
J
H
E
P
1
2
(
2
0
1
6
)
0
0
9

Published for SISSA by Springer

Received: September 30, 2016

Accepted: November 24, 2016

Published: December 5, 2016

The complex Langevin analysis of spontaneous

symmetry breaking induced by complex fermion

determinant

Yuta Itoa and Jun Nishimuraa,b

aKEK Theory Center, High Energy Accelerator Research Organization,

1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
bGraduate University for Advanced Studies (SOKENDAI),

1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

E-mail: yito@post.kek.jp, jnishi@post.kek.jp

Abstract: In many interesting physical systems, the determinant which appears from

integrating out fermions becomes complex, and its phase plays a crucial role in the deter-

mination of the vacuum. An example of this is QCD at low temperature and high density,

where various exotic fermion condensates are conjectured to form. Another example is

the Euclidean version of the type IIB matrix model for 10d superstring theory, where

spontaneous breaking of the SO(10) rotational symmetry down to SO(4) is expected to

occur. When one applies the complex Langevin method to these systems, one encounters

the singular-drift problem associated with the appearance of nearly zero eigenvalues of the

Dirac operator. Here we propose to avoid this problem by deforming the action with a

fermion bilinear term. The results for the original system are obtained by extrapolations

with respect to the deformation parameter. We demonstrate the power of this approach

by applying it to a simple matrix model, in which spontaneous symmetry breaking from

SO(4) to SO(2) is expected to occur due to the phase of the complex fermion determinant.
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true vacuum by calculating the order parameters, which agree with the prediction by the

Gaussian expansion method.
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1 Introduction

The sign problem is a notorious technical problem that occurs in applying Monte Carlo

methods to a system with a complex action S. The importance sampling cannot be applied

as it is since the integrand exp (−S) of the partition function cannot be regarded as a

Boltzmann weight. If one uses the absolute value | exp (−S) | for generating configurations

and treats the phase factor as a part of the observable, huge cancellations occur among

configurations, and the required statistics grows exponentially with the system size. This

problem occurs in various interesting systems in particle physics such as finite density

QCD, gauge theories with a theta term or a Chern-Simons term, chiral gauge theories and

supersymmetric theories.

The complex Langevin method (CLM) [1, 2] is a promising approach to such complex-

action systems, which may be regarded as an extension of the stochastic quantization based

on the Langevin equation. The dynamical variables of the original system are naturally

complexified, and the observables as well as the drift term are extended holomorphically

by analytic continuation. It is known that the CLM works beautifully in highly nontrivial

cases [3–6], while it gives simply wrong results in the other cases [7–10].

In the past several years, significant progress has been made in theoretical under-

standing of the method and the conditions for justifying the CLM. First it was realized

that the probability distribution of the complexified dynamical variables has to fall off fast

enough in the imaginary directions of the configuration space [11, 12]. In order to satisfy

this condition, a new technique called gauge cooling [13] was proposed. Using the gauge

cooling, the CLM has been successfully applied to finite density QCD1 either with heavy

quarks [13] or at high temperature [20]. An explicit justification of the gauge cooling has

1There are also attempts to apply the CLM to the real-time dynamics [14–17] and to Yang-Mills theory

with a theta term [18, 19].
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been provided recently [21] extending the argument for justification of the CLM without

gauge cooling [11, 12].

It was known for some time that the CLM gives wrong results also when the deter-

minant that appears from integrating out fermions takes values close to zero during the

complex Langevin simulation. This was first realized in the Random Matrix Theory for

finite density QCD [22, 23] and confirmed also in effective Polyakov line models [24]. In

these papers, it was speculated that the problem occurs due to the ambiguity associated

with the branch cut in the logarithm of the complex fermion determinant, which appears

in the effective action. On the other hand, ref. [25] pointed out that the singular drift term

one obtains from the fermion determinant breaks holomorphy, which plays a crucial role

in justifying the method.

A theoretical understanding of this problem and a possible cure have been given re-

cently. First it was pointed out in ref. [26] that the branch cut cannot be the cause of

the problem since the CLM can be formulated solely in terms of the weight w = exp(−S)

without ever having to refer to the action S. Indeed it was found that a similar problem

can occur when the action has pole singularities instead of logarithmic singularities. In the

same paper, it was shown that the probability distribution of the complexified variables

has to fall off fast enough near the singularities of the drift term, based on the argument

for justification in ref. [11, 12]. It was then proposed [27, 28] that the gauge cooling can be

used to satisfy this condition as well with an appropriate choice of the complexified gauge

transformation. A test in the Random Matrix Theory shows that the gauge cooling indeed

solves the singular-drift problem unless the quark mass becomes too small.

In ref. [29], the argument for justification with or without gauge cooling was revisited.

In particular, it was pointed out that the expectation values of time-evolved observables,

which play a crucial role in the argument, can be ill-defined. Taking this into account, it was

shown that the CLM can be justified if the probability distribution of the drift term falls

off exponentially or faster at large magnitude. This condition serves as a useful criterion,

which tells us clearly whether the results obtained by the CLM are trustable or not.

