THE COMPLETENESS AND COMPACTNESS OF A THREE-VALUED FIRST-ORDER LOGIC

Itala M.L. D'Ottaviano

Abstract

The strong completeness and the compactness of a three-valued first order predicate calculus with two distinguished truth-values are obtained. The system was introduced in Sue un problème de Jaśkowski, I.M.L. D'Ottaviano and N.C. A. da Costa, C.R. Acad.Sc. Paris 270A (1970),pp.1349-1353, and has several applications, especially in paraconsistent logics.

1. INTRODUCTION.

A theory T is said to be inconsistent if it has as theorems a formula and its negation; and it is said to be triviat if every formula of its language is a theorem.

A logic is paraconsistent if it can be used as the underlying logic for inconsistent but nontrivial theories.

Jaskowskı, motivated by some ideas of Łukasiewicz, was the first logician to construct a system of paraconsistent propositional logic (see [11], [12] and [13]). His principal motivations were the following: the problem of the system atization of theories which contain contradictions, as it occurs in dialectics; the study of theories in which there are contradictions caused by vagueness; the direct study of some empirical theories whose postulates or basic assumptions could be considered, under certain aspects, as contradictory ones (see [2] and [3]).

Jaskowski proposed the problem of constructing a propositional calculus having the following properties:
i) an inconsistent system based on such a calculus should not be neccessarily trivial;
ii) the calculus should be sufficiently rich as to make posible most of the usual reasonings;
iii) the calculus should have an intuitive meaning.

Jaśkowski himself introduced a propositional calculus which he named 'Discussive logic" and which was a solution to the problem. However he did recognize it was not the only solution (or even the best); in [11] he states:
"Obviously, these conditions do not univocally determine the solution, since they may be satisfied in varying degrees, the satisfaction of condition (iii) being rather difficult to appraise objectively".
In a previous paper (see [10]), we presented a propositional system, denoted by \mathbf{J}_{3}, which is another solution to Jaskowski's problem. A characteristic of J_{3} is that it is a three-valued system with two distinguished truth-values. Furthermore, it reflects some aspects of certain types of modal logics.

In the same paper, we extended J_{3} to the first-order predicate calculus with equality $\mathrm{J}_{3}^{*}=$.

Sone of these results about J_{3} were improved by J. Kotas and N.C.A. da Costa (see [15]).

Our aim here is to develop further the calculus \mathbf{J}_{3}.
In Sec. 2 we axiomatize J_{3} and establish relations between this calculus and several known logical systems like, for example, intuitionism. We especially emphasize the close analogy between J_{3} and Łukasiewicz' three-valued propositional calculus \mathcal{L}_{3}.

Our solution to Jaskowski's problem is discussed in the latter part of Sec 2.
In Sec. 3 we introduce the L_{3}-Languages, among whose predicate symbols may appear in addition to identity other equalities. We axiomatize \mathbf{J}_{3}-theories, which are three-valued extensions of $\mathrm{J}_{3}^{*}=$, and we introduce a semantics for them.

In Sec. 4, after obtaining sone theorems about first-order J_{3}-theories, we define a strong equivalence which is compatible with the fact that the matrices defining J_{3} have more than one distinguished truth-value. This relation allows us to prove the Equivalence Theorems for J_{3}-theories and the Reduction Theorem for non-Trivialization.

Finally, in Sec. 5, after giving a suitable definition of canonical structure, we present a Henkin-type proof for the Completeness Theorem and the Compactness Theorem.

In this paper, definitions, theorems and proofs, when analogous to the corresponding classical ones, will be omitted.

The Model-theory we developed for \mathbf{J}_{3} allows us to obtain \mathbf{J}_{3}-versions of the following classical results: Model Extension Theorem, Los-Tarski Theorem, Chang-toś Susko Theorem, Tarski Cardinality Theorem, Löwenheim-Skolem Theorem, Quantifier Elimination Theorem and many of the usual theorems on categoricity.

Some of the above results about J_{3} were also extended to J_{n}-theories, $3 \leqslant \mathrm{n} \leqslant \boldsymbol{\mu}_{\mathrm{o}}$.

The mentioned results about J_{n}-theories and Model-theory will appear elsewhere.

2. the calculus J_{3}.

The propositional calculus J_{3} is given by the matrix $\mathrm{M}=\left\langle\left\{0, \frac{1}{2}, 1\right\},\left\{\frac{1}{2}, 1\right\}\right.$, $v, \nabla, 7>$, where v, ∇ and \urcorner are defined as follows:

AVB | A | 0 | $1 / 2$ | 1 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | $\frac{1}{2}$ | 1 |
| | $1 / 2$ | $1 / 2$ | $1 / 2$ |
| 1 | 1 | 1 | 1 |

A	∇A
0	0
$\frac{1}{2}$	1
1	1

A	7 A
0	1
$\frac{1}{2}$	$1 / 2$
1	0

The set of truth-values and the set of distinguished tmuth-values are denoted by V and V_{d} respectively.

The formulas of J_{3} are constructed as usually from the propositional variables, by means of V, ∇ and 7 , and parentheses. To write the formulas, schemas, etc. we use the conventions and notations of [14], with evident adaptations.

The concept of a truth-fonction is the usual one. The truth-functions defined by the tables above are denoted by H_{V}, H_{∇}, and H_{7}.

A truth-valuation v for J_{3} and the tmuth-value $\nu(A)$ for a formula A are defined in the standard way; and we observe that A is valid in M if, for every evaluation $\nu, \nu(A)$ belongs to V_{d} (see, for example, [22]).

The following abbreviations will be used:

$$
\begin{aligned}
& A \& B={ }_{\operatorname{def}} \neg(\neg A \vee \neg B) \\
& \Delta A=\operatorname{def} \neg \nabla \neg A \\
& \neg * A={ }_{\operatorname{def}} 7 \nabla A \\
& A \rightarrow B={ }_{\operatorname{def}} \nabla \neg A \vee B \\
& A \leadsto B={ }_{\operatorname{def}}(A>B) \&(\neg B \gg A) \\
& A \supset B={ }_{\operatorname{def}} \neg \nabla A \vee B \\
& A \equiv B={ }_{\operatorname{def}}(A \supset B) \&(B \supset A)
\end{aligned}
$$

\neg is called weak negation or simply negation, 7* is called strong negation, and \supset basic implication of \boldsymbol{J}_{3}.

We present the tables of some of the non-primitive connectives:

A				$A^{\circ+} \mathrm{B}$			
	$7 * A$	A	$\triangle A$	A^{B}	0	1/2	1
0	1	0	0	0	1	1	1
1/2	0	$\frac{1}{2}$	0	1/2	1/2	1	1
1	0	1	1	1	0	1/2	1

$A \supset B$			
A	0	$1 / 2$	1
0	1	1	1
$1 / 2$	0	$\frac{1}{2}$	1
1	0	$\frac{1}{2}$	1

$A \equiv B$			
A^{B}	0	$1 / 2$	1
0	1	0	0
$1 / 2$	0	$1 / 2$	$1 / 2$
1	0	$1 / 2$	1

In the following theorems, we mention only those results which are useful to the proofs of later theorems.

