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Abstract

Mutations in PINK1, a mitochondrially targeted serine/threonine kinase, cause autosomal recessive Parkinson’s disease (PD).
Substantial evidence indicates that PINK1 acts with another PD gene, parkin, to regulate mitochondrial morphology and
mitophagy. However, loss of PINK1 also causes complex I (CI) deficiency, and has recently been suggested to regulate CI
through phosphorylation of NDUFA10/ND42 subunit. To further explore the mechanisms by which PINK1 and Parkin
influence mitochondrial integrity, we conducted a screen in Drosophila cells for genes that either phenocopy or suppress
mitochondrial hyperfusion caused by pink1 RNAi. Among the genes recovered from this screen was ND42. In Drosophila
pink1 mutants, transgenic overexpression of ND42 or its co-chaperone sicily was sufficient to restore CI activity and partially
rescue several phenotypes including flight and climbing deficits and mitochondrial disruption in flight muscles. Here, the
restoration of CI activity and partial rescue of locomotion does not appear to have a specific requirement for
phosphorylation of ND42 at Ser-250. In contrast to pink1 mutants, overexpression of ND42 or sicily failed to rescue any
Drosophila parkin mutant phenotypes. We also find that knockdown of the human homologue, NDUFA10, only minimally
affecting CCCP-induced mitophagy, and overexpression of NDUFA10 fails to restore Parkin mitochondrial-translocation
upon PINK1 loss. These results indicate that the in vivo rescue is due to restoring CI activity rather than promoting
mitophagy. Our findings support the emerging view that PINK1 plays a role in regulating CI activity separate from its role
with Parkin in mitophagy.
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Introduction

Parkinson’s disease (PD) is the second most prevalent neurode-

generative disorder, the etiology of which remains unknown.

Mitochondrial dysfunction, including complex I (CI) deficiency,

are frequently observed in pathologic specimens. To elucidate the

underlying molecular events, intensive research has focused on

identifying the causative gene mutations for inherited forms of PD.

An impressive array of disease-causing mutations have been found

including autosomal recessive mutations in PARK6 which encodes

PTEN-Induced Kinase 1 (PINK1), a mitochondrially targeted

serine/threonine kinase, and PARK2, encoding the cytoplasmic

E3 ubiquitin ligase Parkin [1,2]. Previous work has shown that

PINK1 and Parkin regulate several cellular processes that impinge

on mitochondrial homeostasis [3–13], including the fission-fusion

dynamics and trafficking of mitochondria [14–17], the degradation

of damaged mitochondria [18–22], inter-organelle communication

[23], and activity of CI of the electron transport chain [4,8,9,24,25].

However, the mechanisms by which PINK1 and Parkin affect these

processes is incompletely understood.

In order to identify functional partners of PINK1 we performed

a cell based RNAi screen to identify genes that either phenocopy

or suppress PINK1 phenotypes. In Drosophila cells lacking pink1
or parkin steady state levels of Marf are increased causing excess

fusion of the mitochondrial network [14,17,26]. This imbalance in

mitochondrial fission-fusion at least partially contributes to the

observed organismal phenotypes – enlarged and disrupted

mitochondria, muscle degeneration, male sterility, and associated

behavioral deficits and neurodegeneration – since they can be

partially rescued by genetic interaction with fission (Drp1) or

fusion (OPA1 and Marf) genes to restore the balance of normal

mitochondrial morphology [14,16]. We used this phenotype to
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screen for factors that impact on mitochondrial morphology and

which may play a role in PINK1/Parkin function. Our RNAi

screen identified multiple hits including a subunit of CI, ND42/

NDUFA10. Given the link between CI deficiency and PD, we

selected ND42/NDUFA10 for further characterization.

Knockdown of Drosophila ND42 phenocopied pink1 RNAi,

causing excessive mitochondrial fusion. Genetic studies in

Drosophila reveal that overexpression of ND42 or its co-chaperone

sicily is sufficient to rescue behavioral deficits in pink1 mutants

through restoration of CI activity. In contrast, overexpression of

neither ND42 nor sicily rescued parkin mutant flies, and

attenuation of the mammalian homolog, NDUFA10, in HeLa

cells only modestly reduced mitophagy. Furthermore, NDUFA10
overexpression cannot restore Parkin translocation to mitochon-

dria in the absence of PINK1, suggesting that ND42 selectively

rescues pink1 mutants through a mechanism independent of

mitophagy. Our study provides additional evidence in support of a

role for PINK1 in CI activity, and further highlights separable

functions of PINK1 and Parkin. Future characterization of the

other factors from our screen promises to shed additional light on

the functional roles of PINK1 and Parkin.

Results

An RNAi screen for suppressors or phenocopiers of pink1
RNAi-induced mitochondrial fusion
To identify new components in PINK1-Parkin pathway we

performed an RNAi screen in Drosophila cells, using a subset

library enriched for kinases and phosphatases, for genes that alter

mitochondrial morphology (Figure 1A). In particular, we sought to

identify genes whose knockdown could either phenocopy or

suppress the pink1 RNAi-induced excess fusion. dsRNA treated

cells were imaged live using MitoTracker Red to fluorescently

label the mitochondrial network. The mitochondrial morphology

in each image was scored as primarily falling into one of four

categories based on control knockdown phenotypes (Figure 1B).

Control (DsRed) dsRNA treated cells showed a typical mix of

short-round and long-tubular mitochondria. This category was

scored 2. Cells treated with dsRNA against the fly mitofusin

homologue, Marf, caused a complete fragmentation of the

mitochondrial network as expected and were scored 1. pink1
RNAi resulted in a tubular, highly interconnected network, as

previously reported [14,17], scoring 3. RNAi against the pro-

fission factor Drp1 caused mitochondrial hyperfusion and peri-

nuclear clumping. Being qualitatively different from the pink1
RNAi phenotype and an extreme result of hyperfusion this

category scored 4.

The screen was performed on a library of selected genes mostly

comprising kinases and phosphatases but with additional genes of

interest. The effect on mitochondrial morphology was assessed in

two backgrounds; one in a wild type background to identify

manipulations that phenocopy pink1 RNAi tubulation, and

another in a pink1 RNAi background to identify manipulations

capable of suppressing the pink1 phenotype. The results from the

two screens were cross-referenced to further refine the selection of

possible hits (Figure 1C). The limits of the regions considered to

phenocopy or suppress were defined by the mean 6 standard

deviation for pink1 or DsRed dsRNAs respectively. The gene

targets whose dsRNAs either phenocopy or suppress pink1 RNAi

are summarized in Table 1 and Table 2.

While there are several interesting candidates for further

investigation in both suppressors and phenocopiers (see Discus-

sion), a specific motivation for this work was to identify additional

components of the PINK1-Parkin pathway that regulate mito-

chondrial dynamics and mitophagy. An attractive candidate that

could fulfill this role would be a mitochondrially localized protein.

