
Cerebral palsy (CP) is the most common severe motor 
disability in children, and its severity is demonstrated 
by the fact that 40% of children with the condition can-
not walk independently1,2, one-third have epilepsy3, up 
to one-third are non-verbal4,5 and about one-half have 
some degree of cognitive impairment2,6–8. Lifetime costs 
for a child with CP in the USA have been estimated 
at just under US$1 million per individual for health 
expenditures, educational needs, social services and 
lost economic opportunity9. The prevalence, severity 
and burden of CP make it a public health priority for 
prevention, and recognition that perinatal exposures and 
pregnancy complications are strongly linked to the risk 
of CP provides opportunities for prevention. However, 
the aetiology of CP has proved complex, making  progress  
in its prevention difficult.

In this Review, we consider the epidemiological 
observations that provide evidence for the contribution 
of various developmental pathways to the pathogenesis of  
CP and for the substantial success in prevention to date. 
We also consider the complexities of disentangling  
prenatal and perinatal influences, with a view to accelera-
ting the translation of evidence into clinical approaches  
to the prevention of CP.

The prevalence of cerebral palsy
In the 1940s, in the USA, two voluntary organizations, 
the National Society for Crippled Children (later named 
Easter Seals) and United Cerebral Palsy, initiated two 
population surveys to determine CP prevalence10,11.  
In Schenectady, New York, the prevalence was 5.9 cases 
per 1,000 births, whereas in Minneapolis, Minnesota, 

the prevalence was 1.8 per 1,000 live births10,11. These 
differences in prevalence indicated that defining 
CP, differentiating CP from other motor disabilities 
and determining the precise lower limits of severity 
that delineate cases were all problematic. This difficulty 
has been repeatedly wrestled with, and numerous inter-
national meetings on the definition and classification 
of CP have been held since 1958 (refs12–14), each leading 
to changes in the  definition of the condition (fig. 1).

Ongoing population surveillance for CP began in the 
Nordic countries15–17. In the second half of the past cen-
tury, most reviews concluded that the prevalence of CP 
(generally expressed in relation to numbers of live births) 
in industrialized nations was fairly stable at 1.5–2.5 cases 
per 1,000 live births18,19, but with a modest increase in  
the last two decades of the 20th century owing largely 
to the greatly increased survival of very premature infants 
as a result of the success of the new technology19,20.

Estimates of CP prevalence in the 21st century, how-
ever, reveal a mixed picture. During the first decade of 
the century, estimates of CP prevalence were generally 
higher than in the 20th century in high-income coun-
tries (HICs). In the USA, prevalence estimates increased 
from 2 to as high as 3 cases per 1,000 live births between 
2002 and 2012 (refs2,21–25), although the most recent of 
these surveys showed a slight decline to 2.9 per 1,000 
8-year-old children in 2010 from 3.5 in the same sur-
veillance area in 2006 (ref.26). However, studies in 
Australia3, Europe27–29, Canada30, Sweden31 and Japan32 
have provided evidence for a declining prevalence of 
CP over time, mostly among low-birthweight and pre-
term infants (Table 1). In China, a decline from 1.6 to 
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1.25 cases per 1,000 children between 1999 and 2017 has 
been reported33,34, although ascertainment methods for 
these reports might have differed from the long-standing 
registers used in Australia and Europe.

The reported prevalence of CP in South Korea, Japan 
and India is 2–3 cases per 1,000 live births35–37, but fig-
ures greater than 3 cases per 1,000 live births in Taiwan38, 
Egypt39 and Uganda40 have been reported in the past few 
years. Some evidence suggests that rates in rural Africa 
are much higher41. New CP registers are emerging in 
Bangledesh42, Mexico43 and Jordan44, and hospital-based 
surveillance is being developed in Vietnam45.

Major aetiological factors
The first systematic clinical descriptions of CP were 
authored in the 1840s by the orthopaedic practitioner 
W. J. Little46,47. Little’s assertion that nearly all cases of 
what he called spastic rigidity of newborn children 
resulted from preterm birth or asphyxia at birth has left 
an enduring mark on subsequent thinking about the 
aetiology of CP. Sigmund Freud, in his first career as a 
child neurologist, cautioned against assuming that these 
two factors were fully causal48–50, but only in the latter 
half of the 20th century did research begin to illustrate 
the complex nature of these associations.

Nevertheless, Little’s insight that the perinatal period 
was important to the pathogenesis of CP has been sup-
ported by subsequent research. Therefore, in this section, 
we begin by considering the two factors identified by 
Little before reviewing factors related to preconception, 
pregnancy and the perinatal period. A comprehensive 
review of the risk factors for CP is available elsewhere51.

Birth complications

The obstetric literature from the 20th century is rife with 
examples of physical trauma in labour, sometimes exa-
cerbated by instrumented deliveries or severe asphyxia 
in labour and delivery, all of which are capable of caus-
ing brain injuries in children that could lead to CP52. 
However, these events were not placed in an appropri-
ate statistical context until the National Collaborative 
Perinatal Project (NCPP) study of ~50,000 children 

born during 1959–1966. The NCPP provided compel-
ling evidence that clinical indicators of birth asphyxia 
(for example, fetal bradycardia, a low apgar score and 
delayed time to first breath) occurred in only a minor-
ity of children who had CP53 and rarely led to CP when 
they occurred. Approximately 70% of children with CP 
had Apgar scores of ≥7 at 5 min after birth, and 95% of 
children with a normal birthweight and an Apgar score 
of 0–3 at 5 min after birth were free from major disa-
bility at early school age. These findings made it clear 
that birth asphyxia was not the dominant cause of CP 
that many clinicians and the lay public had assumed.  
A convenience survey of clinicians (largely paediatricians 
and obstetricians) shortly after the NCPP publications 
found that the average estimate of the risk of CP after 
a low Apgar score was 40%, eightfold higher than the  
5% risk identified by the NCPP54,55.

The NCPP reinforced a finding noted by many stu-
dents of birth asphyxia that the risk of CP is markedly 
elevated by the presence of abnormal neurological signs 
in the newborn period, most notably seizures, an ina-
bility to suck and breathing difficulties, which together 
indicate the syndrome of neonatal encephalopathy. 
This syndrome is often assumed to be the consequence 
of so-called hypoxic–ischaemic brain damage but can 
occur in the absence of markers of distress during labour 
and might even have a closer relationship to pre-labour 
factors56,57. Low Apgar scores, delayed onset of respira-
tion, and seizures might be signs of birth asphyxia, but 
they are neurological findings themselves and can reflect 
brain damage that was present before birth. Ellenberg 
and Nelson have argued that the attribution of CP to 
birth asphyxia often results from the conflation of the 
consequences of factors that underlie both CP and birth 
asphyxia58,59, and point out that placental pathology and 
markers of infection often precede abnormal fetal heart 
patterns60 and low Apgar scores61.

