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THE COMPLETELY MIXED SINGLE-CONTROLLER

STOCHASTIC GAME1

JERZY A. FILAR

Abstract. We consider a zero-sum stochastic game with finitely many states and

actions. Further we assume that the transition probabilities depend on the actions of

only one player (player II, in our case), and that the game is completely mixed. That

is, every optimal stationary strategy for either player assigns a positive probability to

every action in every state. For these games, properties analogous to those derived

by Kaplansky [4] for the completely mixed matrix games, are established in this

paper. These properties lead to the counterintuitive conclusion that the controller

need not know the law of motion in order to play optimally, but his opponent does

not have this luxury.

1. Introduction. Any m X n matrix M = (mij)^j1x can be regarded; as a two-

person, zero-sum (matrix) game, with w/y denoting the amount player II will pay

player I if II choses an action je {1,2,...,«} and I chooses an action /g

(1,2,..., m}. A mixed (or randomized) strategy for player I (II) in such a game is an

w(«)-component probability vector x(y) whose ith (jth) entry x¡ (yf) denotes the

probability that player I (II) will choose action i (j). It was von Neumann (e.g., see

[9]) who proved the well-known minimax theorem for matrix games. It is a

consequence of this theorem that there always exists a strategy pair (x°, y°)

satisfying

(1.1) xTMy°<(x°)TMy0<(x0)TMy,

for all mixed strategies x(y) of player I (II). The strategies x°, y° are called optimal

and the number v(M) = (x°)r^7y° is called the value of the game M.

In the classical paper Kaplansky [4] considered the class of completely mixed

matrix games, namely, those games in which all optimal strategies are strictly

positive in every component. It follows from Kaplansky's results that these games

possess a number of desirable properties which general matrix games lack. In

particular, if M is completely mixed, with every entry strictly positive (there is no
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loss of generality in this assumption since a constant can always be added to every

entry without changing the game strategically) we have that

(a) the matrix M is square and nonsingular,

(b) there exists a unique optimal strategy pair (x°, y °),

(c) against any pure action i (j) for player I (II) the optimal strategy y° (x°)

yields precisely the value, that is,

(1.2) (x°)rAf = v(M)\T   and    My0 = v(M)\,

where 1 is a vector with unity in every component. It follows from (1.2) that

(1-3) »(M)=\M\/ii   ¿A/,.,),

where |M| is the determinant, and M:J is the (/, j)th cofactor of the matrix M.

In this paper we show that nearly all of the above results can be generalized to the

class of completely mixed single-controller stochastic games. These are discrete time,

dynamic games in which at each stage the players play one out of a finite set of

matrix games. Further, the identity of the matrix game to be played at the next stage

is determined by a stochastic " law of motion" which depends on the game which is

being played presently and on the current action of only one of the two players I or

II. The class of single-controller stochastic games in a sense lies halfway between the

Markovian decision process and the general stochastic game. Consequently, these

games possess many desirable properties that general stochastic games lack (e.g., see

[8, 5, 10, 3]). In Filar and Raghavan [1] some properties of these games which

resemble properties of matrix games were established. These results suggest that in a

single-controller stochastic game the relationship between stationary and pure sta-

tionary strategies is in many ways analogous to the relationship between mixed and

pure strategies in matrix games. In this paper we shall show that for the class of

completely mixed (cm.), single-controller stochastic games, the above analogy is

nearly perfect. In the process we derive simple formulae for computing the unique

pair of optimal stationary strategies which also lead to the following counterintuitive

conclusion: The controller can play optimally without the knowledge of the "law of

motion", while his opponent cannot!

2. Definitions and preliminaries. A stochastic game as formulated by Shapley [7] is

played in stages. At each stage, the game is in one of finitely many states,

s = l,2,...,S, in which players I and II are obliged to play a matrix game

A" = (a(i, j,s))™y"'x once. The "law of motion" is defined by the probabilities

q(s'\s, i, j), where the event [s'\s, i, j) is the event that the game will enter state s'

at the next stage given that at the current stage the state of the game is s, and that I

and II choose the ; th row and the jth column of As, respectively. In general players'

strategies will depend on complete past histories. In this paper, however, we shall

only be concerned with stationary strategies. We may represent a typical stationary

strategy / for player I by a "composite" vector, /= (f(\),f(2),...,/(S)), where
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MIXED SINGLE-CONTROLLER STOCHASTIC GAME 587

each f(s) is a probability vector2 given by f(s) = (fx(s),f2(s),...,fm(s)). Here,

fi(s) is the probability that I chooses the ith row of As whenever the game is in state

s. Player IPs stationary strategies are similarly defined.

