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THE COMPLETENESS AND COMPACTNESS OF A
THREE-VALUED FIRST-ORDER LOGIC

Itala M.L. D'Ottaviano

ABSTRACT. The strong completeness and the compactness of a
three-valued first order predicate calculus with two distin-
guished truth-values are obtained. The system was introduced
in Sur wn probleme de Jafkowski, 1.M.L. D'Ottaviano and N.C.
A. da Costa, C.R. Acad.Sc. Paris 270A (1970),pp.1349-1353,
and has several applications, especially in paraconsistent
logices.

1. INTRODUCTION.

A theory T is said to be ineonsistent if it has as theorems a formula and
its negation; and it is said to be trivial if every formula of its language is
a theorem.

A logic is paraconsistent if it can be used as the underlying logic for in-
consistent but nontrivial theories.

Jaskowski, motivated by some ideas of hukasiewicz, was the first logician
to construct a system of paraconsistent propositional logic (see [11], [12] and
[13]). His principal motivations were the following: the problem of the system
atization of theories which contain contradictions, as it occurs in dialectics;
the study of theories in which there are contradictions caused by vagueness;
the direct study of some empirical theories whose postulates or basic assumptions
could be considered, under certain aspects, as contradictory ones (see [2] and
[3D).

JaSkowski proposed the problem of constructing a propositional calculus ha-
ving the following properties:

i) an inconsistent system based on such a calculus should not be necces-
sarily trivial;

ii) the calculus should be sufficiently rich as to make posible most of
the usual reasonings;

77



78

iii) the calculus should have an intuitive meaning.

Jagkowski himself introduced a propositional calculus which he named '"Dis-
cussive logic" and which was a solution to the problem. However he did recog-
nize it was not the only solution (or even the best); in [11] he states:

"Obviously, these conditions do not univecally determine the solution,

since they may be satisfied in varying degrees, the satisfaction of

condition (iii) being rather difficult to appraise cbjectively".

In a previous paper (see [10]), we presented a propositional system, denoted
by J4, which is another solution to Jaskowski's problem. A characteristic of
J; is that it is a three-valued system with two distinguished truth-values. Fur-
thermore, it reflects some aspects of certain types of modal logics.

In the same paper, we extended J; to the first-order predicate calculus
with equality J3=.

Some of these results about Js were improved by J. Kotas and N.C.A. da Cos-
ta (see [15]).

Our aim here is to develop further the calculus J.

[n Sec. 2 we axiomatize J; and establishrelations between this calculus
and several known logical systems like, for example, intuitionism. We especial-
ly emphasize the close analogy between J} and hukasiewicz' three-valued propo-
sitional calculus .E3.

Our solution to JaSkowski's problem is discussed in the latter part of Sec2.

In Sec. 3 we introduce the L3-L:mguages, among whose predicate symbols may
appear in addition to identity other equalities. We axiomatize Js-theories,
which are three-valued extensions of J§=, and we introduce a semantics for
them.

In Sec. 4, after obtaining some theorems about first-order J3~theories, we
define a strong equivalence which is compatible with the fact that the matrices de-
fining J5 have more than one distinguished truth-value. This relation allows
us to prove the Equivalence Theorems for J;-theories and the Reduction Theorem
for non-Trivialization.

Finally, in Sec.5, after giving a suitable definition of canonical struc-
ture, we present a Henkin-type proof for the Completeness Theorem and the Com-
pactness Theorem.

In this paper, definitions, theorems and proofs, when analogous to the cor-
responding classical ones, will be omitted.

The Model-theory we developed for J3 allows us to obtain Js-versions of
the following classical results: Model Extension Thecorem, koi-Tarski Theorem,
(hang-to$ Susko Theorem, Tarski Cardinality Theorem, Lowenheim-Skolem Theorem,
Quantifier Elimination Theorem and many of the usual theorems on categoricity.

Some of the above results about J; were also extended to Jn-theories,

3¢n («RD.
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The mentioned results about J -theories and Model-theory will appear else-
where.

2. THE CALCULUS =l

The _pmpoaiticmal ealeulus J3 is given by the matrix M = <{0,%,1}, {,1},
Vv, 7,7>, where ¥, V and 71 are defined as follows:

AVB Nu B Al VA A|0A
olo % 1 00 BE
1% % 1 501 Lk
t 141 4 1] 1 110

The set of truth-values und the set of distinguished truth-values are de-
noted by V and Vd respectively.

