the constant galaxy stochasticity.

The power spectrum of the quasars, Pq(k, μ), is the product of

the non-linear power spectrum Pq(k, μ) (defined in equation 31) for

a biased tracer and of a damping term D, which takes into account

non-linear effects that are not included in the matter power spectrum,

Pq(k, μ) = Pq(k, μ)D(k, μ). (32)

Following Hou et al. (2018), we use a damping term, which comprises

a Gaussian and a Lorentzian-like term avir ,

D =
1

√

1 + (kμavir)2
exp

[

−
(kμσv)2

1 + (kμavir)2

]

, (33)

where σ v is the velocity dispersion, and avir is associated with the

virial motion of quasars in the dark matter halo they inhabit. In the

approach adopted here, we consider redshift errors as an additional

velocity dispersion, and we let σ v vary as a free parameter in order

to cope for this effect. We do not add an extra term as in Hou et al.

(2018).

Table 6. Interval of variations of the parameters used in

the χ2 minimization for the Full-Shape RSD analysis.

Parameter Prior range

b1 (0, 5)

b2 (−8, 8)

a‖ (0.5, 1.5)

a⊥ (0.5, 1.5)

f (0.3, 3)

Ag (−1, 5)

σ v (0, 15)

avir (0, 15)

Furthermore, the window function measured from the data is

applied to the model following the same method that was used for

the BAO analysis.

For the fiducial analysis, the fit is performed over the range k =

[0.02, 0.3] h · Mpc−1 and 13 parameters are allowed to vary. The

cosmological parameters (α⊥, α‖, f) are common to the two galactic

caps, while the parameters of the bias expansion (b1, b2), the shot-

noise term (Ag) and of the damping term (σ v , avir), are allowed

to be different for the two galactic caps. We use flat priors for all

parameters, and the intervals of variations are given in Table 6 and

are chosen such that the boundaries are not hit.

4.2 Validation of the model

We validate our model using the OuterRim mocks described in Sec-

tion 2.3.2. This is described in detail in the companion paper of Smith

et al. (2020), and we give only the main results here. In a first stage, we

used the non-blind mocks, which include various redshift-smearing

prescriptions to test the damping term, D, introduced in the previous

paragraph. We fit our power spectrum model to the 100 realizations

of each HOD model and compute the average of the best-fitting

parameters. The results show that the true values of α‖ and α⊥ can be

recovered to better than 1 per cent and that fσ 8 can be recovered to

better than 3 per cent regardless of the redshift-smearing prescription.

In a second stage, we analysed the ‘blind’ set of mocks, whose cos-

mology is unknown, using the OuterRim fiducial cosmology. The re-

sults of the average fit parameters for the 24 sets of mocks with differ-

ent HOD and different cosmologies are given in section 6.3 of Smith

et al. (2020). From the distribution of the results that we obtain, we

determine the rms value to be our systematic error on the modelling:

�α‖|model = 0.0098 �α⊥|model = 0.0066 �f σ8|model = 0.0123.

(34)

4.3 Results

We perform the Full-Shape RSD analysis of the monopole,

quadrupole, and hexadecapole of the power spectrum measured

from the QSO DR16 catalogue, as described in Section 4.1. The

covariance matrix is computed from the 1000 EZmocks. Fig. 7

shows the best-fitting model (solid lines) to the data (points) with

MNRAS 499, 210–229 (2020)
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220 R. Neveux et al.

Figure 7. Power spectrum multipoles of the NGC (left) and SGC (right) quasar samples (top panel) and residuals (lower panels) from the NGC and SGC

combined fit for the Full-Shape RSD analysis. The points are the data, and the solid lines show the best-fitting model.