In this paper, we focus on the singular-drift problem that occurs in a system with a

complex fermion determinant. In many such systems, the phase of the fermion determinant

is expected to play a crucial role in the determination of the vacuum. An example of this

is finite density QCD at low temperature and high density, where various exotic fermion

condensates are conjectured to form (see ref. [30], for instance.). Another example is the

Euclidean version of the type IIB matrix model [31] for 10d superstring theory, where the

SO(10) rotational symmetry is conjectured to be spontaneously broken [32–35]. When one

applies the CLM to these systems, the singular-drift problem occurs due to the appearance

of eigenvalues of the Dirac operator close to zero. We propose to avoid this problem by

deforming the action with a fermion bilinear term and extrapolating its coefficient to zero.

The fermion bilinear term should be chosen in such a way that the nearly zero eigenvalues

of the Dirac operator are avoided and yet the vacuum of the system is minimally affected.

We test this idea in an SO(4)-symmetric matrix model with a Gaussian action and

a complex fermion determinant, in which spontaneous breaking of SO(4) symmetry is

expected to occur due to the phase of the determinant [36]. This model was studied
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previously by the Gaussian expansion method (GEM) [37] and the spontaneous breaking

of the SO(4) symmetry down to SO(2) was suggested by comparing the free energy for

the SO(2)-symmetric vacuum and the SO(3)-symmetric vacuum. The same model was

studied also by Monte Carlo simulation using the factorization method,2 and the order

parameters obtained by the GEM were reproduced for both the SO(2)-symmetric vacuum

and the SO(3)-symmetric vacuum [38, 39]. However, the comparison of free energy for the

two vacua suffered from too much uncertainty to make a definite conclusion on the true

vacuum by this approach.

When one applies the CLM to this system, the singular-drift problem is actually severe

because the fermionic part of the model is essentially an exactly “massless” system. Indeed,

it turns out that the gauge cooling proposed in refs. [27, 28] is not sufficient to solve

this problem in the case at hand. Following the idea described above, we therefore add

a fermion bilinear term, which breaks the SO(4) symmetry minimally, down to SO(3).

The results of the CLM show that the SO(3) symmetry of the deformed model is broken

spontaneously to SO(2). Extrapolating the deformation parameter to zero, we find that

the SO(4) symmetry of the original matrix model is broken spontaneously to SO(2) and

that the order parameters thus obtained agree well with the prediction obtained by the

GEM. We also try another type of the fermion bilinear term for the deformation and show

that the final results obtained after the extrapolations remain the same, which supports

the validity of our analysis. Note that we are able to determine the true vacuum directly

without having to compare the free energy for each vacuum preserving different amount of

rotational symmetry.

In order to probe the spontaneous symmetry breaking (SSB), we need to introduce an

O(ε) symmetry breaking term in the action, on top of the deformation described above,

and send ε to zero after taking the large-N limit. The singular-drift problem occurs at

small ε even for the deformed model. Here, the criterion for correct convergence proposed

recently [29] turns out to be useful since it tells us which data are free from the singular-

drift problem and hence can be trusted. Indeed, we find that the data points in the reliable

region can be fitted nicely by an expected asymptotic behavior, while the data points in the

unreliable region deviate from the fitting curve. We hope that our strategy to overcome the

singular-drift problem enables the application of the CLM to the type IIB matrix model

and to finite density QCD at low temperature and high density.

The rest of this paper is organized as follows. In section 2, we define the SO(4)-

symmetric matrix model and briefly review the results obtained by the previous approaches.

In section 3, we explain how we apply the CLM to the SO(4)-symmetric matrix model.

In particular, we deform the action with a fermion bilinear term, which enables us to

investigate the SSB without suffering from the singular-drift problem. In section 4, we

present the results of our analysis. In particular, we extrapolate the deformation parameter

to zero, and confirm that the SSB from SO(4) to SO(2) indeed occurs in this model. The

2This is a kind of reweighting method that attempts to solve the so-called overlap problem, which is an

important part of the complex-action problem. While the original version was proposed in ref. [35], the

importance of constraining observables which are strongly correlated with the phase of the determinant was

recognized later in refs. [38, 39].
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order parameters thus obtained are in good agreement with the prediction of the GEM.

Section 5 is devoted to a summary and discussions. In appendix A we give the details on

how we determine the region of validity of the CLM, which is useful in making the ε→ 0

extrapolations. In appendix B, we present the results obtained by deforming the action

with another type of the fermion bilinear term, which turn out to be consistent with the

ones obtained in section 4.