Notably, we identified ND42, which encodes a subunit of CI of the

electron transport chain, as a phenocopier; knockdown of ND42
caused excess tubulation similar to pink1 knockdown. Importantly,

CI activity has been shown to be specifically affected in various

models of pink1 deficiency, supporting ND42 as an attractive

target for analysis in pink1 function.

ND42 knockdown specifically phenocopies pink1 RNAi
induced mitochondrial hyperfusion
CI is a very large, multi-subunit complex comprising of around

44 subunits, consisting of a hydrophobic portion embedded in the

inner membrane and a hydrophilic portion extending into the

matrix [27,28]. In order to assess the specific versus general effect

of attenuating CI subunits on mitochondrial morphology, several

additional subunits were analyzed. dsRNAs targeting 6 other

subunits from different subdomains (a, b or l) were generated and

the effect of knockdown on mitochondrial morphology was

assessed.

We confirmed that ND42 knockdown caused excess mitochon-

drial fusion in a WT background, indistinguishable from pink1
knockdown, but did not further enhance the pink1 phenotype

(Figures 2A, 2B, and S1). In contrast none of the other selected

subunits induced fusion; 4 subunits had no effect on morphology

while 2 subunits caused fragmentation (Figures 2C and 2D).

Further analysis of one of these subunits, CG7712, which did not

perturb mitochondrial morphology, also did not modify the pink1
phenotype. These results support the specificity of the effect

observed with ND42 knockdown.

ND42 overexpression can rescue pink1 but not parkin
mutants
Since ND42 RNAi phenocopies loss of pink1 in cells we

assessed whether loss of ND42 may phenocopy pink1 mutants in
vivo. Drosophila mutant for pink1 exhibit characteristic locomotor

deficits in climbing and flight, associated with degeneration of the

musculature and profound disruption of mitochondria [3,11]. In

agreement with previous observations [29], we found that

Author Summary

Two genes linked to heritable forms of the neurodegen-
erative movement disorder Parkinson’s disease (PD), PINK1
and parkin, play important roles in mitochondrial homeo-
stasis through mechanisms which include the degradation
of dysfunctional mitochondria, termed mitophagy, and the
maintenance of complex I (CI) activity. Here we report the
findings of an RNAi based screen in Drosophila cells for
genes that may regulate the PINK1-Parkin pathway which
identified NDUFA10 (ND42 in Drosophila), a subunit of CI.
Using a well-established cellular system and in vivo
Drosophila genetics, we demonstrate that while
NDUFA10/ND42 only plays a minimal role in mitophagy,
restoration of CI activity through overexpression of either
ND42 or its co-chaperone sicily is able to substantially
rescue behavioral deficits in pink1 mutants but not parkin
mutants. Moreover, while parkin overexpression is known
to rescue pink1 mutants, it apparently achieves this
without restoring CI activity. These results suggest that
increasing CI activity or promoting mitophagy can be
beneficial in pink1 mutants, and further highlights sepa-
rable functions of PINK1 and Parkin.

NDUFA10 Genetically Interacts with PINK1
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knockdown of ND42 in all tissues is lethal, consistent with the

subunit playing a critical role in this essential metabolic enzyme.

Due to the essential nature of this gene, and lack of pink1
phenocopy, we did not further characterize ND42 loss-of-function.

We hypothesized that, since pink1 mutants show CI deficiency,

overexpressing ND42 may suppress pink1 phenotypes. While

ND42 overexpression of two independent transgenes driven by

the strong ubiquitous driver daughterless (da)-GAL4 had no effect

on motor performance in a wild type background (Figures 3A and

3B), we found that expression of either transgene was able to

significantly restore climbing and flight ability in pink1 mutants

(Figures 3C and 3D). However,ND42 overexpression only partially

restored flight muscle and mitochondrial integrity (Figure 3E), but

was not able to improve the male sterility (Figure S2A).

Genetic interaction studies in Drosophila have linked pink1 and

parkin in a common pathway with pink1 acting upstream of

parkin [3,6,11]. To further characterize the putative action of

ND42/NDUFA10 in the PINK1-Parkin pathway, we tested

whether ND42 overexpression could also rescue parkin mutants.

Surprisingly, we found that overexpression of ND42 was not able

to rescue any parkin phenotypes tested, including locomotor

behaviors, muscle and mitochondrial integrity, and male sterility

(Figures 4A–4C, and S2B).

Recently it was reported that Drosophila sicily acts as a co-

chaperone to bind and stabilize ND42 in the cytoplasm,

promoting its mitochondrial import and the formation of CI

[29]. Supporting a potential role for sicily in pink1 function, we

found that knockdown of sicily in Drosophila cells phenocopied

pink1 mitochondrial hyperfusion (Figure S3). Since sicily promotes

ND42 stability, and overexpression of ND42 can rescue pink1

mutant phenotypes, we hypothesized that sicily overexpression

may also rescue pink1 mutants. Indeed, we found that sicily
overexpression rescued pink1 mutant locomotor and mitochon-

drial phenotypes comparable to ND42 overexpression (Figur-

es 3A–3E). Also, overexpression of sicily failed to rescue similar

parkin mutant phenotypes (Figures 4A–4C), mirroring the effects

of ND42. Together these results demonstrate a genetic interaction

of ND42 and sicily with pink1 but not parkin.

NDUFA10 minimally affects Parkin translocation and
mitophagy
The fact that ND42 overexpression can rescue pink1 but not

parkin mutants would be consistent with it acting in a common

pathway between PINK1 and Parkin. An intensively studied field

of PINK1-Parkin function is the autophagic turnover of

mitochondria, termed mitophagy [30]. In HeLa cells overexpress-

ing YFP-Parkin, depolarization of the mitochondrial membrane

with the protonophore carbonyl cyanide 3-chlorophenylhydra-

zone (CCCP) causes a rapid stabilization of PINK1 on the outer

mitochondrial membrane, which stimulates the re-distribution of

cytoplasmic Parkin to co-localize with mitochondria (Figures 5A

and 5B). Prolonged exposure to CCCP induces substantial

degradation of the mitochondria (Figures 5C, 5D, and S4). These

phenomena are almost completely abolished by PINK1 knock-

down (Figures 5A–5D) [18–20,22].

We next analyzed the effect of the human homolog of ND42,
NDUFA10, on Parkin translocation and mitophagy. We found

that NDUFA10 knockdown had a modest but significant effect on

Parkin translocation, though clearly not as much as loss of PINK1
(Figures 5A, 5B, S1 and S5). Moreover, loss of NDUFA10 only

Figure 1. A cell based RNAi screen to identify phenocopiers and suppressors of pink1 RNAi-induced mitochondrial hyperfusion. (A)
Schematic of the RNAi screen protocol (see Methods for details). (B) Representative images of Drosophila S2R+ cells for mitochondrial morphology
following dsRNA treatment of the indicated genes, stained with MitoTracker Red and imaged live (top row). Fluorescence images are converted to
binary (B&W) and inverted to clarify the mitochondrial morphology (bottom row). Numbers represent the designated ‘morphology score’: 1,
fragmented; 2, wild type; 3, fused/tubular; 4, hyperfused/clumped. (C) Comparison of morphology score of screen library amplicons in WT and pink1
RNAi backgrounds. Solid-line box depicts those amplicons that phenocopy pink1 RNAi (box limits: mean 6 s.d. pink1 control). Dashed-line box
depicts amplicons which suppress pink1 RNAi-induced fusion back to WT morphology (box limits: mean 6 s.d. DsRed control). Controls for
fragmentation (Marf) and fusion (Drp1) are shown. Scale bar = 10 mm.
doi:10.1371/journal.pgen.1004815.g001

Table 1. List of genes that phenocopy pink1 dsRNA induced mitochondrial fusion.

