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THE COMPLETENESS AND COMPACTNESS OF A

THREE-VALUED FIRST-ORDER LOGIC

Itala M.L. D'Ottaviano

ABSTRACT. The strong completeness and the compactness of a

three-valued first order predicate calculus with two distin-

guished truth-values are obtained. The system was introduced

in Sur un prcb leme de Jaskowski, I .M.L. D.'Ottaviano and N.C.

A. da Costa, C.R. Acad.Sc. Paris 270A (1970) ,pp.1349-1353,

and has several applications, especially in paraconsistent

logics.

1 . INTRODUCTION.

A theory T is said to be inconsistent if it has as theorems a formula and

its negation; and it is said to be trivial if every formula of its language is

a theorem.

A logic is paraconsistent if it can be used as the underlying logic for in-

consistent but nontrivial theories.

Jaskowskl, motivated by some ideas of Lukasiewicz, was the first logician

to construct a system of paraconsistent propositional logic (see [11J, [12J and

[13]). His principal motivations were the following: the problem of the system-

atization of theories which contain contradictions, as it occurs in dialectics;

the study of theories in which there are contradictions caused by vagueness;

the direct study of some empirical theories whose postulates or basic assumptions

could be considered, under certain aspects, as contradictory ones (see [2J and

[3J ) .

Jaskowski proposed the problem of constructing a propositional calculus ha-

ving the following properties:

i.) an inconsistent system based on such a calculus should not be necces-

sarily trivial;

ii) ,the calculus should be sufficiently rich as to make posible most of

the usual reasonings;
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iii) the calculus should have an intuitive meaning.

.Jaskowski himself introduced a propositional calculus which he named "Dis-

cussi ve logic" and which was a solution to the problem. However he did recog-

nize it was not the only solution (or even the best); in [11] he states:

"Obviously, these conditions do not univocally determine the solution,

since they may be satisfied in varying degrees, the satisfaction of

condition (iii) being rather difficult to appraise objectively".

In a previous paper (see [loD, we presented a propositional system, denoted

by J
3

, which is another solution to Jaskowski's problem. A characteristic of

J
3

is that it is a three-valued system with two distinguished truth-values. Fur-

thermore, it reflects some aspects of certain types of modal logics.

In the same paper, we extended J
3

to the first-order predicate calculus

wi th equa li ty J;=

Some of these results about J3 were improved by J. Kotas and N.C .A . da Cos-

ta (see [15]).

Our aim here is to develop further the calculus J3·

In Sec. 2 we axiomatize J 3 and establish relations between this calculus

and several ~ 1 0 w n logical systems like, for example, intuitionism. We especial-

ly emphasize the close analogy between J 3 and Lukasi ewicz ' three-valued propo-

si t i onaI calculus .£3"

Our solution to .Jaskowski ' s problem is discussed in the latter part. of S e c 2.

In Sec. 3 we introduce the L
3

-Languages, amongwhose predicate symbols may

appear in addition to identity other equalities. Weaxiomatize J3-theories,

*which are three-valued extensions of J 3=' and we introduce a semantics for

them.

In Sec. 4, after obtaining some theorems about first-order J 3-theories, we •

de fine a strong equivalence which is compatible with tre fact th a t the matrices de-

fining J 3 have more than one distinguished truth-value. This relation allows

us to prove the Equivalence Theorems for J 3-theories and the Reduction Theorem

for non-Trivialization.

finally, in Sec.5, after giving a suitable definition of canonical struc-

ture, we present a Henkin-type proof for the Completeness Theorem and the Com-

pactness Theorem.

In this paper, definitions, theorems and proofs, when analogous to the cor-

responding classical ones, will be omitted.

TIle tvlodcl-theory we developed for J;3 allows us to obtain J
3

-versions of

the following classical results: tvbdel Extension Theorem, Lcs-Tarsk i Theorem,

Chang-bos Susko TIleorem, Tarski Cardinality Theorem, Lowenheim-SkolemTheorem,

Quantifier Elimination Theorem and many of the usual theorems on categoricity.

Some of the above results about J 3 were also extended to I
n

-theories,

3 ", n " ,R o'
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The mentioned results about In-theories and Model-theory will appear else-

where.

2. THE CALCULUS J
3
.

The .propositional calculus J
3

is given by the matrix M = <{O,~, 1}, {~, 1},

V, 'V,1 > , where V, 'V and 1 are defined as follows:

AVB
A

0 ~
~ ~

A lA

0 0 ~ 0 0 0

~ lo ~ lo 1 ~ ~

1 1 0

The set of truth-values and the set of distinguished truth-values are de-

noted by Vand V
d

respectively.

The 6 o l lm u la ! .> of J
3

are constructed as usually from the propositional vari-

ables, by means of v, 'V andl, and parentheses. To write the formulas, schemas,

etc. we use the conventions and notations of [14J, with evident adaptations.