Breech vaginal delivery is now avoided in most 
HICs owing to an assumed risk of birth asphyxia and 
later CP. The NCPP indeed found an elevated risk of 
CP for normal-weight babies who were in the breech 
position in utero, but the risk was the same whether the 
baby was born vaginally or by Caesarian section53,62. 
Breech position at term can reflect fetal abnormalities 
that preceded the onset of labour, including abnor-
mal maternal thyroid function63, fetal growth restric-
tion (FGR), oligohydramnios, gestational diabetes  
and fetal anomalies64. In randomized trials, mortality and 
short-term morbidity associated with breech presenta-
tion were reduced by Caesarian section, but long-term 
 neurodevelopmental outcomes were unaffected65.

Gestational age and its correlates

Children born preterm account for one-third to one-half 
of CP diagnoses in HICs, although this proportion is 
much lower in low-income countries (LICs), where 
mortality of very preterm babies remains high40. The 
more preterm the newborn baby, the higher the risk of 
CP; the prevalence of CP reaches ~10% among infants 
who are born before 28 weeks of gestation, a prevalence 
that is ~50-fold higher than that among children born 
at term66,67.

Key points

•	Several high-income countries have reported a decline in the prevalence of cerebral 

palsy (CP); therapeutic hypothermia and magnesium sulfate for neuroprotection 

might have played a role, but other factors might be important.

•	The minimum age at which CP can be reliably diagnosed is controversial; evidence 

that early diagnosis and intervention improves motor outcome is sparse, but there are 

hints of benefits for cognitive outcomes.

•	No consensus exists about CP subtypes; the general term CP is important for public 

health and health services planning, but subtypes might have different aetiologies.

•	Gestational age and birthweight have been a major focus of CP investigators; to move 

forward, we must seek a deeper understanding of why these factors convey 

information about increased risk.

•	Preconception factors, including maternal obesity and age, should be considered 

because they can modify the relationships between CP and other factors that occur 

later in pregnancy.

•	Two-hit and multi-hit models that consider accumulation of risk factors can identify a 

synergistic increase in the risk of CP, but the time order and clinical relevance of the 

model components must be established.
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Much research has been devoted to identifying the 
factors that place preterm infants at the greatest risk of 
CP; the numerous factors that have been studied include 
organ immaturity, lack of hormones and growth factors, 
metabolic factors and environmental toxins, infection 
and inflammation, physiological instability, medical 
interventions and pregnancy-related complications68. 
The most strongly associated indicators of CP risk in 
preterm infants are cranial ultrasonography observa-
tions in the first few weeks of life69. Lesions that indicate 
white matter injury — usually seen as echolucency and 
ventricular enlargement — are associated with a sub-
stantially increased risk of CP70, whereas isolated germi-
nal matrix and ventricular haemorrhage, which are more 
common than white matter injury in preterm infants, are 
associated with a much lower risk of CP71–76.

Mechanical ventilation is widely used for children 
who are born very preterm and has been linked to 
CP70,77. The effects of mechanical ventilation on risk are 
confounded, as its use is an indicator of illness sever-
ity78, but animal models and observational studies have 
provided evidence that mechanical ventilation can cause 
systemic inflammation and lung damage and can alter 
blood gas levels in ways that might be detrimental to 
the perinatal brain79–81. Ventilator settings that produce 
hypocapnia have caused particular concern because they 
have been associated with brain damage at autopsy and 
with an increased risk of CP82–88. Antenatal administra-
tion of steroids during preterm labour to stimulate lung 
maturation has been associated with a reduced risk of 
CP89; by contrast, postnatal administration of steroids 
has raised concerns about an increase in CP90,91.

Intermittent or sustained systemic inflammation in 
which single92 or multiple inflammation-related proteins 
are persistently upregulated93 in the newborn period has 
been associated with a twofold to threefold increase in 
the risk of CP in babies born before 28 weeks of gesta-
tion. Studies of infants who are born at a weight ≤1,000 g 
yield similar evidence94. Insufficient blood levels of 
neurotrophic and/or angiogenic proteins also seem to 
influence the risk of CP and other neurodevelopmen-
tal disorders in some settings. For example, transient 
hypothyroxinaemia, a common complication of preterm 
delivery and a correlate of low birthweight95–98, occurs 
most often in the smallest and sickest of neonates96–105, 
and some observational studies have found that neonatal 
thyroid hormone deficits are linked to CP, behavioural 
problems and lower cognitive performance assessed at 
school age or in adolescence106–110, although other studies 
have not111,112. For example, a nationwide Dutch cohort 
study of infants born very preterm and/or with very low 
birthweights showed that relative hypothyroxinaemia 
(defined as values >1 s.d. below the mean) was associ-
ated with psychomotor developmental delay at 2 years 
corrected age109, neurological dysfunction assessed at 
the age of 5 years, and school failure at age 9 years113.  
A population-representative study of 1,105 children 
born with a weight of <2,000 g similarly found a fourfold 
increase in the risk of CP in newborn children with thy-
roid hormone levels >2.6 s.d. below the state norm com-
pared with children with normal levels after adjustment 
for gestational age and multiple prenatal, perinatal and 
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“Infantile cerebral palsy would thus 
be defined as the general concept 
of all cerebral diseases in infancy 
caused by a direct effect of 
accidental etiology, occurring either 
in the fetal period or after birth, and 
affecting one or more neuron 
systems.” (Freud, 1868)

“Cerebral palsy may be defined as a 
condition characterized by 
paralysis, paresis, incoordination, 
dyskinesia, or any aberration of 
motor function that is due to 
involvement of the motor control 
centres of the brain.” (Peristein, 
1952)

Cerebral palsy “may be defined as 
one component of a group of 
childhood neurologic disorders 
which reflect cerebral dysfunction 
rather than damage per se and 
which may result from cerebral 
maldevelopment, infection, injury, 
or anoxia before or during birth or 
in the early years of life.” (Denhoff 
and Robinault, 1960)

“Cerebral palsy is a group of 
disorders characterised by reduced 
ability to make voluntary use of the 
muscles, caused by a 
non-progressive and non- 
hereditary brain disorder arising 
before or at delivery or during the 
first years of life.” (Christensen and 
Melchior, 1967)“Cerebral palsy is the result of a 

lesion or maldevelopment of the 
brain, non-progressive in character 
and existing from earliest 
childhood. The motor deficit finds 
expression in abnormal patterns of 
posture and movement, in 
association with an abnormal 
postural tone,” (Bobath, 1969)

“Cerebral palsy is a descriptive term 
for a collection of nonprogressive 
neuromotor disorders of central 
origin that become manifest early 
in life and are not the result of a 
recognized cerebral malformation.” 
(Paneth, 1986)

“The term cerebral palsy does not 
designate a disease in any usual 
medical sense. It is, however, a 
useful administrative term which 
covers individuals who are 
handicapped by motor disorders 
which are due to nonprogressive 
abnormalities of the brain.” 
(Crothers and Paine, 1988)

“The condition of spastic rigidity of 
the limbs of newborn children.” 
(Little, 1861)