Phenocopiers

CG# Gene name Molecular Function Human Homologue Accession #

CG4523 pink1 Serine/Threonine Kinase PTEN–induced kinase 1 NP_115785

CG2277 CG2277 Unknown 5’–nucleotidase domain–containing protein 1 NP_689942

CG32505 Pp4–19C Serine/Threonine Phosphatase serine/threonine–protein phosphatase 4 catalytic
subunit

NP_002711

CG42341 Pka–R1 cAMP Dependent Kinase cAMP–dependent protein kinase type I–beta
regulatory subunit

NP_002726

CG10564 Ac78c Adenylate Cyclase Activity Adenylate cyclase type 8 NP_001106

CG10261 aPkc Serine/Threonine Kinase protein kinase C iota type NP_002731

CG7004 Four wheel drive Phosphatidylinositol 4–Kinase phosphatidylinositol 4–kinase beta isoform 2 NP_001185703

CG11870 CG11870 Protein Kinase NUAK Family SNF1–like kinase NP_055655

CG1747 Sk1 Sphingosine Kinase Sphingosine Kinase 1 NP_068807

CG6343 ND42 NADH Dehydrogenase NDUFA10 NP_004535

CG34412 Tousled like kinase Protein Kinase serine/threonine–protein kinase tousled–like 2 NP_036033

CG42317 Csk Tyrosine Kinase tyrosine–protein kinase C-terminal Src Kinase NP_004374

doi:10.1371/journal.pgen.1004815.t001
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very minimally reduced the degree of mitophagy (Figures 5C, 5D,

and S6). We also found no effect of NDUFA10 knockdown on

PINK1 stabilization following mitochondrial depolarization (Fig-

ure S7). These data indicate that NDUFA10 does not play a

significant role in PINK1/Parkin mediated mitophagy and

suggests that the in vivo rescue was unlikely via the mitophagy

pathway.

To further exclude a role for mitophagy in the rescue of pink1
mutants, we assessed in vitro whether NDUFA10 overexpression

could promote CCCP-induced Parkin translocation in the absence

of PINK1. Encouragingly, re-expression of either NDUFA10 or

ND42 almost completely restored Parkin translocation reduced by

NDUFA10 knockdown (Figures 6A and 6C). However, when

Parkin translocation was completely blocked by loss of PINK1,
this was not rescued by expression of either NDUFA10 or ND42
(Figures 6A and 6D). These results support the idea that the rescue

seen in vivo is unlikely due to activated mitophagy, raising the

question of what mechanism is responsible.

ND42 overexpression restores CI activity in pink1mutants
As loss of PINK1 has been reported to cause decreased CI

activity [24], we reasoned that suppression of pink1 mutants by

ND42 overexpression may be due to restoration of CI activity. As

previously reported, we observed a CI deficiency in pink1 mutant

flies, leading to decreased ATP production (Figures, 7A and 7B).

We found that ND42 overexpression was indeed able to

completely restore both CI activity and ATP levels in vivo
(Figure 7A and 7B). Extending these analyses to parkin mutants,

we saw a non-significant decrease in CI activity in parkin mutants

that remained unchanged by ND42 overexpression (Figure 7C).

Similarly, the significant depletion of ATP evident in parkin
mutants was not rescued by ND42 overexpression (Figure 7D),

consistent with a lack of phenotypic rescue by ND42 overexpres-

sion. Interestingly, we also found that sicily overexpression was

able to completely restore CI activity in pink1 mutants

(Figure 7A), while the increase in ATP levels was not significant

(Figure 7B). Similar to ND42, sicily overexpression had no effect

in parkin mutants (Figures 7C and 7D).

Analysis of ND42 Ser-250 phospho-variants in the rescue
of pink1 mutant locomotion and CI activity
While this work was in preparation, Morais et al [25] reported

that NDUFA10 lacked phosphorylation at serine-250 in the

absence of PINK1, and that expression of phospho-mimetic

NDUFA10/ND42 specifically reversed PINK1 deficits in various

model systems, including restoring CI activity in mammalian

systems and synaptic phenotypes in Drosophila pink1 mutants.

Our preceding data concur that overexpression of ND42 can

Table 2. List of genes that suppress pink1 dsRNA induced mitochondrial fusion.

Suppressors

CG# Gene name Molecular Function Human Homologue Accession #

CG5656 CG5656 Alkaline phosphatase Alkaline Phosphatase NP_001170991.1

CG8128 CG8128 Nudix hydrolase activity uridine diphosphate glucose pyrophosphatase NP_803877

CG33991 nuclear fallout Rab and microtubule binding Rab11 FIP3/Rab11 FIP4 NP_055515.1/NP_116321.2

CG4266 CG4266 mRNA binding RBM16 NP_055707.3

CG7899 Acph–1 Acid Phosphatase prostatic acid phosphatase isoform TM–PAP precursor NP_001127666.1

CG7431 CG7431 Tyramine Receptor Alpha–1b adrenergic receptor NP_000670

CG31759 CG31759 unknown 2959–phophodiesterase 12 NP_808881

CG17559 doughnut on 2 Receptor tyrosine–protein kinase RYK isoform 2 precursor NP_002949

CG10975 Ptp69D Tyrosine Phosphatase receptor–type tyrosine–protein phosphatase alpha
isoform 2 precursor

NP_543030

CG5361 CG5361 Alkaline Phosphatase alkaline phosphatase, tissue–nonspecific isozyme isoform 1
precursor

NP_000469

CG3980 Cep97 Protein Phosphatase Cep97 NP_078824

CG3525 easily shocked Ethanolamine Kinase Ethanolamine kinase 1 NP_061108.2

CG3494 CG3494 unknown Leucine rich repeat containing protein 40 NP_060238

CG11660 CG11660 Protein Kinase Serine/threonine kinase RIO1 NP_113668.2

CG1637 CG1637 Acid Phosphatase Iron/Zinc purple acid phosphatase NP_001004318.2

CG40448 Pp1–Y2 Serine/Threonine Phosphatase Serine/threonine phosphatase PP1 gamma NP_002701

CG17746 CG17746 Serine/Threonine Phosphatase Protein phosphatase 1A NP_808820

CG7180 CG7180 Tyrosine Phosphatase receptor–type tyrosine–protein phosphatase kappa
isoform b precursor

NP_002835

CG31299 curled Unknown nocturnin NP_036250

CG6860 Lrch Unknown Leucine rich repeat and calponin homology NP_116162

CG3051 SNF1A AMP–activated protein kinase 5’–AMP–activated protein kinase catalytic subunit alpha–2 NP_006243

CG34356 CG34356 Protein Kinase SCY1–like protein 2 NP_060458

CG42366 CG42366 Protein Kinase Serine/Threonine Kinase ICK NP_057597

CG3530 CG3530 Tyrosine/Serine/Threonine kinase Myotubularin NP_000243

doi:10.1371/journal.pgen.1004815.t002
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rescue some pink1 mutant phenotypes (and not others), but

interestingly we found that this can be achieved with expression of

the wild type version without a specific requirement for the

phospho-mimetic.