2 Brief review of the SO(4)-symmetric matrix model

The SO(4)-symmetric matrix model investigated in this paper is defined by the partition

function [36]

Z =

∫
dXdψdψ̄ e−(Sb+Sf), (2.1)

where the bosonic part and the fermionic part of the action is given, respectively, as

Sb =
1

2
N

4∑
µ=1

tr (Xµ)2 , (2.2)

Sf = −N
Nf∑
f=1

4∑
µ=1

2∑
α,β=1

ψ̄(f)
α (Γµ)αβ Xµ ψ

(f)
β . (2.3)

Here we have introduced N × N Hermitian matrices Xµ (µ = 1, . . . , 4), which are

bosonic, and Nf copies of N -dimensional column vectors ψ
(f)
α and row vectors ψ̄

(f)
α

(f = 1, . . . , Nf ; α = 1, 2), which are fermionic. The 2 × 2 matrices Γµ are the gamma

matrices in 4d Euclidean space after Weyl projection, which are defined by

Γµ =

{
i σi for µ = i = 1, 2, 3 ,

12 for µ = 4 ,

using the Pauli matrices σi (i = 1, 2, 3). The model has an SO(4) symmetry, under which

Xµ transforms as a vector, whereas ψα and ψ̄α transform as Weyl spinors. Also, the model

has an SU(N) symmetry, under which the dynamical variables transform as

Xµ 7→ g Xµ g
−1 , ψ(f)

α 7→ g ψ(f)
α , ψ̄(f)

α 7→ ψ̄(f)
α g−1 , (2.4)

where g ∈ SU(N).

Integrating out the fermionic variables for each f , one obtains the determinant of the

Dirac operator

Diα,jβ =

4∑
µ=1

(Γµ)αβ(Xµ)ij , (2.5)

which is complex in general. Thus, the partition function (2.1) can be rewritten as

Z =

∫
dX (detD)Nf e−Sb . (2.6)
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It was speculated that the SO(4) rotational symmetry of the model is spontaneously broken

in the large-N limit with fixed r = Nf/N > 0 due to the effect of the phase of the

determinant [36]. In the phase-quenched model, which is defined by omitting the phase of

the fermion determinant, the SSB was shown not to occur by Monte Carlo simulation [39].

We may therefore say that the SSB, if it really occurs, should be induced by the phase

of the fermion determinant. Throughout this paper, we consider the r = 1 case, which

corresponds to Nf = N .

In order to see the SSB, we introduce an SO(4)-breaking mass term

∆Sb =
N

2
ε

4∑
µ=1

mµtr (Xµ)2 (2.7)

in the action, where

m1 < m2 < m3 < m4 , (2.8)

and define the order parameters for the SSB by the expectation values of

λµ =
1

N
tr (Xµ)2 , (2.9)

where no sum over µ is taken. Due to the ordering (2.8), the expectation values obey

〈λ1〉 > 〈λ2〉 > 〈λ3〉 > 〈λ4〉 (2.10)

at finite ε. Taking the large-N limit and then sending ε to zero afterwards, the expectation

values 〈λµ〉 (µ = 1, · · · , 4) may not take the same value. In that case, we can conclude that

the SSB occurs.

Explicit calculations based on the GEM were carried out assuming that the SO(4)

symmetry is broken down either to SO(2) or to SO(3) [37]. For r = 1, the order parameters

are given by

〈λ1〉 = 〈λ2〉 ∼ 2.1 , 〈λ3〉 ∼ 1.0 , 〈λ4〉 ∼ 0.8 for the SO(2) vacuum , (2.11)

〈λ1〉 = 〈λ2〉 = 〈λ3〉 ∼ 1.75 , 〈λ4〉 ∼ 0.75 for the SO(3) vacuum . (2.12)

The free energy was calculated in each vacuum, and the SO(2)-symmetric vacuum was

found to have a lower value.

Monte Carlo simulation of this model is difficult due to the sign problem caused by the

complex fermion determinant. Among various reweighting-type methods, the factorization

method [35] turned out to be particularly useful in the present case. Assuming that the

SO(4) symmetry is spontaneously broken down either to SO(2) or to SO(3), the results

of the GEM (2.11) and (2.12) were reproduced [38, 39]. However, the calculation of the

free energy difference had large uncertainties, and it was not possible to determine which

vacuum is actually realized using this approach.

– 5 –



J
H
E
P
1
2
(
2
0
1
6
)
0
0
9

3 Application of the CLM to the SO(4)-symmetric matrix model

In this section, we explain how we apply the CLM to the SO(4)-symmetric matrix

model (2.1). Including the symmetry breaking term (2.7), we can write the partition

function as

Z =

∫
dX w(X) , w(X) = (detD)Nf e−(Sb+∆Sb) . (3.1)

The drift term that appears in the Langevin equation is given by

(vµ)ij =
1

w(X)

∂w(X)

∂(Xµ)ji
(3.2)

= −N (1 + εmµ) (Xµ)ij +Nf (D−1)iα,jβ(Γµ)βα (3.3)

as a function of the Hermitian matrices Xµ. Note that the second term in (3.3) is not

Hermitian in general corresponding to the fact that the fermion determinant is complex.

Thus, the application of the idea of stochastic quantization naturally leads us to com-

plexifying the dynamical variables, which amounts to regarding the Hermitian matrices

Xµ as general complex matrices Xµ. Accordingly, the definition of the drift term (3.3) is

extended to general complex matrices Xµ by analytic continuation. Then we consider the

fictitious-time evolution of the general complex matrices Xµ described by the discretized

version of the complex Langevin equation

X(η)
µ (t+ ∆t) = X(η)

µ (t) + ∆t vµ(X(η)(t)) +
√

∆t ηµ(t) , (3.4)

where ηµ(t) is an N ×N Hermitian matrix generated with the probability proportional to

e−
1
4

∑
t tr {ηµ(t)2}. The expectation values of the observables (2.9) can be calculated as

〈λµ〉 = lim
T→∞

1

T

∫ t0+T

t0

1

N
tr
(
X(η)
µ (t)

)2
, (3.5)

where t0 represents the time required for thermalization and T should be large enough to

achieve good statistics.