NGC and SGC fitted simultaneously. We take the mean of the

samples of the Markov chains as final results for the Full-Shape

RSD analysis in Fourier Space:

α‖ = 1.049 ± 0.038 α⊥ = 1.020 ± 0.029 f σ8 = 0.476 ± 0.044,

(35)

where the errors are computed from the standard deviation of the

samples of the chains. In this section, we discuss the evaluation

of the systematic errors entering our measurement. We use the

EZmocks to quantify the impact of the different weights (fibre

collisions, photometric conditions, redshift efficiency). Fibre

collisions weights have a large impact and require an improvement

of the power spectrum model that is presented. Taking into account

the RIC induced by the generation of the random catalogue is

also evaluated. At the end of the section, we present the results of

robustness tests performed on the DR16 data and show the impact of

the different analysis choices on the final results. For the estimation

of the systematic errors using the 1000 approximate mocks, we

measure the distributions of the mock-by-mock differences. These

distributions are fit with a Gaussian from which the mean values and

their errors are determined assuming the differences distributions

follow Poisson statistics. We take the largest quantity between the

mean value or twice the error as a systematic error.

4.3.1 Systematic checks

In Fig. 8, we show the change in the power spectrum multipoles

when different combinations of systematic effects are included. In

each case, the effects are applied to the EZmock catalogues and are

corrected for according to the weighting scheme used on the data.

It appears that largest systematic offset arises from fibre collisions,

and no difference between the two galactic caps is observed beyond

the expected statistical error. The impact of the systematic effects

on the best-fitting parameters is shown in Table 7 for the average

of the 1000 EZmocks and for the combined NGC + SGC fit.

In this table, the lines that start with a � show the difference

in offset between the preceding line with respect to the offset

measured for the line described within parentheses. It shows that

not correcting for fibre collisions leads to large systematic offsets on

all cosmological parameters that go up to 5 per cent for the case of

the fσ 8.

There is an effect of imperfectly correcting for photometric

conditions, which affects the monopole (yellow dashed curves in

Fig. 8). The shift is located at small k and amounts to about 1 per cent

of the observed monopole and no effect beyond statistics is observed

in the higher order multipoles. The shift is higher in the SGC for

which the spread of the photometric weights is known to be larger

than the NGC (see fig. 12 of Zarrouk et al. 2018). The best-fitting

parameters are slightly modified by the amount given in the line �1

of Table 7 that shows the impact of photometric weights and redshift

failures together. This difference is then taken as an estimate of the

systematic errors arising from photometric conditions.

Taking into account, fibre collision has received much attention,

and solutions have been proposed to mitigate their effect on the

power spectrum (Hand et al. 2017) and on the 2-point correlation

function (Percival & Bianchi 2017). In the approximate method

proposed by Hahn et al. (2017) that we use in this paper, the fact

that two targets are colliding is modelled by an additional top-hat

window function whose width is given by the collision radius Dfc at

the effective redshift (Dfc(z = 1.480) = 0.9 h−1Mpc). In the case the

fibre collided objects are uncorrelated, the corrected power spectrum

is given by:

�P uncorr
ℓ (k) = −fs(2l + 1)Lℓ(0)

(πDfc)2

k
W2D(kDfc), (36)
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eBOSS DR16 quasar sample Fourier Space analysis 221

Figure 8. Shifts on the power spectrum multipoles induced by the systematic effects applied to the EZ mocks on the NGC (left-hand panels) and SGC

(right-hand panels). The dashed line represents the effect of fibre collisions weights (green) of photometric systematic weights (yellow) and redshift failures

weights (blue). The effect of all weights together is shown as the red solid line. The black dotted lines show the full correction for fibre collision as proposed

by Hahn et al. (2017). The grey-shaded region represents the statistical error.

where Wx = 2J1(x)/x is the cylindrical top-hat function in 2D (J1 is

the first kind and first-order Bessel function), and fs is the fraction

of the survey affected by fibre collisions. The latter is determined

from the data targets and observational catalogues. Its estimation

requires running the tiling algorithm on the full target set, which

includes ‘legacy’ objects that have been observed prior to eBOSS,

and comparing this to the number of collisions that were actually

corrected for in our sample. Our estimation leads to

fs(NGC) = 0.36 fs(SGC) = 0.45. (37)

It is substantially lower than the fraction of area of the survey

where plates are non-overlapping and collisions are never resolved

(60 per cent). It originates from the fact that the ‘legacy’ objects

were themselves the result of a tiling algorithm, where collisions

were partially resolved. This estimate of fs was later confirmed to a

precision of 10 per cent from the data by measuring the projected

correlation function at small transverse scales (see fig. 16 of Hou

et al. 2020).