To further explore the potential role of Ser-250 phosphorylation

in these assays, we tested in parallel our existing lines (previously

reported in [31]) and those of Morais et al [25] and of the yeast

equivalent of CI, NDI1 [31]. As before, we found that expression

of the previous WT transgene (designated ND42HB) significantly

rescued pink1 climbing and flight defects (Figures 8A and 8B). We

also found that the Morais et al. transgenes (designated ND42BDS)
expressing either WT or phospho-mimetic (SD) also partially

rescued climbing, albeit to a lesser extent (Figure 8A). The WT

version of these lines did not statistically improve flight ability

whereas the SD did provide a modest rescue (Figure 8B). We also

found that the non-phosphorylatable version (SA) provided

significant rescue of climbing, equivalent to the phospho-mimetic,

but again did not rescue flight (Figure 8A and 8B). Notably, in

these assays NDI1 expression significantly rescued climbing but

not flight ability (Figure 8A and 8B), consistent with previous

observations [31].

To better understand the relationship between the behavioral

rescue and CI activity, and to assess functional efficacies of the

various transgenic lines, we tested the ability of the phospho-

variants transgenes to rescue the CI deficiency in pink1 mutants.

We found that expression of all phospho-variants were able to fully

Figure 2. ND42 RNAi but not other complex I subunits phenocopies pink1 RNAi. (A) ND42 RNAi in Drosophila S2R+ cells stained with
MitoTracker Red causes tubulation of the mitochondrial network, similar to pink1 RNAi. ND42 RNAi does not further perturb morphology in
conjunction with pink1 RNAi. (B) Quantification of mitochondrial morphology as in A, scored in triplicate experiments. (C) RNAi of selected subunits of
complex I or rotenone treatment do not phenocopy pink1 RNAi. (D) Quantification of morphology scored in triplicate experiments as in C. Histograms
indicate mean 6 s.d. of triplicate experiments. Inverted, binary images are shown below each fluorescence image to aid clarity of mitochondrial
morphology. n.30 cells per experiment. Scale bar = 10 mm.
doi:10.1371/journal.pgen.1004815.g002
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restore CI activity in pink1 mutants (Fig. 8C). The degree of

rescue was similar to that seen with the previous WT transgene

(Fig. 7A), consistent with an equivalent level of expression between

these lines (Fig. S1G). Interestingly, while we see the highest level

of CI activity with the phospho-mimetic (SD), we also see a

substantial rescue by the phopho-null (SA) in this in vitro assay.

Overexpression of parkin rescues pink1 mutants but does
not restore CI activity
The ability of multiple transgenes that restore CI activity to at

least partially rescue climbing behavior supports the idea that

promoting CI activity is differentially beneficial in pink1 mutants

but not parkin mutants and may hint at different underlying

Figure 3. ND42 or sicily overexpression can rescue pink1 mutant phenotypes in flies. Overexpression of two ND42 transgenes, ND42 and
ND42-HA, in a wild type background has no effect on climbing (A) or flight behavior (B). In pink1B9 mutants, climbing (C) and flight ability (D),
normalized to control, is significantly rescued by overexpression ND42 or sicily. Histograms indicate mean 6 s.e.m. (E) Transmission electron
microscopy of flight muscle shows partial rescue of mitochondrial disruption. Scale bar = 1 mm. Overexpression was driven by the ubiquitous driver
da-GAL4. Control genotype is da-GAL4/+. Number of animals tested, n.50. * P,0.05, *** P,0.001, **** P,0.0001, One-way ANOVA with Bonferroni
correction. Comparisons are with control (A, B) or pink1B9 mutants (C, D).
doi:10.1371/journal.pgen.1004815.g003
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causes of pathogenicity. However, a puzzling aspect of this is the

long-standing observations that parkin overexpression is sufficient

to almost completely rescue many pink1 mutant phenotypes

(Figures 9A and 9B, and [3,11,32,33]). Since, to our knowledge, it

had never been reported, we tested whether the rescue may be due

to restoration of CI activity in pink1 mutants. Surprisingly, we

found that parkin overexpression mildly improved ATP levels but

did not restore CI function (Figures 9C and 9D). Hence, these

genetic interactions further support independent and separable

functions of PINK1 and Parkin.

Discussion

PINK1 and complex I function
PINK1 and Parkin have long been genetically linked in a

common pathway that promotes mitochondrial homeostasis at

least partly by directing the autophagic degradation of dysfunc-

tional mitochondria as a mechanism of mitochondrial quality

control. While this model potentially explains the occurrence of CI

deficiency, oxidative stress, calcium dysregulation and elevated

mtDNA mutations seen in patient tissues, and the age-related

onset of PD [34], other models have been proposed to explain the

pathological consequences of PINK1 and Parkin deficiency.

Moreover, many mechanistic details by which the PINK1-Parkin

pathway functions remain unexplained. To address these matters,

we conducted an RNAi screen to identify genes whose loss-of-

function either phenocopied or suppressed a pink1 RNAi

phenotype. We have identified a number of genes that fulfill these

criteria (discussed below) but focused our current investigation on

ND42/NDUFA10 given the extensive literature implicating CI

deficiency in PD pathogenesis and the fact that CI deficiency has

previously been reported in PINK1 mutant models and patient

samples.

Loss of ND42/NDUFA10 phenocopies the effect of pink1 loss

on mitochondrial morphology in Drosophila cells, and ND42
overexpression rescues the pink1 mutant phenotypes. However,

NDUFA10 knockdown has only modest effects on mitophagy,

supporting a separate link between CI and PINK1 function. The

Figure 4. ND42 or sicily overexpression does not rescue parkinmutant phenotypes in flies. In park25 mutants, climbing (A) and flight ability
(B), normalized to control, is not rescued by ND42 or sicily overexpression. Histograms indicate mean6 s.e.m. (C) Transmission electron microscopy of
flight muscle shows widespread disruption of mitochondrial integrity. Scale bar = 1 mm. Overexpression was driven by the ubiquitous driver da-GAL4.
Control genotype is da-GAL4/+. Number of animals tested, n.50. * P,0.05, *** P,0.001, **** P,0.0001, One-way ANOVA with Bonferroni correction.
Comparisons are with pink1B9 mutants.
doi:10.1371/journal.pgen.1004815.g004
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simplest interpretation of these findings is that PINK1 normally

regulates ND42/NDUFA10 abundance or activity through direct

phosphorylation. Indeed, it was recently reported that NDUFA10

lacks phosphorylation at Ser-250 in Pink1-/- cells [25], although it

remains to be determined whether PINK1 directly or indirectly

regulates NDUFA10 phosphorylation. Moreover, it was reported

that expression of a phospho-mimetic version of ND42/NDUFA10

specifically rescued phenotypes in multiple PINK1 deficient

systems, while an S250A mutant version of ND42/NDUFA10 that

is incapable of being phosphorylated was unable to confer rescue.