The foumulas of J
ables, by means of V, V and 7, and parentheses. To write the formulas, schemas,
etc. we use the conventions and notations of [14], with evident adaptations.

The concept of a truth-function is the usual one. The truth-functions de-
fined by the tables above are denoted by HV' H‘J’ and H- .

A truth-valuation v for J3 and the truth-value v(A) for a fornula A are de-

3 are constructed as usually from the propositional vari-

fined in the standard way; and we cbserve that A is valid in M if, for every
evaluation v, v(A) belongs to V3 (see, for example, [22]).
The following abbreviations will be used:

AGB =4 T(TAV TB)

BA =gop TV A

TR = e TTVA

A>» B =4 ¢ VIAVB

A B =, (A~ B)&(T1B>>"1A)
A2B =4 VAV B

A=B =y [(A2B)&(B = A)

“11is called weak negation or simply negation, 7% is called strong negation,

and = basic implication of J.

We present the tables of some of the non-primitive connectives:

B A>+ B
A|TT*A Al AA N 0 % 1
011 00 gfd4 1 4
510 10 s 1 1
110 L [ 10 % 1
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A= B A= B
B B
NIER NI
0 1 1 1 0 1 0 0
vlo oy 1 510 % %
rlo % 1 1o % 1

In the following theorems, we mention only those results which are useful

to the proofs of later theorems.

[HEOREM 2.1, The following schemas of Jz are valid in M:
7T A = A VA= A

TEA 2 TIA VA = VYA

AV oIA JA V VA

HAG IA) AGTIA = TTAGVA

AG(B vIIB) = A AV VA =VTA

T(AV B2 1AL B VA > (VA = B)

AV B =I(AETB) A2 (VA2 B)

TAG3) =AY IR TALB) = VALVB

VA = TTATIA V(AVB) ZVAVVB

(A= 1A) =2 1A A>> (B> A)

(IA20)= A (TTA>=TIB) >+ (B> A)

1(VA v TIVA) 2 B (A>+ B)>> ((B>> C)>> (A>> ()
((A2B)=27A)>=2A (A>+TIB) >+ A) >+ A

(A= B) 2 (A> B) A(A>> B) >+ A(AA> AB)

(A= B) = (B> 7TA).

TUHEOREM 2.2, The following schemas are not valid in J3:-

1A = (A = B) (A= B) = (B=174)
A> (A= B) (A=17B) = (B=24)
A 2 (A2 B) (A=71B) = (B=TA)
A =(1A="71B) (FA=2B)= (OB= A)
AHTIA 2B (A=B)> (1A =71B)
AfIAD B Av B& TIB) = A
(A=TA)=> B A>2B =T7@§7B)

(A =7A)=71B A=B=17AVBE

(A= B) = ((A=71B) 27A).

It can be verified that, instead of V, V and 71 it is possible to use only
7 and >+ as primitive connectives of Jz, considering A V B and VA as abbre-
viations respectively of (A>»> B)2» B and 1A=+ A,
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So, there is a close analogy between J and kukasiewicz' three-valued prop-
ositional calculus £3, defined by the matrix M' = <{0,%,1}, {1},71,>$, in
which the Rukasiewicz-Tarski operators Tland>* are given by the respective
tables of J; (see [4]).

J; can be axiomatized by:

Aziom 1 : A(A> (B> A))

Axiom 2 1 A((A> B)>+ ((B>+ C)=> (A>> ()))
Axtom 3 1 A({(TA>7IB) > (B> A))

Axtom 4 @ A(((A>+71A) > A)>* A)

Axiom § 1 A(A(A>» B) >» A(AA>> AB)

Rule R1 : M’;i&

Rule R2 : A

A

The completeness theorem for Js is proved from the completeness of .E;, due
to Wajsberg (see [4] and [23]), using the following theorem.

THEOREM 2.3. If A ig a theorem of £3, then AA ig a theorem of JS

Proof. As the axioms 1 to 4 are the axioms of .L'3 preceeded by A, if A isan
axiom of £3, then AA is a theorem of .J3

Let A be obtained from B and B>+ A by the rule —?-—A-ﬁ of £3. By induction
hypothesis, AB and A(B>> A) are theorems of J;. By axiom 5 and R, we obtain
A(AB>+ AA). Applying Ry, we have that AA is a theorem of J.