The concept of a tY'Uth-function is the usual one. The truth-functions de-

fined by the tables above are denoted by H v , H V' and H , .

A t-rutn-val.uat ion v for J 3 and the t rutn-val.ue v (A) for a formula A are de-

fined in the standard way; and we observe that A is valid in M if, for every

evaluation v, v(A) belongs to V
d

(see, for example, [22]).

The following abbreviations will be used:

A & B =def'(IAV IB)

M=def''VIA

I*A =def''VA

A-- B =def 'VlA V B

A~ B =def(A>+ B)&(IB--lA)

A=>B=def''VAVB

A = B =def(A =>B)&(B =>A)

I is called weak negation or simply negation, 1* is called strong negation,

and =>basic implication of J
3

.

We present (he tables of some of the non -primi ti ve connectives:

B
Ac>+B

A i*A A M A 0 lo

0 1 0 0 0

~ 0 lo 0 ~ ~

0 1 0 ~
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A:::J B

B

.!I 0 J,

0

"
0

"0

"

A = B

B
A 0 J,

0 1 0 0

"
0

"
J,

0 ~

In the following theorems, we mention only those results which are useful

to the proofs of later theorems.

1 1 1 1 ::0 1 < 0 1 2 .1 . The follow ing echemae of J
3

are valid in M :

l 1.1\ = 1\

'I *A :::J IA

1\ V 'll\

1 & \ i;'1 /\1

l \ i ; ( 1 3 V 113) = A

- I (1\ V 13):::J 'lA~ 113

\ V 13 = l ( If. (; I B)

I ~\ i ; 3) = I ,\ V 113

V ,\" 'Ie le \

(:\ :::JI.-\) :::J i1\

( l.-\ :::J .-\):::J A

'l (V,\ V iVA) :::J B

((A :::J13) :::JA):::J A

(.\:::J l\) :::J (.-\>+ B)

(1 \» 13) :::J (IB>+ IA).

VA = A

VA = VVA

IA V VA

!\61A=iA6VA

A V VA = VA

I VA:::J (VA:::J B)

A:::J(IVA:::JB)

VG'\&B) = VA&VB

V(A v B ) = VA v VB

A>+ (13)+ A)

(IA:>+ 113):>+ (13:>+ A)

(A:>+ 13):>+ ((13:>+ C):>+ (A>+ C))

(A:>+ 113) > + A) > + A

t> (A > + B ) > + t,(M > + t > B )

T IIL O I(~ ~ I 2 .2 . The follow ing schemas are not valid in J
3

:,

11\ :::J (1\ :::J B)

A :::J (,;\ :::J 13)

1.!\:::J(A::>IR)

1\ ::>(II\=,B)

1\ i ; 11\ :::J 13

1\&l;\::>IB

(A=I,\):::J B

(1\ = I A) ::> 113

(I\:::J 13) :::J ((A:::J 113) :::J IA).

(A:::J B) :::J (,B:::J I A)

( I A :::J I B) :::J (B ::> A)

(A:::J IB):::J (B:::J IA)

( I A :::J B) :::J (I B :::J A)

(A = B) ::> (I A = I B)

A V lB (; I B) = A

A:::JB"'Q\.&IB)

A:::JB=IAVB

l t can be veri fied that, instead of V, V and I it is possible to use only

I and > - as primitive connectives of J
3
, considering A V 13 and VA as abbre-

viations respectively of (A:>+13):>+ 13 and " lA > - A.
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So, there is a close analogy between J
3

and bukasiewicz' three-valued prop-

ositional calculus .L
3
' defined by the matrix M' = <{O '''' 1}, {n ,', > + > , in

which the L u k a s iewi cz-Tarsk i operators " l and > - are given by the respective

tables of J
3

(see [4]).

J
3

can be axiomatized by:

Axiom 1

Axiom 2

Axiom ;3

Axiom 4

A:1;iom5

Rule R1

Rule R2

6(A:o+ (B e - A))

ts ( ( A : :> + B):>+ ((B;>+ C):» ( A ;> + C)))

fI( ( iA:>+iB);>+ (B»- A ) )

6 (( ( A :> + , A ) :> + A ) :> + A)

6 (fl ( A :> + B) :> + fI (M»- fiB)

A,6(A:>+ B)

B

IlA

A

The completeness theorem for J 3 is proved from the completeness of £3' due

to Wajsberg (see [4] and [23]), using the following theorem.

THEOREM 2.3. If A is a theorem of £y then flA is a theorem of J
3

.