In order to justify the CLM, the probability distribution of the drift term (3.3) mea-

sured during the complex Langevin simulation should fall off exponentially or faster at

large magnitude [29]. In the present model, this condition can be violated for two reasons.

First, the first term in (3.3) can be large when the configuration X
(η)
µ (t) becomes too far

from Hermitian. Second, the second term in (3.3) can be large when the Dirac operator D

has an eigenvalue close to zero.

In order to avoid the first problem, we use the gauge cooling [13]. Note that the

original theory (3.1) has the symmetry Xµ 7→ g Xµ g
−1 with g ∈ SU(N), under which

the drift term (3.3) transforms covariantly as vµ 7→ g vµ g
−1 and the observables (2.9) are

invariant. Upon complexifying the variables, the symmetry property of the drift term and

the observables enhances to Xµ 7→ g Xµ g
−1 with g ∈ SL(N,C). Using this fact, we can

implement the gauge cooling procedure [13] in the Langevin process as

X̃(η)
µ (t) = g X(η)

µ (t) g−1 , (3.6)

X(η)
µ (t+ ∆t) = X̃(η)

µ (t) + ∆t vµ(X̃(η)(t)) +
√

∆t η(t) , (3.7)

– 6 –
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where the transformation matrix g ∈ SL(N,C) is chosen appropriately as a function of the

configuration X
(η)
µ (t) before gauge cooling. (See refs. [21, 29] for explicit justification.)

In order to keep the matrices X
(η)
µ (t) close to Hermitian, we define the Hermiticity norm

NH =
1

4N

4∑
µ=1

tr

[(
Xµ −X†µ

)(
Xµ −X†µ

)†]
, (3.8)

which measures the deviation of Xµ from a Hermitian configuration, and choose the

SL(N,C) transformation g in (3.6) in such a way that the norm is minimized. In practice,

this is done by using the steepest descent method as follows.

Let us consider an infinitesimal SL(N,C) transformation

g = 1 + εata , (3.9)

where N × N traceless Hermitian matrices ta are the generators of SU(N) normalized as

tr (tatb) = δab. Since the norm (3.8) is invariant under SU(N), we restrict the infinitesimal

parameters εa to be real. Under the infinitesimal transformation, we have

Xµ 7→ Xµ + εa[ta, Xµ] ,

X†µ 7→ X†µ − εa[ta, X†µ] . (3.10)

Therefore, the change of the Hermiticity norm (3.8) becomes

∆NH =
1

N
εa
∑
µ

tr
(
ta[Xµ, X

†
µ]
)
, (3.11)

from which the gradient of the norm is obtained as

fa =
1

N

∑
µ

tr
(
ta[Xµ, X

†
µ]
)
. (3.12)

Using this fa, we consider a finite SL(N,C) transformation

g = e−αfata , (3.13)

where the real positive parameter α is chosen in such a way that the Hermiticity norm (3.8)

is approximately minimized. We repeat this procedure until the norm (3.8) stops decreasing

within certain accuracy.

In figure 1, we plot the history of the Hermiticity norm (3.8) measured during the

Langevin simulation for ε = 0.5 and N = 16. Here and henceforth, the parameters mµ in

the SO(4)-breaking term (2.7) are chosen as

(m1,m2,m3,m4) = (1, 2, 4, 8) , (3.14)

and the Langevin step-size is chosen as ∆t = 2.0× 10−4 unless stated otherwise. We find

that the gauge cooling keeps the Hermiticity norm well under control.

Next we turn to the second problem, which is associated with the eigenvalues of the

Dirac operator D close to zero. In figure 2, we plot the eigenvalue distribution of the Dirac

– 7 –



J
H
E
P
1
2
(
2
0
1
6
)
0
0
9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

N
H

Langevin time

ε=0.5, N=16 

w/ cooling
no cooling

Figure 1. (Left) The history of the Hermiticity norm (3.8) measured during the Langevin simula-

tion for ε = 0.5 and N = 16. The solid line represents the case with gauge cooling and the dashed

line represents the case without gauge cooling.
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Figure 2. The scatter plot for the eigenvalues of the Dirac operator obtained during the com-

plex Langevin simulation of the undeformed model (3.1) for ε = 0.1 (left) and ε = 0.5 (right)

with N = 32.

operator obtained during the complex Langevin simulation for ε = 0.1 (left) and ε = 0.5

(right) with N = 32. We find that there are many eigenvalues close to zero for ε = 0.1,

but not for ε = 0.5. This suggests that there is some critical ε, below which the results of

the CLM cannot be trusted because of the singular-drift problem. It turns out that the

extrapolation to ε = 0 is rather difficult in this situation.