THEOREM 2.4. (Completeness theorem for J3]. A formula A is a theorem of
J3 if and only if A is valid in M.

Proo§. A straightforward induction shows that if A is a theorem of J;, then
A is valid in M. On the other hand, if A is valid in M, then vw(VA) = 1 for eve-
ry truth-valuation v. By the axiomatization and completeness of 23, both VA
and A(VA>+ VA) are theorems of .E3 By the above theorem and Ry, VA is a theorem
ofJ By Ry, A is a theorem of J.

COROLLARY (Modus Ponens Rule). If both A and A =B are theorems of Js,
then B is a theorem of J3.

However, contrary to .C3, the Rule of Modus Ponens is not valid with respect
toa*,

For some of the theorems that follow it will be convenient to assume that
the language of J contains, as primitive symbols, all the commectives intro-
duced so far. In particular we shall often identify Js with the set of M-valid

formulas in the expanded language.



The following theorems will be used in the proofs of many of the results

about ‘J'i'

THEOREM 2.5. J5 ig a non-comaervative ertension of the classiecal positive

propositional euleulus with comectives V, & o, = .

THEOREM 2.6. Jg is a conservative extension of the classieal proposition-

I caleulus with conneetives V%, V, & > and =

[HEOREM 2.7, Jg 2 a non-eonservative extension of Fukaseewics' three-

Lued Logie 'ES with connectives 7,2+,

I''EOREM 2. 8. J3 ig not functionally complete,

Procf. It is not possible to define a comnective, from the primitive conec-
tives of Jz such that its truth-value is identically ’s.

On the other hand, if we add the Stupecki T operador to the primitive con-
nectives of J;, the calculus becomes functionally complete (see [21]).

By Theorem 2.4, the formulas TA = (A =2B), A= (7A=2B), A= (QA=1B),
(A§ TTA) = B, (A =B)= ((A="71B)= 1A), A= (B§ 11B) = A, etc., are not theo-
rems of JS' S0, in JS’ in general, it is not possible to deduce any formula
whatsoever from a contradiction. Therefore, based on such a calculus we can
construct nontrivial inconsistent deductive systems, in the sense of [11]. So,
J. satisfies condition (i) of JaSkowski's problem.

\. By Theorem 2.5 to 2.8, J5 is quite a strong system, whichevidently satisfies
Jaskowsk's condition (ii).

J; admits intuitive interpretations. For instance, it can be used as the
inderlying logic of a theory whose preliminary formulation may involve certain
contradictions, which should be eliminated in a later reformulation. This can
be done as follows; among the truth-values of J;, 0 can represent falsity, 1
truth, and % can represent the provisional value of a proposition A, so that
both A and the negation of A are theorems of the theory, in its initial formu-
lation; in a later reformulation, the truth-value % should be reduced, at least
in principle, to 0 or to 1.

Therefore, J:5 is a solution to JaSkowski's problem.

Js can also be used as a foundation for paraconsistent systems, in the
sense of da Costa (see [5], [6], [7] and [8]). In this case, the value 0 rep-
resents falsity, 1 truth,and % represents the logic value of a formula that is
simtuneously true and false.
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Finally, as the calculus Jz was constructed from £3, it is possible to ob-
tain similar calculi Jos from kukasiewicz n-valued calculi £n’ 3<n ('“o'

3. SEMANTICS FOR FIRST-ORDER J,-THEORIES.

The symbors of a first-order L;-language are the individual variables, the
function symbols, the predicate symbols, the primitive connectives 71, V and V,
the quantifies 3 and ¥, and the parentheses.

The identity = must be among the predicate symbols. Other equalities can be
especified among the predicate symbols.

We use x,y,z and w as syntactical variables for individual variables; f and
g, for function symbols; p and q, for predicate symbols, and c for constants,

The definitions of term, atomic formula and formula are the usual ones; a,
b,c, etc. are syntactical variables for terms and A,B,C, etc. for fomulas.

By an Ls-lmguage we understand a first-order language whose logical sym-
bols include the ones mentioned above.

The symbols §,>,2>*, 5, =, A and 1% are defined in the L;-languages, as
in Js.

Free occurrence of a variable, cpen formula, closed formula, variable-free
term and closure of a fornula are used as in [22].

The definition of a is substitutible for x im A is also the usual one.

We let by ... x,[ay,--.,3,] be the term obtained from b by replacing all
occurrences of X,...,x by a;,...,a respectively; and we let Ay,,... x [ays
,an] be the formula obtained from A by replacing free occurrences of x,..
-5 X, by a;,...,a respectively.