“A paralysis of cerebral origin 
occurring in the first six years of life. 
It is always a hemiplegia, and the 
cases which affect both sides of the 
body will be found to be no 
exception to this rule, but are 
simultaneous lesions upon the 
hemispheres.” (Wilson, 1916)

“Cerebral palsy is a descriptive term 
applied to a group of motor 
disorders of young children, in 
whom full function of one or more 
limbs is prevented by paresis, 
involuntary movement, or 
incoordination.” (Balf and Ingram, 
1955)

“Cerebral palsy is a persistent but 
not unchanging disorder of 
movement and posture, appearing 
in the early years of life and due to 
a non- progressive disorder of the 
brain, the result of interference 
during its development.” (The Little 
Club, 1958 (Bax, 1964))

“Cerebral palsy is defined as a 
nonprogressive disorder of motion 
and posture due to brain insult or 
injury occurring in the period of 
early brain growth (generally under 
3 years of age).” (The Kennedy 
Institute (Vining et al., 1976))

“An umbrella term covering a group 
of non-progressive, but often 
changing, motor impairment 
syndromes secondary to lesions or 
anomalies of the brain arising in the 
early stages of its development.” 
(Mutch et al., 1992)

“A group of permanent disorders 
of the development of movement 
and posture, causing activity 
limitation, that are attributed to 
non-progressive disturbances that 
occurred in the developing fetal or 
infant brain. The motor disorders 
of cerebral palsy are often 
accompanied by disturbances of 
sensation, perception, cognition, 
communication, and behaviour, by 
epilepsy, and by secondary 
musculoskeletal problems.” 
(Rosenbaum et al., 2007)

“A disorder of movement and 
posture due to a defect or lesion of 
the immature brain.” (Bax, 1964)

Fig. 1 | Definitions of cerebral palsy over time. The definition of cerebral palsy has 

changed several times since 1861, and the most recent definition was described in 2007.
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Table 1 | Trends in the prevalence of cerebral palsy overall and by birthweight or gestational age at delivery

Location (study) Prevalence group Years Observed prevalence (per 1,000 
in specified prevalence group)

95% CI

Northern Alberta, Canada

(Robertson et al.30)

All live births 2008 2.38 2.19–2.57

2009 2.26 2.10–2.44

2010 1.89 1.70–2.10

Birthweight <1,000 g 1985–1988 98.4 59.5–137.4

2008–2010 40.1 34.5–45.7

Birthweight 1,000–1,499 g 1985–1988 70.7 43.8–97.6

2008–2010 22.7 19.3–26.0

Birthweight 1,500–2,499 g 1985–1988 11.0 7.9–14.1

2008–2010 6.7 5.9–7.5

Birthweight ≥2,500 g 1985–1988 1.7 1.6–1.8

2008–2010 1.3 1.2–1.4

Europe

(Sellier et al.27)

Birthweight <1,000 g 1980 40.9 12.1–97.3

2005 38.2 26.0–53.8

Birthweight 1,000–1,499 g 1980 70.9 41.7–110.9

2005 35.9 26.6–47.2

Birthweight 1,500–2,499 g 1980 8.5 5.4–12.7

2005 6.2 4.9–7.8

Birthweight ≥2,500 g 1980 1.2 0.9–1.5

2005 0.9 0.8–1.0

Japan

(Touyama et al.32)

All live births 1988–1997 1.8 1.6–2.0

1998–2007 0.97 0.94–0.99

Birthweight <1,000 g 1988–1997 65.5 46.1–90.3

1998–2007 108.7 83.9–138.5

Birthweight 1,000–1,499 g 1988–1997 89.9 72.2–110.6

1998–2007 74.6 59.6–92.3

Birthweight 1,500–1,999 g 1988–1997 28.6 22.0–36.6

1998–2007 21.0 15.7–27.3

Birthweight 2,000–2,499 g 1988–1997 2.4 1.6–3.5

1998–2007 3.0 2.1–4.0

Birthweight ≥2,500 g 1988–1997 0.6 0.5–0.7

1998–2007 0.5 0.4–0.7

USA

(Durkin et al.26)

8-year-old children 2006 3.5 3.2–3.9

2008 3.2 2.9–3.5

2010 2.9 2.6–3.2

8-year-old children, excluding those with 
a documented post-neonatal cause

2006 3.2 2.9–3.5

2008 3.0 2.7–3.3

2010 2.6 2.3–2.9

Victoria, Australia

(Reid et al.3)

Gestational age ≥37 weeks 1983–1991 1.2 Not available

1992–2000 1.2 Not available

2001–2009 1.0 Not available

Gestational age 32–36 weeks 1983–1991 5.3 Not available

1992–2000 3.8 Not available

2001–2009 4.2 Not available

Gestational age 28–31 weeks 1983–1991 41.5 Not available

1992–2000 40.0 Not available

2001–2009 32.4 Not available

Gestational age <28 weeks 1983–1991 92.1 Not available

1992–2000 102.5 Not available

2001–2009 70.6 Not available
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early and late neonatal variables110. In a similarly large 
study of infants born with very low birthweight, tran-
sient hypothyroxinaemia was associated with a twofold 
greater risk of white matter damage, a key antecedent 
of CP, after adjustment for gestational age and various 
measures of illness severity114. Whether the association 
between neonatal thyroid hormone deficits and CP is 
truly causal can be determined only with a randomized 
trial of thyroid hormone supplementation95,115.

Similarly, severe maternal iodine deficiency, which 
presumably leads to maternal and thus fetal hypothyrox-
inaemia, is associated with cognitive impairments and 
neurological deficits that resemble CP116. Iodine defi-
ciency remains an important remediable cause of cog-
nitive, neurosensory and motor impairment in  several 
parts of the world117.

Preconception and early gestation

Genetics. Familial clustering of CP has been described: 
three studies since 2007 have indicated that the relative 
risk of CP for the sibling of a child with CP is four118, 
five119 and nine120, respectively. However, even these 
relative risks translate to a small absolute risk of CP 
of 1–2%. Copy number variants and mutations in sin-
gle genes have been implicated in CP, but these find-
ings are limited by small numbers of patients, genetic 
heterogeneity and a paucity of validation studies121. 
Whole-exome sequencing has revealed several poten-
tially disease-causing gene variants, but functional and 
pathway studies are needed to validate these findings122.

Among the most studied genetic risk factors is APOE 
genotype. APOE encodes apolipoprotein E (ApoE), a 
lipid transport protein that is abundant in the brain; 
the APOE*ε4 allele has been associated with several 
neurological conditions, most notably Alzheimer dis-
ease. Studies of APOE genotype and the risk of CP have 
produced a variety of results. The APOE*ε4 allele has 
been associated with an elevated relative risk of CP 
in one Brazilian study123 and two studies conducted in 
the USA124,125, one of which also indicated an elevated 
risk among carriers of the APOE*ε2 allele. In a large, 
population-based study conducted in Norway, the 
APOE*ε4 allele was associated with an increased sever-
ity of CP126, whereas the APOE*ε2 or APOE*ε3 alleles 
and the s59007384 polymorphism in the TOMM40 
gene (which is located on chromosome 19 close to 
APOE) were associated with reduced severity of CP127. 
However, in a second Brazilian study, an elevated risk 
of CP was associated only with the APOE*ε2 allele128, 
and a Norwegian family study identified APOE*ε3 
to be the APOE allele most closely linked with CP129. 
Furthermore, three much larger studies — two con-
ducted in Australia130,131 and one in China132 — found 
no association of any APOE allele with the risk of CP.