In order to avoid this problem, we add a fermion bilinear term

∆Sf = −N
Nf∑
f=1

4∑
µ=1

Mµ

2∑
α,β=1

ψ̄(f)
α (Γµ)αβ ψ

(f)
β (3.15)

to the action (2.3). The partition function of the deformed model is defined as

Z̃ =

∫
dX w̃(X) , w̃(X) =

(
det D̃

)Nf

e−(Sb+∆Sb) ,

D̃iα,jβ =
4∑

µ=1

(Γµ)αβ

(
(Xµ)ij +Mµδij

)
. (3.16)
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Figure 3. The scatter plot for the eigenvalues of the Dirac operator obtained during the complex

Langevin simulation of the deformed model defined by (3.16) and (3.17) for ε = 0.1 (left) and

ε = 0.5 (right) with mf = 1.0 and N = 32.

Note that the extra fermion bilinear term explicitly breaks the SO(4) symmetry of the

original model (2.1). Here we choose the parameters Mµ in such a way that the SO(4)

symmetry is broken minimally. Taking account of the ordering (2.10), we can preserve an

SO(3) symmetry at ε = 0 by choosing

Mµ = (0, 0, 0,mf) . (3.17)

We can then ask whether the SO(3) symmetry of this deformed model is spontaneously

broken in the large-N limit.

In figure 3, we plot the eigenvalue distribution of the Dirac operator (3.16) obtained

during the complex Langevin simulation of the deformed model for ε = 0.1 (left) and

ε = 0.5 (right) with mf = 1.0 and N = 32. We find that the distribution is shifted in

the real direction. This is understandable since, at large mf , the eigenvalue distribution of

the Dirac operator would be distributed around mf . As a result, the distribution avoids

the singularity even for ε = 0.1 in contrast to the undeformed (mf = 0) case. Therefore,

we can extrapolate ε to zero using data obtained with smaller ε for finite mf . Eventually,

we extrapolate the deformation parameter mf to zero, and compare the results with the

prediction (2.11) obtained by the GEM for the original model.

4 Results of our analysis

In this section, we present our results obtained by the CLM as described in the previous

section. Let us recall that we have introduced an O(ε) mass term (2.7) for the bosonic

matrices, which breaks the SO(4) symmetry explicitly. In order to probe the SSB, we need

to take the large-N limit with fixed ε, and then make an extrapolation to ε = 0.

In figure 4, the expectation values 〈λµ〉ε,mf
(µ = 1, 2, 3, 4) obtained for N = 16, 32, 48

with ε = 0.1 and mf = 1.0 are plotted against 1/N , where the data can be fitted nicely to

straight lines. Thus we can extrapolate the expectation values to N = ∞ for each ε and

mf . In what follows, we assume that the large-N limit is already taken in this way.

– 9 –
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Figure 4. The expectation values 〈λµ〉ε,mf
(µ = 1, 2, 3, 4) for the deformed model defined by (3.16)

and (3.17) are plotted against 1/N for ε = 0.1 and mf = 1.0. The straight lines represent fits to

the behavior a+ b/N .

Next we would like to make an extrapolation to ε = 0. For that purpose, it is convenient

to consider the ratio

ρµ(ε,mf) =
〈λµ〉ε,mf∑4
ν=1〈λν〉ε,mf

. (4.1)

This is motivated from the fact that the mass term (2.7) tends to make all the expectation

values 〈λµ〉ε,mf
smaller than the value to be obtained in the ε → 0 limit. By taking the

ratio (4.1), the finite ε effects are canceled by the denominator, and the extrapolation to

ε = 0 becomes easier. Since ε is a parameter in the action (2.7), the expectation values

〈λµ〉ε,mf
and hence the ratios (4.1) can be expanded in a power series with respect to ε. By

taking the ratios, the coefficients of higher order terms become smaller, and the truncation

of the series becomes valid for a wider range of ε.

In figure 5, we plot the ratio (4.1) against ε for mf = 1.0 (top-left), 0.8 (top-right),

0.6 (bottom-left) and 0.4 (bottom-right). The data obtained at small ε suffer from the

singular-drift problem, and hence cannot be trusted. Here the condition for justifying the

CLM proposed recently in ref. [29] turns out to be useful since it enables us to determine

the range of validity as we explain in appendix A. Taking this into account, we fit the data

in figure 5 to the quadratic form using the fitting range given in table 1, where we also

present the extrapolated values. We find for each value of mf that ρ1(ε,mf) and ρ2(ε,mf)

approach the same value in the ε→ 0 limit, while the others approach smaller values. This

implies that the SSB from SO(3) to SO(2) occurs in the deformed model.

In figure 6, we plot the extrapolated values limε→0 ρµ(ε,mf) obtained in this way

against m2
f . We find that our results within 0.4 ≤ mf ≤ 1.0 can be nicely fitted

to the quadratic behavior, which is motivated by a power series expansion of the ex-

pectation values 〈λµ〉ε,mf
with respect to mf .