Whenever either of these is used, it will be implicitly assumed that x,..

a.-

.»X, are distinct variables and that, in the case of AX1.---an{aI""'an s 24

is substitutible for ;5 i= Lawam

In the following definitions, let L be an Ls-language.

DEFINITION 3.1. A structure 0. for a first-order L;-language L consists
of:
i) a nonempty set |OL|, called universe of OL;
ii) for each n-ary function symbol f of L, a function £ from |&F |nI to |@|;
ii) for each n-ary predicate symbol p of L, other than =, an n-ary predicate
Py » Such that p, is a mapping from |OF [*...x|oL| to {0,%,1}.

As in [22], we construct the language L(GL); define I (a) for each variable
free term of L(0L), and define O -instance of a formula A.
We use 7 and j as syntactical variable for the names of individuals of O7.
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DEFINITION 3.2. The truth-value CL(A) for each closed formula A in L{&)
is given by:
i) if Ais a=b, then (I (A) = 1 iff & (a) = & (b); otherwise, (&(A) = 0;
ii) if Ais p(aj,...,a ), where p is not =, then G (A) = py (@ (a}),...a@ (a));
iii) if A is 7B, then @ (A) is H(d (B));
iv) if A is VB, then @ (A) is Hy(C (B));
v) if A is BV C, then 0L(A) is Hy{a@ (B), @ (Q);
vi) if A is a 3xB, then @ (A) = max{0l [Bx[i])/i e L(@)};
vii) if A is a ¥xB, then 0L (A) = min{a (B, [£])/¢ « L(@)}.

DEFINITION 3.3. (1) A formula B of L{¢L) is true in Ol (or & is a model
of B) iff & (B) € V.

(2) A formula A of L is valid in @ iff for every ¢l -instance A' of A, A'
is true in & .

A first-order predicate calculus J;= is the formal system whose language
is an Ly plus the following, with the usual restrictions (see [14]):

6 ¥x(x = x)
7: x=y= AKX = Al])
Axiom 8 : A [a] o 3xA
9 : ¥xA > A [a]
Aziom 10: 3IxA = TIyx71A
Axiom 11: ¥xA = T73IX7TIA
Axtom 12: T13IxA = ¥xTIA
Axiom 13: TIyxA = 3x7A
Axtom 14: V3IxA =3xVA
Axiom 15: VY¥XA = ¥xVA

Rule R3 : (3-introduction rule): i'%KfSL_C

Rule R4 : (¥-introduction rule): C—(—:?:vi—A

THEOREM 3. 1. J;= ig a conservative extension of J3.

Proof. We apply the Hilbert-Bernays theorem of k-transforms, that can be
extended to this case.

THEOREM 3.2. J;= ig an extension of the classical predicate caleulus,

with eommectives 'I*, V, &, >, =, 3and ¥.

DEFINITION 3.4. A first-order J;-theory is a formal system T such that:
i) the language of T, L(T), is an Ls-la.nguage;
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*
ii) the axioms of T are the axioms of Js=, called the logical axioms of T, and
certain further axioms, called the non-logical axioms;
iii) the rules of T are those of J§=-

A is a theorem of T, in symbols: Iv:rA, and B is a semantical consequence of
a set I' of formulas of L(T) are defined in the standard way. If B is a seman-
tical consequence of I, then we shall also say that '"B is valid in I'.

THEOREM 3.3. (Validity Theorem): Every theorem of a Js-theory T s valid
in T.

4. SOME THEOREMS IN FIRST-ORDER J3—THEURIES AND THE EQUIVALENCE
THEOREM.
DEFINITION 4.1. A Jj-theory T is finttely trivializable if there exists
a fixed formula F such that, for any formula A, F = A is a theorem of T (see
[2].

THEOREM 4.1. The J3-theor’£es are finitely trivializable.

Paoof. Any formula T1(71VA vV VA) trivializes a J;-theory.

The following results hold in any J-S—theory T:

Generalization Rule: If I-T A, then 'T VXA,

Substitution Rule: Is lT A and A' is an instance of A, then ‘T Ar.

Substitution Theorem: a) hr Axy, ... x, [31,.. 4 ,an} 23X XA

¥ y :
b) by ¥xp. W AD A, xg [ag,e00a))

Distribution Rule: 1f b Ao B, then br3xA> 3xB and by VA= VaB.