TIIEOREM 2.1. The following schemas of \mathbf{J}_{3} are valid in M :

```
7 7A ミA 辂 \equivA
7*A }>7A
A \vee ᄀA fA \vee \nablaA
1(\Lambda& ᄀA) A& ᄀA \equiv ᄀA&VA
A&(B\vee\negB) \equivA A V \nablaA \equiv\nablaA
```



```
A\veeB\equiv\neg(7A&\negB) 
```



```
(A\supset1. )}>7A\quadA>>(B>A
```



```
\neg(\nablaA \vee ᄀVA)\supsetB (A
((A\supsetB)\supsetA)\supsetA (A\leadsto\negB)\leadstoA)}\longmapsto
```



```
(A>B)\supset(\negB>\negA).
```

THEOREM 2.2. The following schemas are not valid in J_{3} :

$$
\begin{array}{ll}
\neg A \supset(A \supset B) & (A \supset B) \supset(\neg B \supset \neg A) \\
A \supset(\neg A \supset B) & (\neg A \supset \neg B) \supset(B \supset A) \\
\neg A \supset(A \supset \neg B) & (A \supset \neg B) \supset(B \supset \neg A) \\
A \supset(\neg A=\neg B) & (\neg A \supset B) \supset(\neg B \supset A) \\
A G \neg A \supset B & (A \equiv B) \supset(\neg A \equiv \neg B) \\
A \& \neg A \supset \neg B & A \supset B \& \neg B) \equiv A \\
(A \equiv \neg A) \supset B & A \supset B \equiv \neg(A \& \neg B) \\
(A \equiv \neg A) \supset \neg B & A A \vee B \\
(A \supset B) \supset((A \supset \neg B) \supset \neg A) &
\end{array}
$$

It can be verified that, instead of V, ∇ and 7 it is possible to use only 7 and \leadsto as primitive connectives of J_{3}, considering A $\vee B$ and ∇A as abbreviations respectively of $(A \leadsto B) \leadsto B$ and $7 A \leadsto A$.

So, there is a close analogy between \mathbf{J}_{3} and Lukasiewicz' three-valued propositional calculus \mathcal{L}_{3}, defined by the matrix $M^{\prime}=\left\langle\left\{0, \frac{1}{2}, 1\right\},\{1\}, 7, \gg\right.$, in which the Eukasiewicz-Tarski operators 7 and \gg are given by the respective tables of J_{3} (see [4]).
J_{3} can be axiomatized by:
Axiom 1 : $\Delta(A \leadsto(B \leadsto A))$
Axiom $2: \Delta((A \leadsto B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C)))$
Axiom 3 : $\Delta((\neg A \leadsto \neg B) \mapsto(B \leadsto A))$
Axiom 4 : $\Delta(((A \leadsto>A) \nrightarrow A) \leadsto A)$
Axiom 5 : $\Delta(\Delta(A \leadsto B) \leadsto \Delta(\Delta A \leadsto \Delta B)$
Rule $R 1$: $\frac{\mathrm{A}, \Delta(\mathrm{A} \rightarrow \mathrm{B})}{\mathrm{B}}$
Rule $R 2$: $\frac{\nabla \mathrm{A}}{\mathrm{A}}$
The completeness theorem for J_{3} is proved from the completeness of \mathcal{L}_{3}, due to Wajsberg (see [4] and [23]), using the following theorem.

THEOREM 2.3. If A is a theorem of \mathcal{L}_{3}, then $\triangle A$ is a theorem of \mathbf{J}_{3}.
Proob. As the axioms 1 to 4 are the axioms of $£_{3}$ preceeded by Δ, if A is an axiom of \mathcal{L}_{3}, then ΔA is a theorem of J_{3}.

Let A be obtained from B and $B \leadsto A$ by the rule $\frac{B, B^{\leadsto+} A}{A}$ of \mathscr{L}_{3}. By induction hypothesis, ΔB and $\Delta(B \mapsto A)$ are theorems of J_{3}. By axiom 5 and R_{1} we obtain $\Delta(\Delta B \leadsto \Delta A)$. Applying R_{1}, we have that ΔA is a theorem of J_{3}.

THEOREM 2.4. (Completeness theorem for J_{3}). A formula A is a theorem of J_{3} if and only if A is valid in M .

Proo6. A straightforward induction shows that if A is a theorem of J_{3}, then A is valid in M. On the other hand, if A is valid in M, then $\nu(\nabla A)=1$ for every truth-valuation ν. By the axionatization and conpleteness of \mathcal{L}_{3}, both $\nabla \mathrm{A}$ and $\Delta(\nabla A \leadsto \nabla A)$ are theorems of \mathcal{L}_{3}. By the above theorem and $R_{1}, \nabla A$ is a theorem of \mathbf{J}_{3}. By R_{2}, A is a theorem of \mathbf{J}_{3}.

COROLLARY (Modus Ponens Rule). If both A and $\mathrm{A} \supset \mathrm{B}$ are theorems of \mathbf{J}_{3}, then B is a theorem of J_{3}.

However, contrary to \mathcal{L}_{3}, the Rule of Modus Ponens is not valid with respect tor.

For some of the theorems that follow it will be convenient to assume that the language of J_{3} contains, as primitive symbols, all the connectives introduced so far. In particular we shall often identify \mathbf{J}_{3} with the set of M-valid formulas in the expanded language.

The following theorems will be used in the proofs of many of the results about J_{3}.

THEOREM 2.5. \mathbf{J}_{3} is a non-conservative extension of the alassical positive propositional calculus with connectives V, $\mathcal{G}, \supset, \equiv$.

THEOREM 2.6. J_{3} is a conservative extension of the classical propositionat calculus with connectives $7^{*}, \mathrm{~V}, \mathcal{\&}, \supset$ and \equiv

TIIEOREM 2.7. J_{3} is a non-conservative extension of Eukaseewicz' threevalued logic \mathcal{L}_{3} with connectives \urcorner, μ.

TIIEOREM 2.8. J_{3} is not finctionally complete.
Proo6. It is not possible to define a connective, from the primitive conectives of J_{3}, such that its truth-value is identically $\frac{1}{2}$.

On the other hand, if we add the Stupecki T operador to the primitive connectives of J_{3}, the calculus becomes functionally complete (see [21]).

By Theorem 2.4, the formulas $\neg A \supset(A \supset B), A \supset(\neg A \supset B), A \supset(\neg A \supset \neg B)$, $(A \& \neg A) \supset B,(A \supset B) \supset((A \supset \neg B) \supset \neg A), A \supset(B \& \neg B) \equiv A$, etc., are not theorems of \mathbf{J}_{3}. So, in \mathbf{J}_{3}, in general, it is not possible to deduce any formula whatsoever from a contradiction. Therefore, based on such a calculus we can construct nontrivial inconsistent deductive systems, in the sense of [11]. So, \mathbf{J}_{3} satisfies condition (i) of Jaskowski's problem.

By Theorem 2.5 to $2.8, J_{3}$ is quite a strong system, which evidently satisfies Jaskowski's condition (ii).
J_{3} admits intuitive interpretations. For instance, it can be used as the underlying logic of a theory whose preliminary formulation may involve certain contradictions, which should be eliminated in a later reformulation. This can be done as follows; among the truth-values of $\mathrm{J}_{3}, 0$ can represent falsity, 1 truth, and $\frac{1}{2}$ can represent the provisional value of a proposition A, so that both A and the negation of A are theorems of the theory, in its initial formulation; in a later reformulation, the truth-value $\frac{1}{2}$ should be reduced, at least in principle, to 0 or to 1 .