Consistent with this we find that, from equivalent expression levels,

the phospho-mimetic (SD) provides a slightly better phenotypic

rescue than the other variants, and likewise promotes a higher CI

activity. Nevertheless, our results also show that the non-phosphor-

ylatable S250A version is still able to restore CI activity and

significantly rescue the climbing deficit in pink1 mutant flies.

While further studies are needed to clarify the functional

relationship between PINK1 and NDUFA10 in the regulation of

CI, our findings provide further support mounting evidence that

many manipulations that promote CI activity – overexpression of

NDUFA10, sicily, heix, Ret, dNK, TRAP1 and NDI1, or

treatment with vitamin K, deoxynucleosides or folic acid

[25,31,35–38] – can rescue pink1 mutants, suggesting a more

general defect underlies CI deficiency in loss of pink1. We

hypothesize that the loss of CI activity in pink1 mutants may be

due to a general de-stabilization of CI. Assembly is a particular

challenge for such a large, multi-subunit complex and occurs in a

stepwise process that is highly regulated by many factors [39].

Even its association with other ETC complexes in supercomplexes

affects CI’s stability [40]. There is evidence for reduced complex

stability in pink1 mutants, though this may not be specific to CI

[37,41,42]. One possibility is that PINK1 influences CI stability by

directly promoting the assembly of CI, which may be regulated by

NDUFA10.

The current findings also further support that the mechanism by

which PINK1 influences CI activity appears to be separable from

its well-characterized role in mitophagy, since, in agreement with

some studies [24,31] but in contrast to others [4,8,9], we do not

find clear evidence of CI deficiency in parkin mutants flies.

Moreover, it was unexpected to find that overexpression of parkin
does not rescue the CI deficiency in pink1 mutants, because

substantial previous work has shown that parkin overexpression

rescues all of the other pink1 phenotypes, and because a prediction

of the PINK1-parkin mitophagy pathway is that activation would

trigger the selective removal of mitochondria deficient in CI

activity. This finding suggests that CI deficiency alone cannot fully

account for adult locomotor phenotypes seen in pink1 mutants.

Further studies are needed to clarify full spectrum of cellular

defects in pink1 and parkin mutants and their relative importance

to the pathologic mechanism.

Consideration of other screen hits
The present screen analyzed the effect of ,600 genes

comprising mostly genes with homology to kinase or phosphatase

domains. Other hits from this screen, identifying both phenoco-

piers and suppressors, could also be attractive candidates as

potential new factors of pink1/Parkin function. Notably several

hits play a role in lipid biology. This is particularly noteworthy in

Figure 5. NDUFA10 knockdown slightly reduces CCCP-induced Parkin translocation and mitophagy. (A) In HeLa cells stably transfected
to express YFP-Parkin, before CCCP toxification (0 h) YFP-Parkin (green) has a diffuse cytoplasmic distribution in control (ctrl) siRNA treated cells.
Following 4 h CCCP, YFP-Parkin co-localizes with mitochondria labeled with ATP5A immunostaining (red). PINK1 siRNA treatment almost completely
abolishes YFP-Parkin translocation. (B) Quantification of YFP-Parkin translocation as in A. (C) Stably transfected HeLa cells expressing YFP-Parkin,
before CCCP treatment (0 h, ctrl) have a normal (‘‘High’’) mitochondrial content. Following 24 h treatment with CCCP, a high proportion of control
cells (ctrl) show complete degradation (‘‘none’’) or perinuclear aggregated (‘‘low’’) mitochondria, visualized by ATP5A immunostaining (red). PINK1
siRNA treatment almost completely abolishes mitophagy. (D) Quantification of mitochondrial content as in C. Histograms indicate mean 6 s.d. of
triplicate experiments. n.30 cells per experiment. Scale bar = 20 mm. * P,0.05, ** P,0.01, *** P,0.001, Student’s t-test compared with respective
conditions in control siRNA.
doi:10.1371/journal.pgen.1004815.g005
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light of our recent report that another RNAi screen identified the

master regulator of lipogenesis, SREBF1, to affect pink1/Parkin-

mediated mitophagy [43].

The phenocopier Sphingosine kinase 1 and the suppressor easily
shocked (encoding Drosophila Ethanolamine Kinase) are involved

in phospholipid metabolic pathways. Sphingosine kinase catalyzes

the production of sphingosine-1-phosphate (S1P), a key signaling

molecule affecting cell growth and survival [44]. While S1P affects

many cellular processes perhaps the most intriguing is its role in

calcium mobilization from the endoplasmic reticulum (ER) [45]

since Parkin was recently shown to promote ER-mitochondrial

calcium transfer [23]. Interestingly, the breakdown of S1P

generates phosphoethanolamine, the enzymatic product of etha-

nolamine kinase and a precursor metabolite of the key phospho-

lipid phosphatidylethanolamine (PE). Loss of mitochondrial PE

has been shown to affect mitochondrial morphology, oxidative

phosphorylation and even the formation of complex I-containing

supercomplexes [46]. The identification of four wheel drive
(encoding Drosophila phosphatidylinositol 4-kinase beta), which

catalyzes the formation of PI(4)P, is also intriguing since mutations

in SYNJ1, which encodes PI(4,5)P2 phosphatase, were identified in

families with early onset parkinsonism [47,48].

Also related to lipid biology is Nocturnin although a direct link

to mitochondria biology is less obvious. Nocturnin encodes a

circadian deadenylase thought to be involved in the rhythmic

regulation of gene expression by removal of polyA tails from

mRNAs. Mice lacking Nocturnin are resistant to diet-induced

obesity and hepatic steatosis [49], linking its function to lipid

metabolism. Further studies will be needed to determine the extent

to which lipids in general or specific lipids, and their regulated

synthesis, impact on pink1/Parkin biology and regulation of

mitochondrial dynamics and quality control. Nevertheless, this

screen provides a resource for characterizing novel factors that

regulate mitochondrial morphology.