Closure Theorem: 1f A' is the closure of A, then br A if and only if br Ar,

Theorem on Constants: 1f T' is a J;-theory obtained from T by adding new
constants (but no new nonlogical axioms), then for every formula A of T and
evVery sequence €y,...,e, of new constants, bp A if and only if bpiAxq, ... x,

legs---0e ]

In the case of classical logic, the equivalence = behaves as a congruence
relation with respect to the other logical symbols. Unfortunately this is not
the case in J;-theories, for it is possible to have b A =B and WA =71B.

However we can introduce a stronger equivalence, =*, which is a J;-con-
gruence relation and thus allow us to prove a Js—version of the equivalence
theorem (see [22]).
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_* - - —
A= B ‘def(A = B)&( TA = 1B).

(2]

DEFINITION 4.

* 5 ;
THEOREM 4.2, If T is a Js-theary and b A =B, then hfrA if and only if

I—.i.—B.

THEOREM 4.3, (Equivalence Theorem). Let T be a Js-theory and let A' be

| from A by replacing some oceurrences of Bla‘ s ’Bn by B}, oh "Bt'l respec-
1

tively. If |.,Ir [-;] =* Bi""’}TBn = Bn, then 'T Az A%

Prood. After considering the special case when there is only one such occur-

btained

rence and it is all of A, we use induction on the length of A.

For A atomiz, the result is obvious.

A Ce 0 and A' fe T1C', where C' results from C by replacements of the
type described in the theorem. By induction hypothesis, I-T c=" ¢ , that is,
b C = C and Y 18 =0V As by*'lheorem Zih; b C =717C and !TC‘ =7 c,
we have T171€C = 397IC'. So TIC = TIC',

A i3 VC and A' is VC', with by C =* C'. From b C = C', it follows that
b 7C 277C", by Theorem 2.6. Also from by C = C' it follows that by VC = 7C',
since b VC = € by Theorem 2.4. Therefore, I-T*vC = Y. .
Aig CV Dand A' 72 C'V D', with b C = C and |'.-[:D =" D'. As by theorem

2.9,

b ((C=CH&D=D")) =2 ((CvD =(C vD))

and

b ((T1C =7C)&(TD =7D')) = ((NC&ID) = (C'§D')

we have that iT Cvih=C vD and FT_T{C VD) =7(C v D).
A ¢ 3xCand A' e 3xC', with C =% C', By Distribution Rule, b 3xC = 3xC'
and br ¥ 10 = ¥x 70", Using Axiom 12 we complete the proof.
"A fe ¥xCoand A' is ¥xC'; with bp C z* C', the proof is similar.

In the spirit of the equivalence theorem, we have the following corollaries

and remark.

COROLLARY 1. In a J'S- theory T, it is possible to replace:

1) 1A by A;

i A by A

iii) T(A V B) by TA§ 1B;

iv) 1(A v B) by 1*A&77B;
vl ¥xA by T13xTA;

vi) T3xA by ¥x 1A

vii ) T by 3x 1A

viii) VaxA by 3xVA;

ix) V¥xA by WxVA.,
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Proof. It is enough to verify that kx7171A =%, iT"I*'T*A =* 9%, ete.

COROLLARY 2, In a Js-tkeory T. £f brX =Y, then, for every formula A,
A(x) can be replaced by A(y).

REMARK. Although I-T"l*‘T*A = A, it is not possible, in general, to replace
T*9*A by A.

DEFINITION 4.3. A formula A' is a variaent of A just in case A' has been
obtained from A by renaming bound variables.

THEOREM 4.4, (Variant Theorem). If A' ig a variant of A, then b A = A,

Proog. In view of Theorem 4.3 and Corollary 1, it is enoughto observe that
b 3xB = 3yB_[y].

Let T[T] be the J3-theory whose non-logical axioms are those of T plus the
formulas of the set T.

THEOREM 4.5. (Reduction Theorem). Let I be a set of formulas in the J3—
theory T and let A be a formula of T. A ie a theorem of T[T] if, and only if,
there is a theorem of T of the form B1 - TR~ Bn > A, where each Bi ig the

closure of a formula in T.