Therefore, J_{3} is a solution to Jaskowski's problem.
J_{3} can also be used as a foundation for paraconsistent systems, in the sense of da Costa (see [5], [6], [7] and [8]). In this case, the value 0 represents falsity, 1 truth, and $\frac{1}{2}$ represents the logic value of a formula that is simultaneously true and false.

Finally, as the calculus J_{3} was constructed from \mathcal{L}_{3}, it is possible to obtain similar calculi J_{n}, from tukasiewicz n-valued calcuil $\mathcal{L}_{n}, \quad 3 \leqslant n<\boldsymbol{N}_{0}$.

3. SEMANTICS FOR FIRST-ORDER J_{3}-THEORIES.

The symbols of a first-order \mathbf{L}_{3}-language are the individual variables, the function symbols, the predicate symbols, the primitive connectives $7, \mathrm{~V}$ and ∇, the quantifies \exists and \forall, and the parentheses.

The i dentity $=$ must be among the predicate symbols. Other equalities can be especified among the predicate symbols.

We use x, y, z and w as syntactical variables for individual variables; f and g , for function symbols; p and q , for predicate symbols, and c for constants.

The definitions of term, atomic formula and formula are the usual ones; a, b, c, etc. are syntactical variables for terms and A, B, C, etc. for formulas.

By an \mathbf{L}_{3}-language we understand a first-order language whose logical symbols include the ones mentioned above.

The symbols $\mathcal{G},>\rightarrow \leadsto, \supset, \equiv, \Delta$ and 7^{*} are defined in the L_{3}-languages, as in \mathbf{J}_{3}.

Free occurrence of a variable, open formula, closed formula, variable-free term and closure of a formula are used as in [22].

The definition of a is substitutible for x in A is also the usual one.
We let $b_{x_{1}}, \ldots, x_{n}\left[a_{1}, \ldots, a_{n}\right]$ be the term obtained from b by replacing all occurrences of x_{1}, \ldots, x_{n} by a_{1}, \ldots, a_{n} respectively; and we let $A_{x_{1}}, \ldots, x_{n}\left[a_{1}\right.$, \ldots, a_{n}] be the formula obtained from A by replacing free occurrences of x_{1}, \ldots .,x_{n} by a_{1}, \ldots, a_{n} respectively.

Whenever either of these is used, it will be implicitly assumed that x_{1}, \ldots ., x_{n} are distinct variables and that, in the case of $\mathrm{A}_{\mathrm{x}_{1}}, \ldots, \mathrm{x}_{\mathrm{n}}\left[\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right], \mathrm{a}_{\mathrm{i}}$ is substitutible for $x_{i}, i=1, \ldots, n$.

In the following definitions, let L be an L_{3}-language.

DEFINITION 3.1. A structure of for a first-order \mathbf{L}_{3}-language L consists of:
i) a nonempty set $|\alpha l|$, called universe of $~ a l$;
ii) for each n-ary function symbol f of L, a function $£ f$ from $|\alpha|^{n}$ to $|\alpha|$;
iii) for each n-ary predicate symbol p of L, other than $=$, an n-ary predicate p_{Q}, such that p_{α} is a mapping from $|O Q| \times \ldots \times|O Q|$ to $\left\{0, \frac{1}{2}, 1\right\}$.

As in [22], we construct the language $L(\alpha)$; define $\sigma($ a) for each variable free term of $L(\alpha)$, and define α-instance of a formula A.

We use i and j as syntactical variable for the names of individuals of $o l$.

DEFINITION 3.2. The truth-value $\alpha(A)$ for each closed formula A in $L(\alpha)$ is given by:
i) if A is $\mathrm{a}=\mathrm{b}$, then $\alpha(\mathrm{A})=1$ iff $\alpha(\mathrm{a})=\alpha(\mathrm{b})$; otherwise, $\alpha(\mathrm{A})=0$;
ii) if A is $p\left(a_{1}, \ldots, a_{n}\right)$, where p is not $=$, then $\alpha(A)=p_{\alpha}\left(\alpha\left(a_{1}\right), \ldots \alpha\left(a_{n}\right)\right)$;
iii) if A is $\neg B$, then $a(A)$ is $H_{\urcorner}(\alpha(B))$;
iv) if A is ∇B, then $O l(A)$ is $H_{\nabla}(O l(B))$;
v) if A is $B \vee C$, then $O L(A)$ is $H_{v}(\mathbb{O}(B), O \mathbb{(C))}$;
vi) if A is a $\exists \times B$, then $\alpha(A)=\max \left\{\alpha\left(B_{x}[i]\right) / i \in L(\alpha)\right\}$;
vii) if A is a $\forall x B$, then $\mathscr{O}(A)=\min \left\{a\left(B_{x}[i]\right) / i \in L(a l)\right\}$.

DEFINITION 3.3. (1) A formula B of $L(O)$ is true in σz (or a is a model of B) iff $a(B) \in V_{d}$.
(2) A formula A of L is valid in α iff for every $O z$-instance A^{\prime} of A, A^{\prime} is true in α.

A first-order predicate calculus $\mathrm{J}_{3}^{*}=$ is the formal system whose language is an \mathbf{L}_{3} plus the following, with the usual restrictions (see [14]):

Axiom 6 : $\forall x(x=x)$
Axiom 7: $\mathrm{x}=\mathrm{y} \supset(\mathrm{A}[\mathrm{x}] \equiv \mathrm{A}[\mathrm{y}])$
Axiom 8: $\mathrm{A}_{\mathrm{x}}[\mathrm{a}] \supset \exists \mathrm{xA}$
Axiom 9 : $\forall \mathrm{XA} \supset \mathrm{A}_{\mathrm{x}}[\mathrm{a}]$
Axiom 10: $\exists \mathrm{xA} \equiv \neg \vee \mathrm{x} 7 \mathrm{~A}$
Axiom 11: $\forall \times A \equiv \neg \exists \mathrm{x} 7 \mathrm{~A}$
Axiom 12: ᄀ $\exists \mathrm{xA} \equiv \forall \mathrm{X} ᄀ \mathrm{~A}$
Axiom 13: ᄀ $7 \times x A \equiv \exists x 7 \mathrm{~A}$
Axiom 14: $\nabla_{3 \times A} \equiv 3 \times \nabla \mathrm{A}$
Axiom 15: $\quad \nabla V_{x A} \equiv \forall_{x} \nabla \mathrm{~A}$
Rule $R 3$: (3 -introduction rule) : $\frac{\mathrm{A} \supset \mathrm{C}}{3 \times \mathrm{A} \supset \mathrm{C}}$
Rule R4: $(\forall$-introduction rule $): \frac{C \supset A}{C \supset V \times A}$
THEOREM 3.1. $\mathbf{J}_{3}{ }^{*}=$ is a conservative extension of \mathbf{J}_{3}.
Proo6. We apply the Hilbert-Bernays theorem of k-transforms, that can be extended to this case.

THEOREM 3.2. $\mathbf{J}_{3}^{\star}=i$ is an extension of the classical predicate calculus, with connectives $7^{*}, \mathrm{v}, \AA, \supset, \equiv, \exists$ and \vee.

DEFINITION 3.4. A first-order J_{3}-theory is a formal system T such that:
i) the language of $\mathrm{T}, \mathrm{L}(\mathrm{T})$, is an \mathbf{L}_{3}-language;
ii) the axioms of T are the axioms of $\mathrm{J}_{3}^{*}=$, called the logical axioms of T , and certain further axioms, called the non-logical axioms;
iii) the rules of T are those of $J_{3}^{*}=$.