Materials and Methods

Cell culture
Drosophila S2R+ cells were cultured in Schneider’s medium

(Gibco) containing 10% (vol/vol) heat-inactivated fetal bovine serum

(Sigma), Penicillin 10 units/ml (Sigma) and Streptomycin 10 mg/ml

(Sigma). Cells were maintained in a 25uC incubator. HeLa cells were

cultured in DMEM GLUTAMAX media (Gibco) containing 10%

(vol/vol) heat-inactivated fetal bovine serum (Sigma), Penicillin 10

units/ml (Sigma) and Streptomycin 10 mg/ml (Sigma). Cells were

maintained in a 37uC incubator with 5% CO2. A stable transfected

HeLa cell line expressing YFP-Parkin in pLVX-puro was cultured in

DMEM GLUTAMAX media (Gibco) containing 10% (vol/vol)

heat-inactivated fetal bovine serum (Sigma), Penicillin 10 units/ml

(Sigma) and Streptomycin 10 mg/ml (Sigma). Cells were maintained

in a 37uC incubator with 5% CO2.

RNAi screening and high-content microscopy
The kinome/phosphatome sub-library was generated based

upon the second generation Drosophila dsRNA library (Heidel-

berg 2). Detailed information on amplicon targets is available

online (http://rnai-screening-wiki.dkfz.de/signaling/wiki/display/

rnaiwiki/Drosophila+RNAi+libraries). This sub-library was designed

Figure 6. NDUFA10/ND42 overexpression does not restore CCCP-induced Parkin translocation in the absence of pink1. (A)
Quantification of the percentage of cells showing mitochondrially localized Parkin following 4 hours CCCP treatment of HeLa cells stably expressing
YFP-Parkin transfected with (B) control siRNA, (C) NDUFA10 siRNA, or (D) PINK1 siRNA treatment and transfection with NDUFA10 or fly ND42
expression constructs. Scale bar = 20 mm. * P,0.05, *** P,0.001, One-way ANOVA with Bonferroni correction compared to respective control siRNA
treatment.
doi:10.1371/journal.pgen.1004815.g006
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to contain all known and computed kinases and phosphatases, genes

with some homology to these enzyme classes, but also some other

genes of general interest. Library dsRNAs were plated at 250 ng in

5 ml of H2O into Perkin Elmer 384 well view plate (Product number:

6007470). Screen plates were arrayed with the inclusion of gaps to

allow for the addition of user-specific controls. Here we added

dsRNAs targeting Marf, Drp1, OPA1, Fis1, pink1 and parkin.
These controls consistently all showed the expected results. For the

pink1RNAi background, 250 ng dsRNA against pink1was added to
each well prior to screening. A ‘double dose’ of dsRNA did not

appear to affect mitochondrial morphology (see below). 15,000

Drosophila S2R+ cells were added to each well in 30 ml of

Schneider’s medium (Gibco) without FBS (Sigma). Plates were

incubated at 25uC for 1 hour in which time dsRNAs are taken up by

the cells. Following this incubation 30 ml of Schneider’s medium

(Gibco) containing 20% FBS (v/v) was added. The plates were then

sealed and incubated at 25uC incubator for 4 days. Cells were stained

with 100 nM Mitotracker Red (Invitrogen, M7512) and 20 mg/ml

Hoechst 33342 (Invitrogen, H3570) for 15 minutes. Media was

replaced and imaging was performed on live cells. Imaging was

performed on an IN Cell Analyzer 1000 (GE Healthcare) automated

microscope using a 406air objective (Nikon, 0.60 NA).

Mitochondrial morphology analysis
Cells were prepared identically as for the high-throughput

screening conditions, except for wild type where background

250 ng dsRNA targeting DsRed was added to each condition to

mirror the ‘double dose’ of dsRNA in the pink1 background. Cells

were imaged live under ambient conditions on a Deltavision RT

deconvolution wide field microscope (Olympus, 1006 objective,

1.4 NA) using 8 well m-Slides (Ibidi), with 10 images taken per

condition. Cells were scored for their gross mitochondrial

morphology by eye with the scorer blinded to the experimental

conditions. Where rotenone (20 mM) was used, cells were treated

for 2 hours before mitochondrial morphology was analysed. A

score would be assigned for a whole field of view and an average

score would be calculated for the 10 images per condition. A score

of 1 would be given to a field of view that had mainly fragmented

mitochondria. A score of 2 would be given to a field of view that

had a mainly wild type mitochondrial network with a mix of short-

round and long-tubular mitochondria. A score of 3 would be given

to a field of view that had mainly tubular mitochondria. A score of

4 would be given to a field of view that had mainly clumped

mitochondria where the mitochondria had formed a single or few

large peri-nuclear clusters.

RNAi reagents
Drosophila gene dsRNAs were generated using the MEGAscript

T7 Kit (Ambion), using T7-flanked DNA amplicons from the

library as template. Control dsRNA for Drosophila cell qRT-PCR

analysis was a 782 bp sequence targeted against C. elegans gene
R06F6.2 which has no ,21mer homology within the Drosophila

Figure 7. ND42 and sicily overexpression can rescue complex I and ATP deficiencies in pink1 but not parkin mutant flies. ND42 or sicily
was overexpressed in (A, B) pink1B9 mutants or (C, D) park25 mutants. Charts show (A, C) the ratio of complex I to citrate synthase (CS) activity, and (B,
D) relative ATP levels, normalized to control. Histograms indicate mean6 s.e.m. Overexpression was driven by the ubiquitous driver da-GAL4. Control
genotype is da-GAL4/+. ** P,0.01, **** P,0.0001, One-way ANOVA with Bonferroni correction. Comparisons are with pink1B9 or park25 mutants, as
appropriate.
doi:10.1371/journal.pgen.1004815.g007
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genome. siRNAs targeting human genes were obtained from the

siGENOME SMARTpool collection (Dharmacon) as follows:

control siRNA is Non-Targeting siRNA Pool #1 (product code;

D-001206-13-20); PINK1 (product code; M-004030-02);

NDUFA10 (product code; M-006752-00).

Quantitative real-time PCR
Total RNA from live cells was prepared from three replicates of

each dsRNA treatment using RNeasy (Qiagen). RNA concentra-

tion was then determined spectrophotometrically. Once treated

with DNase, total RNA was reverse-transcribed using RETRO-

script (Ambion) or Protoscript (NEB) according to the manufac-

turer’s protocol. Quantitative PCR was performed using SYBR

Green (Sigma) on a MyIQ real time PCR detection system (Bio-

Rad). Each PCR included three technical replicates, which were

repeated as three biological replicates. Levels for each transcript

were normalized to a 18S rRNA (Drosophila: 18SrRNA; Human:

RNA18S5) control by the 2-DDCT method.