Using the EZmocks, we estimate that for the target density of

our sample, 95 per cent of collisions are uncorrelated. Given that

the small-scale clustering of the EZmocks is imperfect, we have

confirmed this estimate with the data as it constitutes the dominant

part of the correction applied. Nevertheless, as proposed by Hahn

et al. (2017), we apply the correction for collisions in the case of

correlated objects as:

�P corr
ℓ (k) = −fsπD2

fc

∫

d2q⊥

(2π )2
P (k‖, q⊥)W2D(q⊥Dfc). (38)

This correction further decreases the residual offset seen in fσ 8 and

does not modify the offset on a‖ and a⊥ (Table 7). The remaining

offset after both corrections are applied (line �3 of Table 7) is

taken as the systematic error due to fibre collisions. In a companion

paper, Mohammad et al. (2020) explore the possibility to use the

pair-weighting technique (Percival & Bianchi 2017) for our sample.

This method was not used in the present work but its potential for

future surveys is indubitable.

The size of the correction given in equation (38) is shown as

a dotted line in Fig. 8 that is qualitatively in agreement with the

observed systematic shift for all multipoles and also captures the

difference between the NGC and the SGC. The agreement is a little

worse for the monopole, but this is negligible, since the shift in the

monopole is very small compared to its amplitude. After applying

this correction to the power spectrum model, the systematic offsets in

the best-fitting parameters measured from the EZmocks are reduced

by a factor of 5 (Table 7) to an acceptable level of the order of

one-tenth of the statistical error on each parameter. The correction

MNRAS 499, 210–229 (2020)
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222 R. Neveux et al.

Table 7. Average value of the cosmological parameters recovered from

the fits of 1000 EZmocks under different systematic effects applied to the

catalogues and corrected for using the standard weighting scheme. The lines

that start with a � show the difference in offset between the preceding line

with respect to the offset measured for the line described within parentheses.

The ‘expected’ values for the dilation scales are not unity since the EZmocks

cosmology is slightly different from the fiducial cosmology.

Tests on mocks α‖ α⊥ fσ 8

Expected 1.004 1.002 0.379

Ref : no weights 0.988 ± 0.002 0.990 ± 0.001 0.380 ± 0.002

wnozwsys 0.988 ± 0.002 0.992 ± 0.001 0.382 ± 0.002

�1 wrt (ref) −0.0006(15) 0.0019(12) 0.0026(14)

wq = wnozwsyswcp 0.974 ± 0.002 0.999 ± 0.001 0.399 ± 0.002

� wrt (wnozwsys) −0.0147(9) 0.0081(7) 0.0166(9)

wq + �P u
cp 0.991 ± 0.002 0.989 ± 0.001 0.380 ± 0.002

�2 wrt (wq) 0.0172(6) −0.0107(6) −0.0205(6)

wq + �P u
cp + �P c

cp 0.991 ± 0.002 0.990 ± 0.001 0.381 ± 0.002

� wrt (wq + �P u
cp) 0.0008(6) 0.0007(5) 0.0024(6)

�3 wrt (wnozwsys) 0.0040(9) −0.0018(7) −0.0011(10)

� wrt (ref) 0.0056(15) −0.0000(13) 0.0007(15)

No RIC 0.995 ± 0.002 0.986 ± 0.001 0.381 ± 0.002

�4 wrt (ref) 0.0074(8) −0.0039(6) 0.0004(8)

RIC corrected 1.001 ± 0.002 0.985 ± 0.001 0.383 ± 0.002

�5 wrt (wq + �P u
cp) 0.0077(1) −0.0047(1) 0.0015(1)

depends linearly on the value of fs that is known to a precision of

10 per cent. Therefore, we take 10 per cent of the shifts due to this

effect (line �2 of Table 7) as a systematic error.