Given a non-empty set I' of formulas we let:

I““,.1W = {B | B is a disjunction of negations of closures of formulas of
the type VA, with A €T}

FV”IW = {C | C is a disjunction of negations of formulas of the type VA',
where A' is the closure of a formula of I'}

THEOREM 4.6. (Reduction Theorem for non-trivialization). Let ' be a non-
empty set of formulas in a Jy-theory T. Then the extension T[r] Ze trivial, if
and only if, there is a theorem of T which belongs to T\ —yy.

Proof. The corollary to the replacement theorem gives us that every formu-

la of T\ yp is strongly equivalent to a formula of T\ 4gy- The proof of the
theorem can be completed using the properties of strong negation.

COROLLARY. If A' is the closure of A, then the formula A is a theorem
of T if, and only if, T[V*A'] 18 trivial.
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5. THE COMPLETENESS AND THE COMPACTNESS THEOREMS FOk J3-THE0RIES

We study certain aspects of the Jx-theories and present a Henkin-type proof
of the completeness theorem for this type of many-valued theoties.

DEFINITION 5.1. If T is a Jz-theory containing a constant, and if a and
b are variable-free terms of T, then:
i) uo’\a b _:def bra= b;
ii) a- = {b|a v b}.

DEFINITION 5.2. A canonical structure for the Js-theory T is the struc-
ture @ :
i) whose universe |07 | is the set of all equivalence classes under ";
ii) f.-,',{ {:1(;,., : ,:1;';} = {t'{a],. - ,an}]o;
i1l ) Par {a?,...,ng} is in Vd iff I-Tp{a1,...,an).
Observe that (iii) could have been replaced by

) =0 iff l;lrp{uT,...,anj.

0] {'lc a’
Pog L8120 0058y
THEOREM 5.1, If 0 is a canonieal structure for T and p(a1,...,an] i8 a

variable-free atomice formula in L(T), then:

i) & {_p({l1,...,11n]] =0 iff pr(ai‘“"an)
ii) E.-‘E(_p[u],...,an}] =% Iff ITp[aT,...,an] and I-T"Ip[a.v...,an);
iii ) t?i(p{a],...,:zn}} =1 iff "T’p(ai""’an} and Hr‘lp(a.l,...,an).

Proog. ii) If & (p(av...,an]] = % then Ui(ﬂp(a],...,an}] = 1. By the last
definition, ITp(a1,...,an} and I-T‘Ip(a],...,an).

On the other hand, if ITp(a],...,an} and IT‘Ip(a.I,...,an), also by Defi-
nition 5.2, & [p(:11,...,an) and ﬁ[‘lp{ai,...,an]) belong to Vy- Then, 0;(1)(31,
G -sanjj =1,

iii) If @ (p(ay,...,a))) = 1, then @ (Tp(ay,...,a))) = 0; then.lTp[ap,--
Sal) and "‘T'_lpt"‘]""'anj'

On the other hand, if F.-r-p(a1,...,an} and HT'ip(a.l,...,an}, we have that
a (p{a],...,an)} belongs to Vd and L ( ‘1p[a1,...,anj) does not belong to Vd;
if a (p(a1,...,an) = % then m{ﬂp{a’,...,an}) =% and, so, }T'ip(a],...,an).
Then, Ui{p[a1,...,an]] = 1.

Now, (i) is immediate.

As a consequence of the theorem we obtain that there is exactly one cano-
nical structure for a Js-thenry. Furthermore, as in the calssical case, in
order for a canonical structure to characterize the theorems of a theory, the
theory must be in some sense maximal, for there may be a closed formula A such
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that - A, WA and uf'}*A.

DEFINITION 5.3. A formula A of a J3-thecry T is undecidable in T if nei-
ther A nor 1™\ is a theorem of T. Otherwise, A is decidable in T.

DEFINITION 5.4. AJs-theory T is complete if it is non-trivial and if
every closed formula of T is decidable in T.

THEOREM 5.2. 4 Js-theory T i complete if, and only if, T maximal in the

class of nontrivial theories.

DEFINITION 5.5. A J3-theory T is a Henkin Js-theory if for every closed
formula 3xA of T, there is a constant e such that 3xA = A [e] is a theorem of T.

THEOREM 5.3. If T 18 a Henkin Js—theorg, then for every closed formula
VXA in T there is a constant e such that A [e] > ¥xA is a theorem of T.

*
Proof. As T is a Henkin J -theory, there is e, such that ky 3x 7 A:'T*f\x[e?.
We obtain the desired result, by successive applications of Theorem 2.6.