Once we specify the initial state and a strategy pair (/, g) for players I and II, we

implicitly define a probability distribution over all sequences of states and actions

which can occur during the game and consequently over all sequences of payoffs to

player I. Let tr„(f,g)(s) denote the expected income to player I at the «th stage

when players I and II use the strategy pair (/, g) and the game begins in s. The two

types of stochastic games which we shall consider are determined by the manner in

which players evaluate a stream of payoffs (w,, ir2, ■ ■ ■ )■ They are

(a) The ß-discounted games Tß = [Yß(Y),Tß(2),... ,Tß(S)}. Here, ß g [0,1) and

Tß(s) refers to the game beginning in state 5. In such games, <S>ß(f, g)(s), the

expected income to player I in Tß(s) when the strategy pair (/, g) is used, is defined

by

(2.1) %(f,g)(s)=  ißn-\(f,g)(s).
n = l

(b) The undiscounted or average-reward games T= {T(l), T(2),..., T(S)} are

defined by

(2.2) *(/, g)(s) = liminf ± £ »„(/, g)(s)
jv-ao N n=1

(<£>(/, g)(s) has analogous meaning to &ß(f, g)(s)). To show that a number vß(s) is

the value of Tß(s) for s = 1,2,...,S, it is sufficient to show that there exists a

stationary pair of strategies (/', g&) (optimal strategy pair) such that, for each s,

(2.3) %(f,gp)(s) < vß(s) - •,(/*, g'){s) < #,(/',*)(*)

for any stationary / for player I and g for player II. For the undiscounted game

T(s), v(s); s = 1,2,...,S and an optimal stationary pair (f°,g°) is similarly

defined.

All the stochastic games considered below will be constrained by the hypothesis

HI: Player II controls the law of motion, that is, <?(í'|í, i, j) — q(s'\s, j) for all s', s,

i and j.

It should be clear that as a result of HI, a stationary strategy g for player II

determines anSx5 Markov matrix Q(g) = (q(s'\s, g))f s. = 1, where

ns

l(s'\s,g)= T.q(s'\s,j)gj(s).
7 = 1

Now if (/, g) is any pair of stationary strategies we define a current payoff vector

associated with this pair by r(f, g) = (r(f, g, 1),..., /*(/, g, S)) where

ms    ns

r(f,g,s)=f(s)A°g(s)= I  Za(i,j,s)fi(s)gJ(s).
i-ij=i

2 We shall not always differentiate between «-component row and column vectors. This is intended to

simplify our already complicated notation and should not confuse the readers.
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Further, since Q(g) is a Markov matrix it is known that there exists a Markov

matrix Q*(g) such that

(2-4) Q*(g)=   Hm  -^— ZQ"(g)

where Q°(g) = I is the identity matrix.

It can be verified from the above definitions and the properties of Q*(g) that, for

every s and every pair of stationary strategies (/, g),

(2.5) %(f,g)(s)={[l-ßQ(g)]'1r(f,g)}s    and

*(/,«)(*)= {o*(s)/v7,g)L,
where { }s denotes the sth component of a vector.

In the ^-discounted game Tß with each state payoff matrix A" we can associate a

"Shapley matrix"

A'(ß) a(i, j,s) + ß £ q(s'\s, j)vB(s')

Shapley [7] proved that if (f^(s), g^(s)) is an optimal strategy pair in the matrix

game As(ß) for each s, then the stationary strategy pair (f^,gp) so created is

optimal in Tß. Conversely, it is easy to check that if (fP, g@) is an optimal stationary

strategy pair in TB then (f^(s), g^(s)) is an optimal pair in As(ß) for each s.

We shall say that a stationary strategy g° is uniformly discount optimal for player

II if there exists ß° G [0,1) such that g° is optimal for II in Tß for all ß g (ß°, 1).