PMO 6. As the axioms 1 to 4 are the axioms of £3 preceeded by ts , if A is an

axiom of £3' then 6A is a theorem of J 3'

Let A be obtained from B and B:>+A by the rule B,B; A of.£ 3' By induction

hypothesis, 6B and 6 (B:>+A) are theorems of J 3' By axiom 5 and R1 we obtain

6(6B:>+ M). Applying R" we have that 6A is a theorem of J 3'

THEOREM 2.4. (Completeness theorem for J 3)' A formula A is a theorem of

J
3

if and only if A is ual.i.d in M .

PJtoo6. A st raightforward induction shows that if A is a theorem of J3, then

A is valid.in M. On the other hand, if A is valid in M, then v(IlA) = 1 for eve-

ry truth -valuat;i.on v , By the axiomatization and completeness of .£3' both IlA

and MIlA:>+IlA) are theorems of £3' By the above theorem and R" IlA is a theorem

of J3' B y R z ' A is a theorem of J3'

COROLLARY (MJdus Ponens Rule). If both A and A ::: l B are theorems of J
3

>

then B is a theorem of J
3

.

However, contrary to 1 .
3

' the Rule of MJdus Ponens is not valid with respect

to:>+.

For sone of the theorems that follow it will be convenient to assume that

the language of J
3

contains, as primitive symbols, all the connectives intro-

duced so far. In particular we shall often identify J3 with the set of M-valid

formulas in the expanded language.
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The Io l lowi.ng theorems will be used in the proofs of many of the results

about J 3 "

T H E O R E M 2 .5 . J
3

is a non-conservative extension of the classical positive

propositional calculus w ith ccnnecti.oee V, & , =>, =: •

T H E O R H I 2 .6 . J
3

is a conservative extension of the classical proposition-

al calculus w ith connectives I", V, & , =>and =:

T IIE O R E M 2 .7 . J
3

is a non-conservative extension of bukaseew icz' three-

oal.ued logic); 3 iai. th connectives - ',:> + .

T IIE O R E M 2 .8 . J
3

is not functionaUy complete.

P~oo6. It is not possible to define a connective, from the primitive conec-

tives of J
3

, such that its truth-value is identically ~.

On the other hand, if we add the Slupecki T operador to the primitive con-

nectives of J
3

, the calculus becomes functionally complete (see [21J).

By Theorem 2.4, the formulas lA=> (A =>B), A=> (IA =>B), A=> (IA=> IB),

(A& IA) =>B, (A =>B)=> CCA=>IB)=>IA), A=> (B& IB) =: A, etc., are not theo-

rems of J 3 " So, in J
3

, in general, it is not possible to deduce any formula

whatsoever from a contradiction. Therefore, based on such a calculus we can

construct nontrivial inconsistent deductive systems, in the sense of [11J. S~,

J
3

satisfies condition (i) of Jaskowski's problem.

By Theorem 2 .5 to 2 .8 , J
3

is quite a strong system, which evidently satisfies

.Jaskowski's condition (ii).

J
3

admits intuitive interpretations. For instance, it can be used as the

underly ing logic of a theory whose preliminary formulation may involve certain

contradictions, which should be eliminated in a later reformulation. This can

be done as follows; among the truth-values of J
3

, 0 can represent falsity, 1

truth, and ~ can represent the provisional value of a proposition A, so that

both A and the negation of A are theorems of the theory, in its initial formu-

lation; in a later reformulation, the truth-value ~ should be reduced, at least

in principle, to 0 or to 1.

TI1erefore, J
3

is a solution to Jaskowski's problem.

J
3

can also be used as a foundation' for paraconsistent systems, in the

sense of da Costa (see [5J, [6J, [7] and [8]). In this case, the value 0 rep-

rcscnt s fa l s i ty , 1 truth,and ~ represents the logic value of a formula that is

s i mul t.mcous Iy true and false.
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Finally, as the calculus J
3

·was constructed from £3' it is possible cO ob-

tain similar calculi In, from Lukas iewi cz n-valued calculi £n' 3 ~ n < l(o '

3 . S E M A N T IC S F O R F IR S T -O R D E R J
3

-T H E O R IE S .

The symbols of a first-order L
3

-language are the individual variables, the

function symbols, the predicate symbols, the primi ti ve connectives I, V and 'V,

the quantifies 3 and lJ, and the parentheses.

The identity = must be among the predicate symbols. Other equalities can b e

especified among the predicate symbols.

We use x,y,z and w as syntactical variables for individual variables; f and

g, for function symbols; p and q, for predicate symbols, and c for constants.

The definitions of term, atomic [ormul.a and [ormul a are the usual ones; a,

b,c, etc. are syntactical variables for terms and A,B,C, etc. for formulas.

By an L
3
-language we understand a first-order language whose logical sym-

bols include the ones mentioned above.

The symbols &,>+,:>+,::>, = , 1:1 and 1 * are defined in the L
3

-languages, as

in J
3

.

Free occurrence of a variable, open formula, closed fo~nula, variable-free

term and closure of a fomrula are used as in [22].