3 Extrapolating mf to zero, we obtain

limmf→0 limε→0 ρµ(ε,mf) = 0.328(4), 0.326(2), 0.208(2), 0.133(2) for µ = 1, 2, 3, 4, which

3The odd order terms in mf do not appear due to the symmetry mf → −mf of the expectation values.
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Figure 5. The ratios ρµ(ε,mf) obtained after taking the large-N limit for the deformed model

defined by (3.16) and (3.17) are plotted against ε for mf = 1.0 (top-left), 0.8 (top-right),

0.6 (bottom-left) and 0.4 (bottom-right). The lines represent fits to the quadratic form a+ bε+ cε2.

shows that the SO(4) symmetry of the undeformed model (mf = 0) is spontaneously bro-

ken down to SO(2). Moreover, using an exact result
∑4

µ=1〈λµ〉 = 4 + 2r = 6 [36] for the

present r = 1 case, we obtain

〈λ1〉 = 1.97(2) , 〈λ2〉 = 1.96(1) , 〈λ3〉 = 1.25(1) , 〈λ4〉 = 0.80(1) , (4.2)

which agree well with the results (2.11) obtained by the GEM. Here we emphasize that in

the GEM, the true vacuum was determined by comparing the free energy obtained for the

SO(2) vacuum and the SO(3) vacuum. In contrast, the CLM enables us to determine the

true vacuum directly without having to compare the free energy for different vacua.

As a further consistency check, we repeat the same analysis with a different choice of

the deformation parameter Mµ = (0, 0,mf , 0) in (3.16) instead of (3.17). We find that the

results obtained after the extrapolation mf → 0 turn out to be consistent with the ones

obtained above. See appendix B for the details.

5 Summary and discussion

In this paper, we have shown that the CLM can be successfully applied to a matrix model,

in which the SSB of SO(4) is expected to occur due to the phase of the complex fermion
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Figure 6. The extrapolated values limε→0 ρµ(ε,mf) for the deformed model defined by (3.16)

and (3.17) are plotted against m2
f . The lines represent fits to the quadratic form a+ bx+ cx2 with

x = m2
f using the data within the region 0.4 ≤ mf ≤ 1.0.

mf µ fitting range extrapolated value

1.0

1 0.1 ≤ ε ≤ 0.4 0.2673(20)

2 0.1 ≤ ε ≤ 0.35 0.2685(18)

3 0.1 ≤ ε ≤ 0.50 0.2487(09)

4 0.1 ≤ ε ≤ 0.35 0.2144(32)

0.8

1 0.2 ≤ ε ≤ 0.4 0.2806(21)

2 0.2 ≤ ε ≤ 0.4 0.2815(13)

3 0.2 ≤ ε ≤ 0.5 0.2413(11)

4 0.2 ≤ ε ≤ 0.4 0.1934(24)

0.6

1 0.3 ≤ ε ≤ 0.5 0.3014(24)

2 0.3 ≤ ε ≤ 0.7 0.2997(13)

3 0.3 ≤ ε ≤ 0.6 0.2298(10)

4 0.3 ≤ ε ≤ 0.5 0.1669(19)

0.4

1 0.3 ≤ ε ≤ 0.6 0.3144(20)

2 0.3 ≤ ε ≤ 0.7 0.3125(11)

3 0.3 ≤ ε ≤ 0.8 0.2183(07)

4 0.3 ≤ ε ≤ 0.6 0.1495(08)

Table 1. The fitting range used in figure 5 for the ε→ 0 extrapolations is listed with the extrapo-

lated values obtained by the fits.
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determinant. The SSB does not occur if the phase is quenched, which implies that it is

extremely hard to investigate this phenomenon by reweighting-based Monte Carlo methods.

In the factorization method, for instance, one introduces a constraint with some parameters

and extremizes the free energy with respect to these parameters. While this has been done

successfully in refs. [38, 39], the comparison of the free energy for the SO(2) and SO(3)

vacua turns out to be subtle and a definite conclusion on the true vacuum was not reached.

In contrast, we have shown by the CLM that the SSB from SO(4) down to SO(2) occurs

as predicted by the GEM.

For the success of the CLM, it was crucial to overcome the singular-drift problem

associated with the appearance of nearly zero eigenvalues of the Dirac operator. The gauge

cooling was used to suppress the excursions in the imaginary directions, but the singular-

drift problem in the present case was too severe to be solved by the gauge cooling. This is

understandable because the fermionic variables are exactly “massless” in the present case.

Our strategy to overcome the singular-drift problem was to deform the Dirac operator in

such a way that the singular-drift problem is avoided while maintaining the qualitative

feature of the vacuum as much as possible. On top of this, we have to introduce an O(ε)

symmetry breaking term to probe the SSB, which should be removed after taking the

large-N limit. In making the ε → 0 extrapolations, the criterion for correct convergence

proposed in ref. [29] turns out to be useful since it tells us the range of parameters for

which the CLM is free from the singular-drift problem and the results are trustable. The

order parameters obtained after extrapolating the deformation parameter to zero turn out

to be consistent with the prediction by the GEM.