A is a theorem of T, in symbols: $\vdash_{T} A$, and B is a semantical consequence of a set F of formulas of $L(T)$ are defined in the standard way. If B is a semantical consequence of Γ, then we shall also say that " B is valid in Γ ".

THEOREM 3.3. (Validity Theorem): Every theorem of a J_{3}-theory T is valid in T .

4. SOME THEOREMS IN FIRST-ORDER J_{3}-THEORIES AND THE EQUIVALENCE THEOREM.

DEFINITION 4.1. A J_{3}-theory T is finitely trivializable if there exists a fixed formula F such that, for any formula $\mathrm{A}, \mathrm{F} \supset \mathrm{A}$ is a theorem of T (see [2]).

THEOREM 4.1. The J_{3}-theories are finitely trivializable.
Proof. Any formula $ᄀ(7 \nabla A \vee \nabla A)$ trivializes a \mathbf{J}_{3}-theory.

The following results hold in any \mathbf{J}_{3}-theory T :
Generalization Rule: If $\vdash_{T} A$, then $\vdash_{T} \forall x A$.
Substitution Rule: Is ${ }_{T} A$ and A^{\prime} is an instance of A, then $\vdash_{T} A^{\prime}$.
Substitution Theorem: a) $\leftarrow_{\mathrm{T}} A_{\mathrm{x}_{1}}, \ldots, \mathrm{x}_{\mathrm{n}}\left[\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right] \supset \exists \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}} \mathrm{A}$;
b) ${ }_{T} \forall_{x_{1}} \ldots \forall^{x_{n}} A_{n} \supset A_{x_{1}}, \ldots, x_{n}\left[a_{1}, \ldots, a_{n}\right]$

Distribution Rule: If ${\vdash_{T}}^{A} \supset \mathrm{~B}$, then $\vdash_{T} \exists x A \supset \exists x B$ and $\vdash_{T} \forall x A \supset V_{*} B$.
Closure Theorem: If A^{\prime} is the closure of A, then $\vdash_{T} A$ if and only if $\vdash_{T} A^{\prime}$.
Theorem on Constants: If T^{\prime} is a \mathbf{J}_{3}-theory obtained from T by adding new constants (but no new nonlogical axioms), then for every formula A of T and every sequence e_{1}, \ldots, e_{n} of new constants, $\vdash_{T} A$ if and only if $\vdash_{T}, A_{x_{1}}, \ldots, x_{n}$ $\left[e_{1}, \ldots, e_{n}\right]$.

In the case of classical logic, the equivalence \equiv behaves as a congruence relation with respect to the other logical symbols. Unfortunately this is not the case in J_{3}-theories, for it is possible to have $\vdash_{T_{*}} A \equiv B$ and $\vdash_{T} \neg A \equiv \neg B$.

However we can introduce a stronger equivalence, \equiv^{*}, which is a $J_{3}^{=}$-congruence relation and thus allow us to prove a J_{3}-version of the equivalence theorem (see [22]).

DEFINITION $4.2 . A \not \#^{*} B={ }_{\operatorname{def}}(A \equiv B) \&(\neg A \equiv \neg B)$.
THEOREM 4.2. If T is a J_{3}-theory and $\stackrel{F}{\mathrm{~T}} \mathrm{~A} \equiv{ }^{*} \mathrm{~B}$, then ${H_{\mathrm{T}}} \mathrm{A}$ if and only if $\vdash_{\mathrm{T}} \mathrm{B}$.

THEOREM 4.3. (Equivalence Theorem). Let T be a \mathbf{J}_{3}-theory and Let A^{\prime} be obtained from A by replacing some occurrences of $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$ by $\mathrm{B}_{1}^{\prime}, \ldots, \mathrm{B}_{\mathrm{n}}^{\prime}$ respeatively. If $\vdash_{\mathrm{T}} \mathrm{B}_{1} \equiv{ }^{*} \mathrm{~B}_{1}^{\prime}, \ldots, \vdash_{\mathrm{T}} \mathrm{B}_{\mathrm{n}} \equiv{ }^{*} \mathrm{~B}_{\mathrm{n}}^{\prime}$, then $\vdash_{\mathrm{T}} \mathrm{A} \equiv{ }^{*} \mathrm{~A}^{\prime}$.

Proof. After considering the special case when there is only one such occurrence and it is all of A, we use induction on the length of A.

For A atomic, the result is obvious.
A is $\neg \mathrm{C}$ and A^{\prime} is $\neg \mathrm{C}^{\prime}$, where C^{\prime} results from C by replacements of the type described in the theorem. By induction hypothesis, ${ }_{\bar{T}} C \not \equiv^{*} \mathrm{C}^{\prime}$, that is, $\vdash_{\mathrm{T}} \mathrm{C} \equiv \mathrm{C}^{\prime}$ and ${\vdash_{\mathrm{T}}}^{\mathrm{T}} \mathrm{C} \equiv \neg \mathrm{C}^{\prime}$. As by Theorem 2.4 , $\vdash_{\mathrm{T}} \mathrm{C} \equiv \neg \neg \mathrm{C}$ and $\vdash_{\mathrm{T}} \mathrm{C}^{\prime} \equiv \neg \neg \mathrm{C}^{\prime}$, we have ᄀ ᄀC $\equiv \neg \neg C^{\prime}$. So ᄀC $\equiv^{*} \neg \mathrm{C}^{\prime}$.

A is $\nabla \mathrm{C}$ and A^{\prime} is $\nabla \mathrm{C}^{\prime}$, with $\stackrel{T}{\mathrm{~T}} \mathrm{C} \equiv{ }^{*} \mathrm{C}^{\prime}$. From $\vdash_{\mathrm{T}} \mathrm{C} \equiv \mathrm{C}^{\prime}$, it follows that $\vdash_{T}{ }^{*} \mathrm{C} \equiv 7^{*} \mathrm{C}^{\prime}$, by Theorem 2.6. Also from $\vdash_{\mathrm{T}} \mathrm{C} \equiv \mathrm{C}^{\prime}$ it follows that $\vdash_{\mathrm{T}} \nabla \mathrm{C} \equiv \nabla \mathrm{C}^{\prime}$, since $\vdash_{T} \nabla C \equiv C$ by Theorem 2.4 . Therefore, $\vdash_{T} \nabla C \equiv{ }^{*} \nabla C^{\prime}$.