In a review published in 2009 (ref.133), an associ-
ation between certain thrombophilia-related genes 
and CP caused by intrauterine strokes was suggested, 
but the literature on this area is sparse. A subse-
quent Australian study of candidate maternal or fetal 
thrombophilia-related genes that included 587 children 
with CP and their mothers and 1,154 healthy mother 
and child pairs identified no significant association of 

CP with these genes or any others studied after correc-
tion for multiple comparisons131. A nested case–control 
study conducted in California, USA, that was intended 
to replicate the previously identified links between sev-
eral polymorphisms and CP in 127 affected children 
indicated an association of CP with the inducible nitric 
oxide synthase (iNOS)-231 T allele (which is involved 
in inflammation) and the APOE*ε4 allele. Both associa-
tions were statistically significant at the 0.04–0.05 level, 
but neither remained significant after adjustment for 
multiple comparisons125.

Multiple births. The prevalence of CP among twins is 
fourfold higher than among singletons134,135, and this 
excess is greater for higher-order multiples136,137. Nearly 
all of this excess risk is accounted for by the lower gesta-
tional age and lower birthweights associated with multi-
ple births138,139, but the risk of CP is slightly higher even 
for full-term multiple births than for singletons born at 
term140–142. CP in one twin is associated with a greatly 
increased risk of CP in their co-twin: in one analysis of 
>20,000 twin sets in Norway, the twin of a child with 
CP had a 15-fold higher risk of CP than singletons120. 
Despite this elevated risk, fewer than 12% of twin sets are 
concordant for CP143. In the only two published series of 
identical twins, concordance for CP was 18–40%144,145.

Little is known about the factors that contribute 
to disparate susceptibility to CP between co-twins, 
although factors such as birth order, birthweight dis-
cordance, gender and chorionicity have been exam-
ined145–148. Monochorionic placentation is thought to 
convey a higher risk than dichorionic placentation149, as 
for the risk of congenital anomalies150, but information 
on zygosity and chorionicity is rarely known for children 
with CP, making this thesis difficult to investigate in 
most databases. Genetics could have a role, but other fac-
tors are more strongly associated; for example, the death 
of a co-twin in utero is associated with a  substantially 
higher risk of CP in the surviving twin139,151,152.

Socio-economic status and correlates. Several studies 
have demonstrated that children who are socially dis-
advantaged are at higher risk of CP than those who are 
not138,139,153–157. For example, a higher prevalence of CP 
has been identified among African-American children 
than among other children138,139, but this observation 
was only partially explained by differences in level of 
maternal education and was largely a function of higher 
rates of preterm birth among socially disadvantaged 
women26,154. However, although multiple indicators of 
social disadvantage are associated with an increased 
risk of CP, these relationships seem to be moderated or 
mediated by differences in gestational age, birthweight 
and/or their correlates (for example, maternal obe-
sity139,153,154, which is more common among women of 
lower socio-economic status158–161).

Analysis of a database of 6 million births in California, 
USA, revealed a dose–response relationship between 
pre-pregnancy obesity and CP: the relative risk of CP for 
the children of mothers classed as morbidly obese (2.7) 
was significantly higher than for those whose mothers 
were classed as obese (1.3)162. Large studies conducted 

Hypocapnia

a condition characterized by 

low blood levels of carbon 

dioxide.

Chorionicity

Whether twins share the same 

placenta (monochorionic) or 

each have their own placenta 

(dichorionic).
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in South Carolina (USA)163, Norway and Denmark164, 
and Sweden25 produced similar results. In the Swedish 
study, the association was limited to infants born at term. 
Putative mechanisms for this consistent finding include 
the excess inflammation seen in obesity165,166, placental 
dysfunction167,168 and thyroid hormone deficits169,170. 
However, maternal obesity does not seem to be associ-
ated with an increased risk of CP among children who 
are born before the 28th week of gestation171.

Pregnancy and congenital anomalies

Fetal growth restriction and maternal pre-eclampsia. 
Several studies have identified associations of CP with 
FGR in infants born at term or near term172–174, in 
infants born late or moderately preterm174 or in infants 
born at any gestational age175. The most definitive data 
come from the pooling of several national CP registers 
referred to as Surveillance of Cerebral Palsy in Europe, 
which revealed a significant fourfold to sixfold excess 
risk of CP among infants with FGR who were born 
at 32–42 weeks of gestation176. This finding is consist-
ent with evidence from an Australian reconstructed 
population cohort study in which being small for 
gestational age and pregnancy-induced hypertension 
were associated with a twofold to ninefold increase in 
the risk of CP among all infants born after 27 weeks  
of gestation175.

FGR and maternal pre-eclampsia have both been 
associated with a reduced risk of CP in studies of children 
born with low birthweight177,178. However, birthweight  
is inextricably linked with gestational maturity, which is  
strongly associated with CP; therefore, studies of chil-
dren with a birthweight below a specified threshold will 
include growth-restricted newborn babies from more 
mature gestational age strata, who have a lower risk of CP  
than infants of lower gestational ages179. Population-wide 
studies that include infants of all gestational ages do not 
reproduce this anomaly118,176,180.

This issue particularly affects studies of pre-eclampsia 
and CP. A study conducted in Australia showed that 
pre-eclampsia seems to provide a strong protective 
effect against CP in infants with low birthweights, but 
that no association with CP is observed in a sample 
defined by truncation of gestational age rather than of 
birthweight181. Confounding of FGR with gestational 
age seems to be reduced, if not completely avoided182, 
by selecting samples of preterm infants on the basis of 
truncated gestational age rather than truncated birth-
weight, a practice that is becoming more common183 but 
is still not universal184.

Infection. Maternal infections can lead to CP by transmis-
sion of pathogens to the fetus (even without a detec t a ble 
maternal inflammatory response185) and by induction 
of persistent systemic inflammation that can sensitize 
the brain to subsequent insults186–188. Infections such 
as toxoplasmosis, rubella, cytomegalovirus and her-
pes simplex virus during pregnancy have been associ-
ated with increased risks of CP189–191, but these agents 
account for only a small fraction of CP cases in HICs.  
A subtype of CP that is associated with microcephaly has 
been reported as a result of perinatal mother-to-child 

chikungunya virus infection192. Zika virus infection 
in utero can damage the fetal brain193, but the magnitude 
of the contribution of Zika virus to CP is not yet under-
stood. To date, seven case-series and one cohort study 
have examined whether children with clinical evidence 
of congenital Zika virus infection exhibit early indica-
tors of motor dysfunction and epilepsy; in total, 54% of 
these children had seizures and all of them were judged 
to have abnormal motor development after follow-up 
periods of 3–12 months194.