THEOREM 5.4. If T is a complete Henkin Jq-theory and @ is the canonical
structure for T, then for all closed formulas A of L[T]:

i) @) =0 iff HA
1) GL(A) =% iff bpAand by TIA
i) @A) =1 iff by A and W A,

Prood. By induction on the height of A. For atomic A, the result follows
from Theorem 5.1.

Case: A is T1B. i) If 0L(A) = 0, then 2 (B) = 1. Thus H[. 7B, that is
WrA. On the other hand if Hf A, then since T is complete I-TW*A, and then
J71A, bp11B, bpB. Thus we have that by B and H1B, from which if follows
that ¢L (B) = 1 and that @ (A) = 0.

ii) If 0L(A) =%, then L (B) =%. Thus by B and kp71B, from which it fol-
lows that kA and b A, the converse is analogous.

iii) If CL(A) = 1, then 0 (B) = 0 and thus H B. Since T is complete,
I-T‘I*B and thus ky71B. Since hf. B, we obtain that kp7) 7B, inother words, we
have that by A and F+1A.

Assume next that Mt A and by A, that is, l-fr‘ﬂB and k7B, Then IJI-B, and
so by induction ¢Z(B) = 0, from which it follows that L (A) = 1.

Case: Aie BV C. i) If A (A) =0 then 0L (B) = 0 and 0L(C) = 0. Hence
Hr C and ul. B, from which it follows, since T is complete, that Hr B v C. The
converse is analogous.
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ii) If 0L (A) =%, then either: & (B) = % and (L (C) = Y%,
or 0L (B) =% and & (C) 3
or OL(B) =0 and & (C) = k.
Let us only consider the situation when (L (B) =% and & (C)+= 0 (the others are
analogous). The induction hypothesis gives ' that

b B, b B, Hf C.
Since T is complete we obtain that ‘Tj *C and bp C. From kb B we get hy BvC(,
and from b 1B and b= 1C we may conclude that IT'I[B vO.
Conversely, suppose that kr B V C and bp71(B V Q). The latter gives us that
br 1B and bp1C. From the former, since T is complete, we obtain that either

b B or b C. The induction hypothesis allows us then to conclude that

1]
=

@A (BvYC =%k
iii) If @ (A) = 1, then either:
@ (B) =1 and a2 (C) =0,
or @ (B) =1 and @ (C) =k,
or Z(B) =1and Z(C) =1,

]

or L(B) =0and & (C) = 1,
or A (B) =% and @ (C) 1.
We will only consider the case when (L (B) = 1 and & (C) = %. The induction
hypothesis gives us that

il

brB, ¥ B, b C, by IC
From the first we obtain that by(B vV C). Suppose on the other hand that
}Tj (B v C}). Then br (B ATC), from which it would follow that I-T'IB, contra-
dicting that v_I—.'1B. Thus I{T'I(B ¥E):
On the other hand, suppose that I-T-(B vV C) and Hf-l (B vV C). Then from the
completeness of T we obtain that either

_ l-T-B or I-r C.
From h&f"i (B v C), we obtain that

b% AB and HT A€,
The induction hypothesis then gives us that @ (B V C) = 1.

Case: A ie VB, i) If & (VB) = 0. Then & (B) = 0. Thus b B; from which it
follows that W VB. Converse, analogous.

ii) @ (VB) is never 4.

iii) @ (VB) = 1 then either & (B) = % or & (B) = 1,

Subcase: 0l (B) = %. Then b B and l-T'!B, from which we obtain b VB and
bp VB, Using that T is complete we conclude br VB, and b 1VB.

Subcase: (% (B) = 1, Then ITB and MT'IB. Suppose that I-T‘IVB. Then since
br B, we should obtain that T is trivial, which we are assuming it is not. Thus



W 1VB and b VB. On the other hand, suppose that b A and KIJA. That is sup-
pose that
bp VB and W T1VB.

Then hp B, and either br1B or hf. B. In one case the induction hypothesis gives
that & (B) = %, and in the other that L (B) = 1. Thus & (VB) = 1 in both. That
is a(A) =1,

Case: A Zz 3xB. i) If A (A) = 0, then for every variable-free tem b,

a (Bx[b]J = 0, and by induction hypothesis this is equivalent to by Bx[b] . As
T is a Henkin theory this gives us that e 3xB. The converse does not need to
use that T is a Henkin theory.

ii) If & (A) = %. Then for all b we have that G (B, [b]) < %. The induction
hypothesis then tells us that

(1) for those b such that &l (Bx[b]] =% (and there is at least one such):
ke B [b] and k1B [b].