A is CV D and A^{\prime} is $\mathrm{C}^{\prime} \vee \mathrm{D}^{\prime}$, with $\leftarrow_{\mathrm{T}} \mathrm{C} \equiv^{*} \mathrm{C}$ and $\stackrel{\leftarrow}{\mathrm{T}} \mathrm{D} \equiv^{*} \mathrm{D}^{\prime}$. As by theorem 2.0,

$$
\digamma_{T}\left(\left(C \equiv C^{\prime}\right) \&\left(D \equiv D^{\prime}\right)\right) \supset\left((C \vee D) \equiv\left(C^{\prime} \vee D^{\prime}\right)\right)
$$

and

$$
\digamma_{T}\left(\left(\neg C \equiv \neg C^{\prime}\right) \&\left(\neg D \equiv \neg D^{\prime}\right)\right) \supset\left((\neg C \not \subset D) \equiv\left(\neg C^{\prime} \& \neg D^{\prime}\right)\right.
$$

we have that $I_{T} C \vee D \equiv C^{\prime} \vee D^{\prime}$ and $\vdash_{\bar{T}} \neg(C \vee D) \equiv \neg\left(C^{\prime} \vee D^{\prime}\right)$.
A is $\exists \mathrm{xC}$ and A^{\prime} is $\exists \mathrm{xC}^{\prime}$, with $\mathrm{C} \equiv^{*} \mathrm{C}^{\prime}$. By Distribution Rule, $\mathrm{F}_{\mathrm{T}} \exists \mathrm{xC} \equiv \exists \mathrm{xC}^{\prime}$ and $\digamma_{T} \forall x \neg C \equiv \forall x>C^{\prime}$. Using Axiom 12 we complete the proof.
I^{\prime} A is $\forall \mathrm{xC}$ and A^{\prime} is $\forall \mathrm{xC}^{\prime}$, with $\mathrm{F}_{\mathrm{T}} \mathrm{C} \equiv^{*} \mathrm{C}^{\prime}$, the proof is similar.

In the spirit of the equivalence theorem, we have the following corollaries and remark.
(COROLLARY 1. In a \mathbf{J}_{3}-theory T , it is possible to replace:
i) $7 \neg \wedge$ by \wedge;
ii) $7^{*} 7^{*} \mathrm{~A}$ by $\urcorner 7^{*} \mathrm{~A}$;
iii) $\urcorner(A \vee B)$ by $\neg A \mathcal{\&} \neg B$;
iv) $7^{2}(A \vee B)$ by $\neg^{*} A \varepsilon \neg^{*} B$;
v) $\forall x A$ by $7 \exists x \neg A$;
vi) $7 \exists x \wedge$ by $\forall x \neg \wedge$;
vii) $7 \forall x \perp$ by $\exists x \neg \wedge$;
viii) $\nabla \exists \times 1$ by $3 x \nabla A$;
ix) $\nabla \forall x \wedge$ by $\forall x \nabla A$.

Proo6. It is enough to verify that $\left.\left.\vdash_{\bar{T}}\right\urcorner \neg A \equiv^{*} A, \vdash_{\bar{T}}\right\urcorner^{*} \neg^{*} A \equiv \equiv^{*} \neg \neg^{*} A$, etc.

COROLLARY 2. In a J_{3}-theory T , if $\mathrm{I}_{\mathrm{T}} \mathrm{x}=\mathrm{y}$, then, for every formula A , $\mathrm{A}(\mathrm{x})$ can be replaced by $\mathrm{A}(\mathrm{y})$.

REMARK. Although $\left.\left.\vdash_{\mathrm{T}}\right\urcorner^{*}\right\urcorner^{*} \mathrm{~A} \equiv \mathrm{~A}$, it is not possible, in general, to replace $7^{*} 7^{*} \mathrm{~A}$ by A .

DEFINITION 4.3. A formula A^{\prime} is a variant of A just in case A^{\prime} has been obtained from A by renaming bound variables.

THEOREM 4.4. (Variant Theorem). If A^{\prime} is a variant of A , then $\vdash_{\mathrm{T}} \mathrm{A} \equiv^{*} \mathrm{~A}^{\prime}$.
Proof. In view of Theorem 4.3 and Corollary 1, it is enoughto observe that $\vdash_{\mathrm{T}} \exists \mathrm{xB} \equiv{ }^{*} \exists y \mathrm{~B}_{\mathrm{x}}[y]$.

Let $\mathrm{T}[\mathrm{r}]$ be the \mathbf{J}_{3}-theory whose non-logical axioms are those of T plus the formulas of the set Γ.

THEOREM 4.5. (Reduction Theorem). Let Γ be a set of formulas in the J_{3} theory T and let A be a formula of T. A is a theorem of T[T] if, and only if, there is a theorem of T of the form $B_{1} \supset \ldots \supset B_{n} \supset A$, where each B_{i} is the closure of a formula in Γ.

Given a non-empty set Γ of formulas we let:
$\Gamma_{V \neg \not V \nabla}=\{B \mid B$ is a disjunction of negations of closures of formulas of the type $\nabla \mathrm{A}$, with $\mathrm{A} \in \Gamma$ \}
$\Gamma_{V \neg \nabla \vee}=\left\{C \mid C\right.$ is a disjunction of negations of formulas of the type ∇A^{\prime}, where A^{\prime} is the closure of a formula of Γ \}

THEOREM 4.6. (Reduction Theorem for non-trivialization). Let Γ be a nonempty set of formulas in a \mathbf{J}_{3}-theory T . Then the extension $\mathrm{T}[\mathrm{r}]$ is trivial, if and only if, there is a theorem of T which belongs to $\Gamma_{V} \neg V V$.

Proof. The corollary to the replacement theorem gives us that every formu1a of $\Gamma_{V \neg \vee V}$ is strongly equivalent to a formula of $\Gamma_{V} \neg_{\nabla V}$. The proof of the theorem can be completed using the properties of strong negation.

COROLLARY. If A^{\prime} is the closure of A , then the formula A is a theorem of T if, and only if, $\mathrm{T}\left[7 \mathrm{~A}^{\prime}\right]$ is trivial.

5．THE COMPLETENESS AND THE COMPACTNESS THEOREMS FOK J_{3}－THEORIES

We study certain aspects of the J_{3}－theories and present a Henkin－type proof of the completeness theorem for this type of many－valued theories．

DEFINITION 5．1．If T is a \mathbf{J}_{3}－theory containing a constant，and if a and b are variable－free terms of T ，then：
i）$a \sim b={ }_{\operatorname{def}}{ }_{T} a=b$ ；
ii） $\mathrm{a}^{\mathrm{O}}=\{\mathrm{b} \mid \mathrm{a} \sim \mathrm{b}\}$ ．

DEFINITION 5．2．A canonical structure for the \mathbf{J}_{3}－theory T is the struc－ ture a ：
i）whose universe $|\mathscr{O}|$ is the set of all equivalence classes under \sim ；
ii）$f_{o l}\left(a_{1}^{0}, \ldots, a_{n}^{0}\right)=\left(f\left(a_{1}, \ldots, a_{n}\right)\right)^{0}$ ；
iii）$p_{Q}\left(a_{1}^{o}, \ldots, a_{n}^{o}\right)$ is in V_{d} iff $\digamma_{T} p\left(a_{1}, \ldots, a_{n}\right)$ ．
Observe that（iii）could have been replaced by
$p_{a d}\left(a_{1}^{\circ}, \ldots, a_{n}^{\circ}\right)=0$ iff 杵 $p\left(a_{1}, \ldots, a_{n}\right)$ ．
THEOREM 5．1．If α is a canonical structure for T and $\mathrm{p}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)$ is a variable－free atomic formula in $\mathrm{L}(\mathrm{T})$ ，then：
i）$\quad a\left(p\left(a_{1}, \ldots, a_{n}\right)\right)=0 \quad$ iff \quad 年 $p\left(a_{1}, \ldots, a_{n}\right)$
ii）$a\left(p\left(a_{1}, \ldots, a_{n}\right)\right)=\frac{1}{2}$ iff $\overleftarrow{T}_{\mathrm{T}} p\left(a_{1}, \ldots, a_{n}\right)$ and $\left.\digamma_{T}\right\urcorner p\left(a_{1}, \ldots, a_{n}\right)$ ；
iii） $\mathscr{U}\left(p\left(a_{1}, \ldots, a_{n}\right)\right)=1$ iff $\leftarrow_{T} p\left(a_{1}, \ldots, a_{n}\right)$ and 险 $\neg p\left(a_{1}, \ldots, a_{n}\right)$ ．
Proo6．ii）If $\alpha\left(p\left(a_{1}, \ldots, a_{n}\right)\right)=\frac{1}{2}$ then $O Z\left(7 p\left(a_{1}, \ldots, a_{n}\right)\right)=\frac{1}{2}$ ．By the last definition，$\varsigma_{T} p\left(a_{1}, \ldots, a_{n}\right)$ and $\varsigma_{T} \neg p\left(a_{1}, \ldots, a_{n}\right)$ ．