The definition of a is substitutible for x in A is also the usual one.

We let bXl, 00 • , Xn [a1' 00 • , an] be the term obtained from b by replacing all

occurrences of xl'" . ,xn by al, ... ,an respectively; and we let AX1,... ,Xn [al,

... , an] be the formula obtained from A by replacing free occurrences of xl" .

. , x
n

by a1'oo.,a
n

respectively.

Whenever either of these is used, it will be implicitly a s s u n e d that xl'"

"xn are distinct variables and that, in the case ofAxl, ... ,Xn[al,· .. ,an], ai

is substitutible for Xi' i = l, ... ,n.

In the following definitions, let L be an L
3
-language.

DEFINITION 3.1. A structure a l for a first-order L
3

-language L consists

of:

i) a nonernpty set Ja [ , called universe of a . ;

ii) for each n-ary function symbol f of L, a function f from [ a l [n to [ a I ;

iii) for each n-ary predicate symbol p of L, other than an n-ary predicate

P a ' such that P a is a mapping from JalJx.oox[all to {O,~,l}.

A s in [22], we construct the language L(al); define a l (a) for each variable

free term of L(al), and define O L -instance of a formula A.

We u s e i and j as syntactical variable for the nane s of individuals of O l .
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DEFINITION 3.2. The truth-value O l (A) for each closed formula A in 1 ( a )

is given by:

i ) if A is a = b, then O l (A) = 1 iff O l (a) = O l (b); otherwise, a ( A ) = 0;

ii) if A is p(a
1

, ... ,a
n

), where p is not =, then O l( A ) = p~(a(al),· · ·a(an));

iii) if A is ..,B, then a (A) is H -, ( O l (B) ) ;

iv) if A is IJB, then O l( A ) is HIJ(Ol(B));

v) if A is B V C, then OleA) is HV(Ol(B) , O l( C ) ) ;

vi) if A is a 3xB , then O l (A) r n a x { O l (Bx[iJ)/i e:: L(Ol)};

v ii) if A is a VxB, then O l (A) = min{Ol (Bx[i])/i e:: L(Ol)}.

DEFINITION 3.3. (1) A fonnula B of L(Ol) is t.rue in Ol (or a is a model.

of B) iff a (B) e:: Yd'

(2) A fonnula A of L is valid in O l iff for every Ol-instance A' of A, A'

is true in a .

*A first-order predicate calculus J
3

= is the formal system whose language

is an L
3

plQS the following, with the usual restrictions (see [14J):

Axiom 6 Vx(x = x)

Axiom 7 x = Y '" (Alx] = A[y])

Axiom 8 Ax[a] '" 3xA

Axiom 9 VxA '" A [a]
x

Axiom 10: 3xA = .., Vx lA

Axiom 11: VxA = l3xlA

Axiom 12: '3xA = Vx ,A

Axiom 13: " l VxP. = 3XIA

Axiom 14: 1J3xA =]xIJA

Axiom 15: IJVxA= VxlJA

Rule R3 (3-in t.roduct ion Y 'U le) :
A .:::> C

3xA '" C

Rule R4 ( V-introduction rule) :
C "'A

C "'lJxA

*THEOREM 3.1. J
3

= is a conservative extension of J
3

.

P J to o 6 . We apply the Hilbert-Bernays theorem of k-t rans forms , that can be

extended to this case.

*THEOREM 3.2. J
3

= is an extension of the classical predicate calculus,

w ith connectives ,* , V, &, "', = , 3 and V.

DEFINITION 3.4. A first-order J
3
-theory is a formal system T such that:

i ) the language of T, L(T), is an L
3

-language;
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*ii) the axioms of T are the axioms of J
3

=, called the logical axioms of T, and

certain further axioms, called the non-logical axioms;

*iii) the rules of T are those of J 3=

A is a tiheorem of T, in symbols: ~ A, and B is a semantical consequence of

a set r of formulas of L(T) are defined in the standard way. If B is a seman-

tical consequence of f, then we shall also say that "B is valid in I '" ,

THEOREM3.3. (Validity Theorem): Every theorem of a J 3-theory T is valid

in T.

4. SOME THEOREMS IN FIRST-ORDER J
3
-THEORIES AND THE EQUIVALENCE

THEOREM.

DEFINITION 4.'. A J
3

-theory T is finitely trivializable if there exists

a fixed formula F such that, for any formula A, F ::;)A is a theorem of T (see

[2]) .

THEOREM4.'. The J
3
-theories are finitely trivializable.

Pltoo6. Any formula ,(,VA V VA) trivializes a J
3

-theory.

The following results hold in any J 3-theory T:

Generalization Rule: If fy A, then fy VxA.

Subebi tut.ion Rule: Is l ' A and A' is an instance of A, then f.:r A'.