We have actually tried two types of deformation to avoid the singular-drift problem and

confirmed that the extrapolated results agree with each other within fitting errors. While

this confirms the validity of the extrapolations to some extent, we cannot exclude the

possibility that something dramatic happens when the deformation parameter approaches

zero. Let us recall, however, that the singular-drift problem can occur at some point in

the parameter space even if the system itself does not undergo any dramatic change. For

instance, in QCD at finite density, the singular-drift problem is anticipated to occur at

the quark chemical potential µ & mπ/2, where mπ is the pion mass, but the first order

transition to the phase of nuclear matter occurs at µ ∼ mN/3, where mN is the nucleon

mass. Nothing really happens in the wide parameter range 0 . µ . mN/3. This example

clearly shows that the singular-drift problem has more to do with the methodology rather

than the physics of the system to be investigated.

The CLM with the proposed strategy can be directly applied to the type IIB matrix

model, which is conjectured to be a nonperturbative formulation of type IIB superstring

theory in ten dimensions [31]. While the SO(10) symmetry of the model is expected to

be spontaneously broken down to SO(4) for consistency with our 4d space-time, the GEM

predicts that it is spontaneously broken down to SO(3) rather than SO(4) [40]. It would

be interesting to investigate this issue using the CLM extending the present work.

We consider that the same strategy would be useful also in applying the CLM to

finite density QCD at low temperature and high density, where various exotic condensates

are speculated to form [30] due to the complex fermion determinant. In this case, one
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can deform the Dirac operator by switching on the corresponding fermion bilinear term

without disturbing the vacuum significantly. Now that we have a useful criterion [29] for

justifying the CLM, we can try possible deformations and see whether any of them allows

us to extrapolate the deformation parameter to zero within the region of validity.
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A How to determine the region of validity

In this appendix, we explain how to determine the region of validity of the CLM. When

the symmetry breaking parameter ε becomes small, the singular-drift problem occurs and

the results obtained by the CLM can no longer be trusted. In order to make ε → 0

extrapolations, it is important to determine the value of ε, below which the results become

unreliable. Here we use the criterion based on the argument for justifying the CLM [29].

For that, we calculate the magnitude of the drift term for each configuration and obtain

its probability distribution. If the tail of the distribution falls off exponentially or faster,

we can trust the results obtained with those simulation parameters. We find that the finite

step-size effects can modify the tail of the distribution significantly without changing the

expectation values 〈λµ〉ε,mf
. In order to make the plots in this section, we therefore have

to decrease the step-size when it turns out to be necessary.

Let us define the magnitude of the drift term by

u =

√√√√ 1

4N

4∑
µ=1

Tr
(
v†µvµ

)
, (A.1)

where vµ is the drift term defined by (3.3). Then, we define the probability distribution

p (u) with the normalization
∫∞

0 du p (u) = 1. In figure 7, we plot p (u) against u in the log

scale for various ε with mf = 1.0 and N = 48. We find that p (u) falls off exponentially or

faster for all the ε. Thus, we can trust the results obtained in this region.

In figure 8, we show a log-log plot (left) and a semi log plot (right) of the distribution

p (u) for various ε with mf = 0.8 and N = 48. Since the drift term can become fairly large

for ε = 0.1, we decrease the Langevin step-size to ∆t = 2.0 × 10−6 in order to probe the

tail of the distribution correctly. We find that the distribution falls off exponentially or

faster for ε ≥ 0.2, but a power-law tail develops for ε = 0.1. Therefore, we can trust the

data for ε ≥ 0.2, but not the ones at ε = 0.1.

In figure 9, we show a log-log plot of p (u) for various ε with mf = 0.6 and N = 48.

Here the drift term tends to become even larger than in the mf = 0.8 case, and we have

to investigate the tail of the distribution more carefully. We therefore present the results
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Figure 7. The probability distribution p (u) of the magnitude of the drift term u is plotted in the

log scale for various ε with mf = 1.0 and N = 48.
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Figure 8. The probability distribution p (u) of the magnitude of drift term u is plotted for various

ε with mf = 0.8 and N = 48. The step-size had to be lowered to ∆t = 2.0× 10−6 in order to probe

the behavior of the tail correctly. A log-log plot (left) and a semi log plot (right) are shown.

obtained for two Langevin step-size, ∆t = 2.0× 10−4 (left) and 2.0× 10−6 (right). Indeed,

we find that the behavior of the tail seems to change qualitatively by decreasing the step-

size. In figure 10, we show a semi-log plot for ∆t = 2.0 × 10−6, which suggests that the

tail of the distribution falls off exponentially for ε ≥ 0.3, but not for ε = 0.1. The result

for ε = 0.2 is marginal. We may therefore trust the results for ε ≥ 0.3.

In figure 11, we show a log-log plot of p (u) for various ε with mf = 0.4 and N = 48.