On the other hand，if $\stackrel{\leftarrow}{T} p\left(a_{1}, \ldots, a_{n}\right)$ and $\left.\overleftarrow{\varsigma}_{\bar{T}}\right\urcorner p\left(a_{1}, \ldots, a_{n}\right)$ ，also by Defi－ nition 5．2，$\sigma\left(p\left(a_{1}, \ldots, a_{n}\right)\right.$ and $\sigma\left(\neg p\left(a_{1}, \ldots, a_{n}\right)\right)$ belong to V_{d} ．Then， $\mathscr{G}\left(p\left(a_{1}\right.\right.$ ， $\left.\left.\cdots, a_{n}\right)\right)=\frac{1}{2}$ ．
iii）If $a\left(p\left(a_{1}, \ldots, a_{n}\right)\right)=1$ ，then $\alpha\left(\neg p\left(a_{1}, \ldots, a_{n}\right)\right)=0$ ；then，$\stackrel{T}{T}^{p}\left(a_{p}, \ldots\right.$.,$\left.a_{n}\right)$ and $\psi_{T} \neg p\left(a_{1}, \ldots, a_{n}\right)$ ．

On the other hand，if ${t_{T}} p\left(a_{1}, \ldots, a_{n}\right)$ and $H_{T} \neg p\left(a_{1}, \ldots, a_{n}\right)$ ，we have that $\sigma\left(p\left(a_{1}, \ldots, a_{n}\right)\right)$ belongs to V_{d} and $\mathscr{A}\left(\neg p\left(a_{1}, \ldots, a_{n}\right)\right)$ does not belong to V_{d} ； if $\mathscr{R}\left(p\left(a_{1}, \ldots, a_{n}\right)=\frac{1}{2}\right.$ then $\mathscr{R}\left(\neg p\left(a_{1}, \ldots, a_{n}\right)\right)=\frac{1}{2}$ and，so，$\vdash_{T} \neg p\left(a_{1}, \ldots, a_{n}\right)$ ． Then，$O l\left(p\left(a_{1}, \ldots, a_{n}\right)\right)=1$ ．

Now，（i）is inmediate．

As a consequence of the theorem we obtain that there is exactly one cano－ nical structure for a \mathbf{J}_{3}－theory．Furthermore，as in the calssical case，in order for a canonical structure to characterize the theorems of a theory，the theory must be in some sense maximal，for there may be a closed formula A such
that $\left.𠃊_{T} A, চ_{T}\right\urcorner A$ and $\nabla_{T} 7^{*} A$.
DEFINITION 5.3. A formula A of a J_{3}-theory T is undecidable in T if neither A nor $7^{* A}$ is a theorem of T. Otherwise, A is decidable in T.

DEFINITION 5.4. A \mathbf{J}_{3}-theory T is complete if it is non-trivial and if every closed formula of T is decidable in T.

THEOREM 5.2. A J_{3}-theory T is complete if, and only if, T maximal in the class of nontrivial theories.

DEFINITION 5.5. A \mathbf{J}_{3}-theory T is a Henkin \mathbf{J}_{3}-theory if for every closed formula $\exists \times A$ of T, there is a constant e such that $\exists x A \supset A_{x}[e]$ is a theorem of T.

THEOREM 5.3. If T is a Henkin J_{3}-theory, then for every closed formula VxA in T there is a constant e such that $\mathrm{A}_{\mathrm{x}}[\mathrm{e}] \supset \forall x A$ is a theorem of T .

Proof. As T is a Henkin J_{3}-theory, there is e, such that $\vdash_{T} \exists x 7^{*} A \supset 7^{*} A_{x}[e]$. We obtain the desired result, by successive applications of Theorem 2.6.

THEOREM 5.4. If T is a complete Henkin J_{3}-theory and a is the canonical structure for T , then for all closed formulas A of $\mathrm{L}[\mathrm{T}]$:
i) $a(A)=0 \quad$ iff $\vdash_{T} A$
ii) $a(A)=\frac{1}{2}$ iff $\hbar_{T} A$ and $\hbar_{T} 7 \mathrm{~A}$
iii) $a(A)=1$ iff $\vdash_{\mathrm{T}} \mathrm{A}$ and $\vdash_{\mathrm{T}} \neg \mathrm{A}$.

Proo6. By induction on the height of A. For atomic A, the result follows from Theorem 5.1.

Case: A is $7 B$. i) If $O L(A)=0$, then $\mathscr{O}(B)=1$. Thus $\nmid \neg B$, that is $\vdash_{T} A$. On the other hand if $\vdash_{T} A$, then since T is complete $\vdash_{T} 7^{*} A$, and then
 that $\alpha(B)=1$ and that $\alpha(A)=0$.
ii) If $O Z(A)=\frac{1}{2}$, then $O Z(B)=\frac{1}{2}$. Thus $\vdash_{T} B$ and $\vdash_{T} 7 B$, from which it follows that ${ }_{\top} / 7 \mathrm{~A}$ and $\vdash_{\mathrm{T}} \mathrm{A}$, the converse is analogous.
iii) If $O L(A)=1$, then $\alpha(B)=0$ and thus $\vdash_{T} B$. Since T is complete, $\left.\vdash_{T}\right\urcorner * B$ and thus $\vdash_{T} \neg B$. Since $\vdash_{T} B$, we obtain that $\left.\vdash_{T}\right\urcorner \neg B$, in other words, we have that $\stackrel{T}{T} A$ and $\left.\vdash_{T}\right\urcorner A$.

Assume next that $\Vdash_{T} A$ and $\mathscr{T}_{T} A$, that is, $H_{T} 7 B$ and $\Vdash_{T} 7 B$. Then ${H_{T}} B$, and so by induction $O L(B)=0$, from which it follows that $O L(A)=1$.

Case: A is $\mathrm{B} \vee \mathrm{C}$. i) If $\alpha(\mathrm{A})=0$ then $\sigma(\mathrm{B})=0$ and $\sigma(\mathrm{C})=0$. Hence $H_{T} C$ and $H_{T} B$, from which it follows, since T is complete, that $V_{T} B V C$. The converse is analogous.
ii) If $\sigma(A)=\frac{1}{2}$, then either: $a(B)=\frac{1}{2}$ and $\sigma(C)=\frac{1}{2}$, or $\alpha(B)=\frac{1}{2}$ and $a(C)=0$, or $\alpha(B)=0$ and $a(C)=\frac{1}{2}$.
Let us only consider the situation when $\alpha(B)=\frac{1}{2}$ and $\alpha(C) \cdot=0$ (the others are analogous). The induction hypothesis gives :s that

$$
\vdash_{T} B, \quad \leftarrow_{T} 7 B, \quad H_{C}
$$

Since T is complete we obtain that ${\varsigma_{T}} 7^{*} C$ and $\left.\leftarrow_{T}\right\urcorner C$. From $\vdash_{T} B$ we get $\vdash_{T} B V C$, and from $\left.\varsigma_{T}\right\urcorner B$ and $\left.\varsigma_{T}\right\urcorner C$ we may conclude that $\left.\vdash_{T}\right\urcorner(B \vee C)$.