It has been recently shown by de Mattia & Ruhlmann-Kleider

(2019) that drawing the redshifts of the random catalogues from

the data catalogue introduces a radial integral constraint (RIC). We

measure the impact of the RIC on the EZmocks by producing a

large random catalogue that samples the random catalogues of all

the mocks. The observed shift, given in line �4 of Table 7, shows

that correction that would need to be applied to correct for the RIC

is of the order of 0.7 per cent on α‖, 0.4 per cent on α⊥, and no effect

is seen on fσ 8. The RIC can be accounted for in the power spectrum

model and its effect on cosmological parameter is given in line �5 of

Table 7. The agreement with the estimate using different random files

is at the per-mil level and we choose, for what follows, to account

for the RIC in the model and do not quote systematic errors for this

correction.

The observational systematic errors are summarized in Table 8

and summing them in quadrature leads to the following total

observational systematic errors:

�α‖|obs = 0.005 �α⊥|obs = 0.003 �f σ8|obs = 0.004. (39)

Adding the modelling error in quadrature (see Table 8), the total

systematic errors on the cosmological parameters from the Full-

Shape RSD Fourier Space analysis are:

�α‖|syst = 0.011 �α⊥|syst = 0.007 �f σ8|syst = 0.012. (40)

These systematic errors represent 30 per cent of the statistical error

and the dominant contribution stems from the modelling of the power

spectrum.

In Fig. 9, we show the fit parameters and their errors as measured

for the 1000 approximate EZmocks, compared to the DR16 result.

Similarly to what was observed for the BAO analysis, the precision

of the DR16 sample for the Full-Shape analysis is untypical of the

Table 8. Systematic errors on the estimate of the cosmological parameters

from the Full-Shape RSD analysis. The total observational systematic error is

the quadratic sum of the errors given in the first rows of the table. Combining

in quadrature with the modelling errors determined from the mock challenge

gives the total systematic error.

α‖ α⊥ fσ 8

Photometry(�1) ±0.0030 ±0.0024 ±0.0028

�(fs) = 10%(�2) ±0.0017 ±0.0011 ±0.0021

Fibre collisions (�3) +0.0040 −0.0018 ±0.0020

Total observational 0.0053 0.0032 0.0040

Redshift smearing 0.0036 0.0042 0.0081

Blind challenge 0.0091 0.0051 0.0093

Total modelling 0.0098 0.0066 0.0123

Total systematics 0.0111 0.0073 0.0129

Statistical error 0.0378 0.0289 0.0447

Fraction 30% 25% 29%

EZmocks and is among the 1 per cent of mocks with the smallest

errors. The interpretation of this is that it comes from the fact that

the strength of the BAO is weaker in the EZmocks than in the data.

We recall here that the agreement between the EZmocks and the

DR16 data for the power spectrum is at the level of a few per cent.

Therefore, the covariance matrix that is used in the fit is correct to this

precision. Furthermore, since the amplitude of the BAO is smaller

in the EZmocks than in the data, the systematic effects that were

estimated using the EZmocks have a larger dispersion and lead to a

conservative estimate of the systematic errors.

4.3.2 Tests on the DR16 sample

We also perform tests to quantify the impact of our choices and for

robustness tests to the DR16 data catalogue. Results are summarized

in Table 9 and displayed in Fig. 10. First, we quantify the effect of

each weight that is used to mitigate systematic effects (see previous

section). Then, we vary the fitting conditions to evaluate the impact

of the analysis choices that were made on the final results. When

the change in cosmological parameters is significant, we compare

it with the rms of the mock-by-mock differences distributions and

demonstrate that no systematic effect is observed beyond statistics.