Substitution Theorem : a) fy Ax" ,xn [a" ... ,an]::;) 3X,,,. xnA

b) fy lJx, V ~ A : : ; ) Ax"". ,~[a" ... ,an]

Distribution Rule: If fy A ::;)B, then fy 3 xA::;) 3 x B and 'r VxA = > Vl!B.

Closure Theorem : If A' is the closure of A, then fy A if and only if 'r A' .

TheoY'emon Constants: If T' is a J
3

-theory obtained from T by adding new

constants (but no new nonlogical axioms), then for every formula A of T and

every sequence e" ... ,en of new constants, fy A if and only if hrlAx" ... ,xn

[e"".,en]·

In the case of classical logic, the equivalence = behaves as a congruence

relation with respect to the other logical synbols. Unfortunately this is not

the case in J
3

-theories, for it is possible to have 'r A = B and "'rIA = ,B.

However we can introduce a stronger equivalence, = * , which is a J;-con-

gruence r~lation and thus allow us to prove a J 3-version of the ecui valence

theorem (see [22]).
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DEFINITION 4.2. A ,,* 13 = def(A " 13)&( ,A ",B).

THEOREM 4.2. If T is a J
3
-theory and

fy 8.

*fy A " B, then 'r A if and only if

TIII,OR[~' 4.3. (Equivalence Theorem). Let T be a J
3
-theory and let A' be

obtained from A by replacing some occurrences of B1, ... ,B
n

by B;, ... ,B~ respea-

* * I * 1

tivcJly. If fr131 x" 8'" ... ,fyBn " Bn , then 1'A" A.

P~oon, After considering the special case when there is only one such occur-

rence and it is all of A, we use induction on the length of A.

For f \ atom ic, the result is obvious.

1\ is ,C and A' is ,C', where C' results from C by replacements of the

type described in the theorem. By induction hypothesis, l ' C ,,* C', that is,

h y C " C' and 'r iC "iC'. As by Theorem 2.4, l ' C "i IC and l ' C' "i iC',

we h .iv c i ,C " 'iC'. So iC ,,* -'C'.

* .
A is 'VC rm d A' is 'VC', with l ' c" C'. From h r C " C', It follows that

fr -;*C ,,' *C', by Theorem 2.6. Also from l ' C " C' it follows that 'r 'VC " \lC ',

*since fr \lC " C by Theorem 2.4. The re fo re , h r 'VC" 'VC'.

A is Cv n and A' is C' V 0', with T-C ,,* C and f:rD ,,* D'. As by theorem

2.0,

l ' ((C = C') &(D " 0')) ::::>((C V D) " (C' V D'))

and

h y ((,C ",C')&(,D =,D'))::::> ((,C&,D) ,,(,C'&,D')

w e h a v e that 'T C V D " C' V 0 ' and 1'i(C V D) "'(C' VD') .

..\ is 3xCandA ' is 3xC', with C ,,* C'. By Distribution Rule, l ' ~xC" 3xC'

and 'r Vx 1C " lJx, C'. Using Axiom 12 w e complete the proof.

*I' ,\ is VxC and A' is VxC'; with 'r C" C', the proof is similar.

In the sp i r i t of the equivalence theorem, we have the following corollaries

: l/ ld rc m a rk .

Cll!WI.1.1\](Y 1. In a J
3
-theory T, it is possible to replace:

i) "i\ hy A;

j i) l'" 1"'.1\ hy ,,"A;

iii) ,(A V B) bv 1!\& 113;

i v ) "\1\ V 13) by ,*/1& 1 *8;

v ) VX1\ by ,3X'i\;

v i ) 13x/\ b y lJx l;\;

v ii) l Vx,\ I,, ' ax l ; \ ;

viii) 'V3X'\ by 3x'V;\;

i x ) 'VVx1\ hy Vx'V/\.
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* * * * *P IL 0 0 n . It is enough to verify that hr"A:= A, hr' I A:= " A, etc.

COROLLARY2. In a J 3-theory 'C if fr x = y, then, for every formula A,

A(x) can be replaced by A(y).

REMARK. Although hr' * I *A :=A, it is not possible, in general, to replace

l * ,*A by A.

DEFINITION 4.3. A formula A' is a variant of A just in case A' has been

obtained from A by renaming bound variables.

*THEOREM4.4. (Variant Theorem). If A' is a variant of A, then 'r A:= A'.

P IL o o 6 . In view of Theorem 4.3 and Corollary 1, it is enough to observe that

fr 3xB :=* 3YBJy].

Let T[r] be the J
3
-theory whose non-logical axioms are those of T plus the

fo rmul as of the set r.

THEOREM 4.5. (Reduction Theorem). Let f be a set of formulas in the J3-

theory T and let A be a formula of T.

there is a theorem of T of the form

closure of a formula in r .