The presence of several nonspecific indicators of infec-
tion, such as maternal fever195–197, maternal receipt of anti-
biotics198 and chorioamnionitis197,199,200, close to the time 
of delivery have been linked to an increased risk of CP. 
Infections earlier in pregnancy have often been  associated 
with CP as well201–204, but not all studies agree205.

Birth defects. Two lines of evidence indicate that devel-
opmental aberrations similar to those that cause birth 
defects are involved in an appreciable fraction of CP cases. 
First, imaging studies of children with CP have shown 
that cerebral malformations, which are often unsuspected 
before CT or MRI, are not infrequent. One systematic 
review of the topic showed that such malformations were 
found in 10% of children with CP, mostly in children who 
were born at term206. Several different brain develop-
mental defects seem capable of producing CP, especially 
neuronal migration disorders207, such as schizencephaly208 
and polymicrogyria209. Interestingly, cytomegalovirus 
infection might underlie these neuronal migration 
disorders in some instances191,210. In general, the brain 
malformations involved seem to arise from a wide variety 
of genetic and environmental insults, are not rare in  
CP and can be congenital or acquired211. Intrauterine 
infections are associated with congenital anomalies; the 
most recently identified association is with Zika virus 
infection212,213. A detailed review of the development  
of these abnormalities is available elsewhere51.

The second line of evidence is the frequent presence 
of malformations outside the nervous system in children 
with CP. The NCPP showed that such malformations are 
observed threefold more often in children with CP than 
in healthy children, a finding that has been confirmed in 
subsequent studies214–216. Hypertensive disorders of preg-
nancy are associated with congenital malformations, in 
particular congenital heart defects217,218, as are indicators 
of thyroid dysfunction219–221; each of these factors are 
associated with FGR, CP and other neurodevelopmen-
tal disorders (possibly reflecting mitochondrial dysfunc-
tion222). A study conducted in Australia found that 53% 
of children with CP and severe FGR who were born at 
or near term had a major birth defect180.

Perinatal risk factors

Perinatal stroke. Perinatal stroke, which occurs between 
late gestation and 28 days after birth, might account 
for as much as half of hemiplegic CP in infants born 
at term223,224, whereas children with other CP subtypes 
often have multifocal or more diffuse injury. The most 
common form of perinatal stroke is thrombosis in 
the arterial distribution, usually in the middle cere-
bral artery, but periventricular venous infarction can 

Schizencephaly

a birth defect characterized by 

abnormal clefts in the cerebral 

hemispheres of the brain.

Polymicrogyria

a birth defect characterized by 

abnormal ridges and folds in 

the brain.
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contribute225,226. Most perinatal strokes are ischaemic, 
but haemorrhagic strokes can occur, sometimes as a 
 complication of ischaemic injury227.

The causes of perinatal stroke are largely unknown. 
Perinatal stroke can be a complication of congenital heart 
disease228 and bacterial or viral meningitis229. Placental 
factors such as chorioamnionitis199, prolonged rupture of 
membranes230 and placental thrombosis231 have also been 
implicated. Pre-eclampsia and FGR are also risk factors223. 
Genetic predispositions to  thrombophilia have been  
described above.

Kernicterus. Neonatal jaundice is the most common 
complication of the newborn period, usually caused by  
unconjugated hyperbilirubinaemia232. Unconjugated  
bilirubin crosses the blood–brain barrier in the first days 
of life and can damage several parts of the brain, particu-
larly the basal ganglia and acoustic nuclei. The yellow 
staining seen at autopsy in this condition is the origin  
of the neuropathological term kernicterus. Symptoms of 
bilirubin-associated encephalopathy in newborn babies 
include lethargy, impaired tone, cyanosis, vomiting and 
absence of the suck reflex233. Chronic bilirubin encepha-
lopathy manifests as aberrant processing disorders 
 (particularly hearing impairment) and CP.

CP that results from kernicterus is typically choreo-
athetotic or dystonic, indicating damage to extrapyram-
idal structures233. In preterm infants, kernicterus can 
occur with bilirubin levels that would not pose risks to 
infants born at term. Kernicterus was once a common 
cause of CP234,235, but in HICs, the number of cases of 
CP associated with kernicterus has declined substan-
tially owing to prevention and better management of 
newborn hyperbilirubinaemia. Kernicterus remains  
a notable cause of CP in LICs236,237.

Prevention of cerebral palsy
Magnesium sulfate

Case–control studies conducted in the 1990s suggested 
that magnesium sulfate (MgSO4), which is adminis-
tered in pregnancy to treat pre-eclampsia and in pre-
term labour to slow contractions, reduces the risk of 
CP in infants born preterm238–240. Modest support for 
this hypothesis was provided by some cohort studies240 
but not others241,242. A concern in all such observational 
studies was confounding by indication78 — the possibil-
ity that recipients of MgSO4 were at an inherently lower 
risk of CP, given that maternal pre-eclampsia has been 
associated with a lower risk of CP in studies of infants 
with truncated birthweights178,243–245. However, the bene-
fit of MgSO4 was clearly demonstrated by the BEAM 
trial, in which the risk of CP in infants born before 32 
weeks of gestation and who were randomly assigned 
to receive MgSO4 during labour was nearly 40% lower 
than among infants of the same gestational age who 
received placebo246,247. Two meta-analyses of randomized 
trials converge on an estimated 30% reduction in the 
risk of CP as a result of MgSO4 administration248–250.  
A similar reduction was reported in a meta-analysis of 
 observational studies251.

Canadian, British, American and Australian obstet-
ric societies and bodies have issued clinical practice 

guidelines that recommend MgSO4 for fetal neuro-
protection in the setting of imminent preterm birth at 
<32–34 weeks of gestation252. Implementation of these 
guidelines might be a contributor to the reduction in CP 
prevalence among children who have low birthweights 
in many HICs3. Nevertheless, MgSO4 can cause maternal 
adverse effects248, such as respiratory depression, hypo-
tension and confusion, and questions remain about the 
optimal timing of administration253, dosage253,254 and 
duration255,256, and modifiers of therapeutic efficacy  
(for example, maternal obesity)257,258.

Therapeutic hypothermia

A series of randomized trials with consistent results have 
shown that lowering of body and/or head temperature 
by 2°C for 48 h, beginning in the first few hours after 
birth, can reduce the risk of and mortality from CP in 
children who are born after 36 weeks of gestation and 
who have hypoxic–ischaemic encephalopathy259,260.  
All trials enrolled infants with signs of encephalopathy 
and indicators of fetal and immediate neonatal dis-
tress that are thought to reflect asphyxia. Therapeutic 
 hypothermia is now used internationally261,262 and has 
become the standard of care in many centres in HICs. 
Trials are underway to determine the safety and efficacy 
of cooling therapy in low-income and middle-income 
countries (LMICs)263 and in infants whose treatment was 
delayed beyond the first few hours. Whether head cool-
ing would be effective in infants with neonatal enceph-
alopathy that is not associated with evidence of hypoxia 
or ischaemia is an open question.