In Table 9 (see also a graphical representation of these results in

Fig. 10), we present a series of tests that were performed on the

data to evaluate the impact of the choices that were made in the

analysis and the robustness of our measurement. First, we see that

applying the complete weighting scheme changes the result of the fit

by O(1σ ) for α⊥ and fσ 8 and has a very small effect on α‖. Changing

the weighting scheme by removing one of the weights shows that

photometric weights (wsys) and fibre collisions (wcp) have the largest

effect on the final results.

The analysis is also performed by not including the hexadecapole

contribution into the fit. As expected, the errors on the parameters

increase and the variations of the central values are at most 1/4 of

the statistical error. Comparing this to the rms of the mock-by-mock

differences (within parentheses in Table 9) shows that the observed

shift is within statistics.

Then, we study the stability of the results while changing the

boundaries of the k-range or shifting the centre of the bins in k

by one-half of the bin size. We find that the effect on the dilation

scales of the order of ±0.005 and that there is a substantial effect on

fσ 8 that reaches ±0.019. Again, the observed shifts are at the level

of 1 standard deviation (or less) of the results obtained from the
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eBOSS DR16 quasar sample Fourier Space analysis 223

Figure 9. Comparison of the fit parameters and of their errors as measured for the 1000 approximate EZmocks (blue points). The parameters and errors

measured for the DR16 sample are represented by a red cross.

Table 9. Best fit and χ2 for robustness tests on the data for the Full-Shape RSD analysis. When the difference w.r.t. the reference is significant, we indicate

within parentheses () the rms of the mock-by-mock differences observed in the EZmocks under the same conditions.

α‖ α⊥ fσ 8 b1, NGCσ 8 b1, SGCσ 8 χ2(ndof) red.χ2

DR16 best fit 1.039 ± 0.033 1.017 ± 0.025 0.470 ± 0.042 0.960 ± 0.041 0.939 ± 0.040 116.45 (168-13) 0.75

No weight 1.038 ± 0.041 0.993 ± 0.033 0.417 ± 0.046 0.931 ± 0.040 0.916 ± 0.038 95.91 (168-13) 0.62

No wsys 1.034 ± 0.034 1.002 ± 0.031 0.447 ± 0.044 0.960 ± 0.036 0.946 ± 0.034 115.38 (168-13) 0.74

No wcp 1.041 ± 0.033 1.010 ± 0.033 0.452 ± 0.045 0.949 ± 0.038 0.930 ± 0.044 104.61 (168-13) 0.67

No wnoz 1.040 ± 0.045 1.017 ± 0.021 0.459 ± 0.043 0.944 ± 0.046 0.916 ± 0.046 106.53 (168-13) 0.69

No RIC correction 1.034 ± 0.035 1.021 ± 0.027 0.466 ± 0.043 0.961 ± 0.041 0.938 ± 0.042 117.00 (168-13) 0.75

No ℓ = 4 1.034 ± 0.056 1.021 ± 0.038 0.463 ± 0.055 0.965 ± 0.035 0.942 ± 0.043 70.51 (112-13) 0.71

(0.052) (0.048) (0.039)

k = (0.02,0.20) 1.034 ± 0.043 1.012 ± 0.024 0.450 ± 0.043 0.968 ± 0.040 0.946 ± 0.046 82.74 (108-13) 0.87

(0.017) (0.013) (0.032)

k = (0.05,0.30) 1.044 ± 0.060 1.015 ± 0.030 0.475 ± 0.058 0.969 ± 0.044 0.931 ± 0.059 104.57 (150-13) 0.76

(0.018) (0.015) (0.020)

k shift 1/2 1.044 ± 0.040 1.020 ± 0.028 0.452 ± 0.045 0.975 ± 0.052 0.954 ± 0.037 125.21 (168-13) 0.81

(0.019) (0.017) (0.019)

No wide angle corr 1.039 ± 0.033 1.017 ± 0.025 0.470 ± 0.042 0.960 ± 0.041 0.939 ± 0.040 116.45 (168-13) 0.75

NGC 1.022 ± 0.047 1.022 ± 0.037 0.493 ± 0.062 0.942 ± 0.054 − 63.91 (84-8) 0.84

SGC 1.054 ± 0.040 1.008 ± 0.041 0.436 ± 0.064 − 0.952 ± 0.044 52.05 (84-8) 0.68

mock-by-mock differences and no additional systematic error is

quoted for these effects.