A is a theorem of T[r] if, and only if,

B
j

:::J ... :::J Bn:::J A, where each B
i

is the

Given a non-empty set r of formulas we let:

r V ,l, '\ l = {B I B is a disjunction of negations of closures of fcrmul as of

the type \lA , with A ~ r}

r VlllV {C I C is a disjunction of negations of formulas of the type \lA ',

where A' is the closure of a fo rmul a of r}

THEOREM 4.6. (Reduction Theorem for non-t r i vialization). Let r be a non-

empty set of formulas in a J
3
-theory T. Then the extension T[r] is trivial, if

and only if, there is a theorem of T which belongs to r V I V I7 '

P lL O o 6 . The corollary to the replacement theorem gives us that every formu-

la of r V ,l, ''il is strongly equivalent to a fonnula of I 'v., 'i l l," The p roo f of the

theorem can be completed using the properties of strong negation.

COROLLARY. If A' is the closure of A, then the formula A is a theorem

ofT if, and only if, T[I*A'] is trivial.
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5. THE COMPLETENESS AND THE COMPACTNESS THEOREMS FOk J
3
-THEORIES

We study certain aspects of the J
3

-theories and present a Henkin-type proof

of the completeness theorem for this type of many-valued theories.

DEFINITION 5.'. If T is a J
3

-theory containing a constant, and if a and

b are variable-free terms of T, then:

i) a '" b = def fy a = b;

ii) a
O

= {b la '" b}.

DEFINITION 5.2. A canonical structure for the J
3
-theory T is the struc-

ture Ol :

i)

j i)

iii)

whose universe lOll is the set of all equivalence classes unde r :»;

o 0 0
f
Ol

(a" ,an) = (f(a" ... ,an)) ;

Poz(a~, ,ag) is in V d iff hycp(a" ... ,an)·

Observe th0t (iii) could have been replaced by

( 0 0) 0 1"ffPOl a" ... ,an =

THEORE~I 5.'. If O l is a canonical structure for T and p(a" ... ,an) is a

variable-f'ree atom ic formula in L(T), then:

r ) 0l(p(a1, ,an)) = 0 iff Ifrp(a" ,an)

ii) OZ(p(a" ,an)) = ~ iff 1'p(a" ,an) and 1"p(a" ... ,an);

iii) OZ(p(a" ,an)) =, iff 1'p(a" ,an) and h!r,p(a"oo.,an).

P fL o o 6 . i i.) If OZ(p(a" ... ,an)) = ~ then OZ(lp(a" ... ,an)) = ~. By the last'

definition, 1'p(a"oo.,an) and fylp(a".oo,an).

O n the other hand, if 1'p(a"oo.,an) and 1"p(a" ... ,an), also by.Def i-

n i t i on 5.2, Ol(p(a"oo.,an) and OZ(lp(a" ... ,a
n

)) belong to V
d

. Then, OZ(p(a"

.... ,a
n

)) = ~ .

iii) If Ol(p(a" ,an)) = " then Ol(ip(a" ... ,an)) = 0; then,fyp(ap'oo

.,an) and I"r'p(a" ,an).

O n the other hand, if 'r p(a" ... ,an) and "r,p(a" ... ,an)' we have that

OZ(p(al'".,a
n

)) belongs to Vd and OZ(lp(a"".,an)) does not belong to V
d

;

if OZ(p(a" ... ,an) = ~ then a (lp(a" ... ,an)) = ~ and, so, l 'lp(a" ... ,an)'

Then, OZ(p(a"oo.,an)) = 1.

Now, (i) is immediate.

As a consequence of the theorem we obtain that there is exactly one cano-

nical structure for a J
3

-theory. Furthermore, as in the calssical case, in

order for a canonical structure to characterize the theorems of a theory, tIle

theory n~st be in some sense maximal, for there n la y be a closed formula A such
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*that hfA, hf IA and b f I A.

DEFINITIOI, 5.3. A fonnula A of a J
3

-theory T is undecidable in T if ne i-

ther A not I*A is '1 theorem of T. Otherwise, A is decidable in T .

DEFINITION 5.4. AJ
3

-theory T is complete if it is non-trivial and if

every closed formula of T is decidable in T.

THEOREM5.2. A J
3
-theory T is complete if, and only if, T maximal in the

class of nontrivial theories.

DEFINITION 5.5. AJ
3

-theory T is a Henkin J
3
-theory if for every closed

formula 3xA of T, there is a constant e such that 3xA :::>' \ e r e ] is a theorem of T.

THEOREH 5.3. If T is a Henkin J 3-theory, then for every closed formula

VxA in T there is a constant e such that Ax[e] :::>VxA is a theorem of T .

PJr.oon. A s T is a Henkin J
3

-theory, there is e, such that hr ]x "*A:::>l*~[el.