For Drosophila genes, primers used were:

18S - Forward: TCTAGCAATATGAGATTGAGCAATAAG

18S - Reverse: AATACACGTTGATACTTTCATTGTAGC

pink1 - Forward: GACGACCCTCGCACATAA

pink1 - Reverse: AACAGTCCGGAGATCCTACAG

ND42 - Forward: CGTTTCGATGTCCCGGAGCT

ND42 - Reverse: GTCTGCATTGTAGCCAGGAC

CG7712 - Forward: CGCAATGTGACCGACATCCG

CG7712 - Reverse: CGCATGATATGGCCTTCTG

For human genes, primers used were:

18S - Forward: CAGCCACCCGAGATTGAGCA

18S - Reverse: TAGTAGCGACGGGCGGTGTG

PINK1 - Forward: GCCGGACGCTGTTCCTCGTT

PINK1 - Reverse: TGGACACCTCTGGGGCCATC

NDUFA10 - Forward: GATCCGAGAAGCAATGATG

NDUFA10 - Reverse: TGGAGCGCTCCAACACAACA

Antibodies
The following primary antibodies were used, mouse anti-

ATP5A (MS507, MitoSciences; 1:2000), rabbit anti-GFP (ab6556,

Abcam; 1:5000). Secondary antibodies used were rabbit polyclonal

anti-mouse IgG-H&L (DyLight 594, Invitrogen; 1:5000) and goat

anti-rabbit IgG (Alexa Fluor 488, Invitrogen; 1:5000).

Parkin translocation and mitophagy assays
YFP-Parkin HeLa cells were reverse-transfected with siRNAs

using DharmaFECT 1 (Dharmacon). For Parkin translocation,

cells were incubated for 4 days then treated with 10 mM CCCP or

equivalent volume of the solvent (EtOH) for 4 hours. For

mitophagy, cells were incubated for 3 days then treated with

10 mM CCCP or equivalent volume of the solvent (EtOH) for

24 hours. Cells were fixed in ice-cold methanol for 10 minutes and

washed in PBS. Mitochondrial staining was achieved by using

anti-ATP5A antibody. Imaging was performed on an Olympus

Figure 8. Analysis of ND42 Ser-250 phospho-variant rescue of
pink1 mutant climbing defect and complex I deficiency.
Transgenes from different sources, labeled ‘HB’ [29] and ‘BDS’ [25],
expressing wild type ND42 (WT), non-phosphorylatable (SA) or
phospho-mimetic (SD) variants of Ser-250 were tested for rescue of
climbing (A), flight (B) and complex I (C) deficiencies in pink1B9 mutants.
For comparison, transgenic expression of the yeast complex I
equivalent, NDI1, was also tested. Overexpression was driven by the
ubiquitous driver da-GAL4. Control genotype is da-GAL4/+. * P,0.05,
** P,0.01, **** P,0.0001, One-way ANOVA with Bonferroni correction.
Comparisons are with pink1B9 mutants unless otherwise shown.
doi:10.1371/journal.pgen.1004815.g008
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FV1000 confocal microscope (Olympus, 606oil objective, 1.25 NA).

For Parkin translocation, cells were scored for the accumulation of

YFP-Parkin on mitochondria. For mitophagy, cells were scored for

mitochondrial load based on having a normal load of mitochondria,

few mitochondria or no mitochondria. At least 20 cells were scored

per treatment and 3 biological replicates were performed.

PINK1 accumulation assay
HeLa cells were reverse-transfected with siRNAs using

DharmaFECT 1. After 3 days cells were transfected with

PINK1-EGFP using Effectene (Qiagen). After a further 1 day

cells were treated with 10 mM CCCP or equivalent volume of the

solvent (EtOH) for 1 hour before fixation with ice-cold methanol

for 10 minutes and washed in PBS. Immunofluorescence was

performed using anti-ATP5A and anti-GFP antibodies, and

appropriate fluorescent secondary antibodies. Imaging was per-

formed on an Olympus FV1000 confocal microscope. Cells were

scored for the accumulation of PINK1-EGFP on mitochondria. At

least 20 cells were scored per treatment and 3 biological replicates

were performed.

TMRM assay
TMRM assay to measure mitochondrial membrane polarity

was done as previously described [8]. Briefly, HeLa cells were

reverse-transfected with siRNAs using DharmaFECT for 4 days.

Cells were then treated with 10 mM CCCP or equivalent volume

of the solvent (EtOH) for 1 hour. Cells were incubated with 50 nM

TMRM (VTX668, Fisher) in PBS with 10 mM CCCP or

equivalent volume of solvent for 30 minutes, then washed in

PBS with 10 mM CCCP or equivalent volume of solvent 5 times.

TMRM fluorescence was read on a spectrophotometer at 550 nm

(Berthold technologies Mithras LB940). Triplicate readings were

taken from 3 biological replicates.

Drosophila genetics
Drosophila were raised under standard conditions at 25uC on

food consisting of agar, cornmeal and yeast. pink1B9 mutants [11]

were provided by J. Chung (KAIST). park25 mutants, fertility tests,

flight and climbing assays were performed as previously described

[6,50]. w1118 and da-GAL4 strains were obtained from the

Bloomington Drosophila Stock Center (Bloomington, IN). UAS-

ND42-RNAi lines (GD: 14444; KK: 101787) were obtained form

the Vienna Drosophila Resource Centre [51]. UAS-ND42, UAS-

ND42-HA and UAS-sicily have been described previously [29]

and were a gift from H. Bellen (Baylor College of Medicine). The

additional UAS-ND42 lines (WT, SA and SD) from Morais et al.

[25] were provided by Patrik Verstreken.

Measurement of complex I activity
Mitochondria-enriched fractions were prepared from whole

adult male flies (,3 days old) with the indicated genotype (10 flies

were used for each sample). Flies were gently crushed in chilled

Figure 9. Overexpression of parkin can rescue behavioral phenotypes in pink1 mutants but not complex I deficiency. Analysis of (A)
climbing and (B) flight ability in pink1B9 mutants overexpressing parkin. Charts show (C) the ratio of complex I to citrate synthase (CS) activity, and (D)
relative ATP levels, normalized to control. Histograms indicate mean 6 s.e.m. Overexpression was driven by the ubiquitous driver da-GAL4. Control
genotype is da-GAL4/+. * P,0.05, ** P,0.01, *** P,0.001, **** P,0.0001, One-way ANOVA with Bonferroni correction. Comparisons are with pink1B9

mutants.
doi:10.1371/journal.pgen.1004815.g009
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isolation buffer (250 mM sucrose, 10 mM Tris-HCl, pH 7.4,

0.15 mM MgCl2) using a plastic pestle homogenizer, then centri-

fuged twice at 5006g for 5 minutes at 4uC to remove debris. The

supernatant was centrifuged 50006g for 5 minutes at 4uC. The

resulting pellet containing mitochondria was re-suspended in the

isolation buffer or assay buffers. Complex I activity was measured

using a modified method from Birch-Machin et al [52]. Briefly,

samples were subjected to 3 cycles of freeze-thaw in liquid nitrogen.