Additional tests were performed with modification made to the

modelling. The fit was performed using the modelling of the

wide-angle correction as proposed by Beutler et al. (2019), and

no difference was observed at a level of precision of 1 per mil.

Furthermore, the fit was run using a Gaussian prior of mean 0 and

standard deviation 0.01 on the quasar-count stochastic term, Ag,

described in 4.1. The change of cosmological parameters induced

is at the level of one-tenth of the statistical precision.

The analysis was also performed for the Northern and Southern

galactic caps separately and the differences are within 1 standard

deviation for each of the cosmological parameters.

4.3.3 Results from Full-Shape RSD analysis

The best-fitting Full-Shape power spectrum model, for both caps

compared to the data, is shown in Fig. 7. We transform the dilation

scale α‖ and α⊥ to, respectively, the Hubble distance and the

comoving angular diameter distance. The measurements of the

Hubble distance DH/rdrag, the comoving angular diameter distance

DM/rdrag, and growth rate of structure fσ 8 from this analysis are

given in Table 10. The 68 per cent and 95 per cent confidence-level

posterior contours of the cosmological parameters, obtained with

a Monte Carlo Markov Chain method, are presented in Fig. 11.

The contours for all possible pairs of parameters including bias and

nuisance parameters are given in Appendix A. The linear bias is
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224 R. Neveux et al.

Figure 10. Cosmological parameters measured using the DR16 sample

under different choices in the FS analysis. Values of the parameters are

taken from Table 9. The subset of green points shows the impact of taking

into account different combination of weights to illustrate the size of the

correction implied by the weighting scheme but should not be taken as a

systematic error.

Table 10. Summary of the results on the Hubble distance DH/rdrag, the

transverse comoving diameter distance DM/rdrag, and of the linear growth

rate of structure fσ 8. The quoted error is the quadratic sum of the statistical

(standard deviation of chains) and systematic errors. The (OR) line shows the

results with a fiducial cosmology being the cosmology used for the OuterRim

box, see equation (20).

DH/rdrag DM/rdrag fσ 8

DR16 13.52 ± 0.51 30.68 ± 0.90 0.476 ± 0.047

DR16 (OR) 13.81 ± 0.52 30.99 ± 0.92 0.477 ± 0.045

DR14 12.8 ± 0.9 31.0 ± 1.8 0.425 ± 0.077

Error ratio 1.8 2 1.7

allowed to take different values for the two galactic caps, and both

values obtained are in agreement.

To test that the results do not depend on the assumed fiducial

cosmology, the complete analysis is also done using the OuterRim

cosmology as the fiducial cosmology. The results are in agreement,

and the observed differences are comparable with what is calculated

from the approximate mocks. The effect of the fiducial cosmology is

already included in the systematic errors arising from the modelling

as studied in the mock challenge (Smith et al. 2020), and we do not

quote an additional systematic error from the fiducial cosmology at

this stage.

The measurement of the linear growth rate of structures is given

in terms of fσ 8 and for the linear power spectrum used in the present

analysis, we have σ 8 = 0.401. It is proposed in Gil-Marı́n et al.

(2020) to use the isotropic dilation scale αiso = (α2
‖α⊥)1/3 to calculate

σ 8 in the cosmology implied by the data. This would decrease our

measurement of fσ 8 by 2.1 per cent that is close to the systematic error

quoted for this parameter. But changes of cosmologies that could lead

to such an effect have already been included in the determination

of the systematic errors arising from the modelling. Correcting σ 8

should in principle also be applied to the mock challenge and would

reduce the systematic error, but we leave this for further work.

Figure 11. Posterior contour FS for the combined NGC + SGC where the

b1σ 8 is dependent of the galactic cap.