For games constrained by HI, Parthasarathy and Raghavan [5] have obtained the

following results: For each 5 there exists a square nonsingular submatrix As(ß) of

As(ß) and a corresponding submatrix Às of As such that if we define for all ß > ß°

(2.6) f>i(s) = vß(s)l[A^ß)}-1    and    g'(s) = vß(s)[A'(ß)]-ll,

where 1 is a vector with 1 in every component, then the set of pairs (f&(s), g^(s))

obtained from (2.6) by adding 0's in the places corresponding to the rows/columns

of As which are not in As forms an optimal stationary strategy pair (/^, g^) in Tß

for all ß > ß°. Further, it is shown in [5] that, for each s, Às is nonsingular and

there is a constant 0(s) such that

(2.7) g°(s) = 9(s)[À']-ll = g^s)    for all/3 >/3°.

That is, g° = (g°(l),..., g°(S)) where each g°(s) is obtained by completing g°(s)

with 0's is a uniformly discount optimal strategy for player II. Also, it turns out that

(f°, g°), where f°(s) = lim^!- f^(s), is an optimal stationary strategy pair in the

undiscounted game T.3

A pure stationary strategy a for player I is an S-tuple (a(l), a(2),..., a(S)) where

a(s) is an m5-component, degenerate probability vector. There are t = nf_,ws

such strategies and they will be labelled a1, a2,. ..,a'. Similarly, let vl,v2,...,vp

3In [5] it was assumed without loss of generality that a(i, j,s) > 0 for all i, j.s. We shall continue to

make the same assumption throughout this paper.
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denote the pure stationary strategies for player II, where p = T\f=xns. Now, for

each s we may define a matrix game A(s) = (®(o', vJ)(s))'fp=x. In Filar and

Raghavan [1] it was shown that for the single controller (player II) undiscounted

stochastic game the value of the matrix game v(A(s)) = v(s) for each s. Further, if

X(s) (F) is the set of mixed (stationary) strategies for I in A(s) (T) respectively,

then equations (2.5) and (2.4) in [1] define transformations T and T such that T:

F -* X(s) and t: X(s) -» F for each s. It turns out that if £ = T(f) or if / = f(£),

then

(2.8) *(/,g)(*)= ¿É,-*(a'',g)(j),        í=l,2,...,S,
í-i

where g g G is held fixed. Analogous results can be established for the discounted

stochastic games constrained by HI.

It should be noted that an undiscounted stochastic game with player I's stationary

strategy held fixed can be regarded as an average reward Markovian decision

process ((AMD)-process) as far as player II is concerned. Such a process can be

solved with the help of a single pair of primal-dual linear programs as a consequence

of results proved by Hordijk and Kallenberg [2]. In particular, if we fix player I's

optimal strategy f°, then it follows from [2, Theorem 6] that there exists an S-vector

7 such that, for each j = l,...,ns, s = l,...,S,

(2.9) o{s)<Zq{s'\s,j)v(s')
s=l

and
ms s

(2.10) v(s) + y(s)< I,a(i,j,s)fi0(s) + £ q{s'\s, j)y(s').
1=1 s' = l

For the discounted Markovian decision process linear programming techniques

analogous, but simpler, than those for the AMD-process have been known for some

time.

3. Main results. Let T be an undiscounted single-controller stochastic game with

positive payoffs, and let F° and G° denote the sets of optimal stationary strageties

for players I and II respectively. We shall say that T is completely mixed (cm. for

short) if(/°, g0) e F° x 6° implies that f¡°(s) and gj(s) are strictly positive for

all /', j and s.

We shall establish analogs of (a)-(c) of §1 for the case of undiscounted games

only. However, the corresponding results for the discounted case can be verified by

considerably simpler arguments, since in this latter case the results of Shapley [7] can

be invoked.

Lemma 3.1. Let T be as above. Then As is square and nonsingular for each

s = \,2,...,S.

