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terms involving one variable in an MV polynomial are fiied, the coef- 
ficients of the remaining terms in the polynomial are rigidly related to 
these, if the polynomial has to be separable. 
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The Complex LMS Algorithm 
BERNARD WIDROW, JOHN McCOOL, AND MICHAEL BALL 

AQtrrrct-A kmt-mem-aquare (LMS) d.ptive algorithm for complex 
b derived The origirul WidrowHoff LMS wthm is W I + ~  = 

W j  + 2rejXp The complex form is shown to be Wj+l = Wj + 2 ~ 1 x j ,  
where the boldfaced terms represent complex (p lum)  &nab and the 
bar above xi designates complex conjugate. 

The adaptive linear combiner is the key element in many adaptive 
systems. Its function is to weight and sum a set  of input signals to 
form an adaptive output. The input signal vector X and the weight 
vector W are defined at time j as  follows: 

xj = [;] wj = (1) 

Xn j Wn j 
The input signals are sampled  (i.e., discrete in time), and the weights 
are alterable. The output  at time j is 

yj  = xi’wj = w p j .  (2  ) 

The error signal y required for adaptation is defiied as the difference 
between the desired  response dj (an externally supplied input) and the 
output yj:  

ci = di - yi = di - WTX I i .  (3) 
The least-mean-square (LMS) adaptive algorithm [ 11 -[ 31 minimizes 

the mean-square error y by  recursively altering the weight  vector Wi at 
each  sampling instant according to the expression 

wj+l = wj+ 2rqxj (4 1 
where r is a convergence factor controlling stability and rate of adapta- 
tion. The algorithm is based on the method of steepest descent, moving 
W j  in proportion to  the instantaneous gradient estimate of the mean 
square error. A number of  convergence  proofs, derivations of perfor- 
mance characteristics, and applications have appeared in [4] -[7]. 

Some applications of the adaptive linear combiner require a complex 
output. These include the adaptive fdtering of high-frequency  narrow- 
band signals at an intermediate frequency, in  which case both Xi and dj 
are translated in frequency without changing their phase relationships. 

Fig. 1 shows two ways of representing a complex adaptive linear  com- 
biner. The complex input vector Xi and complex weight vector Wi are 
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Fig. 1. Complex adaptive linear combiner.’ (a) In block  diagram form. 

(b) In schematic representation. 

given by 

xi 4 [l;/+ipl XZR j = x R j +  

W j  = A [ E::) = W R ~  + iWIi 

XnRj X d j  

(5 1 

W n R  j Wno 
where R designates a direct (real) signal component and I a 9W-shifted 
(imaginary) signal component. Although it appears in Fig. l(a) that 
four weights are associated with each input pair, only 2” of freedom arc 
actually represented. The complex error and  desired  response required 
to adapt both the real and imaginary  weights are given  by 

ej P ERj + i q j  

dj A dRj + i d ~ f  (6 ) 

The complex output is correspondingly given  by 

y j  P yRj + iyIi. (7 ) 

Equations (2 )  and (3) may thus be expressed in complex form as 
follows: 

yj = xi’wj = wi’xj (8) 

e i -  - d j - y j = d i -   W T X j = d j - X T W p  (9) 

Although these equations are more general than ( 2 )  and (31, they cor- 
respond exactly. All multiplies and adds are complex. 
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The complex LMS algorithm must be able to adapt the real  and imagi- 
nary parts of W j  simultaneously, minimizing in some  sense both E R ~  
and E* A reasonable objective is to minimize the average total error 
power, 

E [ 941 = E [ e i j  + e$] = E [ e i j ]  + E [ €31 2 (10) 

where E designates expected value  and the bar  above Zj complex con- 
jugate. Since the two components of the error are in quadrature rela- 
tive to each other, they cannot be minimized independently. 

The derivation of the complex LMS algorithm for minimizing E [ejFj] 
is similar to the derivation of the original LMS algorithm, except that 
the rules  of complex algebra must be  observed. The conjugate of the 
complex error (9) is 

( 1  1 )  

The instantaneous gradient of ej? with respect to the real compqnent 
of the weight vector is 

( 1 2 )  

The instantaneous gradient with respect to the imaginary component is 

VICejFj) = EjVIGj) + FjVz(€j) = eJ<iXj) + FJ(-iXj). ( 1 3 )  

Applying the method of steepest descent to the real and imaginary parts 
of the weight vector by  changing them along their respective  negative 
gradient estimates, one obtains 

wRj+l = WRj - lrvR(€jz j )  

WIj+l = W q  - pVz(ejZj).  (14) 

Since the complex  weight vector is Wj = W R ~  + WIj, the complex weight 
iteration rule can be expressed as 

Wj+l = W j - p [ V R ( € j g j ) j ) + i V Z ( € n ~ n : , ) l .  (15)  

If the gradients ( 1 2 )  A d  (13)  are now substituted in (15) ,  the complex 
form of the LMS algorithm results: 

Wj+l = wj + 2+j. 
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An Algorithm for the Inversion of Continued Fractions 
V. V. BAPESWARA RAO AND V. K. AATRE 

Abstmcr-A simple procedure for the invetaion of a general con- 
tinued h c t i o n  is presented. 
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The problem of  inversion  of a continued fraction is generally con- 
sidered as the problem of construction of the Routh’s array in the re- 
verse order [ 1 1 ,  [ 2 ] .  Such an approach is not directly applicable when 
the continued fraction is terminated in a rational function. A pro- 
cedure for the inversion  of a continued fraction terminated in a rational 
function has been given by  Chen  and  Chang [ 3 ] .  Their method is 
based on the determination of the chain matrix of the relevant  Cauer 
realization. The procedure is not attractive as it involves the processing 
of  several polynomials. In this letter,  the inversion  of a general con- 
tinued fraction (Cauer’s third form) terminated in a rational function 
is achieved without evaluating the parameters of the chain matrix. 

( 1 )  
where G = gl  (s)/gz (s) is a rational function of s. m e  argument s in  the 
designation of the rational function is omitted for notational simplicity.) 
It is assumed that the last coefficients in  the expansion are h z n  and 
Hzn.  There is no loss of generality in this assumption as any given func- 
tion can be reduced to this form by properly modifying C. 

Let 

’The rational functions Tk-   Tk+l ,  . . . , are similarly defined. Thus 
T1 = T(s)  and Tn+l = G .  With the notation in ( 2 ) ,  

i= 1 

and 