In another approach, Sanchez (2020) proposes to use σ 12 where

fluctuations of the linear power spectrum are calculated in spheres

of 12 Mpc instead of 8 h−1Mpc. Given the value of h = 0.676 of the

fiducial cosmology, the numerical value of σ 12 is only 0.8 per cent

smaller than σ 8. For completeness, results using this approach are

given in appendix D of Hou et al. (2020).

Our results are also compared to those obtained for the Fourier

Space analysis of the eBOSS quasar sample from an earlier data

release (DR14 Gil-Marı́n et al. 2018). The interpretation performed

in this previous analysis used a different definition of the effective

redshift yielding zeff = 1.52. We recalculate the cosmological

parameters DH(zeff)/rdrag and DM(zeff)/rdrag for the DR14 results using

our estimate of the effective redshift (zeff = 1.480) and we assume that

the two samples have the same redshift distribution. The results, given

in Table 10, show that the results of the two analyses are statistically

compatible at 1-sigma level and that the errors are improved by a

factor of 2 for each cosmological parameter using the new data.

The 2D contours of the posterior for α‖ and α⊥ from the Full-

Shape RSD analysis are also compared to the contours obtained for

the BAO-only analysis (Fig. 12). The agreement for α⊥ (resp. α‖) is

within 1/10 (resp. 1/2) of the statistical error.

4.3.4 Consensus

We perform a consensus analysis of our results with the results

obtained in configuration space by Hou et al. (2020). The method

is based on the work of Sánchez et al. (2017) and is described

in section 7.3 of Hou et al. (2020). In this method, a full 6 × 6

covariance matrix is built from the 3 × 3 covariance matrices of the 2-

point correlation function and of the power spectrum measurements,

and the cross-terms are determined using the 1000 approximate

mocks. The observational systematic errors are added in quadrature

to the covariance and we consider that they are independent. The

modelling systematic error is determined from the mock challenge,

where the consensus technique was applied to each mock realization

and is found to be smaller than either the configuration or Fourier

Space systematic errors. The results are summarized in Table 11

and the posterior contours derived from the MCMC analysis for α⊥,

α‖ and fσ 8 are represented in Fig. 13. The measurements are in
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Figure 12. Posterior contours for the BAO (blue) and FS (red) analysis

determined with the MCMC chains.

agreement, and the gain in precision from the consensus is modest.

The measurements of α‖ and α⊥ are found to be within 1 σ of a flat

�CDM model using the cosmological parameters of the combined

CMB + BAO measurement of Planck Collaboration VI (2020). Our

result of fσ 8 is 1.9 σ above the Planck-derived value.

5 C O N C L U S I O N S

We perform the analysis of the clustering of the complete eBOSS

quasar sample. We did two separate analyses. The BAO-only analysis

measures the ratio between the angular diameter distance and the

sound horizon at the baryon drag epoch, and the ratio between the

Hubble distance and the sound horizon at the baryon drag epoch.

The Full-Shape RSD analysis provides in addition a determination

of the linear growth rate of structure times the amplitude of matter

density fluctuations. We use a dedicated mock challenge (Smith

et al. 2020) to estimate the systematic errors due to the modelling

of the power spectrum and due to the dependence on the assumed

fiducial cosmology. The errors due to the observational systematics

are determined from approximate mocks where the observational

effects have been modelled. For both methods, the dominant source

of systematic error resides in the modelling of the power spectrum.

The modelling of fibre collisions also has a large impact on the

cosmological parameters, especially on the growth rate measure-

ment. The overall systematic errors are at the level of 30 per cent of

the statistical errors. Therefore, improving the models is key for the

next-generation quasar surveys with increased statistics. A consensus

analysis of our measurement in Fourier Space and the measurement

in configuration space from Hou et al. (2020) give the following

constraints for the BAO-only analysis:

DH/rdrag =
c

Hrdrag

= 13.26 ± 0.55

DM/rdrag = 30.69 ± 0.80, (41)

and for the Full-Shape RSD analysis, it yields:

DH/rdrag = 13.23 ± 0.47

DM/rdrag = 30.21 ± 0.79

f σ8 = 0.462 ± 0.045. (42)

These measurements are proven very robust by all tests performed.