(2) for the remaining b's: o Bx[b] and (because T is complete) I—.f‘!Bx{b].
Thus we have that for all constants b: l-T'!Bx[b_']; from which it follows that
?Vx g - AR T I—f 3xB. From (1} we obtain by 3xB.

Conversely, suppose that }TA and IT'!A; that is l-T 3xB and I-T“I IxB. Using
that T is a Henkin theory and induction, we obtain an e such that br Bx[e],
br B, [e], and thus & (B [e]) = 4. A proof by contradiction shows that there
is no b such that O (Bx[b]} = 1. Hence CI (3xB) = 4.

iii) If @ (A) =1, then there is at least one b such that c& (B [b]) = 1.
From the induction hypothesis, we obtain that ky B, [b] and ¥:71B [b]. From the
former, we obtain that b 3xB. Suppose next contrary to what we want to show,
that by 73xB. Then by 3x71B and thus br71B [b], a contradiction. Thus Wp713xB.

COROLLARY 1. Let T be a complete Henkin J3-theozy, A the canonical
structure for T and A a closed formula of T; then, @ (A) belongs to Vd if and
only if A is a theorem of T.

COROLLARY 2. If T ie a complete Henkin Js-theory, then the eanonical
structure for T is a model of T.

By the above corollary, to prove the completeness of a J3-theory T, as in
the classical case, it is enough to show that it is possible to extend T to a
complete Henkin J3-theory.

Thus, given a nontrivial Jy-theory T, we will first extend it, conservative-
ly, to a Henkin J3-theory Tc, and then extend it to a complete Henkin J3—theo-
Ty T::. .

Given a J;-theory T with language L, we proceed as in [22] and define the



special constants of level n, the language L. with the special constants, and
introduce the special axioms for the special constants.

DEFINITION 5.6. Let Tbe a J -theory with language L. Then T_ is the Hen-
kin Jz -theory whose language is L. and whose nonlogical axioms are the nonlogi-
cal axwms of T plus the special axioms for the special constants of L.

THEOREM 5.5, Tc i8 a conservative extension of T.

Prood. By Theorem 4.4 and by Theorem 5.3, the proof is similar to the clas-

sical one.

THEOREM 5.6. (Lindenbaum's Theorem). If' T is a nontrivial Ji-theory, then

T admits a complete simple extension.
Finally, we can obtain the completeness theorem for Js-th;eories.

THEOREM 5.7. (Completeness Theorem). 4 Js-theoz’y T is nontrivial if, and
only if, it has a model.

Proog. If @0 is a model of T and A is a closed formula in T, then
0l (A& 1*A) = 0. So, by the validity Theorem, A§71 A is not a theorem in T. Then
T is nontrivial.

If T is nontrivial, then we extend T to T, , which is a non-trivial Henkin
J3-theory. By Lindenbaum's Theorem, we can extend T. to a complete Henkin Ji-
theory 'Ic. By Corollary Z to Theorem 5.4, T has a model @ . Therefore,

@ [L(T) is a model of T.

THEOREM 5.8. (Gidel's Completeness Theorem). 4 forrmla A in the J3-theo-

ry T ig a theorem in T if, and only if, it ie valid in T.

Proof. By supposing that the closed formula A is a theorem in T and using
the above Completeness Theorem, we shall show that there is no model of T in
which A is not valid.

Therefore, suppose that the closed formula A is a theorem in T.

By the corollary to the Reduction Theorem for non-Trivialization, b A if
and only if T[ TVA] is trivial; which, by Theorem 5.7, is equivalent to T[ 1VA]
not having a model.

On the other hand, a model of T[ 1VA] is a model (Zof T in which VA is
valid, that is, a structure &L such @(1VA) = 1. This is equivalent to 0L (VA)
=0, and so & (A) =
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Therefore, ke A if and only if A is valid in T.

COROLLARY 3. If T and T' are Js-theor*ies with the same language, then T'
ig an extension of T if, and only if, every model of T' is a model of T.

THEOREM 5.9. (Compactness Theorem). 4 formula A in a Jsvtheory tg valid
in T if, and only if, it <e valid in some finitely axiomatized part of T.

COROLLARY 4. 4 J;-theory T has a model if, and only if, every finitely
axtomatized part of T has a model.
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