Among infants who are born at term or late preterm 
and who have moderate to severe encephalopathy, hypo-
thermia improves survival and neurodevelopmental out-
comes, including the development of CP, at 18 months of 
age257, but CP is not eliminated altogether by this treat-
ment. Children with severe newborn encephalopathy 
remain at increased risk of severe neurodevelopmental 
impairment despite the treatment264. Preterm birth and 
comorbid exposure to clinical or histological chorioam-
nionitis (or the correlates of each) are associated with a 
reduced response to hypothermia265.

Attempts to combine cooling with adjunctive ther-
apies to provide additional benefits are underway266,267. 
For example, 1,000 U/kg erythropoietin administered 
intravenously in three doses (immediately after birth, at 
24 h and 1 week later) in conjunction with hypothermia 
is well tolerated and produces plasma concentrations 
that are neuroprotective in animals. However, a large 
efficacy trial is needed to determine whether this add-on 
therapy improves outcomes in infants  undergoing 
hypothermia268.

Investigational therapies

Various other therapies for CP have been tested and are 
under investigation. Caffeine is one of the most com-
monly prescribed medications in neonatal intensive care 
units as a treatment for apnoea269. A Canadian multi-
centre trial of caffeine in premature infants with apnoeic 
episodes indicated a reduction in the risk of motor and 
cognitive impairment with the treatment. The finding was 
statistically significant at 18 months270 but not at 5 years271.
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Melatonin treatment in combination with hypo-
thermia has been compared with hypothermia alone 
in one small trial (n = 15 in each arm) in infants with 
birth asphyxia272. The results hinted that melatonin 
improved survival during 6 months of follow-up and 
lowered the risk of seizures and indicators of white 
matter injury assessed at 2 weeks after birth. A trial of 
melatonin in preterm birth before 28 weeks of gestation 
is ongoing273.

Erythropoietin has been studied in four randomized 
trials in infants born very preterm or who are very small. 
The treatment seemed to reduce the proportion of chil-
dren with Bayley Mental Development Index scores <70 
at follow-up, but the treatment did not affect the risk  
of CP274.

Finally, stem cell therapies for CP are also under 
investigation. These studies are not yet at a sufficiently 
advanced stage to discern the effects of the treatment on 
CP275,276, but evidence from small studies hints at benefits 
for some children277.

Early diagnosis and intervention
The age at which a CP diagnosis is validly, reliably and 
fully ascertained by ruling out transient or progressive 
motor problems is controversial. Long-standing evi-
dence indicates that a proportion of motor problems 
detected before the age of 1 year (for example, develop-
mental delay, coordination problems and transient dys-
tonia) resolve by school age without intervention278–282 
and that a small fraction of motor disability in children 
of school age is the result of progressive motor patho-
logy (for example, in metabolic disorders283), neither of 
which fits the current model of CP. Clinical prediction 
models and neuroimaging have been used to diag-
nose CP before the age of 2 years, but further research  
is necessary.

Clinical prediction studies

Few studies have repeatedly assessed CP status over 
the first several years of childhood among the general 
population. Evidence from two studies suggests that 
a diagnosis of CP at or before a child’s first birthday 
is unreliable280,281. In the largest study to date, which 
included 37,000 children, 45% of those who were diag-
nosed with definite CP at their first birthday ‘outgrew’ 
their motor problems by the age of 7 years280, and fewer 
than 3% of infants who were thought to have probable 
CP at age 1 year had CP at age 7 years. It is impor-
tant to distinguish between CP diagnosed at an early 
age solely on the basis of neurological findings and CP 
accompanied by clear evidence of a disability. Thus, a 
diagnosis made after ~2 years of age is more reliable284, 
particularly when the motor problems are disabling 
(for example, an inability to walk five steps unaided 
or a need for physical assistive devices). However, in a 
study of children who were born preterm and weighed 
<2,000 g at birth, diagnosis of non-disabling CP was 
not a stable diagnosis until after 6 years of age285. This 
instability of diagnosis at the milder end of CP probably 
explains why some, but not all, CP registers conduct 
regular clinical reassessments at the age of 5 years to 
ensure diagnostic accuracy286.

Claims that accurate identification of children who 
are at high risk of CP is possible at just a few months of 
age are increasing in the literature. However, clinical pre-
diction studies have often assessed CP in combination 
with other disorders or used other proxies for a diag-
nosis of CP, such as an interim clinical diagnosis of a 
high risk of CP before a true diagnosis is confirmed287,288.  
A review published in 2017 concluded that CP could 
be diagnosed on the basis of the absence of so-called 
jittery movements in infancy287, but the conclusions were 
based largely on expert opinion, most of the reviewed  
studies defined CP in combination with other motor 
problems, and none included data beyond the age of  
2 years (see the appendix in the review287). The use of var-
ious definitions of ‘high risk of CP’ has hampered direct 
comparisons between studies. For example, of 12 studies 
that focused on motor dysfunction (see a review of these 
studies288), the outcome assessed in 6 was CP ‘or other  
disorders’, and in 5 the clinical decision relied on clini-
cal impressions, intelligence or development quotients; 
in only 1 of the 12 was CP assessed alone. In addition, 
the majority of these studies do not include follow-up of 
children at or beyond 2 years of age, and most are not 
population-based or geographically representative of the 
general population or a targeted high-risk group.

In some studies in Australia and Europe, use of the 
General Movements Assessment in high-risk patients 
has indicated a high sensitivity and specificity for the 
prediction of a high risk of CP. These findings have 
prompted the Australian investigators to recommend 
widespread adoption into clinical practice289. However, 
given that decisions about diagnostic tests should be 
made on the basis of patient benefits289, we feel that 
additional research is needed, as do others290. Indeed, 
although some evidence indicates that early detection 
and intervention can improve some cognitive out-
comes291, the improvements observed in motor dysfunc-
tion are much more modest287,291, and the evidence for 
a benefit is limited by a dearth of high-quality trials292.

Neuroimaging studies

We have discussed the use of neuroimaging in detail in 
a previous review293, in which we concluded that neu-
roimaging is not required for diagnosis of CP because 
the disorder is based on clinical findings, and the prin-
cipal contribution of imaging is to the understanding of 
CP aetiology and pathogenesis. We also concluded that 
imaging studies were less informative than they could 
be, largely because study designs were rarely based on 
generalizable samples.

Since this previous review, several population-based 
neuroimaging studies have provided evidence that the 
occurrence of white matter injury has declined and that 
of grey matter injury has increased, whereas the preva-
lence of malformations in children with CP remained 
about the same. However, the authors of a review of 
these studies294 concluded that a dearth of standardized 
protocols and terminology were probably responsible for 
the heterogeneity of these findings (for example, there 
was no minimum or standard age at assessment).