Proof. The comments in §2 imply that one pair of optimal stationary strategies

(/°> g°) is obtained as the limit of (fß, g°) as ß -» 1", where each (fß(s), g°(s)) is

an extension (by insertion of 0's) of (fß(s), g°(s)) satisfying (2.6) for all ß > ß° and
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with the same set of submatrices Äs(ß) of As(ß). But since f°(s) and g°(s) are

strictly positive, As(ß) must equal As(ß) for each s. Thus As is square for each s,

and nonsingular by Lemma 4.1 of [5].    □

Remark 3.2. Since the game is completely mixed and since player II controls the

transitions, all strictly positive stationary strategies for II partition the states of the

undiscounted game T into the same sets of ergodic chains Cx,C2,...,Ck and the

same set of transient states H. It follows from §5 of Filar and Raghavan [1] that if

s g H then ns = 1, and that the game can be subdivided into k subgames I\,..., Tk

corresponding to the above ergodic chains. Of course, v(s) = vc for all s G Cc where

c = 1,2,..,, k.

Proposition 3.3. Let (f°,g°) g F° X G°. Then for all pure stationary strategies

a' and vJ for players I and II we have that, for every s,

(3.1) D(,)-»(a',g°)(,)-•(/<>,*>)(*).

Proof. We know that $(a', g°)(s) < v(s) for all i = l,2,...,t and s =

l,2,...,S. Suppose that $(am, g°)(s) < v(s) for some s and m. Let £° = T(/°) be

defined by the transformation (2.5) in [1]. Since f°(s) > 0 for each s, ¿° > 0 also.

Now by (2.8) we have that

v(s) = <S>(f°,g°)(s)= £^(a',g°)(,-)< £ t?v(s) = v(s),
; = 1 /=1

which is contradictory. Thus 3>(a', g°)(s) = v(s) for all i and s. The second equality

in (3.1) is proved by first considering each of the subgames ra,..., Tk from Remark

3.2 separately. The strategy pair (/°, g°)c consisting of (f°(s), g°(s)) for s G Cc is

clearly optimal in rc. With player I's strategy held fixed at f°(s) for 5 g Cc the

game becomes an AMD-process with the rewards to player II denoted by

ms

rc(/°,/,i)- £«0\V,*)/»
i = i

(when II chooses action j in state s, that is). However, g°(s) for í g Cc is still

optimal for II in this process, and because of its positivity we can conclude from [2,

Proposition 4] that there exists vector y° which together with vc\ satisfy (2.9) and

(2.10) with equalities. Thus we have

vc. + y°(s) = rc(f0,j,s)+  £q{s'\s,j)y°(s')
j' = i

for all j — 1,2,...,n, and s g Ct. Hence for any pure stationary vJ(s), í g Cc,

(3.2) ^.l+Y0 = rf(/0,^) + Ô("7)-r0.

Note that every vector in (3.2) has 5C. components, where Sc is the cardinality of Cc.

Now, multiplying (3.2) by the Sc X Sc. matrix Q*(vJ) (see (2.4)) and using the fact

that Q*(vj)Q(vj) = Q*(vJ) we obtain ucl = $c(/°, vj). We have now proved that,

for any pure stationary strategy v1 and any 5 g Hc (the complement of H),

$(/°, vj)(s) = v(s). Suppose now that s g H; that is, s is transient whenever IPs

stationary strategy is strictly positive everywhere. By Remark 3.2, ns = 1 for all
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s g H and hence in these states g°(s) = vJ(s) for all / = 1,2,...,p. We shall

define pg(s, s') to be the probability that s' is the first state of Hc encountered if the

initial state is s g H and player II uses the stationary strategy g. From the above it

follows that pga(s, s') = p„,(s, s') for all /* >■ 1,..., p, s s H and s' g Hc. The next

equation is analogous to (5.1) in [1]:

(3.3) »(/°.*)(*)-   £  Pt(',s')*(f°,g)(>%
s'eH'

where s g H, and g is any stationary strategy for II (note that every g ensures exit

from H in finite time with probability 1). Substituting first g° and then v' for g in

(3.3) we obtain identical right-hand sides (since (3.1) is already proved for s' g Hc).

thus even when s G H, <b(f°, vj)(s) = <f»(/°, g°)(s) = v(s). This completes the

proof.    D

Proposition 3.4. The set G° is a singleton. That is, player II possesses a unique

stationary optimal strategy.