Complex I activity was determined by following the oxidation of

NADH at 340 nm with a reference wavelength of 425 nm

(e=6.22 mM21 cm21) at 30uC using a BMG Labtech FLUOStar

plate reader. The assay buffer contained 25 mM KH2PO4, 5 mM

MgCl2, (pH 7.2), 3 mM KCN, 2.5 mg per ml BSA, 50 mM

ubiquinone, 2 mg/ml antimycin A and mitochondrial extract. The

baseline was recorded for 5 minutes and the reaction was started

with 125 mM NADH measured for 30 minutes, 15 mg/ml rotenone

was added to inhibit the reaction and measured for 15 minutes. The

results are expressed as mmol NADH oxidised/min/citrate synthase

activity. Citrate synthase was measured by following the production

of 5-thio-2-nitrobenzoate at 30uC using a BMG Labtech FLUOStar

plate reader after samples had undergone 3 cycles of freeze-thaw in

liquid nitrogen. The assay buffer was 100 mM Tris HCl (pH 8.0),

0.1 mM DTNB, 50 mM acetyl Coenzyme A, 0.1% Triton X-100

and mitochondrial extract per well. The baseline was recorded for

5 minutes at 412 nm, then the reaction was started by the addition of

0.5 mM oxaloacetate acid and the rate was recorded for 15 minutes.

ATP assays
Five male flies (3 days old) were homogenized in 100 ml of 6 M

guanidine-HCl in extraction buffer (100 mM Tris, 4 mM EDTA,

pH 7.8) to inhibit ATPases. Homogenized samples were subjected

to rapid freezing in liquid nitrogen, followed by boiling for 3 min.

Samples were cleared by centrifugation, and supernatant was

diluted (1/100) with extraction buffer and mixed with a

luminescent solution (CellTiter-Glo Luminescent Cell Viability

Assay, Promega, Fitchburg, WI, USA). Luminescence was

measured on a VarioskanTM Flash Multimode Reader (Thermo

Scientific, Waltham, MA, USA). The relative ATP levels were

calculated by dividing the luminescence by the total protein

concentration, which was determined by the Bradford method.

Statistical analyses
For Parkin translocation, mitophagy and PINK1 stabilization,

statistical significance was calculated by using Student’s t-test on
triplicate experiments comparing against control siRNA/dsRNAs

of the equivalent experimental condition. Biochemical and

behavioral assays in Drosophila were analyzed by one-way

ANOVA with Bonferroni correction. Male fertility was analyzed

by Chi-square test.

Supporting Information

Figure S1 Quantitative real-time PCR measurement for relative

gene expression in RNAi knockdown and transgenic overexpres-

sion conditions. (A–C) Drosophila S2R+ cells treated with dsRNAs

for the indicated genes. Message abundance of the respective gene

is shown relative to control dsRNA treatment. (D–E) HeLa cells

transfected with the indicated siRNAs. Message abundance of the

respective gene is shown relative to control (ctrl) siRNA treatment.

(F) The four NDUFA10 SMARTpool siRNAs were tested

individually and compared to combined SMARTpool and shown

relative to ctrl. Transcript levels are normalized against a

housekeeping gene, 18S rRNA. All differences are highly

significant (P,0.001) compared to the relevant control. (G, H)

Relative expression levels in flies overexpressing ND42 or sicily, as
indicated, driven by da-GAL4. ** P,0.01, *** P,0.001, one-way

ANOVA with Bonferroni correction (G) or Student’s t-test (H)

compared with control genotype (da-GAL4/+).
(TIFF)

Figure S2 ND42 or sicily overexpression does not rescue pink1
or parkin mutant male sterility. ND42 or sicily was overexpressed
by da-GAL4 in either pink1 (A) or parkin (B) mutant males and

fertility was assessed (n.45 males of each genotype). Fertility was

almost completely restored by da-GAL4 induced re-expression of

pink1 or parkin. Control genotype is da-GAL4/+. **** P,0.0001,

Chi-square test. Comparisons are with control genotype unless

otherwise indicated.

(TIFF)

Figure S3 RNAi knockdown of sicily causes mitochondrial

hyperfusion. (A) Drosophila S2R+ cells treated with indicated

dsRNAs and stained with MitoTracker Red to visualize mito-

chondria. (B) Cells were scored as in Fig. 2 for relative

mitochondrial morphology. Scale bar = 5 mm. ** P,0.01, ***

P,0.001, Student’s t-test compared with control dsRNA.

(TIFF)

Figure S4 Categorization of mitochondrial content during

mitophagy. HeLa cells transiently transfected to express YFP-

Parkin (green) induce mitophagy following prolonged exposure to

CCCP. Mitochondrial content can be monitored by ATP5A

immunostaining (red). Cells with normal mitochondrial content, as

seen before toxification, are categorized as ‘‘High’’. Depolarized

mitochondria become aggregated and in a perinuclear region, and

termed ‘‘Low’’. Cells which have undergone complete mitophagy

have a mitochondrial content scored as ‘‘None’’.

(TIFF)

Figure S5 Individual NDUFA10 siRNAs attenuate CCCP-

induced Parkin translocation. (A) In HeLa cells stably transfected

to express YFP-Parkin, before CCCP toxification (0 h) YFP-Parkin

(green) has a diffuse cytoplasmic distribution in control (ctrl)

siRNA treated cells. Following 4 h CCCP, YFP-Parkin co-

localizes with mitochondria labeled with ATP5A immunostaining

(red). PINK1 siRNA treatment almost completely abolishes YFP-

Parkin translocation. Individual NDUFA10 siRNAs, #1 and #3,

significantly reduce YFP-Parkin translocation. (B) Quantification

of YFP-Parkin translocation as in A, scored in triplicate

experiments. n.30 cells per experiment. Scale bar = 20 mm. ***

P,0.001, Student’s t-test compared with control siRNA.

(TIFF)

Figure S6 Individual NDUFA10 siRNAs reduce CCCP-

induced mitophagy. (A) Stably transfected HeLa cells expressing

YFP-Parkin, before CCCP treatment (0 h, ctrl) have a normal

(‘‘High’’) mitochondrial content. Following 24 h treatment with

CCCP, a high proportion of control cells (ctrl) show complete

degradation (‘‘none’’) or perinuclear aggregated (‘‘low’’) mito-

chondria, visualized by ATP5A immunostaining (red). PINK1
siRNA treatment almost completely abolishes mitophagy. Indi-

vidual NDUFA10 siRNAs, #1 and #3, significantly reduce

mitophagy. (B) Quantification of mitochondrial content as in A,

scored in triplicate experiments. n.30 cells per experiment. Scale

bar = 20 mm. * P,0.05, ** P,0.01, *** P,0.001, Student’s t-test
compared with control siRNA.

(TIFF)

Figure S7 NDUFA10 knockdown does not affect CCCP-

induced pink1 stabilization. (A) HeLa cells transiently expressing

PINK1-GFP and treated with control (ctrl) siRNA. Before CCCP
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toxification (0 h) PINK1-GFP (green) has a diffuse distribution.

Following 1 h CCCP PINK1-GFP becomes stabilized and

accumulates on mitochondria, labeled with ATP5A immunostain-

ing (red). Boxed areas are shown magnified in images below. (B)

Quantification of PINK1-GFP stabilization as in A. Charts

indicate mean 6 s.d. of triplicate experiments. n.15 cells per

experiment. Scale bars; low mag. = 20 mm, zoom =4 mm.

(TIFF)
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