Weobtain the desired result, by successive applications of Theorem 2.6.

THEOREM5.4. If T is a complete Henkin J
3
-theory and CJl is the canonical

structure for T, then for all closed formulas A of L[T] :

i) CJl (A)

ii) CJl (A)

iii) a (A)

o iff I- f A

~ iff 'r A and hr IA

1 iff 'r A and hf IA.

PMOn. By induction on the height of A. For atom ic A, the result follows

from Theorem 5. 1.

Case: A is lB. i) If OZ (A) = 0, then OZ (B) = 1. Thus I- f IB, that is

h Ir A. On the other hand if hf A, then since T is conpl ete Ir I*A, and then

.hrIA, fyllB, fyB. Thus we have that IrB and ~'B, from which if follows

that OZ (B) = 1 and that CJl (A) = O.

ii) If Ol: (A) = ~, then Ol: (B) = ~. Thus 'r B and 'r I B, from which it fol-

lows that Ir..,A and 'r A, the converse is analogous.

iii) If a (A) = 1, then OZ (B) = 0 and thus ~ B. Since T is comple te ,

hrl*B and thus hr-'B. Since ~B, we obtain that hr..,-'B, inothetwords, we

have that 'r A and l· flA.

Assure next that If A and 'r A, that is, hfT1B and hr..,B. Then IIr B, and

so by induction o l . (B) '" 0, from which it follows that OZ (A) ~ 1.

Case: A is B V C. I) If OZ (A) = 0 then OZ (B) = a and o n e ) = O. Hence

"r C and h Ir B, from which it follows, since T is conp Ie te , that ~ B V C. The

converse is analogous.
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i i ) If (Jl (A) ~,then either: a (B) = ~ and (Jl (C) = ~ ,

or (Jl (B) = ~ and (Jl (C) = 0,

or (Jl (3) = 0 and (Jl (C) = !~.

Let us only consider the situation when (Jl(B) = ~ and Ol(C)·= 0 (the others are

analogous). The induction hypothesis giv S ,5 that

'r B, hr IB, f.f C.

Since T is complete we obtain that 'r I *C and hr"1 C. From 'r B we get fr B V C,

and from hr I B and hr 1 C we may conclude that fr 1 (B V C) .

Conversely, suppose that 'r B V C and 'r I (B V C). The latter gives us that

'r 1B and 'r I C. From the former, since T is complete, we obtain that ei they

hr B or hr C. The induction hypothesis allows us then to conclude that

a (B V C) = y , .

iii) If (Jl (A) 1, then ei the r :

a (B) 1 and a (C) = 0,

or (Jl ( B ) 1 and Ol (C) = ~,

or a (B) 1 and a (C) 1 ,

or a (B) 0 and a (C) 1,

or a (B) = ~ and a (C) 1 .

We will only consider the case when (Jl (B) 1 and (Jl (C) = ~ . The induction

hypothesis gives us that

hr B, iIr IB, 'r C, 'r IC.

From the first we obtain that ~(B V C). Suppose on the other hand that

". I (B V C). Then 'r ( , B fI I C), from which it would follow that 1y"1B, contra-.

dieting that 1ft I B. Thus 1ft I (B V C) .

On the other hand, suppose that fr(B V C) and "T" 1 (B V C). Then from the

con~leteness of T we obtain that either

fr B or hr C.

From f" r 1 (B V C), we obtain that

Ih r lB and Ih r IC.

The induction hypothesis then gives us that (Jl (B V C) = 1.

Case: A is VB. i) If Ol (VB) = O. Then (Jl (B) = O. Thus "r B; from which it

follows that Ifr VB. Converse, analogous.

ii) Ol (VB) is never ~.

iii) (Jl (VB) = 1 then either (Jl (B) = ~ or (Jl (B) = 1.

Subcase:Ol(B) = ~ . Then hr Band IyIB, from which we obtain hr VB and

'r 'liB. Using that T is complete w e conclude 'r VB, and 't IVB.

Subcase : Ol (B) = 1 . Then ,.. B and '* r 'lB. Suppose that hr I VB. Then since

hr B, we should obtain that T is trivial, which we are assuming it is not. Thus



� iVB and hy VB. O n the other hand, suppose that hy A and IT IA. That is sup-

pose that

h r VB and IT I VB.

Then 'r B, and either 'r IB or h f B. In one case the induction hypothesis gives

that Ol (B) = lo, and in the other that O l: (B) = 1. Thus Ol (VB) = 1 in both. That

is Ol (A) = 1.