Proof. We already know that there exists a uniformly discount optimal strategy

g0 g G° such that g°(s) satisfies (2.7) for each s. Suppose that g* is also in G°. By

Remark 3.2 the sets C,, C2,..., Ck and H are the same under g° and g* (since the

game is cm.). Also it is clear that g°(s) = g*(s) for all s g H. We shall prove that

g°(s) = g*(s) = g*(s) for all s G Cc for each c = 1,...,k, by considering the

subgames Tc separately. Without loss of generality we consider only Tx and assume

that C, has Sx states. Of course, u, = v(s) is a constant for all s G C,. The

stationary matrices Q*(g°) and Q*(g*) each have identical rows u° =

(u°(l),..., u°(Sx)) and u* = (u*(\),..., u*(Sx)) with u°(s) and u*(s) > 0 for all

s g C,. By Proposition 3.3, for every pure stationary strategy a for player I in Tx we

have, for every 5 g Cx,

(3-4) t,1 = <D(a,g°)(,)=[ô*(g°)r(a,g>]5

s,

=   £ u°(s')[o(s')A*g°(s')}
s'=l

=  £   ïr(a,j,s')u](s'),
s' = l   y=l

where u°(s') = u°(s')g°(s') for all / - 1,..., ns, and s' g C,. Equation (3.4) holds

with g* in place of g° and with u*(s') = «*(.?')£*(•*') in place of uj(s'). Now let

Zj(s) = Uj(s) - u*(s) for ally = 1,...,ns and s G Cx. Then from (3.4) we obtain

(3.5) £    Lr(a,j,s')zJ(s') = 0,
î'-l   ,/ = l

for every pure stationary strategy a for I in I\. Let

z = (zx:z2:-:zsy

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



592 J. A. FILAR

be a column vector such that Zs = (zx(s), z2(s), ...,z„ (s)) for each s G C,, and let

tx be the number of pure stationary strategies for I in Tx. Fix a(s) for each s ^ 2

and consider the nx equations extracted from (3.5) by letting a(l) range over the

nx-dimensional unit basis vectors (recall that A1 is square). These are equivalent to

(3.6) A% = a\.

Now, if a = 0 by nonsingularity of A1 (Lemma 3.1) we have that Zx = w°(l)g°(l)

— w*(l)g*(l) = 0, and since g°(l) and g*(l) are probability vectors we obtain,

from the above, that u°(l) = u*(\) and hence g°(l) = g*(l). If, however, a # 0

then Z, = afyl1]"1! which, by comparison with (2.7), implies that either Zx > 0 or

Zx < 0. So, if Zx = (1/Ç)ZX where Ç = Zx ■ 1 and â = a/f, then from (3.6) and

(2.7) we have

(3.7) A% = âl    and    Alg°(l) = 6(1)1,

where both Zx and g°(l) are now strictly positive probability vectors. It follows

from (3.7) that â = 0(1) and Zx = g°(l), which from definitions of Zx and f implies

that u°(l)g°(l) - u*(l)g*(l) = (u°(l) - u*(l))g°(l), and hence g*(l) = g°(l)

(since t/°(l), w*(l) > 0). Thus we have proved that g*(l) = g°(l) in every case.

Similarly, by selecting suitable a's in (3.5) we can show that g*(s) = g°(s) for every

s g Cx. Hence in the subgame Tx player II has a unique optimal strategy; similarly,

for every other subgame Tc where c = 1,2,...,k. Hence in the original game T,

G°={g0}.    □

Proposition 3.5. The set F° is a singleton; That is, player I possesses a unique

optimal stationary strategy.

Proof. Once again we shall consider subgame F, corresponding to an ergodic

class C, induced by g°, the optimal stationary strategy for player II. Let Fx be the

set of stationary op timáis for player I in Tx. For every / G Fx, we have a

corresponding AMD-process in which g°(s) for í g C, is optimal for player II.

That is, by an argument such as that used to derive (3.2) we can claim that there

exists an Sx -vector 7 such that

s,

(3.8) r(f,j,s)+  ¿Zl{s'\s,j)y(s')-y(s) = vx,
s' = l

for j = 1,2,..., ns and s g Cx. Set

w = {f(\):-:f(sx):y)T,

and define a set of nx X Sx matrices Ps and Es the jib rows of which are vectors

q(s, j) = (q(l\s, j), q(2\s, j),.. .,q(Sx\s, j)) and es the sib vector of the unit

basis of ^-dimensional space, respectively. Since we know that player I possesses at

least one optimal strategy f°, there must be a vector y° such that W° = (f°'.y°)

satisfies (3.8). Suppose /* is another optimal policy. Then there exists y* such that

W* = (f*'.y*) is also a solution of (3.8). Let

z = w° - w* = (z(i):—:z(sxy.u>)T.
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Then Z(s) and w satisfy, for each s g Cx (recall that r(f, j,s) = [f(s)As]j), the

equation (since Esu> = co5.l)

(3.9) (As)TZ(s) + P1«- (0,1 = 0.