Conversely, suppose that $\vdash_{T} B \vee C$ and $\left.\varsigma_{T}\right\urcorner(B \vee C)$. The latter gives us that $\left.\leftarrow_{T}\right\urcorner B$ and $\left.\digamma_{T}\right\urcorner C$. From the former, since T is complete, we obtain that either $\overleftarrow{T}_{T} B$ or $\digamma_{T} C$. The induction hypothesis allows us then to conclude that $\alpha(B \vee C)=\frac{1}{2}$.
iii) If $\mathscr{O}(\mathrm{A})=1$, then either:
$\alpha(B)=1$ and $\alpha(C)=0$,
or $a(B)=1$ and $a(C)=\frac{1}{2}$,
or $\alpha(B)=1$ and $\sigma(C)=1$,
or $a(B)=0$ and $\alpha(C)=1$,
or $a(B)=\frac{1}{2}$ and $a(C)=1$.
We will only consider the case when $\alpha(B)=1$ and $\mathscr{Q}(C)=\frac{1}{2}$. The induction hypothesis gives us that

$$
\vdash_{\mathrm{T}} \mathrm{~B}, \quad \vdash_{\mathrm{T}} \neg \mathrm{~B}, \quad \vdash_{\mathrm{T}} \mathrm{C}, \quad \vdash_{\mathrm{T}} \neg \mathrm{C} .
$$

From the first we obtain that $\leftarrow_{T}(B \vee C)$. Suppose on the other hand that $\left.\vdash_{T}\right\urcorner(B \vee C)$. Then $\vdash_{T}(\neg B \wedge \neg C)$, from which it would follow that $\vdash_{T} \neg B$, contradicting that $\left.\forall_{T}\right\urcorner B$. Thus $\left.\forall_{T}\right\urcorner(B \vee C)$.

On the other hand, suppose that $\digamma_{T}(B \vee C)$ and $\left.ケ_{T}\right\urcorner(B \vee C)$. Then from the conpleteness of T we obtain that either

$$
\varsigma_{\mathrm{T}} \mathrm{~B} \text { or } \dagger_{\mathrm{T}} \mathrm{C} \text {. }
$$

From $\left.\|_{T}\right\urcorner(B \vee C)$, we obtain that

$$
\forall_{T} \neg B \text { and } \psi_{T} \neg C \text {. }
$$

The induction hypothesis then gives us that $\alpha(B \vee C)=1$.
Case: A is VB . i) If $a(\mathrm{VB})=0$. Then $\alpha(\mathrm{B})=0$. Thus $\mathrm{H}_{\mathrm{T}} \mathrm{B}$; from which it follows that $\psi_{\mathrm{T}} \nabla \mathrm{B}$. Converse, analogous.
ii) $a(\nabla B)$ is never $\frac{1}{2}$.
iii) $\alpha(\nabla B)=1$ then either $\alpha l(B)=\frac{1}{2}$ or $a l(B)=1$.

Subcase: $O C(B)=\frac{1}{2}$. Then $\vdash_{T} B$ and $\vdash_{T} \neg B$, from which we obtain $\vdash_{T} \nabla B$ and $\vdash_{\mathrm{T}} \nabla \neg \mathrm{B}$. Using that T is complete we conclude $\vdash_{\mathrm{T}} \nabla \mathrm{B}$, and $\vdash_{\mathrm{T}} 7 \nabla \mathrm{~B}$.

Subcase: $\alpha(B)=1$. Then $\leftarrow_{T} B$ and $\forall_{T} \neg B$. Suppose that $\overleftarrow{\leftarrow}_{T} \neg \nabla B$. Then since $\digamma_{T} B$, we should obtain that T is trivial, which we are assuming it is not. Thus
$H_{T} \neg \nabla B$ and $\overleftarrow{T}_{T} \nabla B$. On the other hand, suppose that ${\overleftarrow{T}_{T}} A$ and $V_{T} 7 A$. That is suppose that

$$
\leftarrow_{T} \nabla B \text { and } U_{T} 7 \nabla B \text {. }
$$

Then $\vdash_{T} B$, and either $\leftarrow_{T} 7 B$ or $\Vdash_{\mathrm{T}} \mathrm{B}$. In one case the induction hypothesis gives that $\alpha(B)=\frac{1}{2}$, and in the other that $\sigma(B)=1$. Thus $\alpha(\nabla B)=1$ in both. That is $\alpha(\dot{A})=1$.

Case: A is $\exists \times B$. i) If $\alpha(A)=0$, then for every variable-free term b, $a\left(B_{x}[b]\right)=0$, and by induction hypothesis this is equivalent to $H_{T} B_{x}[b]$. As T is a Henkin theory this gives us that $\Vdash_{\mathrm{T}} \exists x \mathrm{~B}$. The converse does not need to use that T is a Henkin theory.
ii) If $a(A)=\frac{1}{2}$. Then for $a l l b$ we have that $\sigma_{(}\left(B_{x}[b]\right) \leqslant \frac{1}{2}$. The induction hypothesis then tells us that
(1) for those b such that $O L\left(B_{x}[b]\right)=\frac{1}{2}$ (and there is at least one such): ${ }_{T} B_{x}[b]$ and $\vdash_{T} 7 B_{x}[b]$.
(2) for the remaining b^{\prime} s: $H_{T} B_{x}[b]$ and (because T is complete) $\left.\overleftarrow{T}_{T}\right\urcorner B_{x}[b]$. Thus we have that for all constants $b:{ }_{T}{ }_{T} B_{x}[b]$; from which it follows that $\leftarrow_{T} \not{ }_{x} 7 B$, i.e. $\leftarrow_{T} \exists \times B$. From (1) we obtain $\vdash_{T} \exists x B$.

Conversely, suppose that $\vdash_{T} A$ and $\left.\varsigma_{T}\right\urcorner A$; that is $\vdash_{T} \exists x B$ and $\left.\digamma_{T}\right\urcorner \exists x B$. Using that T is a Henkin theory and induction, we obtain an e such that $T_{T} B_{x}[e]$, $\left.\vdash_{T}\right\urcorner B_{x}[e]$, and thus $\sigma\left(B_{x}[e]\right)=\frac{1}{2}$. A proof by contradiction shows that there is no b such that $O \sigma_{1}\left(B_{x}[b]\right)=1$. Hence $O l(\exists x B)=\frac{1}{2}$.
iii) If $a(A)=1$, then there is at least one b such that $a\left(B_{x}[b]\right)=1$. From the induction hypothesis, we obtain that $\vdash_{T} B_{x}[b]$ and $\iota_{T} 7 B_{x}[b]$. From the former, we obtain that $\overleftarrow{T}_{T} \exists \times B$. Suppose next contrary to what we want to show,

COROLLARY 1. Let T be a complete Henkin J_{3}-theory, ot the canonical structure for T and A a closed formula of T ; then, $\alpha(\mathrm{A})$ belongs to V_{d} if and only if A is a theorem of T .