Here we have decreased the Langevin step-size to ∆t = 2.0 × 10−8, but the tail of the

distribution still follows a power law for all values of ε within the region. However, the

comparison of the two plots in figure 9 suggests a possibility that the step-size ∆t should be

decreased further to see the behavior of the tail correctly. Thus for the mf = 0.4 case alone,

we had to determine the lower end of the fitting range empirically from the plausibility of

the fit to the quadratic behavior. Even if we omit the mf = 0.4 point in figure 5, the values

obtained by extrapolations to mf = 0 remain almost the same.
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2.0× 10−4 (left) and 2.0× 10−6 (right).
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Figure 10. A semi-log plot of the data in the right panel of figure 9.
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Figure 12. The scatter plot for the eigenvalues of the Dirac operator obtained during the complex

Langevin simulation of the deformed model defined by (3.16) and (B.1) for ε = 0.1 (left) and ε = 0.5

(right) with mf = 0.6 and N = 32.

B Results for another type of the fermion bilinear term

In this appendix, we present the results obtained by choosing the deformation parameters

in (3.16) as

Mµ = (0, 0,mf , 0) (B.1)

instead of (3.17). Taking into account the ordering (2.10), we can preserve only an SO(2)

symmetry with this choice.

In figure 12, we plot the eigenvalue distribution of the Dirac operator (3.16) for ε = 0.1

(left) and ε = 0.5 (right) with mf = 0.6 and N = 32. We find that the distribution

is separated in the imaginary direction. This is understandable since, at large mf , the

eigenvalue distribution of the Dirac operator would be distributed around ±imf . As a

result, the singularity at the origin can be avoided for even smaller ε than in the case

of (3.17). This enables us to extrapolate ε to zero using the data obtained in the large-N

limit for finite mf .

In figure 13, we plot the ratios (4.1) obtained after taking the large-N limit against

ε for mf = 0.6 (top-left), 0.5 (top-right), 0.4 (middle-left), 0.3 (middle-right) and 0.2

(bottom). The data obtained for small ε cannot be trusted because of the singular-drift

problem. We fit the data in figure 13 to the quadratic form using the fitting range given

in table 2, where we also present the extrapolated values. We find for each value of mf

that ρ1(ε,mf) and ρ2(ε,mf) approach the same value in the ε → 0 limit, while the others

approach smaller values.

In figure 14, we plot the extrapolated values limε→0 ρµ(ε,mf) obtained in this way

against m2
f . We find that our results within 0.2 ≤ mf ≤ 0.6 can be nicely fitted to

the quadratic behavior. Extrapolating mf to zero, we obtain limmf→0 limε→0 ρµ(ε,mf) =

0.337(6), 0.335(2), 0.205(2), 0.132(4) for µ = 1, 2, 3, 4. Using an exact result
∑4

µ=1〈λµ〉 =

4 + 2r = 6 [36] for the present r = 1 case, we obtain

〈λ1〉 = 2.02(4) , 〈λ2〉 = 2.01(1) , 〈λ3〉 = 1.23(1) , 〈λ4〉 = 0.79(2) , (B.2)

which are consistent with the results (4.2) obtained with the choice (3.17) for the deforma-

tion. This supports the validity of our analysis.
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Figure 13. The ratios ρµ(ε,mf) obtained after taking the large-N limit for the deformed

model defined by (3.16) and (B.1) are plotted against ε for mf = 0.6 (top-left), 0.5 (top-right),

0.4 (middle-left), 0.3 (middle-right) and 0.2 (bottom). The lines represent fits to the quadratic

form a+ bε+ cε2.
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Figure 14. The extrapolated values limε→0 ρµ(ε,mf) for the deformed model defined by (3.16)

and (B.1) are plotted against m2
f . The lines represent fits to the quadratic form a + bx + x2 with

x = m2
f using the data within the region 0.2 ≤ mf ≤ 0.6.

mf µ fitting range extrapolated value

0.6

1 0.1 ≤ ε ≤ 0.5 0.2825(21)

2 0.1 ≤ ε ≤ 0.5 0.2828(14)

3 0.1 ≤ ε ≤ 0.5 0.2481(08)

4 0.1 ≤ ε ≤ 0.26 0.2035(22)

0.5

1 0.14 ≤ ε ≤ 0.5 0.2904(21)

2 0.14 ≤ ε ≤ 0.6 0.2921(12)

3 0.14 ≤ ε ≤ 0.5 0.2230(08)

4 0.14 ≤ ε ≤ 0.3 0.1881(18)

0.4

1 0.16 ≤ ε ≤ 0.5 0.3020(28)

2 0.16 ≤ ε ≤ 0.6 0.3007(09)

3 0.16 ≤ ε ≤ 0.5 0.2346(05)

4 0.16 ≤ ε ≤ 0.34 0.1766(24)

0.3

1 0.22 ≤ ε ≤ 0.6 0.3216(26)

2 0.22 ≤ ε ≤ 0.7 0.3150(06)

3 0.22 ≤ ε ≤ 0.5 0.2230(08)

4 0.22 ≤ ε ≤ 0.4 0.1578(21)

0.2

1 0.26 ≤ ε ≤ 0.6 0.3238(32)

2 0.26 ≤ ε ≤ 0.8 0.3249(13)

3 0.26 ≤ ε ≤ 0.6 0.2133(32)

4 0.26 ≤ ε ≤ 0.5 0.1428(30)

Table 2. The fitting range used in figure 13 for the ε → 0 extrapolations is listed with the

extrapolated values obtained by the fits.
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