Our measurements of cosmological distances are in agreement with

a flat �CDM model using Planck Collaboration VI (2020) and

our measurement of the linear growth of structures, fσ 8, is 1.9 σ

above the Planck-derived value. The cosmological interpretation

of the DR16 eBOSS quasar sample measurement along with the

Table 11. Final results of the Full-Shape analyses in Fourier and configuration spaces and their consensus.

DH(zeff)/rdrag DM(zeff)/rdrag fσ 8

Fourier Space 13.52 ± 0.51 30.68 ± 0.90 0.476 ± 0.047

Configuration space 13.11 ± 0.52 30.66 ± 0.88 0.439 ± 0.048

Full-Shape consensus 13.23 ± 0.47 30.21 ± 0.79 0.462 ± 0.045

Figure 13. Posterior for α⊥, α‖ and fσ 8 configuration space, Fourier Space, and the combined results using the method described in Sánchez et al. (2017). The

filled contours are derived from MCMC chains for configuration space (blue) and k-space (red). The black solid ellipses are the combined constraints at 68, 95

confidence limit. The orange crosses denote the values that are inferred from the combined Planck 2018 (Planck Collaboration VI 2020).
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measurements obtained for the other eBOSS tracers and the consis-

tency with external data sets are discussed in eBOSS Collaboration

(2020).
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APPENDI X A : POSTERI OR D I STRI BUTIO NS

D E R I V E D FRO M TH E M C M C A NA LY S I S

In this appendix, we provide the full 68 per cent and 95 per cent

confidence-level contours and Gaussian approximation for all pa-

rameters used in the Full-Shape RSD analysis. In Fig. A1 (resp.

Fig. A2), we show the contours for the cosmological parameters and

for the nuisance parameters of Northern (resp. Southern) galactic

caps. Fig. A3 shows the contours of the NGC and SGC nuisance

parameters. As stated in the main part of this paper, the contours

involving cosmological parameters are found to be Gaussian. For

the nuisance parameters, we observe that all contours involving

the quasar count stochastic term Ag presented in Section 4 are not

Gaussian, and that there is strong degeneracy between Ag and the

second-order bias b2 for both the NGC and the SGC.

Figure A1. 68 per cent and 95 per cent confidence-level contours (blue) and Gaussian approximation (red) for the cosmological parameters and for the NGC

nuisance parameters described in Table 6.
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Figure A2. 68 per cent and 95 per cent confidence-level contours (blue) and Gaussian approximation (red) for the cosmological parameters and for the SGC

nuisance parameters described in Table 6.
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Figure A3. 68 per cent and 95 per cent confidence-level contours (blue) and Gaussian approximation (red) for the NGC and SGC nuisance parameters described

in Table 6.
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12Waterloo Centre for Astrophysics, University of Waterloo, Waterloo, ON

N2L 3G1, Canada
13Department of Physics and Astronomy, University of Waterloo, Waterloo,

ON N2L 3G1, Canada

14Sub-department of Astrophysics, Department of Physics, University of

Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
15PITT PACC, Department of Physics and Astronomy, University of Pitts-

burgh, Pittsburgh, PA 15260, USA
16Perimeter Institute for Theoretical Physics, 31 Caroline St. North, Waterloo,

ON N2L 2Y5, Canada
17Department of Physics and Astronomy, Sejong University, Seoul 143-747,

Korea
18Institute for Gravitation and the Cosmos, Pennsylvania State University,

University Park, PA 16802, USA
19Department of Astronomy & Astrophysics, Pennsylvania State University,

University Park, PA 16802, USA
20Indian Institute of Astrophysics, Koramangala, Bangalore 560034, India
21Institute for Computational Cosmology, Department of Physics, University

of Durham, South Road, Durham DH1 3LE, UK
22Institute of Physics, Laboratory of Astrophysics, École Polytechnique
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