COROLLARY 2. If T is a complete Henkin J_{3}-theory, then the cononical structure for T is a model of T .

By the above corollary, to prove the completeness of a J_{3}-theory T , as in the classical case, it is enough to show that it is possible to extend T to a complete Henkin J_{3}-theory.

Thus, given a nontrivial J_{3}-theory T , we will first extend it, conservative$1 y$, to a Henkin J_{3}-theory T_{c}, and then extend it to a complete Henkin J_{3}-theory $\mathrm{T}_{\mathrm{c}}^{\prime}$.

Given a J_{3}-theory T with language \mathbf{L}, we proceed as in [22] and define the
special constants of level n, the language L_{c} with the special constants, and introduce the special axioms for the special constants.

DEFINITION 5.6. Let T be a \mathbf{J}_{3}-theory with language L : Then T_{c} is the Henkin J_{3}-theory whose language is L_{c} and whose nonlogical axioms are the nonlogical axioms of T plus the special axioms for the special constants of L_{C}.

THEOREM 5.5. T_{c} is a conservative extension of T .
Proo6. By Theorem 4.4 and by Theorem 5.3, the proof is similar to the classical one.

THEOREM 5.6. (Lindenbaum's Theorem). If T is a nontrivial J_{3}-theory, then T admits a complete simple extension.

Finally, we can obtain the completeness theorem for J_{3}-theories.
THEOREM 5.7. (Completeness Theorem). A J_{3}-theory T is nontrivial if, and only if, it has a model.

Proob. If O is a model of T and A is a closed formula in T, then $O\left(A \xi \subset 7^{*} A\right)=0$. So, by the validity Theorem, $A \mathscr{\&} 7^{*} A$ is not a theorem in T. Then T is nontrivial.

If T is nontrivial, then we extend T to T_{c}, which is a non-trivial Henkin J_{3}-theory. By Lindenbaun's Theorem, we can extend T_{c} to a complete Henkin $\mathrm{J}_{3^{-}}$, theory T_{c}^{\prime}. By Corollary 2 to Theorem 5.4, T_{c}^{\prime} has a model α. Therefore, $a \upharpoonright \mathrm{~L}(\mathrm{~T})$ is a model of T .

THEOREM 5.8. (Göde1's Conpleteness Theorem). A formula A in the J_{3}-theory T is a theorem in T if, and only if, it is valid in T .

Proof. By supposing that the closed formula A is a theorem in T and using the above Completeness Theorem, we shall show that there is no model of T in which A is not valid.

Therefore, suppose that the closed formula A is a theorem in T.
By the corollary to the Reduction Theorem for non-Trivialization, \leftarrow_{T} A if and only if $T[7 \nabla A]$ is trivial; which, by Theorem 5.7, is equivalent to $T[7 \nabla \mathrm{~A}]$ not having a model.

On the other hand, a model of $T[7 \nabla \mathrm{~A}]$ is a model α of T in which $7 \nabla \mathrm{~A}$ is valid, that is, a structure α such $\alpha(\neg \nabla A)=1$. This is equivalent to $O L(\nabla A)$ $=0$, and so $a(A)=0$.

Therefore, ${ }^{\circ} \mathrm{T} A$ if and only if A is valid in T .

COROLLARY 3. If T and T^{\prime} are \mathbf{J}_{3}-theories with the same language, then T^{\prime} is an extension of T if, and only if, every model of T^{\prime} is a model of T .

THEOREM 5.9. (Compactness Theorem). A formula A in a \mathbf{J}_{3}-theory is valid in T if, and only if, it is valid in some finitely axiomatized part of T .

COROLLARY 4. A J_{3}-theory T has a model if, and only if, every finitely axiomatized part of T has a model.

REFERENCES .

[1] R. Ackermann, Introduction to many-valued logics, Dover, N. York, 1967
[2] A.I. Arruda, A survey of paraconsistent Logic, Mathematical logic in Latin America, North-Holland, Amsterdam, 1980, pp.1-41.
[3] A.I. Arruda, Aspects of the historical development of paraconsistent logic, to be published.
[4] L. Borkowski (Ed.), Selected works of J. Eukasiewicz, North-Holland, Amsterdam, 1970.
[5] N.C.A. da Costa, Sistemas formais inconsistentes, (Tese), Universidade Federal do Paraná, Curitiba, 1963.
[6] N.C.A. da Costa, Calculus propositionneles pour les systèmes formels inconsistonts, C.R. Acad. Sc. Paris 257 (1963), 3790-3793.
[7] N.C.A. da Costa, Calculus de prédicats pour les systèmes formels inconsistants, C.R. Acad. Sc. Paris 258 (1964), 27-29.
[8] N.C.A. da Costa, Calculus de prédicats avec égalité pour les systèmes formels inconsistonts, C.R. Acad. Sc. Paris 258 (1964), 1111-1113.
[9] N.C.A. da Costa, on the theory of inconsistent formal systems, Notre Dame Journal of Formal Logic XV (1974), 497-510.
[10] I.M.L. D'Ottaviano e N.C.A. da Costa, Sur un problème de Jaskowski, C.R. Acad. Sc. Paris 270A (1970), 1349-1353.
[11] S. Jaśkowski, Propositional calculus for contradictory deductive systems, Studia Logica XXIV (1969), 143-157 (English version of [12]).
[12] S. Jaśkowski, Rachunek zdán dla sustemów dedukcyjnych sprzecznych, Studia Societatis Scientiarum Torunensis, Sec. A, I, № 5 (1948), 55-57.
[13] S. Jaśkowski, 0 konjunkaji dyskusyjnej w rachunku zdan dla systemów dedukcyjnuch spr zeczcych, Studia Societatis Scientiarum Torunensis, Soc. A, I, № 8 (1949), 171-172.
[14] S.C. Kleene, Introduction to metamathematics, Van Nostrand, N. York, 1952.
[15] J. Kótas e N.C.A. da Costa, On the problem of Jas̃kowski and the logics of Eukasiewicz, Mathematical Logic, Marcel Dekker, N.York (1978), 127-139.
[16] J. Łukasiewicz, Philosophische Bemerkungen zu mehrwertigen systemen des Aussagenkalkülls, C.R. Soc. Sci. Lett. Varsovie 23 (1930), 51-57.
[17] J. Łukasiewicz and A. Tarki, Untersuchungen uber den Aussagenkalküll, C.R. Soc. Sci. Lett. Varsovie 23 (1930), 39-50 (English version in [4], 131152).
[18] H. Rasiowa, An algebraic approach to non-clasical Logies, North Holland, Amsterdam, 1974.
[19] H. Rasiowa and R. Sikorski, The mathematics of metamathematics, Warsaw, 1963.
[20] N. Rescher, Many-valued Logics, McGraw-Hi11, N. York, 1969.
[21] J.B. Rosser and A, Turquette, Many-valued Logics, North-Holland, Amsterdam. 1952.
[22] J.R. Shoenfield, Mathematical Logic, Addison Wesley, Reading, 1967.
[23] M. Wajsberg, Aksjomatyzacja trójwartósciowego rachunku zdań, (Axiomatization of three valued sentential calculus), C.R. Soc. Sci. Lett. Varsovie 24 (1931), 126-148.

IMECC
Universidade Estadual de Campinas
Campinas, São Paulo, Brazil.