Case: A is 3xB. i) If Ol (A) = 0, then for every variable- free 'te rm b,

(Jl (Bx[bJ) = 0, and by induction hypothesis this is equivalent to IJ r Bx[b]. As

T is a Henkin theory this gives us that '*F 3xB. 'The converse does not need to

use that T is a Henkin theory.

ii) If (Jl ( A ) = lo. Then for all b we have that (Jl (Bx[bJ) ~~. The inductim

hypothesis then tells us that

(1 ) for those b such that O l: (B [bJ) = ~ (and there is at least one such) :
x

hyBx[b] and hyIBx[b].

(2) for the remaining b ' s : Ik
T

B [b] and (because T is complete) bTiB [e].
x x

Thus we have that for all constants b: 'r IBx[b]; from which it follows that

t- r lJx iB, i.e. f-:r 3xB. From (1) we obtain 73xB.

Conversely, suppose that for A and hy I A; that is hy 3xB and hr 13xB. Using

that T is a Henkin theory and induction, we obtain an e such that 'r BX[e],

hr"iBx[e], and thus a (Bx[e]) = ~ . A proof by contradiction shows that there

is no b such that O l: (Bx[b]) = 1 . Hence Ol (3xB) = ~ .

iii) If (Jl (A) = 1, then there is at least one b such that (Jl (B
x
[b]) = 1.

From the induction hypothesis, we obtain that hy B)b] and � I Bx[b]. From the

fonner, we obtain that hy 3xB. Suppose next contrary to what we want to show,

that hr'3xB. Then hr'3xlB and thus hrIBx[bJ, a contradiction. Thus Llri3xB.

COROLLARY 1. Let T be a complete Henkin J 3-theory, O l the canonical

et ruct.ure for T and A a closed fomrula of T; then, a (A) belongs to V
d

if and

qnly if A is a theorem of T.

COROLLARY 2. If T is a complete Henkin J
3
-theory, then the canonical

stY 'Ucture for T is a model of T.

By the above corollary, to prove the completeness of a J
3

-theory T, as in

the classical case, it is enough to show that it is possible to extend T to a

complete Henkin J
3

-theory.

Thus, given a nontrivial J 3-theory T, we will first extend it, conservative-

ly, ~o a Henkin J
3
-theory T

c
' and then extend it to a complete Henkin J3-theo-

ry T
t
·

Given a J
3

-theory T with language I., we proceed as in [22J and define the



special constants of level n, the language L
c

with the special constants, and

introduce the special axioms for the special constants.

DEFINITION 5.6. Let T be a J
3

-theory with language L: Then Tc is the Hen-

kin J
3

-theory whose language is L
c

and whose nonlogical axioms are the nonlogi-

cal axioms of T plus the special axioms for the special constants of Lc'

THEOREM5.5. T
c

is a conservative extension of T .

P lW o 6 . By Theorem 4.4 and by Theorem 5.3, the proof is similar to the clas-

sical one.

THEOREM5.6. (Lindenbaum's Theorem). If T is a nontrivial J
3
-theory, then

T adm its a complete simple extension.

Finally, we can obtain the completeness theorem for J
3

-theories.

THEOREM5.7. (Completeness Theorem). A J
3
-theory T is nontrivial if, and

only if, it has a model:

PIWO 6. If O l is a model of T and A is a closed formula in T, then

Ol(A& l *A) = O. So, by the validity Theorem, A&l *A is not a theorem in T . Then

T is nontrivial.

If T is nontrivial, then we extend T to T
c
' which is a non-trivial Henkin

J3-theory. By Lindenbaum's Theorem, we can extend T
c

to a complete J-fnkin J
3

-.

theory I'. By Corollary 2 to Theorem 5.4, T' has a model O l. Therefore,
c .c

Ol [L(T) is a model of T.

THEOREM5.8. (COdeI 's Completeness Theorem). A formula A in the J
3
-theo-

"ry T is a theorem in T if, and only if, it is valid in T.

P lW o 6 . By supposing that the closed formula A is a theorem in T and using

the above Completeness Theorem, we shall show that there is no model of T in

~lich A is not valid.

Therefore, suppose that the closed formula A is a theorem in T.

By the corollary to the Reduction Theorem for non-Trivialization, hrA if

and only if T[ TvA] is trivial; which, by Theorem 5.7, is equivalent to T[ lVA]

not having a model.

O n the other hand, a model of T[ l VA] is a model O l of T in which "' VA is

valid, that is, a structure Ol such a ( - , VA) = 1. This is quivalent to Ol (VA)

= 0, and so O l (A) = O.
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Therefore, 'r A if and only if A is valid in T.

COROLLARY 3. If T and T' are J
3
-theories with the same language, then T'

is an extension of T if, and only if, every model of T' is a model of T.

THEOREM 5.9. (Compactness Theorem). A formula A in a J
3
-theory is valid

in T if, and only if, it is valid in some finitely axiomatized part of T.

COROLLARY 4. A J
3
-theory T has a model if, and only if, every finitely

axiomatized part of T has a model.
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