Since As is nonsingular by Lemma 3.1, we now have

(3.10) Z{s)-i*,[{A')TYll-[(A')T]-1P'*

for every s g Cx. But each Z(s) = f°(s) —f*(s) so \TZ(s) = 0. Thus for every

s g Cx,

(3.11) «,[(^)"1l]rl-[(^)"1l]Ti,'«-0.

However, from (2.7), (A5)'1! = (l/0(s))g°(s) where g°(s) for 5 g C, form an

optimal strategy for II (note that 8(s) > 0 as a result of the assumption that

a(i, j,s) > 0, always). Substituting this in (3.11) we obtain, for each s g Cx,

Wî-(g°(i))>« = 0,

or, equivalently (using the fact that [g°(s)TP*]s> = q(s'\s, g0)),

(3.12) W = g(g0)«.

Hence w is an eigenvector of Q(g°) corresponding to eigenvalue X = l.But since

Q(g°) is an irreducible stochastic matrix with 1 as its maximal eigenvalue we have

from the Perron-Frobenius Theorem that the corresponding eigenspace has dimen-

sion 1. Thus u = pi (since 1 satisfies (3.12)). Substituting this in (3.9) yields that, for

every 5,

(3.13) (As)TZ(s) + p[Ps\ - 1] = (As)TZ(s) = 0.

Therefore, Z(s) = f°(s) - f*(s) = 0 for all s g Cx and so Fx° = {/°}. Since a

similar argument applies to every rc, c — l,...,k, and since, for s g H, As is a

lxl matrix, we have proved that player I possesses a unique optimal stationary

policy.   D

Remark 3.5. Note that we have derived formulae for computing the unique pair

of optimal stationary strategies in the undiscounted game. For player II, (2.7) and

Lemma 3.1 imply that

(3.14) g°(*)=l4/I   ÍA*r
i = \ 1 = 1  7 = 1

for j «■ 1,...,ns; s = l,2,...,S, where As¡¡ is the (i, j)ib cofactor of matrix As.

This, of course, corresponds exactly to one of Kaplansky's formulae (see (1.2)). On

the other hand, for player I in a state 5 g Cc the optimal strategy /°( s ) is obtained

from (3.8)

(3.15) f°(s) = v(s)[(A*)TYll + [(A')tY\e* - P°)y,

where y is any solution of the system of equations (since lTf°(s) = 1)

(3.16) (/ - Q(g°))y - 6 - vcl.
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Note that Q(g°) is an Sc X Sc irreducible stochastic matrix and

ns       ns

9(s) = Det(¿')/ £   ZA]j
,'=1  7 = 1

for each í g Cc by (2.7). Hence, the value ve in any state of Tc is the convex

combination of 0(s)'s obtained upon multiplying (3.16) on the left by Q*(g°).

Surprisingly, perhaps, the expression (3.14) implies that the controller (player II) can

calculate his optimal strategy without the knowledge of the law of motion. Indeed,

this optimal strategy remains invariant under all perturbations of the law of motion

which do not destroy the completely mixed property! Nonetheless, his opponent

must use the law of motion to compute his optimal strategy via (3.15), the first term

of which corresponds to Kaplansky's formula (1.2). Of course, if s G H, both players

have only one action to choose from, and v(s) is an appropriate convex combination

of vc's (e.g., see (3.3) with g replaced by g°).

Remark 3.6. We conclude with the following question suggested by the referee:

Can analogous results be established for the case of completely mixed single-

controller stochastic games? Generalizations of Kaplansky's results to bimatrix

games are well known (e.g., see Raghavan [6]), however, the lines of argument used

in this section depend heavily on a number of results from [1 and 5] which were

derived specifically for the zero-sum case.
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