The well-designed Generation R study of a geo-
graphically representative sample from the Netherlands, 
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published in 2017, highlighted a diverse array of research  
questions that can be addressed by merging neuro-
im aging with developmental neuroscience and epi-
demiology295; an example is an ongoing effort to 
develop growth curves of optimal brain development. 
Nevertheless, studies of selected populations continue 
to be more common, and these types of studies were 
considered in a 2018 systematic review of early MRI 
for detection of motor outcomes at term-corrected age 
in children born preterm296. This review identified a 
high sensitivity and specificity of MRI for detection 
of CP or other motor problems, but the findings were 
difficult to generalize because not all participants had 
CP, and few studies were of unselected, sequentially 
recruited, representative infants. Instead, most were 
carried out in tertiary centres with high-risk patients, 
and recruitment rates of eligible infants were as low as  
17% in some settings. Consequently, further research 
is needed to establish the effect of sample compo-
sition297 and the clinical  relevance of MRI in early 
 identification of CP.

Complexities in cerebral palsy epidemiology
Accumulation and interaction of insults

CP can often be the result of combined insults, but not 
all insults are equally influential and some probably have 
context-specific effects; the importance of timing and 
co-occurrence of different insults is unclear, although 
several examples have been studied. The combination 
of antenatal inflammation with postnatal systemic 
inflammation is associated with an increased risk of CP 
in children born before 28 weeks of gestation298, as are 
combinations of postnatal systemic inflammation and 
high or low levels of proteins that are related to angio-
genesis and thyroid dysfunction299,300. FGR and/or very 
preterm birth seem to make infants particularly suscep-
tible to multiple-hit phenomena that involve white mat-
ter injury and its correlates because these infants tend to 
have more vigorous postnatal inflammatory responses 
than do other infants301–303. Chronic placental inflam-
mation followed by acute fetal inflammation followed 
by neonatal illness is similarly associated with cerebral 
white matter injury in infants who are born before  
32 weeks of gestation304.

Additional evidence that accumulation of insults is 
involved in CP comes from a population-based study of 
infants with birthweights <2 kg with risk factors associ-
ated with ventilator use. This study showed that the risk of 
CP increased incrementally with addition of three venti-
latory risk factors: hyperoxia, hypocapnia and ventilation 
for longer than expected for gestational age. The pres-
ence of one ventilatory risk factor was associated with an 
11% risk of CP, two risk factors were associated with a 
35% risk and three risk factors were associated with 
a 57% risk88. In a study of over 200,000 pregnancies,  
pre-eclampsia, neonatal infection, presumed birth 
asphyxia and neonatal illness were cumulatively asso-
ciated with an increased risk of CP213. Similarly, a study 
of nearly 6,000 infants with very low birthweights in 
Taiwan indicated a strong interaction between sepsis and 
postnatal hypoxic–ischaemic events. Infants with sepsis 
alone had a 10% risk of CP, but adding one, two, three  

or four events increased the risk of CP to 17%, 27%, 40% 
and 55%, respectively305.

Hidden from view

Although a small fraction of CP is caused by obvious 
postnatal events, such as meningitis or head trauma, at 
least 90% of the factors that predispose infants to CP in 
HICs are no longer operative and are often no longer 
detectable after the perinatal period. Furthermore, many 
prenatal causes are often hidden from view because the 
inflammatory stimuli that seem to contribute to preterm 
birth, the silent strokes and the hormonal changes oper-
ate under the cover of amnion and uterus. However, a 
firm diagnosis of CP cannot usually be made until the 
child’s nervous system is mature enough to display 
the motor deficits that describe CP, usually at about the 
age of 2 years. By the time a child is diagnosed with CP, 
the history of the pregnancy and the perinatal period 
can be reconstructed only from medical records and 
maternal recall, which are useful but have limitations 
(for example, recall bias and reliance on clinical notes). 
Prospective data collection can improve the precision of 
data about exposures, but to date, few prospective pre-
conception or pregnancy cohort studies have included 
follow-up of children to school age or beyond to assess 
neurodevelopmental outcomes. Consequently, delivery 
and neonatal factors have received much consideration, 
partly because of the dearth of quality evidence about 
earlier antecedents of CP. This bias has important impli-
cations because pre-pregnancy and early pregnancy risk 
factors (such as body weight) and their correlates can 
influence the capacity for delivery-related and postna-
tal factors to provide information about the risk of CP  
(for example, maternal age)306.

One disorder or many?

The relationships between clinical entities that are used as 
diagnoses and established pathophysiological pathways 
vary greatly. Some disorders are defined by abnormal-
ities at the molecular level, such as sickle cell anaemia, 
but many are defined by their clinical appearance307 
and often represent the common end point of various 
pathophysiological changes. Use of such disease entities 
often continues despite recognition of their heterogeneity 
because the entity is useful in clinical management; for 
example, whether a stroke was ischaemic or thrombotic 
matters little for the rehabilitation of a patient.

As discussed above, the term CP includes entities that 
are apparently caused by multiple pathways, yet the sin-
gle term persists. Some epidemiologists have referred to 
‘cerebral palsies’308 and the current definition refers to a 
group of disorders to indicate the heterogeneity309,310, but 
this usage has not taken hold in clinical settings, largely 
because the traditional phenomenological entity and its 
observable subdivisions are clinically useful for prog-
nosis and management. Novel classification schemes 
based on topography have not consistently improved 
reliability in describing CP subtypes311; therefore, the 
field has moved away from classification according 
to the underlying impairment and towards a focus on 
functioning312–315. What this trend means for aetiological 
research remains to be seen.
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The temptation, which is consistent with the current 
emphasis on precision medicine, is to divide the con-
dition into narrower subdivisions that are more likely 
to be aetiologically homogeneous. However, when a 
clinical entity is fairly uncommon, as is the case for CP, 
creating finer and finer subdivisions makes investiga-
tion of aetiology very difficult. Even in the collaborative 
perinatal project, which included 50,000 participants, 
analysis did not consider much beyond the diagnosis 
of CP itself; the only difference emphasized was that 
between children with birthweights above and below 
2,500 g (refs53,316,317). Two initiatives could help to over-
come this difficulty: one is the newly initiated integra-
tion of Danish and Norwegian birth cohorts (referred 
to as MOBAND)318, which aggregates the medical 
records from 200,000 well-studied pregnancies and 
births and links them to the national CP registers of 
those countries, and the other is the Global Pregnancy 
‘CoLaboratory’319 (CoLab; see Related links), a network 
of investigators from multiple population-based register 
and cohort studies who seek to facilitate standardiza-
tion of data collection instruments and study designs 
and to enable data sharing to solve complex ques-
tions about major pregnancy complications and their 
sequelae. However, no consensus has been reached 
on the kinds of subdivisions (for example, gestational 
age at birth, type of motor abnormality or distribu-
tion of affected limbs) that would lead to the greatest 
 aetiological insight318.

Specificity is problematic for all symptom-based 
case definitions320, and mis-specification of heteroge-
neous syndromes as singular entities can mask impor-
tant findings about aetiology321, including evidence of 
therapeutic benefits322. Subtypes of a syndrome can be 
established in three ways. The first is to demonstrate 
different risk profiles. The second is to establish that the 
underlying morbid anatomy or pathophysiology differs. 
The third is to demonstrate that a subset of a disorder 
can be prevented (as in the case of kernicteric brain 
damage prevented by control of bilirubin blood levels). 
In reality, none of these strategies alone will provide a 
definitive answer about subtypes of CP because some 
similarities and differences in the antecedents, neu-
roanatomy and efficacy of interventions are observed 
across subtypes.

Several lines of evidence indicate that environ-
mental and maternal characteristics are differentially 
associated with different subtypes of CP. Some studies 
have provided evidence that social status323 and mater-
nal body weight324 are associated with increased risk of 
hemiplegia, but not other CP subtypes. Consideration 
of maternal age also influences which factors are most 
strongly associated with increased risk of different 
types of CP306. Stratification of infants according to 
postnatal occurrence of persistent systemic inflam-
mation seems to provide different information about 
the risk factors associated with quadriplegia299,300, but 
not other CP subtypes, among children who are born 
before the 28th week of gestation. The CP risk factor 
profiles for different subtypes among infants with FGR 
also differ from those for infants with normal growth325, 
especially for children with CP who have FGR and are 

born at term, among whom rates of congenital birth 
defects are very high180. Some evidence indicates that 
patterns of childhood growth differ according to CP 
subtype326. Finally, the antecedents of the severest forms 
of CP seem to differ from those of less severe motor dis-
orders327, and in some studies the profile of comorbid 
neurodevelopmental disorders differs by CP subtype 
(for example, the co-occurrence of intellectual disa-
bility and epilepsy seems to be more likely to develop 
among children who develop hemiplegia than among 
children who develop other types of CP)328,329.

Despite this evidence, without agreement on relia-
ble definitions of CP subtypes, the findings are difficult 
to interpret and hard to replicate across populations 
with different background prevalence of contributing 
factors. Integration of findings from hypothesis-driven 
clinical studies and preclinical studies is most likely 
to inform about the appropriate subdivision of 
 neurodevelopmental syndromes that are rooted in 
pregnancy.

Future directions
Large public health interventions (for example, improved  
access to clean water, hygiene and other interventions 
that focus on common infections before, during and 
between pregnancies) combined with rigorous empha-
sis on hypothesis-driven data collection in LMICs could 
probably teach us a lot about CP aetiology. A similar 
focus on periconception modifiable risk factors that 
influence the early gestation milieu that contributes 
to increased risk of CP would be informative in LICs 
and HICs — for example, a focus on alleviating social 
disadvantage. Overall, there is a pressing need to under-
stand how the environment influences brain develop-
ment, how it affects placentation and later placental 
functioning while the brain grows, and why specific 
environmental factors seem to raise the risk of CP and 
precipitating pregnancy disorders.

Current knowledge of the pathogenesis of CP dur-
ing embryogenesis and placentation rests largely on 
evidence from models in cell lines and embryos and 
on downstream placental histopathology and related 
clinical syndromes330–332. However, we do not know 
whether these methods represent in vivo pathogene-
sis or how to translate emerging preclinical informa-
tion into population-level benefits. Maternal and fetal 
blood-based profiling and imaging techniques are much 
less informative about pregnancy disorders before the 
15th gestational week333,334, which seems to be a key 
aetiological window333,335–337. Emerging technologies, 
such as trophoblast retrieval and isolation from the 
cervix338,339, might provide relevant information about 
early placental development and function in ongoing 
pregnancies, but large follow-up studies are needed to 
discern the relevance to CP and its correlates. Single bio-
markers are unlikely to be very useful clinically for large 
sections of the general population, but molecular pro-
filing to establish the timing and order of processes that 
disrupt physiological homeostasis during pregnancy 
might prompt better thinking about aetiology and pre-
vention. For example, consideration of key concepts 
from physiology, such as homeostasis, regulated systems 
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and redundancy, as major intellectual tools to under-
stand aetiology might improve our capacity to formulate 
and test hypotheses340 (details of specific  examples are 
available elsewere341–343).

Infection and other inflammation-inducing expo-
sures before and after very preterm birth are asso-
ciated with an increased risk of CP via complex 
pathways92–94,298,344. Some evidence suggests that the 
risk of CP and comorbid brain disorders is decreased 
by administration of exogenous proteins that reduce 
neuroinflammation, possibly by controlling the regu-
lation of systemic inflammation and neuropoietin 
signalling116,345,346; however, meticulously designed, 
hypothesis-driven preclinical and clinical studies 
will be needed to translate these observations into 
population-wide benefits322,347.

We cannot overstate the importance of preterm deliv-
ery and FGR348, which are themselves heterogeneous 
syndromes349,350, in the CP risk profile, but large studies 
of infants born at term, which account for approximately 
half of all CP diagnoses, might enable easier identifi-
cation of antecedents, in part because the number of 
indicators of different pathological processes increases 
as the gestational age at delivery decreases and, conse-
quently, so does the complexity351–353. Population-based 
studies of pregnancies at all gestational ages will con-
tinue to be the most helpful. CP registers and emerging 
consortiums that focus on standardized data collection, 
analysis and sharing to study complex pregnancy disor-
ders (for example, CoLab) are beginning to enable the 
kind of research necessary to examine these possibilities  
more closely354,355.

Conclusions
We know that the aetiological factors involved in most 
cases of CP operate between conception and a few weeks 
after birth, yet identifying preventable causes of CP has 
proved difficult. Several risk factors have been identi-
fied, but they overlap and interact with each other in 
ways that are not easy to dissect. Nevertheless, impor-
tant to keep in mind is that the young 21st century has 
witnessed the development of two preventive measures 
for CP: MgSO4 treatment for mothers at risk of preterm 
delivery, and head and/or body cooling for infants born 
at term with neonatal encephalopathy.

The ongoing formation of large national databases 
of data from unselected pregnancies in combination 
with multidisciplinary collaboration to integrate these 
resources for the study of complex diseases in preg-
nancy gives hope for new discoveries; these data include 
real-time surveys of exposures in pregnant women, and 
biological specimens such as archived serum, urine 
and newborn blood spots. This information is invalu-
able when accompanied by follow-up information about 
the presence or absence of CP in the offspring, or when 
linked to records of CP. If the modest information about 
pregnancy that is currently available from maternal recall 
and medical records years later can be supplemented 
with data sources that provide clear information about 
exposures to infections, nutrients, environmental toxins, 
allergens and many other phenomena during pregnancy, 
our limited knowledge could give way to an era in which 
the widespread prevention of CP is a feasible goal.
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